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Abstract

The distributed outstar, a generalization of the outstar neural network for spatial pat-
tern learning, is described. In the outstar, signals from a source node cause weights to learn
and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces
the source node with a source field whose activity pattern may be arbitrarily distributed.
Learning proceeds according to a principle of atrophy due to disuse, whereby a path weight
decreases in joint proportion to the transmitted path signal and the degree of disuse of
the target node. During learning, the total signal to a node converges toward that node’s
activity level. Weight changes are apportioned according to the distributed pattern of con-
verging signals. Three synaptic transmission functions, a product rule, a capacity rule, and
a threshold rule, are examined for this system. The three rules are computationally equiv-
alent when source field activity is winner-take-all. When source field activity is distributed,
catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of
spatial pattern learning by distributed codes thereby leads to the conjecture that the unit of
long-term memory in such a system is an adaptive threshold, rather than the multiplicative
path weight widely used in neural models.

Introduction: Outstar learning and distributed codes

The outstar is a neural network that can learn and recall arbitrary spatial patterns
(Grossberg, 1968). Outstars have played a central role in the theoretical analysis of cognitive
phenomena and the corresponding neural models, as well as in applications of these systems
(Carpenter and Grossberg, 1991). In particular, all neural network realizations of adaptive
resonance theory (ART models) have so far used outstar learning in the top-down adaptive
filter (Carpenter and Grossberg, 1987a, 1987b; 1990; Carpenter, Grossberg, and Rosen, .
1991). An outstar anatomy consists of a source node that sends weighted inputs to a target,
or border, field of nodes. We will here consider spatial pattern learning in a more general
setting, in which a distributed outstar network (Carpenter, 1993) replaces the single outstar
source node with an arbitrarily large source field (Figure 1).

One possible distributed outstar design is simply to implement outstar learning in each
active path. However, such a system is subject to catastrophic forgetting that can quickly
render the network useless, unless learning rates are very slow. In particular, if all F; nodes
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'Figure 1. Distributed outstar network for spatial pattern learning. During adaptation a
top-down weight wj;, from the j** node of the coding field F; to the it* node of the pattern
registration field F;, may decrease or remain constant. An atrophy-due-to-disuse learning
law causes the total signal o; from F, to the i** F} node to decay toward that node’s activity
level z;, if o; is initially greater than z;. Within this context, three synaptic transmission

rules are analyzed.

were active during learning, all Fy — F} weight vectors would converge toward a common
pattern. 4 :
A learning principle of atrophy due to disuse leads toward a solution of the catastrophi¢

forgetting problem. By this principle, a weight in an active path is assumed to atrophy, og
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decay, in joint proportion to the size of the transmitted synaptic signal and a suitably defined
“degree of disuse” of the target cell. During learning, the total transmitted signal from Fj
converges toward the activity level of the target F; node. Unfortunately, this development is,
by itself, insufficient. In particular, the network still suffers catastrophic forgetting if signal
transmission obeys a product rule. This rule, now assumed in nearly all neural models, takes
the transmitted synaptic signal from the j** F, node to the i** Fj.node to be proportional
to the product of the path signal y; and the path weight w;;. An alternative transmission
process is described by a capacity rule. However, catastrophlc forgetting is even more serious
a problem for this rule than for the product rule

Fortunately, another plausible synaptic transmission rule solves the problem. ThlS
threshold rule postulates a transmitted signal equal to the amount by which the Fy — F
signal y; exceeds an adaptive threshold 7;;. Where weights decrease during atrophy-due-to-
disuse learnlng thresholds increase: formally, ; is identified with (1 —w, ;). When synaptic
transmission is implemented by a threshold rule, ‘weight /threshold changes are automati-
cally distributed, with fast learning as well as slow. learning. When.F, makes a choice, the
three synaptic transmission rules are computationally identical, and atrophy-due-to-disuse
learning is essentially the same as outstar learning. Thus functional differences between the
three types of transmission would be experimentally and computationally measurable only
in situations where the F, code is distributed.

Computational analysis of distributed codes hereby leads unexpectedly to a hypothesns
about the mechanism of synaptic transmission in spatial pattern learning systems. That is,
the unit of long-term memory in these systems is conjectured to be an adaptive threshold,
rather than a multiplicative path weight. The hypothesis is embodied in the distributed
outstar learning law. . '

‘Spatial pattern learnlng and catastrophlc forgetting

The distributed outstar network (Figure 1) features an adaptive filter from a coding field
F» to-a pattern registration field Fy. During outstar learning, weights in the paths emanating
from an F node track Fj activity. That is, when the j** F, node is active, the weight vector
w; = (wj1,...Wjj, ... w;p) converges toward the Fy activity vector x = (z1,...2;,...2)) of
the target nodes at the outer fringe of the filter. While many variants of outstar learning
have been analyzed (Grossberg, 1968, 1972), the essential outstar dynamics are described by
the equation: ;

Basic outstar —

; .
Wi = ¥j(Zi —wji)- (1)

A special F, network called choice, or winner-take-all, is commonly used in ART and
competitive learning systems. An F, code that chooses the J** node is described by:

F, choice —

(1 = R |
y!‘{o i£5 % J. G
In this case, each F, node may then be identified with a class, or category, of inputs I. When

F, makes a choice, outstar learning (1) permits a weight wj; to change only if the Jt* Fy
node is active. All other weights to the it* Fj node remain unchanged when the Jt* category
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is selected, so prior learning is preserved. Outstar learning poses a problem, however, when
Fy category representations can be distributed. If a code y were highly distributed, with
all y; > 0, then the outstar learning law (1) would imply that all weight vectors w; would
converge toward the same Fy activity vector x. The size of y; would affect the rate of
convergence, but not the asymptotic state of the weights. The severity of this problem can
be reduced if learning intervals are required to be extremely short. If, however, the y; values
are nearly uniform or if learning is not always slow, catastrophic forgetting will occur.

A new adaptation rule, called the distributed outstar learning law, solves this problem.
Even with fast learning, where weights approach asymptote on each input presentation,
the distributed outstar apportions weight changes across active paths without catastrophic
forgetting. In the distributed outstar, the rate constant for an individual weight w;; becomes
an increasing function of y;, as in the outstar (1), and also of wj; itself.

When w;; becomes too small, further change is disallowed. Small weights can decrease
further only when y; is close to 1, which occurs when most of the Fj activity is concentrated
at node j. When Fy activity is highly distributed, only large weights, close to their initial
values, are able to change, and the maximum possible weight change in any single path is
small. The distributed outstar combines learning by atrophy due to disuse with the adaptive
threshold synaptic transmission rule, as follows. Detailed computations and examples are
described elsewhere (Carpenter, 1993).

Learning by atrophy due to disuse

The principle of atrophy due to disuse postulates that the strength of an active path will
decay when the path is disused. Active “dis-use” is distinct from passive “non-use”, where
the strength of an inactive path remains constant, as in the outstar (1). To define disuse, a
specific class of target fields F is considered. The main hypothesis on Fj will be that, when
I, is active, the total top-down input from Fj to Fj} imposes an upper bound, or limit, on
the maximum activity at an F} node. In particular, in addition to a bottom-up input I;, a
top-down priming input from Fj is assumed to be necessary for an Fj node to remain active,
once Fy becomes active. This hypothesis is realized by:

-Top—down prime —

O‘Szisai’ (3)

where o; is the sum of all transmitted signals S}; from F; to the itk Fy node:
N \
g, = Z Sji- ‘ (4)
J=1 .

The top-down prime inequality (3) is closely related to the 2/3 Rule of ART (Carpenter and
Grossberg, 1987a). One class of F} systems that realize o; as a top-down prime, or upper
bound, on target node activity z; sets:

z; = I; Aoy = min (I;,04), (5)

where I; € [0,1]. .
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When Fy primes Fy, by (3), the degree of disuse D; of the i** F} node is defined to be:
D;=(0;-2;)20. ~ (6)

A learning principle of atrophy due to disuse postulates that a path weight decays in propor-
tion to the degree of disuse of its target node. We here consider a class of learning equations
that realize this principle in the form:

d
dt

Weights can then decay or stay constant, but never grow, when S;; > 0 and D; > 0. With
the degree of disuse D; defined by (6), the learning law (7) becomes:

Atrophy due to disuse —

wj; = -S;;D;. (7)

d
g1 Wi = —35i(0i = i) o (8)

Initially,
w;;(0) =1 (9)

fori=1,...,M and j = 1,:..,N. When F, makes a choice (2), the atrophy-due-to-disuse

law (8) reduces to: . . ,

‘ d { ~wyi(wyi-g;) ifj=J
___w.. -

a7 o ifj#J

for all three synaptic transmission rules defined below. With'fast learning, the dynamics of
(10) are equivalent to those of the outstar (1).

(10)

Synaptic transmission functions
We will here.consider three rules for synaptic transmission. The F, path signal vector

Yy =(Y1,---Yj>---yn) is assumed.to be normalized:
N ;, '
Yoyi=1, (11)
j=1

but can otherwise be arbitrary.

The first rule postulates that the F, — F} transmitted signal is jointly proportional to
the path signal y; and the weight w;;:
Product rule —
' & SJ',' = Y;Wji- ‘ . (12)
A different synaptic transmission rule assumes that the path signal y; is itself transmitted
directly to the i** F} node, until an upper bound on the path’s capacity is reached. With

this upper bound equal to the path weight w;;, the net signal obeys the:

Capacity rule —
Sji = y; Awj; = min (y;,w;;)- , (13)
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Figure 2. (a) A synaptic transmission parallelogram. S;; is the transmitted signal from
the j** F, node to the :** F} node. By the product rule, Sj; = y;jw;;. By the capacity rule,
Sji = yj Awj;. By the threshold rule, S;; = [y; — (1 — w;;)]* = [y; — 7j:]*. The three rules
agree when y is a binary code. (b) Asymptotic weight values for a fully distributed code,
where y; = 4. As a function of I;, the dynamic range of wj;(co) depends critically upon the
choice of synaptic transmission rule. During learning, weights decrease, from an initial value

of w;;(0) = 1, except when [; = 1.

The geometry of the graph in Figure 2a suggests consideration of a third signal function,
to complete a transmission rule parallelogram. The third signal describes a:

Threshold rule — ,
Sji =ly; - (1 —w;p)]™ (14)
It is awkward to try to interpret (14) in terms of the weight w;;. However, a natural

interpretation can be made if the unit of long-term memory is taken to be an adaptive signal
threshold 7;; rather than the path weight w;;. Namely, by setting:

Tji=1-wj;, (15)
the threshold rule (14) becomes:
Sji=ly; - mil* (16)

Path weights vs. signal thresholds as the unit of long-term memory

An F, code is maximally compressed when the system makes a choice. Consider now
the opposite extreme, when an F, code is maximally distributed. That is, let:

x
Yy; = N ' (17)
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for j=1,...,N. All weights wy,, ..., wy; obey equation (8) and all are initially equal, by (9).
Therefore the weights w;; (j =1,...,N) to a given F} node will remain equal to one another
during learning, for any transmission function S;;. For all three synaptic transmission rules
the total top-down signal o; converges to the bottom up-signal I; at each Fj node ¢ when the
Fy code (17) is maximally distributed. However, the total weight change varies dramatically
(Figure 2b). When F, makes a choice the maximum toégl weight change at a given node
equals (1 - I;) € [0,1] for all three rules. With distributed F5 activity and a product rule,
all weights w;; converge to I; and the maximum total weight change is N(1 - I;) ¢ [0, N].
Within a few input presentations, all weights w;; would, in all likelihood, decay irreversibly
to zero. Similar problems occur for other distributed codes y. In this sense, the product rule
leads to catastrophic forgetting.

The situation with the capacity rule 1s even worse (Figure 2b). When the F, code is
fully distributed, all weights w;; decay to ﬁ € [0,4], unless I; = 1; and the maximum total
weight change at the it* node is N(1-1I;). Thus, unless Iis a binary vector, the full dynamic

range of weight values is nearly exhausted upon the first input presentation.

- It is the adaptive threshold rule alone that limits the total weight change to (1- b ;) €[0,1]
for maximally distributed as well as maximally compressed codes y. In fact, if y is any Fj
code that becomes active when all wy; are initially equal to 1, then:

wji—’l—yj(l_li)~ (18)

Equivalently: )
7ji = Y;(1 = 1), g ' (19)

by (15). Thus the total weight/threshold change at each F} node i is bounded by (1 - I;)
for any code, provided only that y is normalized (11). An F, code y would typically be
highly distributed, with all y; close to 4, when a recognition system has no strong evidence
to choose one category j over another. In this case, the change of each threshold 7;; is
automatically limited to the narrow interval [0, y;], reserving most of the dynamic range for
subsequent encoding. Only when evidence strongly supports selection of the Fj.category
node J over all others, with y; therefore close to 1, would weights be allowed to vary across
most, of their dynamic range. In particular, it is only when y; is close to 1 that a weight
w Jl is able to drop, irreversibly, toward 0, if I; is small. Even with fast learning and with all
, > 0, other weights wj; to the ith node would change little.

Conclusion: Distributed outstar learning

The analysis of distributed spatial pattern learning leads to the selection of a synaptic
transmission rule with an adaptive threshold. In terms of the threshold 7;; in the path from
the jt F, node to the i** Fy node, a stable learning law for distributed codes is defined as
the:

Distributed outstar -

dT',~
—d—g— = Sji(0i - z;), (20)
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where. S}; is the thresholded path signal [y; —7;;]* transmitted from the j** F, node to the
ith F| node and where o; is the sum:

N N ’
Z_: Z: y; — 1)t : (21)

Initially,
. Tj,‘(O) = 0.4 (22)

In a system such as ART 1 (Carpenter and Grossberg, 1987a) or fuzzy ART (Carpenter,
Grossberg, and Rosen, 1991), where F} dynamics are defined so that the total top-down
signal o; is always greater than or equal to z;, the distributed outstar allows thresholds 7;;
to grow but never shrink. The principle of atrophy due to disuse implies that a threshold 7;;
is unable to change at all unless (i) the path signal y; exceeds the previously learned value
of 7j;; and (ii) the total top-down signal o; to the ith node exceeds that node’s activity z;.
In particular, if 7;; grows large when the node j represents part of a compressed Fy code,
then 7;; cannot be changed at all when node j is later part of a more distributed code, since
threshold changes are disabled if y; < 7;;. The adaptive threshold Tji ‘thereby replaces strong
F, competition as the guardian, or stabilizer, of previously learned codes.

in)
References

Carpenter, G.A. (1993). A distributed outstar network for spatial pattern learning. Technical
Report CAS/CNS TR-93-036, Boston, MA: Boston University. Submitted for publication.

Carpenter, G.A. and Grossberg, S. (1987a). A massively parallel architecture for a self-organiz-
ing neural pattern re cognition machine. Computer Vision, Graphics, and Image Processing,
37, 54-115. , , |

Carpenter, G.A. and Grossberg, S. (1987b). ART 2: Stable self-organization of pattern recog-
nition codes for analog input patterns. Applied Optics, 26, 4919-4930. :

Carpenter, G.A. and Grossberg, S. (1990). ART 3: Hierarchical search using chemical trans-
mitters in self-organizing pattern recognition architectures. Neural Networks, 3, 129-152.

Carpenter, G.A. and Grossberg, S. (Eds.) (1991). Pattern Recognition by Self-Organiz-
ing Neural Networks. Cambridge, MA: MIT Press.

Carpenter, G.A., Grossberg, S., and Rosen, D.B. (1991). Fuzzy ART: Fast stable learning
and categorization of analog patterns by an adaptive resonance system. Neural Networks,
4, 759-771. ‘

Grossberg, S. (1968). Some nonlinear networks capable of learning a spatial pattern of arbitrary
complexity. Proceedings of the National Academy of Sciences, 59, 368-372.

Grossberg, S. (1972). Pattern learning by functional-differential neural networks with arbitrary
path weights. In K. Schmitt (Ed.), Delay and Functional-Differential Equations and
Their Applications. New York: Academic Press, pp. 121-160.

11-404



