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Abstract 

A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed 
population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby 
activations of multiple spatially short-range filters of different size are transformed into speed-tuned cell responses. These 
mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These 
mechanisms are proposed to occur in the V1 + M T  cortical processing stream. The model reproduces empirically derived speed 
discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus 
contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been 
used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that 
has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides 
a computational foundation for an emerging neural theory of 3-D form and motion perception. O 1998 Elsevier Science Ltd. All 
rights reserved. 
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I 1. Introduction 
I 

How are estimates of retinal speed of moving objects 
extracted from continuously changing optic input? 
Classic computational models of motion detection in- 
volving Reichardt-like or motion-energy mechanisms 
have focused on the recovery of motion direction [I-41. 
Primate units of MT exhibit both speed and directional 
tuning, however [5 - 81. 

The code for speed at a particular spatla1 location for 
our model is a distribution of activity in a bank of 

I 
I neural units of multiple scales, whereby units of larger - spatial scale code for faster speeds. These multiple 

, spatial scales model the short-range motion process of 
Hraddick 101, including the fact that the short-range 
motion limit Dm,, depends on the spatial frequency 
content of the image [lo-151. Such a multiple-scale 
short-range filter was introduced in earlier versions of 
the motion model that is developed here, where it was 
used to stimulate data about long-range apparent mo- 
tion [16], including beta motion, gamma motion, delta 
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motion, reverse motion, split motion, Ternus motion, 
reverse-contrast Ternus motion, and Korte's laws [17- 
191. Here we show how such a multiple-scale filter can 
be appropriately combined with other model mecha- 
nisms to explain psychophysical and neural data about 
speed perception. 

Heeger [20] has earlier shown how spatiotemporal 
filtering over a coarse set of units of different spatial 
extent can encode motion direction and speed. Heeger's 
model expresses a computational intuition about multi- 
scale speed coding in a set of channels conceived as 
independent, quasi-linear filters. Later Anadan [21] also 
employed a multiscale approach in a computational 
algorithm for robust motion estimation from image 
sequences. Our concern is to ask how the nonlinear, 
coupled neural units with limited dynamic range, that 
have already been used to explain many other psycho- 
physical and physiological motion data, can be orga- 
nized to display speed-tuning in a distributed multiscale 
representation. 

In the present model, speed is represented through 
the distributed activity of speed-tuned units, or cell 
populations. We define speed-tuned cells as those that 
respond preferentially to a limited, continuous range of 
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speeds, as opposed to speed-sensitive cells, which. vary 
their response with speed, but do not exhibit a prefer- 
ence for a'particular speed. There is considerable neuro- 
physiological evidence for speed-tuned cells in the 
visual systems of cat and monkey [22-251. In the 
model, the speed-tuned cells are arranged in a topo- 
graphic neural map so that at each location there is a 
set of cells tuned to a range of speeds. The distribution 
of activity across the cells in the map then implicitly 
codes speed estimates at different locations. Cheng et 
al. [26] have reported that the distribution of cells as a 
function of speed is not uniform in MT, with most cells 
peaking at high velocities (32-64"/s). While such a 
distribution would seem ill-suited to support discrimi- 
nation among lower speeds, Cheng et al.'s animals were 
anesthetized, possibly resulting in a need for stronger 
(i.e. faster) stimuli to drive them than would normally 
be the case. Also, as we will demonstrate, most of the 
cells at intermediate stages of our model respond to 
high velocities, and specific mechanisms operate to 
ensure that the tuning of - cells -of.subsequent--stages is . .  

more specific to lower or intermediate velocities. Thus 
the cells recorded by Cheng et al. may more closely 
correspond to intermediate than to final stages of our 
model. 

The speed-sensitivities of the model cells arise pri- 
marily from their different spatial scales, which deter- 
mine the size of their input fields, in accord with recent 
evidence that receptive field sizes of foveal motion 
sensitive units range from approximately 0.03- lo, as 
inferred from psychophysical methods [27,28]. In the 
primate nervous system, speed tuning appears to arise 
in cortex through the combination of signals from more 
peripheral cells. Although cells in cat or monkey retina 
and LGN may exhibit speed-sensitivity, there is no 
evidence for speed-tuning until striate cortex in both cat 
[29,30] and monkey [31], in which some, but not all: 
cells are speed-tuned. Speed and directional tuning both 
become more prevalent in monkey areaMT [6,8,32,33], 
suggesting that this area is further upstream in a spe- 
ciiiized motion ~rocessing system that successively refi- 
nes motion signals. Such speed-tuned cells 'are usually 
directi'onally-selective and exhibit both facilitatory and 
suppressive interactions within their receptive fields, 
indicating that peripheral signals may be nonlinearly 
combined to yield speed tuning. 

Our primary goal in developing this model was not 
to' determine a computationally "optimai method of 
extracting speed from optic input, but to simulate im- 
portant characteristics' o f  human speed perception. Of 
particular interest are 'the sensitivities or insensitivities 
of speed perception to non-speed paramet' ric variations 
in the stimulus. These sensitivities can reveal details of 
the operation o f '  the, mechanisms>' that underiie speed 
perception. In this :model we account for and qualita- 
tively simulate data showing changes in speedidscrinii- 

nation resulting from changes in stimulus contrast [34] 
and duration [35]) as well as changes in perceived speed 
resulting from changes in stimulus contrast [34] and the 
density of moving random dot fields [36]. In addition 
we also account for variations in reaction times at 
different stimulus speeds [37]. 

A key model hypothesis is that the spatial scale or 
input field size of a cell determines its speed-sensitivity, 
such that larger scales respond preferentially to faster 
stimuli. We call this covariation the size-speed correla- 
tion. Analogously, cells in monkey area MT typically 
have larger receptive fields, exhibit directional interac- 
tions over larger areas and are directionally tuned for a 
greater range of velocities than cells in V1 [7]. Likewise, 
in cat visual areas 17 and 18, cells with slow speed 
preferences are generally unaffected by masking of pe- 
ripheral portions of their receptive fields, while cells 
preferring intermediate and high speeds showed re- 
duced responsiveness at higher speeds after the same 
masking [38]. 

- - - T h e  - theme of multiscale-  representation^ - occurs in - -  - -  

many traditions in the study of vision, notably research 
on psychophysical channels for pattern perception and 
in the development of efficient image coding procedures 
,for machine vision. Among the modalities. of primate 
vision, coding at multiple spatial scales is perhaps most 
familiar in stereo vision [39] (see Ref. [40] for a review). 
Here sensitivity to amount of disparity is known to 
covary with sensitivity to size [4 1-45]). This covariation 
is often called the size-disparity correlation [41-451. 

The visual system is faced with the problem of main- 
taining sensitivity to a wide range of speeds, using 
mechanisms with limited operating ranges, without sac- 
rificing speed resolution or spatial resolution, such as 
wken small objects travel very fast. Since a simple 
'match filter' scheme using neurons uniquely tuned to 
e ~ e r ~ ~ o m b i n a t i o n  of speed, size, contrast, and so forth 
is hopelessly impractica'i, units with overlapping sensi- 
tivitfes to spatial and temporal parameters of inputs 
must be used. These considerations lead, in turn, to 
issues concerning how speed codes of units sensitive to 
a range of spatial and temporal frequencies can be 
properly tuned. The main problem in understanding 
how the brain represents Speed using a multiple scale 
population code can be succinctly stated: why does not 
the largest scale always wln in response to all.input 
speeds, simply because it has a larger receptive field 
with which to attain a higher level of activation? This 
problem arises because each scale is turned ON 
whenever a contrast passes through the region corre- 
sponding to the filter's spatial, extent. For this to hap- 
pen, signals from any changing visual cue input to units 
of all -sckles. A continuously 'moving contrast has i 
longer dwell time in the domain of a large-scale filter 
than in the, domain of a small-scale filter centered at a 
corresponding retinal location. Without further pro- 
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cessing, units corresponding to the largest scales will 
fire more vigorously. How does one prevent these 
largest scales from always being the most active, 
thereby winning the competition for coding a moving 
feature's speed, regardless of the feature's true speed? 

Our work suggests that two simple, mechanisms 
suffice. The first is a scale-proportionate, or self-similar, 
threshold, which requires units of larger scales to have 
larger absolute activity (or, equivalently, similar pro- 
portions of their maximum possible activity) to trans- 
mit a signal. The second is competition, both among 
units of similar scales and across units of differing 
scales. These simple ideas suffice to explain many data 
about speed tuning. They can be reviewed as perhaps 
the simplest way to realize a size-speed correlation. 

Level 5. Inter-Scale 
Competition 

Level 4. Intra-Scale 
Competition 

Level 3. Short-Range 
Spatial Filters 

Level 2. Transient Cells 

Level 1. Change Sensitive 
Units 

Fig. 1. Schematic outline of model layers. Level 1 consists of change- 
sensitive units that are transiently activated for fixed time intervals by 
a moving stimulus. Level 2 transient cells sum and time-average the 
activities from fixed, non-overlapping sets of the change-sensitive 
units. Multiple short-range filters occur at Level 3 at each spatial 
position. Each filter draws input from a set of transient cells, the size 
of which is determined-by the spatial scale of the filter. As depicted, 
scale 1 receives input from one transient cell, scale 2 from three cells 
and scale 3 from five cells. The transient cells that input to each filter 
overlap both between scales at a single position and between posi- 
tions at a single scale. Thus, the largest scale depicted in the outline 
draws input from a superset of the transient cells from which the 
smaller scale draws. The outputs of the short-range filters input to 
Level 4 intra-scale competition across space. This competition is 
enacted through a spatial center-surround network. At Level 5, 
inter-scale competition takes place between all scales at each spatial 
position, again through a center-surround network. The activities 
across this final competitive stage form the output of the network and 
are pooled to define a population measure of speed. 

2. The speed-sensitive MOC filter 

We now outline the architecture of a speed-sensitive 
filter network and give a functional description of each 
processing level, illustrated by results of a simulation 
of the network's behavior. In these descriptions we 
concentrate on the rationale for each network level 
without specifying the equations that implement it. 
Details of the equations and simulation parameters 
are given in Appendix A. Since the response properties 
of a cell are determined by the activity of other network 
cells as well as the network input, each simulation 
must include a set of cells that contains all neighbor- 
ing cells whose activity affects the cell or cells at 
the location reported upon. For simplicity, the model 
is simulated using one-dimensional stimuli. This allows 
us to here concentrate on the speed-sensitivity of the 
network without reference to more complex two- 
dimensional spatial summation or segmentation. An- 
other report describes how a two-dimensional imple- 
mentation of a speed-tuned network such as the one 
presently described can address data on the aperture 
problem, motion capture, and related effects wherein 
both motion direction and speed need to be taken 
into account [46]. Each network simulated here there- 
fore consists of a sequence of neighboring cells. Ac- 
tivity' is always reported from the middle cell in this 
sequence. 

A schematic representation of the network is given in 
Fig. I. This diagram shows the five processing levels 
and how cells in each level interact to provide input to 
the next. The components of the network are: (1) 
change-sensitive units; (2) transient cells; (3) short- 
range spatial filters; (4) intra-scale competition; and (5) 
inter-scale competition. 

3. Level 1: Change-sensitive units 

In the model (Fig. l), visual input is initially regis- 
teied by change-sensitive units that respond briefly to 
changes in luminance over time at a location. An 
output pulse of fixed length, independent of input 
speed, is generated when a moving object enters the 
receptive field of such a unit, conceived as a simplified 
photoreceptor. The exact response profile of these cells 
is not important; for simplicity, a square wave output is 
assumed. The simulations of our model work despite, 
not because of, the square waveform, which makes-it 
harder to generate smoothly modulated speed profiles 
than would be the case if realistic profiles of receptor 
impulse functions were incorporated. Fig. 2 displays 
representative activity profiles over time for change-sen- 
sitive units. 
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Fig. 2. Representative time-courses of simulated cellular activities 
from each level of the network: (a) change-sensitive unit; (b) transient 
cell; (c) thresholded short-range spatial filter. For each level, a single 
cell's activity is shown as a function of time in response to an input 
which traverses a range of simulated cells. The input moves at a speed 
of ten change-sensitive units per simulation time unit. For (a), activity 
is shown for the first (leftmost) of the series of simulated units. All 
other activities are taken from cells in the middle of the simulated 
series.' For (c), an intermediate sized scale (5) is chosen for display 
purposes. These plots are shown on the same horizontal time scale 
but not on the same vertical scale. 

4. Level 2: Transient cells 

Model transient cells accumulate inputs from a series 
of adjacent change-sensitive units and time-average 
these inputs. Once again, we do not claim to have 
modeled all important characteristics of the dynamics 
of such units in vivo, although model cells are assumed 
to correspond to retinal cells with transient response 
properties, such as cat Y cells 1471 or monkey M cells 
[48]. Each transient cell responds with an exponentially 
rising and decaying activity whose duration is deter- 
mined both by the spatio-temporal parameters of the 
cell and the response duration and amplitude of the 
change-sensitive units (see Fig. 2). Due to their time 
averaging properties, activation of adjacent transient 
cells may overlap in time even though the input fields of 
the cells do not overlap in space, and this trait proves 
important for the ability of subsequent levels of the 
network, whose units receive input from several adja- 
cent transient cells, to be differentially activated by 
different motion speeds. At this level, cell responses rise 
monotonically with input speed due to the temporal 
summation performed by these cells, whereby more 
inputs are 'counted' per unit time. (Fig. 3(a)). However, 
these transient cells are not speed-tuned and, due to the 
small, fixed size of their input fields, their maximal 
responses saturate at a low speed. 

5. Level 3: Self-similar short-range filters 

2 outputs by spatial filters at Level 3 cannot achieve 
such a result. Specifically, at Level 3, larger scale cells 
always respond at least as vigorously to an input as 
smaller scale cells, since they draw input from more 
transient cells (Fig. 3(b)). At slow speeds, however, 
spatially adjacent transient cell responses (Level 2) 
show little temporal overlap, nullifying the advantage 
of a large input field, so large scales at Level 3 respond 
just a little better than small scales. At fast speeds, there 
is significant temporal overlap of transient cell re- 
sponses within larger scales, so large scales respond 
significantly more vigorously than small. 

The model's Level 3 cells use a fixed time averaging 
rate. This rate affects how vigorously each cell responds 
to an input, how long it remains active and; therefore, 
at which input speed it begins to respond vigorously. 
Since all scales are assumed to respond at the same rate 
in the current implementation of the model, the spatial 
extent of the inputs to a cell (i.e. the cell's scale) 
determines what this speed will be. Fig. 3 shows the 

Maximal f 
Activity 

1 100 
Speed (logscale) 

Level 3 cells utilize short-range spatial filters of a (receptors/unit time) 
of widths to and time-average Fig, 3. Maximal responses of cells in the network to a variety of 

a series of adjacent transient The different simulated speeds. Plots show (a) transient cells; (b) short-range spat~al  
widths, or spatial scales, give rise to different speed filters; (c) thresholded short-range filters; (d) intra-scale competition; 
sensitivities, At the final level of the network, the scale and (e) inter-scale competition. For levels where there are multiple 

which responds maximally will covary with input speed. spatial scales at a single position, activities from all scales are shown 
as different curves superimposed on the same plot. The smaller scales In fact, the basic intuitions behind the network design always respond less vigorously to fast speeds, so their activity profiles 

c~ncerns how to bring about such a state of affairs, always show lower values. This is particularly evident at fast speeds. 
considering that the first plausible aggregation of Level Vertical axis scales vary with each plot and are indicated next to each. 
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maximal activities from cells at each level of the net- 
work plotted against simulated speed. This allows the 
speed-tunings of the cells to be observed. These curves 
were obtained by simulating 41 different input speeds in 
a logarithmically increasing fashion from speed 1 to 
speed 100. In the simulation, input 'speed' refers to the 
number of change-sensitive units traversed in a simula- 
tion time unit. Short-range filters are of several spatial 
scales, such that some receive input originating from a 
few neighboring change-sensitive units, while others 
receive input from a greater number. A moving input 
crosses the modeled receptive fields at a constant speed, 
thereby creating a series of activity pulses each time it 
enters the input field of a new Level 1 receptor. Each 
simulation is run until activity in all network cells falls 
below a threshold. Maximal activities are recorded 
during the entire simulation time period. 

f ,  Fig. 3(b) illustrates the core computational problem 
faced by a neural multi-scale filter approach to speed 
detection: How to keep the largest scales from always 
winning, in the sense of being the most active. Since the 
final code for speed is presumed to be a (possibly 
weighted) average of activity at Level 5 across all 
scales, to a first approximation, which scale is the most 
active determines the model's 'perceived speed'. Cells of 
larger scales can be prevented from always winning a 
cross-scale competition (subsequent to Level 3) if a 
scale-proportionate threshold is first applied to Level 3 
outputs. Note that in Fig. 3(c), the activity curves for 
the largest scales, which achieve the highest absolute 
level on the right of the plot, begin to exceed zero at 
greater levels of input than do the curves for the 
smallest scales. 

The thresholded short-range spatial filter enables cells 
of different scale to be maximally active in different 
speed ranges, as in Fig. 3(c). These cells are, however, 
not truly speed-tuned because large scales always re- 
spond better than small, and the difference in response 
between large and small scales increases monotoni- 
cally with input speed. True speed tuning requires that 
different subsets of cells-i.e. cells of different scales in 
the present model-generate the maximal outputs 
across all cells as input speed varies. Scale-sensitive 

L selectivity of response is nonetheless achieved despite 
the tendency of larger spatial filters at early levels to 

-# achieve maximal amplitude of activation. This selectiv- 
ity-amplitude trade-off occurs because these cells realize 
a property of self-similarity; namely, larger scales re- 
quire larger total inputs in order to respond, as in Fig. 
3(c). This property can be realized, for example, if 
larger scale spatial filters arise from larger dendritic 
trees of larger cell bodies. The larger cells require a 
larger total input in order to fire due to their ability to 
dissipate membrane potential over a larger cell surface 
area and volume. 

6. Level 4: Intra-scale competition across position 

Through short-range spatial averaging, the initially 
localized moving stimulus is spatially blurred. This 
blurring process begins to transform the temporal sig- 
nals from a moving stimulus into a spatial map whose 
cells respond selectively to different speeds. Competi- 
tion across space, within each scale, deblurs these activ- 
ity profiles. This competition locates the maximal 
activity across space within each scale. For simplicity, a 
feedforward on-center off-surround network is here 
used to realize this competition. Within each scale, cells 
receive excitatory input from cells in the previous net- 
work level at spatially proximate locations and in- 
hibitory input from cells at spatially distant locations. 
In addition to deblurring motion signals, the intra-scale 
competition plays a key role in achieving the speed-tun- 
ing of cells (Fig. 3(d)), through the suppression of 
homogeneous responses of large-scale filters across spa- 
tial locations for high speeds. Now each scale tends to 
respond unimodally as input speed increases, and the 
scale of the maximally active population tends to in- 
crease with input speed. 

The faster the speed of an input, the more homoge- 
nous the activity of neighboring spatial filters, which 
sample from overlapping distributions of units at earlier 
stages. Since spatial competition tends to enhance dif- 
ferences among already differing units and to suppress 
regions of homogeneous activity, less activity results for 
high speeds. At the extreme, when input activity to a 
competitive network is completely homogenous, the 
competition completely suppresses responses. There- 
fore, it is no longer true that all scales respond maxi- 
mally at high input speeds. Now each scale tends to 
respond unimodally as input speed increases, and the 
scale of the maximally active population tends to in- 
crease with input speed. Thus, each cell does achieve a 
measure of speed tuning. 

Note that the suppression of responses from homoge- 
neous patterns is not inconsistent with the perception of 
a coherently moving texture, such as a field of random 
dots, or periodic pattern, such as a sine wave grating. A 
grating, for example, would elicit inhomogeneous re- 
sponses at the stages described, because the spatial 
modulation of contrast from peak to trough of each 
period of the pattern would ensure that neighboring 
spatial filters of Level 4 always receive differential 
input. 

7. Level 5: Inter-scale competition within position 

On the other hand, the total network output from all 
active cells still tends to become unselective at high 
input speeds (Fig. 3(d)), with all scales still responding 
at high speeds. The existence of inter-scale competition 



at Level 5 ,  in addition to intra-scale spatial competition 
at Level 4, overcomes this imperfection of the collective 
speed-sensitivity of the entire network (Fig. 3(e)). 

Similar spatial and inter-scale competition stages 
have been used to disambiguate the responses of multi- 
ple scales to size-disparity correlations during the pro- 
cess of static figure-ground separation [40]. In the 
present article, the disambiguation is applied to multi- 
ple scales that compute a size-speed correlation. The 
inter-scale competition further sharpens the speed tun- 
ing of the cells as follows. Since larger scales tend to 
respond maximally at larger input speeds, they win the 
competition and suppress the lesser responses that are 
distributed across an increasing number of scales as 
input speed increases. Feedforward competition 
achieves this result in the present formulation, realized 
again by an on-center off-surround network, this time 
in scale space. By this means, each scale receives excita- 
tory input from cells of the same scale from the previ- 
ous network level and inhibitory input from cells of 
different scales. Both excitatory and inhibitory inputs 
are drawn from the same spatial position. Application 
of a power function to the excitatory and inhibitory 
inputs biases the competition towards selecting a single 
winning scale rather than distributing activity across 
multiple scales. This competition also tends to normal- 
ize activity across scales at each location. 

The final tuning curves produced by this competition 
(Fig. 3(e)) are such that each scale responds maximally 
to a speed that increases monotonically with scale. The 
maximal activities of the middle scales are somewhat 
higher than those of the small or large scales, but as we 
shall see, it is not the absolute response of any one scale 
that is important for speed tuning, but rather the 
distribution of activity across the entire set. 

8. Relating network activity to perceived speed 

The output of the inter-scale competitive level is a 
spatial map whose distributed activities implicitly repre- 
sent the speed of the input. In order to interpret this 
distributed activity pattern for comparison with percep- 
tual data, a linking hypothesis is defined that relates the 
entire population of active cells to perceived speed. It is 
here assumed that perceived speed derives from the sum 
of activities over all scales weighted by the size of the 
scale. Thus, if large scales are active, speed will be 
perceived as fast, and if small scales are active, then 
speed will be perceived,as slow, with the level of activity 
at each scale determining the exact speed percept. We 
call the calculated number the speed measure. 
. The maximum speed representable in the network is 

equivalent to the largest scale and the minimum to the 
smallest. Fig. 4 shows the speed measure for a range of 
stimulus speeds. In the model, perceived speed increases 

Speed (logscale) 
(receptorsltime) 

Fig. 4. Simulated speed measure as a function of input speed. The 
speed measure is obtained from a weighted sum of activities at all 
scales at the final network level (after the inter-scale competition). 
The speed measure increases approximately linearly with input speed 
until it saturates. t - 
approximately linearly with stimulus speed until around 
speed 20, where it saturates. This saturation is due to 
the limited range of scales simulated. 

9. Computer simulations of psychophysical data I 
The model stimulates challenging characteristics of 

human speed perception data. Many phenomena lie 
outside the domain of speed filtering as a sole mecha- 
nism. Experiments were selected that probe speed filter- 
ing processes. Such experiments use parametric changes 
in displays where perceptual grouping effects are not 
rate-limiting on judgments of speed, as is the case for 
the reorganization of perceived speed that characterizes 
the transition from component to plaid motion, or the 
barberpole effect. See Chey et al. 1461 for an analysis of 
how an extension of the present model handles such 
cases. 

In all simulations reported below, the same network 
parameter set is used. Network responses are' robust 
across variation of parameters, and network equations 
were written so as to make the effects of each parame- 
ter as clear as possible, rather than to derive the 
smallest number of parameters by dimensional analysis. 
As it is, only two parameter values (1 and 10) were used 
in all the model equations. What is essential for model 

3' 
u 

function is the operation of the conceptually simple and 
robust processes of a scale-proportionate threshold fol- 
lowed by competition. As long as larger scales have r 

larger thresholds, speed tuning results, though good 
selectivity depends on maintaining approximate propor- 
tionality between the size of the threshold and the size 
of the maximum possible (unthresholded) activity at a 
scale. The former generates selectivity at low speeds, 
and intra-scale competition suppresses responses of 
larger scales at high speeds, which produce spatially 
homogeneous activation across a wide region. All 
parameter choices are listed in the Appendix. The pri- 
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mary goal of the simulations is to show how the model 
naturally generates qualitative parametric properties of 
the data. Quantitative fits were deemed premature, 
since many simplifications were made in model compu- 
tations to make them tractable, and additional mecha- 
nisms such as directional-selectivity and long-range 
motion grouping need to be added before the model 
can be said to be complete. 

10. Speed discrimination 

Human velocity discrimination can be measured by 
requiring subjects to judge the relative speeds of two 
successively presented stimuli moving at different veloc- 

L ities. Using this technique, de Bruyn and Orban [35] 
found that observers could discriminate random dot 
speeds ranging from, at least, 0.5-256" of visual angle 

v per second. Discrimination performance within this 
! 
! range varied such that optimal discrimination was 

! achieved at intermediate speeds, with poor discrimina- 
tion at either extreme (Fig. 5(a)). They found that, at  its 
best, the Weber fraction for perceived speed reached 

1 around 5%, a level which remained roughly constant 
for speeds from 4 to 64'1s. Orban et al. [49] found 

i similar discrimination properties using a moving bar 
stimulus. 

These data were simulated using the hypothesis that 
two stimuli can be discriminated by their speed if the 
total difference in activity across all scales in the model 
at those speeds exceeds a threshold. By total difference 

I 

in activity is meant the sum of the differences in activity 
between each corresponding scale at the two speeds (see 
Appendix A for the exact formula). 

In order to obtain a measure similar to a Weber 
fraction, maximal speed measures from the network 
were calculated using a variety of stimulus speeds, 
generated in a logarithmic progression from a base 
speed. A reference speed was selected from these 
speeds. Test speeds were then selected, again from the 
logarithmic series of simulated speeds, just above and 

~ below the reference speed. The number of increments or 
decrements of the test speeds necessary to obtain an 
above threshold difference in response of the reference ' L from either the higher or lower test speed was then 
calculated. Since the simulated series of speeds increases 
in a logarithmic fashion, a constant number of incre- 
ments or decrements of speed in this series corresponds 
to a constant ratio of speeds. For example, if the test 
speed is four increments above the reference speed, then 
the ratio of the test to reference speed is the same 
regardless of how the reference speed is chosen. 

We call the minimum number of increments or decre- 
ments of the test speed required to exceed the difference 
threshold the discrimination measure. The use of higher 
or lower test speeds to form the discrimination measure 

was a convenience adopted solely to reduce discretiza- 
tion aliasing in our simulations. This discrimination 
measure is plotted against the simulated reference speed 
in Fig. 5(b.) The discrimination measure has the same 
form as the discrimination data in Fig. 5(a). The char- 
acteristic U-shaped profile in the simulation results 
from the lack of change in network output at low and 
high speeds. At very low speeds, the only scale active is 
the smallest, so changes in input speed do not result in 
significant changes in network activity. Correspond- 
ingly, at high speeds only the largest scale is active, and 
at very high speeds no scales are active at all. Optimal 
discrimination is achieved at intermediate speeds where 
several scales are active simultaneously and any speed 
change results in a substantial change in active scales. 

(a) 030 

0.25 

Speed (logscale) 
(receptorslunit time) 

Fig. 5. Plot (a) shows experimentally derived Weber fractions illus- 
trating just noticeable differences in velocity as a function of velocity. 
Reproduced with permission from Ref. [35]. Plot (b) shows simulated 
discrimination measures, hypothesized to correspond to the data in 
(a). These simulated discrimination measures are obtained by deter- 
mining the number of speed changes (selected from a logarithmic 
range of simulated speeds) required to generate a difference in speed 
measures that exceeds a threshold. The simulated discrimination 
measures reproduce the U-shaped curve of the data. 
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11. Speed-sensitivity range and self-similar cortical 
magnification 

Humans are capable of perceiving and discriminating 
many orders of magnitude of speeds. As noted above, 
de Bruyn and Orban [35] found that subjects could 
discriminate speeds as slow as 1°/s and as fast as 256"/s, 
though performance was poor at the extremes. If such 
discrimination is based on mechanisms whose speed- 
tuning scales approximately linearly with size, as in our 
model, then the sizes available must increase exponen- 
tially in order to account for the full range of reported 
sensitivities. Such an exponential increase in size or 
scale could be caused in part by the cortical magnifica- 
tion factor [50-531. 

Correspondingly, in the model, at each retinal eccen- 
tricity there exists a range of scales whose size increases 
with the cortical magnification factor. This paper does 
not seek to reproduce the exact fornl of cortical mag- 
nification or to assess whether this magnification is due 
to retinal or cortical sampling characteristics. Instead, it 
is shown below that, using a range of scales whose ratio 
of largest to smallest remains the same at each location, 
a greater range of speeds can be discriminated if the 
entire set of scales is enlarged at peripheral locations. 
Again, a property of self-similarity obtains, here across 
position and scale, instead of across threshold and 
scale, as at the short-range spatial filter. Using this 
scheme, the total number of scales need not increase 
across position to achieve a significant expansion of the 
speed-sensitivity range. An analogous use of self-similar 
cortical magnification has been used to compensate for 
larger binocular disparities at larger eccentricities dur- 
ing the computation of planar surface representations 
in 3-D form perception [40]. 

Burr and Ross [54] have measured an ability to 
identify the direction of motion of an 80" bar at speeds 
up to 1000°/s. This task is rather different from discrim- 
ination between two speeds, and may reflect sensitivities 
of a direction-of-motion, as opposed to a speed-tuned, 
mechanism. Even this study, however, found a high- 
speed cut-off for visual sensitivity. Such a cut-off neces- 
sarily exists in any system, such as a brain, that is 
composed of finitely many processing units. 

Fig. 6 reproduces the discrimination measures shown 
in Fig. 5(b), this time using two sets of scales, the 
second of which is an order of magnitude larger than 
the first. The range of speeds which can be discrimi- 
nated is increased by an order of magnitude. This 
simulation assumes that the input traverses both ranges 
of scales. 

One implication of this scheme is that fast speeds are 
relatively poorly discriminated in the foveal region and 
slow speeds poorly in the periphery. The experimental 
results discussed above were gathered using large stim- 
uli that cover both central and peripheral locations and 

Speed (logscale) 
(receptorslunit time) 

Fig. 6. Simulated discrimination measures using two ranges of scales, 
hypothesized to occur as a result of cortical magnification. The range 
of speeds which can be discriminated is increased while maintaining 
the same qualitative discrimination properties. The second set of 
scales is five times as large as the first. 

4 

so do not address these issues. However, Maunsell and 
Van Essen [6] found that higher speeds tended to be - 
coded at greater eccentricities in velocity-sensitive cells * 

in cat visual cortex. Orban et al. [3l] have found the 
same in monkey areas V1 and V2. 

12. Contrast effects on speed discrimination 

Speed perception can be altered by stimulus contrast. 
Orban et al. [49] found that discrimination performance 
deteriorated at lower stimulus contrasts. This deteriora- 
tion was particularly severe at slow and high speeds 
(Fig. 7(a)). McKee et al. [55] have disputed this conclu- 
sion; they found no contrast effect on velocity discrimi- 
nation using contrast levels ranging from 5 to 82%. In 
Orban et al. [49], contrast, defined as log(AI/I), ranged 
from - 0.65 to 3 and velocity ranged from 0.25 to 
256'1s. In McKee et al. [55], contrast ranged from 
- 1.33 to - 0.09 and velocity from 1 to 15O/s. Thus, 
these experiments investigated different, though over- 
lapping, parameter ranges. Our model predicts a limited 
range of contrast-induced changes in speed 
discrimination. 

The model accounts for contrast changes in perceived 
speed through the dependence of network output on 
the spatial and temporal summation of energy provided 
by receptor responses by the short-range filters of Level % 
3 (Fig. 1). Stimulus contrast changes translate into 
changes in receptor activity amplitude in the model, so 
that high contrast stimuli generate larger receptor activ- . 
ity amplitudes and low contrast stimuli smaller activity 
amplitudes. Fig. 8 shows the result of altering receptor 
amplitudes on the maximal activity of different network 
cells. 

Since the model is based on spatio-temporal summa- 
tion, one might expect that increasing input amplitude 
would result in a catastrophic failure of speed estimates, 
by causing large scale cells to respond at very slow 
speeds where they would normally be inactive. Several 
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Fig. 7. Plot (a) shows experimentally derived Weber fractions for velocity discrimination under different contrast conditions. Reproduced with 
permission from Ref. [49]. Part (b) shows simulated discrimination measures using different input magnitudes hypothesized to correspond to 
different stimulus contrasts. Curves show four input magnitudes: 0.75, 1, 2 and 4. Lower magnitudes have worse discrimination (higher 
discrimination measure). Note that the curves (especially that for magnitude 4) fluctuate somewhat owing to the coarse quantization of network 
inputs and scales, which in turn were adopted for computational speed and simplicity. 

factors work to ensure that this is not the case. Firstly, 
the changes in receptor amplitude are limited in their 
effects by the membrane or shunting properties of the 
transient cells, which restrict the transient cell output 
ranges irrespective of their input. Secondly, normaliza- 
tion due to intra-scale competition limits activity at fast 
speeds, so that activity cannot rise beyond a certain 
level nor can cells ever respond at speeds beyond some 
high cut-off. 

* ~1 Since large scales have the highest thresholds and 
therefore require the greatest input energy to become 
active, they are the most significantly affected by any 
changes in input amplitude. Thus, one might expect 
that, in our model, contrast changes, modeled as 
changes to this input amplitude, would primarily affect 
discrimination performance at high speeds where the 
large scales are active, whereas the data show that 
performance is diminished at both high and low speeds. 
However, it is necessary to remember that discrimina- 
tion performance is based on differential activity be- 
tween two speeds. The reason that discrimination 

performance is poor at low and high speeds is that 
fewer scales are active in these ranges and so any 
change in input speed results in a smaller change in 
network activity. As input magnitude is reduced, over- 
all network activity declines (see Fig. 8), resulting in a 
worsening of discrimination performance at all speeds. 
Since low and high speed discrimination performance is 
already poor, it is most significantly affected by this. 
Fig. 7(b) shows the results of computer simulations 
with different input amplitudes. The important data 
properties from Fig. 7(a) are reproduced in the simula- 
tion: lowering input magnitude causes a worsening of 
discrimination at low and high speeds and a shift of the 
discrimination curve upwards in such a way that the 
curves tend not to intersect. 

13. Contrast effects on perceived speed 

Several studies have reported that contrast also af- 
fects the perceived speed of moving objects. Thompson 
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et al. [56] reported that low contrast gratings were 
perceived to move more slowly than high contrast 
gratings. Ferrera and Wilson [57] found that contrast 
influenced the perceived speed of coherent plaid pat- 
terns formed from superimposed gratings. Castet et al. 
[58] found a contrast-induced reduction in perceived 
speed of translating lines. 

The data simulated here are from a study by Stone 
and Thompson [34] in which subjects compared the 
speed of two simultaneously presented grating patches, 
a test and a reference. The contrast of the reference 
grating was varied and the percentage of test gratings 
perceived as moving faster were recorded as a function 
of the test speed for each contrast level. Results (repro- 
duced in Fig. 9(a)) showed shifted psychometric curves 
such that low contrast gratings were biased towards 
slow speeds and vice versa. 

As indicated in Appendix A, the amplitude of inputs 
was assumed to covary with contrast. Such would occur 
if, for example, inputs in our simulations were them- 
selves the output of a shunting center-surround net- 
work, which produces peaks whose amplitudes are 

(c) 0.75 

0 

Maximal 
Activity 

Speed (logscale) 100 

(receptorslunit time) 

Fig. 8. Maximal simulated cellular activities over speed using different 
change-sensitive unit activity amplitudes, hypothesized to correspond 
to different stimulus contrasts. Plot (a) shows a low amplitude unit 
activity (0.75), plot (b) shows an intermediate amplitude ( I )  and plot 
(c) shows high amplitude (2). Increasing unit activity amplitude 
causes large scales to respond more vigorously and at lower speeds. 
This biases the network to provide higher speed estimates. .. 

80 100 120 140 

Test speed (% of standard) 
. . 

F4 

Test Speed 

Fig. 9. Plot (a) shows how perceived speed is affected by stimulus 
contrast. Data reproduced with permission from Ref. 1341 shows the 
percentage of trials on which a test grating was judged to be moving 
faster than a standard grating as a function of the test grating speed 
for three different contrast levels expressed as the ratio of the test 
speed, to the reference speed. Plot (b) shows simulatedcontrast effects 
on perceived speed in the model. Simulated results were obtained by 
passing the difference between two speed measures, a test and stan- 
dard, through an error function. Three different test input contrasts 
were simulated by varying the change-sensitive unit activity ampli- 
tude. The ratio next to each curve indicates the ratio of the test speed 
to the reference. 

proportional to contrast near discontinuities of an in- 
put pattern [59]. 

The model simulates the change in relative speed 
judgments due to contrast variations using the previ- 
ously defined speed measure. Speed judgments were 
calculated from speed measures obtained from two 
inputs that were simulated separately. The difference '" 
between the two speed measures was passed through a 9 

sigrnoidal 'error function' to obtain a simulated proba- 
bility of an observer judging one speed as faster than 
the other.(see Appendix A for details). The results of 
this process are shown in Fig. 9(b). For two identical 
inputs of unit amplitude, we obtained a sigmoidal 
curve. Changing the simulated contrast by varying the 
receptor activity amplitude causes a shift in the curve 
similar to that observed in the data, with a greater shift 
occurring due to increases .than decreases of input- 
magnitude. The sigmoidal shape of the curves in Fig. 
9(b) results from the error function. The key result of 
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Fig. 10. Plot (a) shows discrimination performance as a function of velocity under different stimulus durations. Data reproduced with permission 
from Ref. [35]. Plot (b) shows simulated discrimination measures using different input durations. Four curves are shown, each corresponding to 
a different input speed. From left to right these speeds decrease (10, 5, 2.24, 1.78). Qualitative properties of the data are reproduced: discrimination 
performance worsens at short durations and this effect is more pronounced for slow speeds. 

the simulation is the horizontal shift of model output as 
stimulus amplitude is varied. 

As previously noted, the effects of increasing input 
magnitude are bounded by the shunting properties of 
the transient cells. Thus the model predicts that there 
should exist a saturation level beyond which there exists 
no discernible effect of increased stimulus contrast. As 
contrast decreases, perceived speed also decreases until 
the input energy is sufficiently low as to cause the 
stimulus to be no longer visible, or visibly in motion. At 
the same time as the speed measure decreases, the total 
activity in the network also decreases. We predict that ' 
at very low activity levels, speed measures obtained 
from the network are indistinguishable from noise. 
Thus, it may not be the case that decreasing stimulus 
contrast always results in slower perceived speeds; that 
is, there may be a network energy threshold below 
which the speed measures are no longer relevant. In 
summary, the range of stimulus contrasts under which 
a contrast-induced speed change can be effected in the 
model is bounded below by the energy present and 
above by the shunting properties of the transient cells. 
Stimuli outside this range may not result in contrast-in- 
duced changes in speed perception. 

14. Duration effects on speed discrimination 

De Bruyn and Orban [35] showed an influence of 
stimulus duration on Speed discrimination performance 
(Fig. 10(a)). At short durations, discrimination perfor- 
mance worsened. This effect was particularly noticeable 
for slow velocities, as would be expected if the relevant 
variable is spatio-temporal integration of unit 
responses. 

In any model that requires inputs to traverse a 
certain distance in order to activate motion-sensitive 
units, there will be a minimum duration required for 
the stimulus to traverse this distance. In our model, a 
number of factors complicate the determination of this 
minimum distance. Firstly, the spatial scale of cells 
covaries with their speed tuning. Thus, the minimum 
duration will not necessarily decrease with input speed. 
Secondly, it is not necessary for an input to completely 
traverse a receptive field to activate the cell of a partic- 
ular scale, as it is in a two-point correlational model 
such as a Reichardt detector. For example, a scale may 
be partially activated by an input which partially tra- 
verses its receptive field. Because of these complexities, 
it is not possible to explicitly calculate the minimum 
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input durations required at certain speeds. Instead, we 
use simulations to observe the effect of this parameter 
on model performance. 

Fig. 10(b) shows the effect of changing model input 
duration at various simulated speeds has the same 
qualitative properties as data in the Fig. 10(a). At low 
speeds, the input traverses a small distance in a given 
time, so any reduction of input duration can prevent 
activation of mid- to large-scale units, causing a deteri- 
oration in discrimination performance. At high speeds, 
input duration is of less importance, as the input will 
traverse the input field of each scale even at very short 
durations. 

15. Dot density effects on perceived speed 

Watamaniuk et al. [36] reported that increasing the 
density of a field of moving dots increases the perceived 
speed of these dots (Fig. 1 l(a)). In the same paper, this 
result was modeled using motion coherence theory [60], 

Density (dotslunit area) 

Density (arbitrary units) 

Fig. 11. Plot (a): perceived speed of moving random dot patterns is 
affected by dot density. Data reproduced with permission from Ref. 
[36] shows that the perceived speed of a random dot pattern (com- 
parison stimulus) increases with its density. Plot (b): decreasing mean 
arrival time between successive inputs, hypothesized to correspond to 
increasing density, increases simula'ted speed measures in the network. 
In the simulation. this effect can be observed only over a ranee of 

in which a smoothing process integrates the responses 
of primitive motion detectors across space. The pres- 
ence of additional dots causes this smoothing stage to 
provide a higher estimate of the image speed by provid- 
ing more evidence for that speed in the smoothing 
stage. In our model, the presence of additional dots 
provides more inputs to the network, causing an in- 
crease in perceived* speed before this information is 
integrated across later mechanisms. 

To simulate such a random dot paradigm using a 
single one-dimensional network, we assumed that a 
series of dots provide input to the network as they 
traverse the change-sensitive units. An increase in dot 
density is simulated by a decrease in the mean time 
between the appearance of these dots, which decreases 
the mean time between the responses of the change-sen- + 

sitive units. Given a dot density, a fixed width for each 
receptor, and the input speed, the expected time be- - 
tween the arrival of two successive dots at a receptor * 

was calculated. Units were then caused to provide input 
pulses with a frequency corresponding to that expected 
time. Note that since our simulations are one-dimen- 
sional, they do not code the distinction between a dot 
moving horizontally and a vertical bar moving horizon- 
tally. Chey et al. [46] implement a two-dimensional 
extension of the present model that simulates data in 
which direction is crucial, such as the barberpole illu- 
sion and plaid coherence data, without undermining the 
simulations reported herein. 

More frequent receptor responses (greater numbers 
of dots) increase the responses of the larger scales by 
providing more input energy and thus lead to an in- 
crease in perceived speed, just as greater receptor ampli- 
tude (greater contrast) did. Again, however, several 
factors limit these effects. Saturation of transient cell 
responses limits the energy obtainable from any one 
transient cell, just as it did in simulations using greater 
receptor activation amplitude. However, in these simu- 
lations, it is not the activity at any one transient cell 
that increases input energy, but rather the increase in 
the number of simultaneously active transient cells. 
This effect is limited by the inter-scale competition, 
which suppresses activity when cells are active at the 
same time as their neighbors. Fig. I l(b) shows that, as 
a result, there is a range over which changes in density - 71 

affect speed judgments in the simulation. On either side 
of this range the speed measure asymptotes. At low 
densities, increasing density has no effect, as activity # 

from previous dots has already dissipated by the time 
the next dot arrives. At high densities, additional dots 
do not increase response, as transient cell response 
saturation and inter-scale competition limit activity. 
Thus, simulated dot density effects, like simulated con- 
trast effects, are observable only in a limited range. 
Watamaniuk et al. [36] reported results from a range 
where density effects could. be observed. It is not clear - 

densities. from their data what the limits of this range are. 
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16. Spatial frequency effects on perceived speed 

It is difficult to isolate the effect of spatial frequency 
on speed estimates, since this factor may well help to 
maintain velocity constancy through its influence on 
perceived depth. Therefore, it is not surprising that a 
number of different claims have been made regarding 
changes in speed perception in response to spatial fre- 
quency variations. Diener et al. [61] reported that in- 
creasing the spatial frequency of sinusoidal gratings 
increased perceived velocity. However, this result was 
obtained only with very low spatial frequencies (below 
0.07 cd). In a later study, Smith and Edgar [62] found 
the opposite effect; namely, that increasing spatial fre- 
quency led to decreases in perceived velocity. The 
model of Johnston et al. [63] predicts this effect. Camp- 
bell and Maffei [64] reported that the perceived speed 
of rotating gratings increased with spatial frequency up 
to 4 cd and then decreased, and Ferrera and Wilson 
[57] found that the spatial frequency of sinusoidal 
gratings and perceived speed co-varied. Since each of 
these results was obtained under a different experimen- 
tal paradigm, it is difficult to compare them. In our 
model, increasing spatial frequency, while maintaining 
a constant stimulus size, causes more frequent receptor 
responses and therefore increases network response in a 
manner similar to increasing dot density; that is, there 
is saturation as very high spatial frequencies are used. 

There is currently, however, no explanation in our 
model for a decrease in perceived speed at high spatial 
frequencies unless the width of the stimulus also 
changes. This may be because the model currently 
simulates only how ON cell responses are processed, 
since these are sufficient to explain many speed percep- 
tion data. An extended version of the model simulates 
data for which OFF cell responses are also important 
[65], such as second-order motion percepts. To the 
extent to which OFF cell responses to high spatial 
frequency stimuli inhibit larger scales, then a decrease 
in perceived speed due to relatively greater activation of 
smaller scales could be explained. Such a decrease 
would depend on a change in the overall balance of ON 
and OFF cell responses with spatial frequency. 

17. Reaction time 

Reaction time to stimulus onset is a decreasing func- 
tion of stimulus velocity [37,66,67]). Mashhour [37] fit 
this function with an expression of the type: 
RT = c /  V" + RT, 
where RT is the reaction time, RT, is the asymptotic 
reaction time (for fast velocities), V is the stimulus 
velocity and both c and n are empirically derived con- 
stants. This is an exponentially decreasing function that 
asymptotes at RT,. 

0 0  
1 30 

Speed (logscale) 
(receptorslunit time) 

Fig. 12. Time taken for activity to exceed a threshold as a function of 
stimulus speed, hypothesized to correspond to the speed variable 
component of reaction time to motion onset. This is a decreasing 
function of speed that asymptotes at fast speeds. 

We simulated the time-variant component of reactio? 
time by computing the time taken for activity at any 
scale to exceed a threshold after a stimulus starts mov- 
ing. As stimulus speed increases, transient cell responses 
have greater temporal overlap. This causes an increase 
in input amplitude to the short-range spatial filters and 
speeds their averaging rate. Faster short-range filter 
averaging leads to a decrease in time taken for a filter 
to exceed threshold. Thus, we predict a decrease in 
simulated reaction time in the model. Fig. 12 shows 
that the simulated reaction does decrease in an expo- 
nential manner with stimulus speed. The asymptotic 
behaviour of this measure is caused by the shunting 
properties of the transient cells and the limited overlap 
possible between transient cell responses. 

18. Discussion 

Several other methods by which the human visual 
system might extract speed estimates have been pro- 
posed. Correlational models, such as the Reichardt 
detector, incorporate speed-selectivity into direction- 
ally-selective motion sensors. Human speed perception 
has been modeled by the elaborated Reichardt detector 
[2,3], which differs from the original Reichardt formula- 
tion in that preliminary spatial filtering is performed by 
the receptors before their outputs are multiplied. A 
related model is the motion energy model [l] in which 
temporal filtering takes the place of the delay. Watson 
and Ahumada [4] proposed that the temporal response 
patterns of directionally-selective sensors are used to 
derive speed estimates. 

We call the model of early motion mechanisms de- 
scribed in this article the MOC filter, because units are 
responsive to motion of oriented contrasts. The MOC 
filter model differs from other formulations in that it 
starts with unoriented transient cell responses and 
builds directionality and speed sensitivity from these. 
Fay and Waxman [68] also used such a system. They 
measured speed from the shape of convected activation 



2782 J .  Clzey et al. / Vision Research 38 (1998) 2769-2786 

profiles generated by transient detectors. A fundamen- 
tal difference between all of these models and the MOC 
filter model is that the MOC filter explains contrast-de- 
pendent and other non-speed parametrically induced 
variations in perceived speed, whereas other formula- 
tions are designed to minimize such effects. Adelson 
and Bergen [l] introduce an additional contrast normal- 
ization that will produce contrast-dependent effects in 
certain situations. In addition, as noted in the Introduc- 
tion, the MOC filter simulates many other data about 
motion perception that the correlational models cannot 
explain. 

The MOC filter model postulates that speed tuning is 
an emergent property of spatio-temporal network inter- 
actions across a series of network processing stages; it is 
not explicitly defined by any one operation. Spatial and 
temporal averaging across multiple spatial scales enable 
the network, as a whole, to begin the transformation 
from local temporal properties of moving inputs to a 
global spatial map that computes a variety of motion 
properties, including input speed. Spatio-temporal aver- 
aging alone is, however, not sufficient to generate true 
speed tuning, since the larger scales then always re- 
spond more to all speeds. Self-similar thresholds and 
competition within and across scales lead to true speed- 
tuned receptive fields. This approach to modeling mo- 
tion and speed perception avoids the danger that 
miscalibrated delays across motion detectors could 
yield biases in individual speed estimates. Instead, the 
collective responses of multiple receptive field sizes.gen- 
erates a spatial pattern of activation that may be used 
to vote for the most robust speed estimate. Such a 
multiple-scale mechanism also enables the cortical mag- 
nification factor to naturally be used to explain the 
large range over which humans can discriminate input 
speeds. 

Another major difference between the MOC filter 
and correlational models is that the former does not 
presume that only two spatial locations are used in the 
correlational process. Instead, all intermediate locations 
participate in determining the final speed percept. This 
mechanism provides for more robust computation in 
the presence of cortical noise, and may help to explain 
how sampling at additional spatial locations improves 
the quality of apparent motion percepts, as Nakayama 
and Silverman [13] have reported. 

A key feature of the MOC filter model is that, in 
addition to moment-by-moment speed estimates, it pro- 
vides a continuously evolving set of speed estimates at 
every location. For example, when a fast stimulus starts 
its motion across a simulated series of cells, the initial 
readings are of slow motion and only over time do the 
larger scales become active and signal faster speeds. 
Although data are referenced above describing a loss of 
discrimination at short durations, these data do not 
address a speed bias that may be present at such 
durations. 

The data discussed in the context of our simulations 
support the hypothesis that spatial parameters of speed- 
tuned units co-vary with their speed tuning. Others 
have attempted to measure the spatial (and temporal) 
characteristics of elementary motion detectors in differ- 
ent ways. For example, van Doorn and Koenderink 
[69,70] looked for the spatial or temporal points that 
defined the transition between coherent and incoherent 
motion with spatially or temporally alternated motion 
directions, respectively. The points at which this transi- 
tion took place were taken to reflect the characteristics 
of the detector and varied with stimulus velocity, sug- 
gesting different spatial and temporal characteristics of 
different velocity-tuned mechanisms. The MOC filter 
currently contains no explicit variation of temporal 
properties (such as averaging rate) with scale. Different 

6 

scales nonetheless respond at different rates due to their 
spatial properties and their interactions with neighbor- 

- 
1 

ing units (see Fig. 13). Thus, one does not need to vary 
the temporal processing rates of the cells simply to 
achieve speed tuning, and the wide range of observed 
speeds can be obtained through use of cortical magnifi- 
cation to control spatial scale as a function of 
eccentricity. 

Johnston and Clifford [71] have developed an alter' 
native approach to modeling motion perception. This 
model is based upon formal Taylor series of image 
brightness around a point of interest. These expansions 
are used in conjunction with integral operations to 
provide 'a least squares estimate of image speed based 
on measures of how the image brightness and its 
derivatives are changing with respect to space and 
time'. The present approach directly develops a neural 
model of the magnocellular brain mechanisms that 
subserve motion perception. It is not yet clear how the 
two approaches can be linked. The two models do 
share a key property, however: both attempt to explain 
key first-order and second-order motion percepts using 
a single processing stream. Baloch et al. [65] show how 
mechanisms of the present model can be used to simu- 
late both first-order and second-order motion percepts. 

A more complex model of speed perception will 
necessarily include mechanisms for grouping and com- 

Fig. 13. Responses of two different cells at different scales (left is 
scale 1 and right is scale 5) and different speeds (left is speed 2.24 and 
right is speed 10) show that response period or apparent rate can vary 
without explicit variation of the time-averaging rates of the cells. 
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pleting motion direction and speed signals across space. 
Only after such global processes occur do coherent 
percepts of object direction and speed emerge. Typical 
examples include how speed and direction percepts 
both change when plaid patterns are perceived either as 
independently moving components or as a coherently 
moving plaid [57,72,73]. Chey et al. [46] have modeled 
how output signals from our MOC filter input to such 
a global motion grouping network. This extended 
model proposes a solution of the global aperture prob- 
lem, wherein unambiguous feature tracking signals are 
used to capture and transform ambiguous motion sig- 
nals to generate a coherent representation of an object's 
direction and speed of motion. The model's central 
problem is to understand what type of feature tracking 

5 process can select an unambiguous object direction 
without distorting the estimates of object speed that are 1 :  computed by the MOC filter. The resultant model, 
which is called the motion boundary contour system, or 

~ BCS, simulates data concerning the conditions under 
1 which components of moving stimuli cohere or not into ' a global direction of motion, as in barberpole and plaid 

patterns (both Type 1 and Type 2), and how the 
perceived speed of lines moving in a prescribed direc- 
tion depends upon their orientation, length, duration, 
and contrast. 

The motion grouping, or capture, network of the 
motion BCS involves a feedback process that allows 
attention to prime a desired motion direction. In other 
words, motion capture, which seems to be an automatic 
and preattentive process, may be carried out by the 
same circuit that permits top-down attention to selec- 
tively focus on a desired motion direction [74-761. 
Baloch and Grossberg [77] have suggested how this 
process can help to explain the interplay of preattentive 
and attentive processes during percepts like the line 
motion illusion [78,79] and motion induction [SO-821. 
Thus the simple multiple-scale filtering and competition 
circuits simulated here have already provided a founda- 
tion for building a more general neural theory of mo- 
tion perception. 

It is of considerable interest that similar multiple- 
scale filtering and competition mechanisms model the 

s size-disparity correlation that is used to explain how 
three-dimensional forms pop-out from their back- 
grounds [40]. Taken together, these results suggest that 

1 the brain may utilize a similar multiple-scale filtering 
strategy in both the V1 +V2 and VI 4 M T  cortical 
processing streams. This hypothesis is consistent with 
data showing that cells of primate MT exhibit sensitiv- 
ity to disparity [32,83,84]. 

The multiple-scale organization of both streams has 
elsewhere been used to model how the V2 + MT cross- 
stream interaction gives rise to percepts wherein repre- 
sentations of object form that emerge in the 
V1 +V2+V4 stream are seen to move in the V1+ 

MT 4 MST stream [17,77]. The present model of mo- 
tion speed filtering thus has the dual advantages of 
simplicity and embeddability with a larger theory of 
3-D form and motion perception. 
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Appendix A. Network equations and parameters 

The model is defined using differential equations. 
Each equation specifies the time varying activity of a 
cell, or cell population, within a level. The activity of 
each such cell is represented by a variable whose letter 
indicates the level in which that cell is located and 
whose subscript indicates the cell's position within that 
level and, if necessary, its scale. Spatial locations are 
indexed in numerical order within each level, so that a 
cell's number indicates its absolute position in a one-di- 
mensional grid in its level. Simulations were conducted 
by numerically integrating these equations using Euler's 
method with a time step of 0.01. 

A. 1. Level 1: Change-sensitive units 

Assume the stimulus to be moving at velocity v. 
Change-sensitive units are activated for a fixed time 
period when an input enters their receptive field. The 
ith change-sensitive receptor activity xi obeys the 
equation: 

1 0  otherwise 

The magnitude of the activity, '1 is assumed to co-vary 
with the stimulus contrast (see Ref. [65] for details). 
The duration of the activity is given by the constant E. 
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Eq. (Al) is not intended to be a realistic model of the 
temporal impulse response of photoreceptors, and is 
employed only for simplicity. Our model works despite, 
not because of, the waveform it generates, which makes 
it harder for our model, or any model, to generate 
smoothly modulated speed profiles. 

A.2. Level 2: Transient cells 

A.5. Level 5: Inter -scale competition 

A similar equation is used for the inter-scale competi- 
tion. The inputs from the previous level, are 
thresholded (to keep them from being negative) and 
raised to the third power, which causes the stimulations 
of Eq. (A6) to equilibrate more rapidly than would 
otherwise be the case. 

Transient cells space-average and time-average sig- 
nals from the change-sensitive units through a mem- 
brane shunting equation: 

('46) 

(A2) The center and surround are defined by the sets D, and 
C 

The ith transient cell activity yi has several important 
features: its response rate (1 + C,,,, x,) increases with 
total receptor activity, and its amplitude is bounded by 
1 for any receptor activity. The set X, denotes change- 
sensitive units from which the ith subunit draws its 
input. Such a set consists of a series of adjacent cells 
that do not intersect any other set X,, j # i. 

A.3. Level 3: Self-similar short-range spatial filter 

Each scale of the short-range spatial filter space-aver- 
ages and time-averages transient cell activity over a 
different range. Each filter scale is represented at every 
position. For example, scale 1 spatial filters draw input 
from a transient cell at the same position in the previ- 
ous level, scale 2 draws input from the same cell 'and 
the two adjacent cells, scale 3 from those and the next 
two adjacent and so on. The activity, z,, of the short- 
range spatial filters obeys: 

A.6. Speed measure 

The estimated speed is obtained from the weighted 
sum over the entire set of scales S :  

C s [wsil' 
sss speed, = , 

A. 7. Discrimination measure 

The discrimination measure is obtained by finding 
the minimum number of speed increments or decre- 
ments that cause the total difference between activity at 
each scale to exceed a threshold. Let the superscript 
indicate a speed at which an activity is obtained, then 
the total difference in activity between two speeds is 
defined as: 

(A31 difference,,, = C Iw?, - w$J 
JES 

Here the input set Y,, varies with both location, i and 
scale, s. The output threshold of each filter increases A.8. Error function 
with scale: 

The error function used for the simulations in Fig. 9 
0,; = [z,; - S ]  + (A4) is erf (speed,), where: 
This thresholded activity forms the input to the next S' level. erf(t) ---- e - ( 1 1 2 ) ~ ~  dX 

A0 ('49) 

A.4. Level 4: Intra-scale competition A.9. Simulation parameters 

Intra-scale competition occurs across spatial posi- All parameters were kept the same during the simula- 
tions within each scale. The center-surround mechanism tions reported in this paper. Only input magnitude was 
is implemented as follows: varied. That is, q in Eq. (Al) was set to 1 for all 

( 1 simulations except that of Fig. 9, where values of 0.5, 1, 
tisi = 10 - u,, + C o , ~  - C oSk (A51 and 2 were used. Every simulation used 15 spatial 

j eC,  keS i  locations and activities were measured from the middle 
The sets C, and Si  define the excitatory center and location unless explicitly stated otherwise. Ten scales 
inhibitory surround, respectively. were used (so s, which gives the value of the thresholds 
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used in Eq. (A4) as well as indexing equations for the 1181 Grossberg S, Rudd ME. A neural architecture for visual motion 

various scales, ranged from 1 to 10). I ~ E ~ .  (Al), E was perception: Group and element apparent motion. Neural Net- 

set to 1 for all simulations. works 1989;2(6):421-50. 
[I91 Grossberg S, Rudd ME. Cortical dynamics of visual motion 

The various sets that determine which units form perception: Short-range and long-range apparent motion. Psy- 
input to cells were established as chol Rev 1992;99(1):78- 121. . . 

[20] Heeger D. Model for the extraction of image flow. J Opt Soc Am 
(A 10) 1987;A4(8): 1455-71 

[21] Anadan P. A computational framework and an algorithm for the 
(A1 1) measurement of visual motion. Int J Comput Vis 1989;2:283- 
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