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ABSTRACT

Adaptive Resonance Theory (ART) models are real-time neural networks for category
learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised
fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal simi-
larity between the computations of fuzzy subsethood and the dynamics of ART category
choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in re-
sponse to arbitrary sequences of analog or binary input patterns. It generalizes the binary
ART 1 model, replacing the set-theoretic intersection (n) with the fuzzy intersection (A), or
component-wise minimum. A normalization procedure called complement coding leads to a
symmetric theory in which the fuzzy intersection and the fuzzy union (v), or component-wise
maximum, play complementary roles. Complement coding preserves individual feature am-
plitudes while normalizing the input vector, and prevents a potential category proliferation
problem. Adaptive weights start equal to one and can only decrease in time. A geomet-
ric interpretation of fuzzy ART represents each category as a box that increases in size as
weights decrease. A matching criterion controls search, determining how close an input and
a learned representation must be for a category to accept the input as a new exemplar. A
vigilance parameter (p) sets the matching criterion and determines how finely or coarsely
an ART system will partition inputs. High vigilance creates fine categories, represented by
small boxes. Learning stops when boxes cover the input space. With fast learning, fixed
vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each
input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers
memories against recoding by noisy inputs.

Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and predic-
tion problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly
minimizing predictive error and maximizing code compression. Low vigilance maximizes
compression but may therefore cause very different inputs to make the same prediction.
When this coarse grouping strategy causes a predictive error, an internal match tracking
control process increases vigilance just enough to correct the error. ARTMAP automat-
ically constructs a minimal number of recognition categories, or “hidden units,” to meet
accuracy criteria. An ARTMAP voting strategy improves prediction by training the system
several times using different orderings of the input set. Voting assigns confidence estimates to
competing predictions given small, noisy, or incomplete training sets. ARPA benchmark sim-
ulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to
Salzberg’s Nested Generalized Exemplar (NGE) and to Simpson’s Fuzzy Min-Max Classifier
(FMMC); and concludes with a summary of ART and ARTMAP applications.
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Match-Based Learning and Error-Based Learning

When is a dog not a dog?: A stable learning system incorporates crucial new data
into an existing memory system without destroying old memories. We effortlessly remember
the a dog is still a dog, even as we learn that this dog is a Dalmatian. In a complex world,
new information often contradicts the old, while both are important and correct.

An ART network constructs new memories based on the success or failure of old mem-
ories, as they guide the system in the world. Some categories are coarse (dog) or fine
(Dalmatian), as needed. When I expect to hear “dog” but the answer is “Dalmatian,” I
am startled into paying attention to features that I had previously ignored. When I learn
to recognize a Dalmatian, I do not forget about dogs as a group. Similarly, ART memories
encode attended features, rather than the entire set of features that happen to be present at
the moment. This is the basis for the network’s stability. ‘

Match-based learning and stable coding: ART memories are stable in a complex
world because the learning process is match-based. Memories change only when attended
portions of the external world match our internal expectations—or when something com-
pletely new occurs. When the external world fails to match an ART network’s expectations
or predictions, a search process activates a new category. The new category represents a
new hypothesis about what is important in the present environment. Match-based learning
is the defining characteristic of ART networks.

Boeing Neural Information Retrieval System: Code stability is one of the main
reasons ART networks are selected for applications. One example of such a technology
transfer is the Boeing Neural Information Retrieval System (NIRS) (Caudell, 1993; Smith,
Escobedo, and Caudell, 1993), in which ART networks are the critical system components.
NIRS encodes a parts inventory in the form of 2-D and 3-D drawings. The system creates a
compressed but stable memory structure for later retrieval by design engineers. The resulting
neural database reduces inventory size by a factor of nine, thus alleviating a severe memory
proliferation problem and permittting efficient reuse of stored designs. NIRS has moved
from beta testing to implementation in CAD systems for design, of the Boeing 777, and
manufacturing, of the Boeing 747 and 767 planes.

Error-based learning: Match-based learning generates a stable recognition code in a
large, complex, evolving environment. A match-based learning system is thus well suited
to problems such as the Boeing CAD neural database, which creates its own expert system
as a function of experience. However, qualitatively different types of learning problems also
exist. For example, as we grow, our eyes and limbs need to learn, or adapt, to their own
internal changes so that we can pick up a pencil as an adult as well as we could at age two.
As adults we have no need for the sensory-motor maps that we learned as babies. These
codes need not, therefore, be stable in the sense that knowledge systems, such as language,
need to be stable. Layers of old motor maps would most likely be a great nuisance.

Neural networks that employ error-based learning are well suited to adaptive problems.
Error-based learning systems include the perceptron (Rosenblatt, 1958, 1962) and multi-layer
perceptrons such as back propagation (Werbos, 1974; Rumelhart, Hinton, and Williams,
1986). In these systems, an error causes memories to change so that the same input, seen
again, would give an answer that was closer to the “correct” one. If I see a dog and know it
is a dog, but am then told it is a Dalmatian, a serious error has occurred. An error-based
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network will shift the weights in such a way that the next response will be toward Dalmatian,
away from dog. If this happens several times in a row, I will learn to respond “Dalmatian,”
but will completely forget that a dog is still a dog. Error-based learning is, hereby, subject
to “catastrophic forgetting.” This kind of forgetting is desirable, however, if the error signal
tells me that I have reached too far to touch the pencil.

ART and Fuzzy Logic

Stephen Grossberg (1976) introduced Adaptive Resonance Theory (ART) as a theory of
human cognitive information processing. The theory has led to an evolving series of real-
time neural network models for unsupervised and supervised category learning and pattern
recognition. These models form stable recognition categories in response to arbitrary input
sequences with either fast or slow learning. Unsupervised ART networks include ART 1
(Carpenter and Grossberg, 1987a), which stably learns to categorize binary input patterns
presented in an arbitrary order; ART 2 (Carpenter and Grossberg, 1987b), which stably
learns to categorize either analog or binary input patterns presented in an arbitrary order;
and ART 3 (Carpenter and Grossberg, 1990), which carries out parallel search, or hypothesis
testing, of distributed recognition codes in a multi-level network hierarchy. Many of the ART
papers are collected in the anthology Pattern Recognition by Self-Organizing Neural
Networks (Carpenter and Grossberg, 1991).

A supervised network architecture, called ARTMAP, self-organizes categorical mappings
between m-dimensional input vectors and n-dimensional output vectors. ARTMAP’s inter-
nal control mechanisms create stable recognition categories of optimal size hy maximizing
code compression while minimizing predictive error in an on-line setting. Binary ART 1
computations are the foundation of the first ARTMAP network (Carpenter, Grossberg, and
Reynolds, 1991), which therefore learns binary maps. Fuzzy ART (Carpenter, Grossberg,
and Rosen, 1991a) generalizes ART 1 to learn stable recognition categories in response to
analog and binary input patterns. When fuzzy ART replaces ART | in an ARTMAP system,
the resulting fuzzy ARTMAP architecture (Carpenter, Grossberg, Markuzon, Reynolds, and
Rosen, 1992) rapidly learns stable categorical mappings between analog or binary input and
output vectors. Fuzzy ARTMAP learns to classify inputs by a fuzzy set of features, or a
pattern of fuzzy membership values between 0 and 1, that indicate the extent to which
each feature is present. Where set-theoretic operations describe ART 1 dynamics fuzzy
set-theoretic operations (Kosko, 1986; Zadeh, 1965) describe fuzzy ART dynamics.

Simulations in this chapter illustrate fuzzy ARTMAP performance. Simulation inputs
are 2-D analog patterns that are not necessarily interpreted as fuzzy sets, but that illustrate
the properties of the system. ARTMAP fast learning typically leads to different adaptive
weights and recognition categories for different orderings of a given training set, even when
the overall predictive accuracy of each simulation is similar. The different category structures
cause the set of test set items where errors occur to vary from one simulation to the next.
A voting strategy uses an ARTMAP system that is trained several times on one input set
with different orderings. The final prediction for a given test set item is the one made
by the largest number of simulations. Since the set of items making erroneous predictions
varies from one simulation to the next, voting both cancels many of the errors and assigns
confidence estimates to competing predictions. The chapter concludes with some fuzzy ART
and ARTMAP applications.




December 15, 1993 -

ART Dynamics

Fuzzy ART incorporates the basic features of all ART systems, notably, pattern matching
between bottom-up input and top-down learned prototype vectors. This matching process
leads either to a resonant state that focuses attention and triggers stable prototype learning
or to a self-regulating parallel memory search. If the search ends with the selection of
an established category, then the category’s prototype may be refined to incorporate new
information in the input pattern. If the search ends by selecting a previously untrained node,
the ART network establishes a new category.

Figure 1: ART 1

Figure 1 illustrates the main components of an ART 1 network and Figure 2 illustrates
an ART search cycle. During ART search, an input vector I registers itself as a pattern X of
activity across level F} (Figure 2a). Multiple converging and diverging F; — F5 adaptive filter
pathways multiply the vector S by a matrix of adaptive weights, or long term memory (LTM)
traces, to generate a net input vector T to level ;. The internal competitive dynamics of F5
contrast-enhance vector T, generating a compressed activity vector Y across F». In ART 1,
strong competition selects the Fy node that receives the maximal Fy — F5 input. Only one
component of Y is'nonzero after this choice takes place. Activation of such a winner-take-all
node defines the category, or symbol, of the input pattern I. Such a Category represents all
the inputs I that maximally activate the corresponding node.

Figure 2: ART Search

Activation of an Fy node may be interpreted as “making a hypothesis” about an input I.
An F), vector generates a signal vector U sent top-down through the F, — Fy adaptive filter.
After multiplication by the adaptive weight matrix of the top-down filter, a vector V becomes
the Fo — Fy input (Figure 2b). Vector V plays the role of a learned top-down expectation.
Activation of V by Y may be interpreted as “testing the hypothesis” Y, or “reading out
the category prototype” V. The ART network matches the “expected prototype” V of the
category against the active input pattern, or exemplar, L

This matching process may change the F; activity pattern X by suppressing activation of
all features in I that are not confirmed by V. The resultant pattern X* encodes the pattern
of features to which the network “pays attention”. If the expectation V is close enough to the
input I, then a state of resonance occurs, with the matched pattern X defining an attentional
focus. The resonant state persists long enough for learning to occur; hence the term adaptive
resonance theory. ART learns prototypes rather than exemplars because weights encode the
attended feature vector X*, rather than the input I itself.

A dimensionless parameter called vigilance defines the criterion of an acceptable match.
Vigilance weighs how close the input exemplar I must be to the top-down prototype V in
order for resonance to occur. In ARTMAP, vigilance becomes an internally controlled vari-
able, rather than a fixed parameter. Because vigilance can vary across learning trials, a single
ART system can encode widely differing degrees of generalization, or morphological variabil-
ity. Low vigilance leads to broad generalization, coarse categories, and abstract prototypes.
High vigilance leads to narrow generalization, fine categories, and specific prototypes. In

~ the limit of very high vigilance, prototype learning reduces to exemplar learning. Varying

vigilance levels allow a single ART system to recognize both abstract categories of faces and
dogs and individual faces and dogs.
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ART memory search, or hypothesis testing, begins when the top-down expectation V
determines that the bottom-up input I are too novel, or unexpected, to satisfy the vigilance
criterion. Search leads to selection of a better recognition code, symbol, category, or hypoth-
esis to represent input I at level Fy. An orienting subsystem A controls the search process.
The orienting subsystem interacts with the attentional subsystem, as in Figures 2c and 2d,
to enable the attentional subsystem to learn about novel inputs without risking unselective
forgetting of its previous knowledge.

ART search prevents associations from forming between Y and X* if X* is too different
from I to satisfy the vigilance criterion. The search process resets Y before such an associ-
ation can form. If the search ends upon a familiar category, then that category’s prototype
may be refined in light of new information carried by I. If I is too different from any of the
previously learned prototypes, then the search ends upon an uncommitted F5 node, which
begins a new category.

An ART choice parameter controls how deeply the search proceeds before selecting an
uncommitted node. As learning self-stabilizes, all inputs coded by a category access it
directly and search is automatically disengaged. The category selected is, then, the one
whose prototype provides the globally best match to the input pattern. Stable on-line
learning proceeds with familiar inputs directly activating their categories and novel inputs
triggering adaptive searches; until the network’s memory reaches its capacity. Simulations
illustrate fuzzy ART dynamics in a parameter range called the conservative limit. In this
limit, the choice parameter « (Figure 3) is very small. Then an input first selects a category
whose weight vector is a fuzzy subset of the input, if such a category exists. Given such a
choice, no weight change occurs during learning; hence the name conservative limit, since
learned weights are conserved wherever possible.

Figure 3: ART 1/fuzzy ART

Fuzzy ART

Fuzzy ART inherits the design features of other ART models. Figure 3 summarizes
how the ART 1 operations of category choice, matching, search, and learning translate
into fuzzy ART operations when the intersection operator (n) of ART 1 replaces the fuzzy
intersection, or component-wise minimum, operator (A). Despite this close formal homology,
this chapter summarizes fuzzy ART as an algorithm, rather than as a locally defined neural
model. Carpenter, Grossberg, and Rosen (1991b) describe a neural network realization of
fuzzy ART. For the special case of binary inputs and fast learning, the computations of fuzzy
ART are identical to those of the ART 1 neural network.

Fast-learn slow-recode and complement coding options: Many applications of
ART 1 use fast learning, whereby adaptive weights fully converge to equilibrium values in
response to each input pattern. Fast learning enables a system to adapt quickly to inputs
that occur only rarely but that may require immediate accurate performance. Remember-
ing many details of an exciting movie is a typical example of fast learning. Fast learning
destabilizes the memories of feedforward, error-based models like backpropagation. When
the difference between actual output and target output defines “error”, present inputs drive
out past learning, since fast learning zeroes the error on each input trial. This feature of
backpropagation restricts its domain to off-line applications with a slow learning rate. In
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addition, lacking the key feature of competition, a backpropagation system tends to average
rare events with similar frequent events that have different consequences. '
Some applications benefit from a fast-commit slow-recode option that combines fast
initial learning with a slower rate of forgetting. Fast commitment retains the advantage of
fast learning, namely, the ability to respond to important inputs that occur only rarely. Slow
recoding then prevents features in a category’s prototype from being erroneously deleted in
response to noisy or partial inputs. Only a statistically persistent change in a feature’s
relevance to an established category can delete it from the prototype of the category.

Complement coding is a preprocessing step that normalizes input patterns. Complement
coding solves a potential fuzzy ART category proliferation problem (Carpenter, Grossberg,
and Rosen, 1991a; Moore, 1989). In neurobiological terms, complement coding uses both
on-cells and off-cells to represent an input pattern, preserving individual feature amplitudes
while normalizing the total on-cell/off-cell activity. Functionally, the on-cell portion of a pro-
totype encodes features that are critically present in category exemplars, while the off-cell
portion encodes features that are critically absent. Small weights in both on-cell and off-cell
portions of a prototype encode as “uninformative” those features that are sometimes present
and sometimes absent. In set theoretic terms, complement coding leads to a symmetric ART
theory in which the fuzzy intersection (A) and the fuzzy union (v) play complementary roles.
Complement coding allows a geometric interpretation of fuzzy ART recognition categories
as box-shaped regions of input space. Fuzzy intersections and unions iteratively define the
corners of each box. Simulations in this chapter illustrate fuzzy ART geometry for an exam-
ple where inputs are two-dimensional, so boxes are rectangles. The geometric formulation
allows comparison between fuzzy ART and aspects of Salzberg’s (1990) Nested Generalized
Exemplars (NGE) and Simpson’s (1991) Fuzzy Min-Max Classifier (FMMC).

Fi‘gure 4: ARTMAP

Fuzzy ARTMAP

Each ARTMAP system includes a pair of Adaptive Resonance Theory modules (ART,
and ART}) that create stable recognition categories in response to arbitrary sequences of
input patterns (Figure 4). During supervised learning, ART, receives a stream {a(P)} of
input patterns and ART), receives a stream {b(P)} of input patterns, where b(?) is the correct
prediction given a(?). An associative learning network and an internal controller link these
modules .to make the ARTMAP system operate in real time. The controller creates the
minimal number of ART, recognition categories, or “hidden units,” needed to meet accuracy
criteria. A Minimax Learning Rule that enables ARTMAP to learn quickly, efficiently, and
accurately as it conjointly minimizes predictive error and maximizes code compression. This
scheme automatically links predictive success to category size on a trial-by-trial basis using
only local operations. It works by increasing the ART, vigilance parameter (pq). by the
minimal amount needed to correct a predictive error at ART,.

An ART, baseline vigilance parameter p; calibrates the minimum confidence needed for
ART, to accept a chosen category, rather than search for a better one through automatically
controlled search. Lower values of pg enable larger categories to form, maximizing code
compression. Initially, p. = pe. During training, a predictive failure at ART, increases pq by
the minimum amount needed to trigger ART, search, through a feedback control mechanism
called match tracking (Carpenter, Grossberg, and Reynolds, 1991). Match tracking sacrifices
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the minimum amount of compression necessary to correct the predictive error. Hypothesis
testing selects a new ART, category, which focuses attention on a cluster of a(?) input
features that is better able to predict b(?). With fast learning, match tracking allows a
single ARTMAP system to learn a different prediction for a rare event than for a cloud of
similar frequent events in which it is embedded.

An ARPA benchmark simulation, circle-in-the-square, illustrates fuzzy ARTMAP dy-
namics. The simulation task is learning to identify which points lie inside and which lie out-
side a circle. During training, components of the ART, input a are the x- and y-coordinates
of a point in the unit square; and ART} input equals 0 or 1, identifying a as inside or outside
the circle. As fuzzy ARTMAP learns on-line, or incrementally, test set accuracy increases
from 88.6% to 98.0% as the training set increases in size from 100 to 100,000 randomly cho-
sen points. With off-line learning, the system needs from 2 to 13 epochs to learn all training
set exemplars to 100% accuracy, where an epoch is one cycle of training on an entire set
of input exemplars. Test set accuracy then increases from 89.0% to 99.5% as the training
set size increases from 100 to 100,000. Application of the voting strategy improves an aver-
age single-run accuracy of 90.5% on five runs to a voting accuracy of 93.9%, with each run
trained on a fixed 1,000-item set for one epoch.

Fuzzy ART Algorithm

ART field activity vectors: Each ART system includes a field Fj of nodes that
represent a current input vector; a field F; that receives both bottom-up input from Fj
and top-down input from a field .F, that represents the active code, or category (Figure 1).
Vector I = ([y,...,1)) denotes Fy activity, with each component /; in the interval [0,1], for
i=1,...,M. Vector x = (z1,...,%)) denotes Fy activity and y = (y1,...,yy) denotes F
activity. The number of nodes in each field is arbitrary.

Weight vector: Associated with each F, category node j(j = 1,...,N) is a vector
w; = (w;1, ..., wyy) of adaptive weights, or long-term memory (LTM) traces. Initially

wy1(0) = ... =w;p(0) =1; (1)

then each category is uncommitted. After a category codes its first input it becomes com-
mitted. Each component w;; can decrease but never increase during learning. Thus each
weight vector w;(¢) converges to a limit. The fuzzy ART weight, or prototype, vector w;
subsumes both the bottom-up and top-down weight vectors of ART 1 (Figure 1).

Parameters: A choice parameter a > 0, a learning rate parameter 8 € [0,1], and a
vigilance parameter p € [0, 1] determine fuzzy ART dynamics.

Category choice: For each input I and F; node j, the choice function T} is defined by

T, = o wy (2)
where the fuzzy intersection A (Zadeh, 1965) is defined by
(P Aq); = min(p;, ;) (3)
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and where the norm |- | is defined by
M
Ipl=)_ Ipil- (4)
=1

The system makes a category choice when at most one Fy node can become active at a
given time. The index J denotes the chosen category, where

Ty=max{Tj:j=1...N}. (5)

If more than one T} is maximal, the category with the smallest j index is chosen. In
particular, nodes become committed in order j = 1,2,3,... . When the J* category is
chosen, y; =1; and y; =0 for j # J. In a choice system, the F} activity vector x obeys the
equation
<= {I if Fy is inactive (6)
IAw; if the Jt* F, node is chosen.

Resonance or reset: Resonance occurs if the match function [Iaw;|/|I| of the chosen
category meets the vigilance criterion:

IA '
Rz ™)

that is, by (6), when the Jtk category becomes active, resonance occurs if
x| =LA w;| > plI|. (8)
Learning then ensues, as defined below. Mismatch reset occurs if

LAw,|
e 9
that is, if |

x| = [TAw; | <plL. (10)

Then the value of the choice function 7' is set to 0 for the duration of the input presentation
to prevent the persistent selection of the same category during search. A new index J

represents the active category, selected by (5). The search process continues until the chosen-

J satisfies the matching criterion (7).
Learning: Once search ends, the weight vector w; learns according to the equation

wite = BIAwlPD) 4+ (1= yw!d). (11)

Fast learning corresponds to setting f = 1. The learning law of the NGE system (Salzberg,
1990) is equivalent to (11) in the fast-learn limit with the complement coding.

Fast-commit, slow-recode: For efficient coding of noisy input sets, it is useful to set
3 =1 when .J is an uncommitted node, and then to take 8 < 1 for slower adaptation after the

7
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category is already committed. The fast-commit, slow-recode option makes W(J"ew) =1 the
first time category J becomes active. Moore (1989) introduced the learning law (11), with
fast commitment and slow recoding, to investigate a variety of generalized ART 1 models.
Some of these models are similar to fuzzy ART, but none uses complement coding. Moore
describes a category proliferation problem that can occur in some analog ART systems when
many random inputs erode the norm of weight vectors. Complement coding solves this
problem.

Normalization by complement coding: Normalization of fuzzy ART inputs prevents
category proliferation. The Fy — F} inputs are normalized if, for some v > 0,

Y Li=I=y (12)
i
for all inputs I. One way to normalize each vector a is:
I=2. 13
al (13)

Complement coding normalizes the input but it also preserves amplitude information, in
contrast to (13). Complement coding represents both the on-response and the off-response
to an input vector a (Figure 4). In its simplest form, a represent the on-response and a®,
the complement of a, represents the off-response, where

ai=1-a;. (14)
The complement coded Fy — Fj input I is the 2M-dimensional vector

I=(a,a% =(ay,...,ap,af,...,a%). (15)

A complement coded input is automatically normalized, because

|I|v='|(av’ac)|
M M
=Y a0+ (M- a) (16)
=1 i=1
=M.

With complement coding, the initial condition

wjl(())——-...:w]-’zM(O):l. (17)

replaces the fuzzy ART initial condition (1).

The close linkage between fuzzy subsethood and ART choice/search/learning forms the
foundation of the computational properties of fuzzy ART. In the conservative limit, where
the choice parameter o = 0%, the choice function T; measures the degree to which w; is a
fuzzy subset of I (Kosko, 1986). A category .J for which w is a fuzzy subset of I will then
be selected first, if such a category exists. Resonance depends on the degree to which I is a
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fuzzy subset of wy, by (7) and (9). When J is such a fuzzy subset choice, then the match

function value is:
HAaw,| _ |wyl

1T T
Choosing J to maximize |w;| among fuzzy subset choices, by (2), thus maximizes the op-

portunity for resonance in (7). If reset occurs for the node that maximizes |w |, then reset
will also occur for all other subset choices.

(18)

A geometric interpretation of fuzzy ART represents each category as a box in M-
dimensional space, where M is the number of components of input a. Consider an input
set that consists of 2-dimensional vectors a. With complement coding,

I=(a,a% = (ay,as,1-ap,1-az). (19)

Each category j then has a geometric representation as a rectangle R;. Following (19), a
complement-coded weight vector w; takes the form:

wj = (u;,v{), (20)

where u; and v; are 2-dimensional vectors. Vector u; defines one corner of a rectangle R;
and v; defines the opposite corner (Figure 5a). The size of R; is:

[R;| = |v; —u;l, (21)

which is equal to the height plus the width of R; Figure 5a.
Figure 5: Fuzzy ART boxes

In a fast-learn fuzzy ART system, with 8 =1 in (11), W(J“ew) = 1= (a,a®) when J is
an uncommitted node. The corners of RS"ew) are then a and (a)¢ = a. Hence Rf]“ew) is
just the point a. Learning increases the size of R;, which grows as the size of w; shrinks
during learning. Vigilance p determines the maximum size of R;, with |R;| < 2(1 - p), as
shown below. During each fast-learning trial, R; expands to R« a, the minimum rectangle
containing R; and a (Figure 5b). The corners of R; ¢ a are aAuy and aVv vy, where the
fuzzy intersection A is defined by (3); and the fuzzy union v is defined by:

(p Vv a); = max(p;, ¢;) (22)
(Zadeh, 1965). Hence, by (21), the size of R; & a is:
|R;éal=|(avvy)-(aruy)l (23)

However, before R; can expand to include a, reset chooses another category if |R;®a| is too
large. With fast learning, R; is the smallest rectangle that encloses all vectors a that have
chosen category 7 without reset.

If a has dimension M, the box R; includes the two opposing vertices Aja and v;a, where
the :** component of each vector is:

A;a); = min{q, : a has been coded by category j} 24
J g

9
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and
(v;a); = max{a, : a has been coded by category j} (25)
(Figure 6). The size of R; is
|R]‘|»“—= |V]'a—/\ja| (26)
and the weight vector w; is
w; = (Aja, (v;a)%), (27)
as in (20) and (21). Thus
|W]'| =Z(/\ja),-+2[l —(vja)i] = M—|vja—/\ja|, (28)
? )
so the size of the box R; is
|R;| =M — |w;|. (29)
By (8), (11), and (16),
Wl > pM. (30)
By (29) and (30),
1R < (1-p)M. (31)

Figure 6: Fuzzy ART category

Inequality (31) shows that high vigilance (p = 1) leads to small R; while low vigilance
(p = 0) permits large R;. If j is an uncommitted node, |w;|{ = 2M, by (17), so formally,
|R;l = —M, by (29). These observations are combined into the following summary of fuzzy
ART dynamics.

Fuzzy ART stable category learning: A fuzzy ART system with complement coding,

fast learning, and constant vigilance forms categories that converge to limits in response

to an arbitrary sequence of analog or binary input vectors. Category boxes can grow in
each dimension, but never shrink. The size of a box R; equals M — |w;|, where w; is the
corresponding weight vector. The size | R;| is bounded above by M(1-p). In the conservative
limit, one-pass learning obtains such that no reset or additional learning occurs on subsequent
presentations of any input. Moreover, if 0 < p < 1, the number of categories is bounded,
even if the number of exemplars in the training set is unbounded. Similar properties hold
for the fast-learn slow-recode case, except that repeated presentations of each input may be
needed before stabilization occurs, even in the conservative limit.

A comparison of fuzzy ARTMAP, NGE, and FMMC: The geometry of the fuzzy
boxes R; resembles parts of the Nested Generalized Exemplar (NGE) system (Salzberg, 1990)
and the Fuzzy Min-Max Classifier (FMMC) system (Simpson, 1991). Fuzzy ARTMAP, NGE,
and FMMC all use boxes to represent category weights in a supervised learning paradigm.
All three systems use some version of the learning law (11) to update weights when an input
correctly predicts the output. The three algorithms differ, however, in their responses to
incorrect predictions. Because NGE and FMMC do not have components analogous to the
ART vigilance parameter, these algorithms do not have internal control of box size. NGE
does include a type of search process, but its rules differ from those of fuzzy ARTMAP.
For example, when NGE makes a predictive error, it searches at most two categories before
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creating a new one. NGE allows boxes to shrink as well as to grow, so the fuzzy ART
stability properties do not obtain. For the NGE system, only the Greedy version, a leader
algorithm that codes the first exemplar of each category, is necessarily stable. Stability and
match tracking allow fuzzy ARTMAP to construct automatically as many categories as are
needed to learn any consistent training set to 100% accuracy. Both ARTMAP and NGE
rely on multi-layer structures to effect their learning strategies. In contrast, the FMMC is a
two-layer, feedforward system that allows at most one category box to represent each output
class. FMMC can therefore learn only a limited set of category structures. In contrast, fuzzy
ARTMAP can associate multiple categories with the same output, so, for example capital
letters, script letters, and various fonts can all predict the same letter name.

Fuzzy ARTMAP Algorithm

Fuzzy ARTMAP incorporates two fuzzy ART modules ART, and ART} that are linked
together via an inter-ART module F® called a map field. The map field forms predictive
associations between categories and realizes the ARTMAP match tracking rule. Match track-
ing increases the ART, vigilance parameter p, in response to a predictive error, or mismatch,
at ART);. Match tracking reorganizes category structure so that subsequent presentations of
the input do not repeat the error. An outline of the ARTMAP algorithm follows.

ART, and ART,: Inputs to ART, and ART, are complement coded. For ART,, I =
A =(a,a®); and for ART,, I = B = (b, b®) (Figure 4). Variables in ART, or ART} are desig-
nated by subscripts or superscripts “a” or “b”. For ART,, x* = (z{...7% M, ) denotes the F}
output vector; y* = (yf ...y%, ) denotes the Fi output vector; and w§ = (why, why, ..., w;2n,)
denotes the j** ART, welght vector. For ART,,, xb = (ab.. .2} b) denotes the F} output

vector; yb = (yb.. .y%,) denotes the £ output vector; and W” = (W, Wl wh 5yy,) de-

notes the k*» ART, weight vector. For the map field, x* = (2§, ..., 2% ) denotes the Fo¢
output vector, and w#® = (w;’{’, ,wik; ) denotes the weight vector from the jth Fg node to

Feb. Vectors x¢,y®?, x” ,¥%, and x? are reset to O between input presentations.

Map field activation: The map field F% receives input from either or both of the
ART. or ART, category fields. A chosen' F¢ node J sends input to the map field F via the
weights w4b. An active F} node K sends mput to F*® via one-to-one pathways between F?
and Fb, If both ART, a,nd ART, are active, then F'% remains active only if ART, predicts
the same category as ART;. The F% output vector x% obeys:

ybAw% if the Jth Fg node is active and F? is active

< = w - if the Jth F¢ node is active and FY is inactive (32)
y? if F§ is inactive and F? is active
0 if F§¢ is inactive and FY is inactive.

By (32), x? = 0 if y® fails to confirm the map field prediction made by w%. Such a mismatch
event triggers an ART, search for a better category, as follows.

Match tracking: At the start of each input presentation ART, vigilance pq, equals a
baseline vigilance parameter pg. When a predictive error occurs, match tracking raises ART,
vigilance just enough to trigger a search for a new F§¢ coding node. ARTMAP detects a
predictive error when

%) < puply’l, (33)
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where p,; is the map field vigilance parameter. A signal from the map field to the ART,
orienting subsystem causes p, to “track the F{* match.” That is, p, increases until it is
slightly higher than the F{* match value |A A w4||A|~1. Then, since

X% = [A AWS| < palAl, (39

ART, fails to meet the matching criterion, as in (10), and the search for another Fi node
begins. The search leads to an Fj node J with

X% = |A AWY| > palA| (35)

and 4
x%| = [y’ AW > paylyPl. (36)

If no such node exists and if all Fi¥ nodes are already committed, Fi automatlcally shuts
down for the remainder of the mput presentation.

Map field learning: Weights w;‘,’; in F§ — F paths initially satisfy

wi(0) =1. (37)

During resonance with the ART, category J active, w‘}” approaches the map field vector
x% as in (11). With fast learning, once J learns to predict the ART, category K, that
association is permanent; i.e., w‘j’j‘,{- =1 for all time.

Fuzzy ARTMAP Simulation: Circle-in-the-Square

The circle-in-the square problem requires a system to predict which points of a square
lie inside and which lie outside a circle whose area equals half that of the square (radius
approximately 0.4). This task is a benchmark problem for performance evaluation in the
ARPA Artificial Neural Network Technology (ANNT) Program (Wilensky, 1990). Wilensky
examined 2-n-1 backpropagation systems on this problem. He studied systems where the
number (n) of hidden units ranged from 5 to 100, and the corresponding number of welghts
ranged from 21 to 401. Training sets ranged in size from 150 to 14,000 points identified as in
or out. To avoid over-fitting, training ended when accuracy on the training set reached 90%.
Systems with 20 to 40 hidden units reached this criterion level most quickly, in about 5000
epochs. The trained systems then correctly classified approximately 90% of test set points.

Figure 7: Circle, 1-epoch
Figure 8: Circle, boxes

Figures 7 and 8 illustrate fuzzy ARTMAP performance on the circle-in-the-square task
after one training epoch. As training set size increases from 100 exemplars (Figure 7a) to
100,000 exemplars (Figure 7d) the rate of correct test set predictions increases from 88.6%
to 98.0% while the number of ART, category nodes increases from 12 to 121. Each category
node j requires four learned weights w¢ in ART4 plus one map field weight w to record
whether category j predicts that a point lies inside or outside the circle. For example, 1-epoch
training on 100 exemplars (Figure 7a) creates 12 ART, categories and so uses 60 weights to
achieve 88.6% test set accuracy. Figure 8 shows the ART, category rectangles R} for each
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simulation of Figure 7. As in Figure 5 each rectangle R} corresponds to the 4-dimensional
weight vector w§ = (u‘;, (v$)9), with u? and v§ are plotted as the lower-left and upper-right
corners of R}, respectively. Early in training, large R? estimate large areas as belonging
to one or the other category (Figure 8a). Additional R improve accuracy, especially near
the boundary of the circle (Figure 8d). The map becomes arbitrarily accurate provided the
number of F{ nodes increases as needed.

Figure 9: Circle, multi-epochs

Figure 9 depicts the response patterns of fuzzy ARTMAP on another series of circle-in-
the-square simulations that use the same training sets as in Figure 7. However, each input
set is now presented for as many epochs as needed to achieve 100% predictive accuracy on
the training set, whereas training in Figure 7 lasted for one epoch only. In each case, test set
predictive accuracy increases, but so does the number of ART, category nodes. For example,
with 10,000 exemplars, 1-epoch training uses 50 ART, nodes to give 96.7% test set accuracy
(Figure 7c). The same training set, after 6 epochs, uses 39 more ART, nodes to correct
about half the errors and boost test set accuracy to 98.3% (Figure 9c).

Figure 7 shows how a test set error rate decreases from 11.4% to 2.0% as training set size
increases from 100 to 100,000 in 1-epoch simulations. Figure 9 shows how test set error rates
decrease further if learning continues for as many epochs as necessary to reach 100% accuracy
on each training set. The ARTMAP voting strategy provides a third way to reduce test set
errors. Recall that the voting strategy assumes a fixed set of training exemplars. Before each
individual simulation, inputs are randomly ordered. After each simulation, the prediction of
each test set item is recorded. The final prediction is the one made by the largest number of
individual simulations. Voting almost always reduces errors, and the number of votes cast
for a given outcome also attaches a measure of predictive confidence to each test set point.

Figure 10: Circle, voting

Simulations in Figure 10 show how, given a limited training set, voting across a few input
orderings improves predictive accuracy by a factor that is comparable to the improvement
attained by an order of magnitude increase in the size of a training set. In Figure 10, a fixed
set of 1,000 randomly chosen exemplars is presented to a fuzzy ARTMAP system on five
independent 1-epoch circle-in-the-square simulations. After each simulation, inside/outside
predictions are recorded on a 1,000-item test set. Accuracy on individual simulations ranges
from 85.9% to 93.4%, averaging 90.5%, and using from 15 to 23 ART, nodes. Voting by
the five simulations improves test set accuracy to 93.9% (Figure 10c). In other words,
test set errors decrease from an average individual rate of 9.5% to a voting rate of 6.1%.
Figure 10d, which indicates the number of votes cast for each test set point, reflects variations
in predictive confidence across different regions, with confidence lowest near the border of
the circle. Voting by more than five simulations maintains an error rate between 5.8% and
6.1%. This limit on further improvement by voting appears to be due to gaps in the fixed
1,000-item training set. By comparison, a tenfold increase in the size of the training set
reduces the error by an amount similar to that achieved by five-simulation voting.

ART Applications

Since the publication of the first ART network in 1987, scientists and engineers have
applied these systems to a variety of problems. Researchers often cite unique ART features
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such as code stability, speed, and incremental learning as reasons for using ART or ARTMAP
instead of an error-based neural network such as backpropagation.

The Boeing Company Neural Information Retrieval System (NIRS) has advanced from
prototype to implementation in a state-of-the-art computer-aided airplane design system
(Caudell, 1993; Smith, Escobedo, and Caudell, 1993). Engineers now use NIRS for pro-
duction of the Boeing 747 and 767 airplanes and for design of the Boeing 777. The Neural
Information Retrieval System is a hierarchy of ART networks that form compressed content-
addressable memories of 2-D and 3-D parts designs. The NIRS shows an engineer who has
sketched a part on the CAD system other parts in inventéry that may be similar. Inven-
tory proliferation and design time are both saved. Working CAD systems that include the
NIRS have already reduced parts inventories by a factor of nine, and Boeing estimates that
this technology will save the company up to $80 million per year. A new book, Neural
Networks in Design and Manufacturing (Kumara et al., 1993), discusses commercial
applications of ART networks.

A trained ARTMAP system translates into a set of if-then rules at any stage of learn-
ing. This feature has made the network particularly useful in the analysis of large medical
databases (Carpenter and Tan, 1993; Goodman et al., 1992; Ham and Han, 1993; Har-
vey, 1993). Other ART medical applications include electrocardiogram wave recognition
(Suzuki, Abe, and Ono, 1993). ARTMAP test set performance has proved superior to that
of other neural networks in application domains such as diagnostic monitoring of nuclear
plants (Keyvan, Dung, and Rabelo, 1993), land cover classification from remotely sensed
data (Gopal, Sklarew, and Lambin, 1993), and the prediction of protein secondary struc-
ture (Mehta, Vij, and Rabelo, 1993). The ART-EMAP network adds to fuzzy ARTMAP
spatial and temporal evidence accumulation capabilities (Carpenter and Ross, 1993). These
new functions improve performance on both noisy and noise-free test sets, and expand the
range of ARTMAP applications to spatio-temporal recognition problems such as 3-D object
recognition and scene analysis. Researchers at MIT Lincoln Laboratory use ART systems
for robot sensory-motor systems (Bachelder, Waxman, and Seibert, 1993; Baloch and Wax-
man, 1991), 3-D object recognition (Seibert and Waxman, 1991, 1992), and face recognition
(Seibert and Waxman, 1993). The Macintosh commercial software Open Sesame! uses an
unsupervised ART network to adapt the operating system to a user’s work habits (John-
son, 1993). Other applications range from analyses of musical structure (Gjerdingen, 1990)
to military target recognition (Moya, Koch, and Hostetler, 1993). Finally, applications of
ART networks continue to include those of the original adaptive resonance theory: to orga-
nize, clarify, and predict neural and psychological data concerning memory recognition, and
attention (Carpenter and Grossberg, 1991, 1993; Desimone, 1992; Gochin, 1990).
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Figure 1. Typical ART 1 neural network (Carpenter and Grossberg, 1987a).
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Figure 2. ART search for an F, code: (a) The input pattern I generates the specific STM
activity pattern X at Fy as it nonspecifically activates the orienting subsystem A. Pattern
X both inhibits A and generates the output signal pattern S. An adaptive filter transforms
the signal pattern S into the pattern T, which activates the STM pattern Y across Fy. (b)
Pattern Y generates the signal pattern U, and a top-down adaptive filter transforms U into
the prototype pattern V. If V mismatches I, then F} registers a new STM activity pattern
X*. The resulting reduction of total STM reduces the total inhibition from F; to A. (c) If
the ART matching criterion fails, A releases a nonspecific signal that resets the STM pattern
Y at Fy. (d) Since reset inhibits Y, it also eliminates the top-down prototype signal T, so
X can be reinstated at F7. Enduring traces of the prior reset allow X to activate a different
STM pattern Y* at F,. If the top-down prototype due to Y* also mismatches I at Fj, then
the search for an Fy code that satisfies the matching criterion continues.
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Figure 3. Analogy between ART 1 and fuzzy ART. In ART 1 w; denotes the index set of
top-down LTM traces that exceed a prescribed positive threshold value.
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Figure 4. Fuzzy ARTMAP architecture. The ART, complement coding preprocessor trans-
forms the M,-vector a into the 2M,-vector A = (a,a®) at the ART, field F¢. A is the input
vector to the ART, field F¢. Similarly, the input to F} is the 2Mj-vector (b,b¢). When
ART, disconfirms a prediction of ART,, map field inhibition induces the match tracking
process. Match tracking raises the ART, vigilance (pa) to just above the Ff-to-F§ match
ratio |x%|/|A|. This triggers an ART, search which leads to activation of either an ART,
category that correctly predicts b or to a previously uncommitted ART, category node.
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Figure 5. Fuzzy ART category boxes. (a) In complement coding form with M = 2, each
weight vector w; has a geometric interpretation as a rectangle R; with corners (u;,v;). (b)
During fast learning, R; expands to R; & a, the smallest rectangle that includes R; and a,
provided that |R; & al < 2(1 - p).

22




December 15, 1993

)

0

0

Figure 6. With fuzzy ART fast learning and complement coding, the j** category rectangle
R; includes all those vectors a in the unit square that have activated category j without
reset. The weight vector w; equals (Aja, (v;a)c).
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100 exemplars 1,000 exemplars
99.0% training set 95.5% training set
88.6% test set 92.5% test set

12 ART, categories 21 ART, categories

(c) ' (d)

10,000 exemplars 100,000 exemplars
07.7% training set 98.8% training set
96.7% test set 98.0% test set
50 ART, categories 121 ART, categories

Figure 7. Circle-in-the-square test set response patterns after 1 epoch of fuzzy ARTMAP
training on (a) 100, (b) 1,000, (c) 10,000, and (d) 100,000 randomly chosen training set
points. The system predicts that test set points in white areas lie inside the circle and that
points in black areas lie outside the circle. The test set error rate decreases, approximately
inversely with the number of ART, categories, as the training set size increases.
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(c) (d)

10,000 exemplars 100,000 exemplars
97.7% training set 98.8% training set
96.7% test set 98.0% test set
50 ART, categories 121 ART, categories

Figure 8. Fuzzy ARTMAP category rectangles R¢ for the circle-in-the-square simulations
of Figure 7. Small rectangles form near map discontinuities as the error rate drops toward
0.
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(a) (b)

100 exemplars 1,000 exemplars
2 epochs 3 epochs
89.0% test set 95.0% test set

12 ART, categories 27 ART, categories

(c) (d)

10,000 exemplars 100,000 exemplars
6 epochs 13 epochs
08.3% test set 99.5% test set
89 ART, categories 254 ART, categories

Figure 9. Circle-in-the-square test set response patterns with exemplars repeatedly pre-
sented until the system achieves 100% correct prediction on (a) 100, (b) 1,000, (c) 10,000,
and (d) 100,000 training set points. Training sets are the same as those used for Figures 7
and 8. Training to 100% accuracy requires (a) 2 epochs, (b) 3 epochs, (¢) 6 epochs, and
(d) 13 epochs. Additional training epochs decrease test set error rates but create additional
ART, categories, compared to the 1-epoch simulation in Figure 7.
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: (@) )
15 ART, categories 17 ART, categories
85.9% test set - 92.4% test set

(c) (d)
Voting on 5 runs Number of votes
93.9% test set

Figure 10. Circle-in-the-square response patterns for a fixed 1,000-item training set. (a)
Test set responses after training on inputs presented in random order. After 1 epoch that
uses 15 ART, nodes, test set prediction rate is 85.9%, the worst of 5 runs. (b) Test set
responses after training on inputs presented in a different random order. After 1 epoch that
uses 17 ART, nodes, test set prediction rate is 92.3%, the best of 5 runs. (c¢) Voting strategy
applied to five individual simulations. Test set prediction rate is 93.9%. (d) Cumulative test
set response pattern from five 1-epoch simulations. Gray scale intensity increases with the
number of votes that predict a point to lie outside the circle.
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