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Abstract

B A model of cortico-spinal trajectory generation for voluntary
reaching movements is developed to functionally interpret a
broad range of behavioral, physiological, and anatomical data.
The model simulates how arm movements achieve their re-
markable efficiency and accuracy in response to widely varying
positional, speed, and force constraints. A key issue in arm
movement control is how the brain copes with such a wide
range of movement contexts. The model suggests how the
brain may set automatic and volitional gating mechanisms to
vary the balance of static and dynamic feedback information
to guide the movement command and to compensate for

INTRODUCTION

Empirical research on the control of primate reaching
movements has ranged from studies of muscle activity
through recordings from cells in the cerebral cortex of
monkeys performing reaching tasks to observations of
human movements in unusual force environments. As
part of an attempt to unify these diverse experimental
data, Bullock, Cisek, and Grossberg (1998) proposed a
computational model that incorporates model neurons
corresponding to identified cortical cell types in a circuit
that reflects known anatomical connectivity (Figure 1).
The model maintains accurate proprioception while
controlling voluntary reaches to spatial targets, exertion
of force against obstacles, posture despite perturbations,
compliance with an imposed movement, and static and
inertial load compensations. Computer simulations in
Bullock et al. (1998) showed that properties of model
clements correspond to the dynamic properties of many
known cell types in areas 4 and 5 of the cerebral cortex.
Among these properties are delay period activation, re-
sponse profiles during movement, kinematic and kinetic
sensitivities, and latency of activity onset (Alexander &
Crutcher, 1990; Burbaud, Doegle, Gross, & Bioulac, 1991;
Chapman, Spidalieri, & Lamarre, 1984; Cheney & Fetz,
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external forces. For example, with increasing movement speed,
the system shifts from a feedback position controller to a
feedforward trajectory generator with superimposed dynamics
compensation. Simulations of the model illustrate how it repro-
duces the effects of elastic loads on fast movements, endpoint
errors in Coriolis fields, and several effects of muscle tendon
vibration, including tonic and antagonist vibration reflexes,
position and movement illusions, effects of obstructing the
tonic vibration reflex, and reaching undershoots caused by
antagonist vibration.

1980; Crammond & Kalaska, 1989; Crutcher & Alexander,
1990; Evarts, 1968; Evarts, 1974; Fromm, Wise, & Evarts,
1984; Georgopoulos, Caminiti, & Kalaska, 1984; Geor-
gopoulos, Caminiti, Kalaska, & Massey, 1983; Geor-
gopoulos, Kalaska, Caminiti, & Massey, 1982; Kalaska,
Cohen, Hyde, & Prud’homme, 1989; Kalaska, Cohen,
Prud’homme, & Hyde, 1990; Kalaska & Crammond, 1992;
Kalaska & Hyde, 1985; Kettner, Schwartz, & Georgopou-
los, 1988; Lacquaniti, Guigon, Bianchi, Ferraina, & Camin-
iti, 1995; Schwartz, 1992; Schwartz, 1993; Scott & Kalaska,
1997). The model also reproduces various psychophysi-
cal phenomena, such as bellshaped velocity profiles,
speed-accuracy trade-offs, and characteristics of deaffer-
ented operation (Atkeson & Hollerbach, 1985; Bizzi,
Accornero, Chapple, & Hogan, 1984; Fitts, 1954; Wood-
worth, 1899).

This report describes how the model (Figure 1) can
be applied to explain additional phenomena, including
several that have seemed anomalous from a functional
perspective. These include proprioceptive illusions and
numerous other effects of muscle tendon vibration, in-
cluding the tonic and antagonist vibration reflexes (TVR
and AVR) and reaching inaccuracies; properties of fast
movements with elastic loads; and endpoint errors in
Coriolis fields (Capaday & Cooke, 1981; Capaday &
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Figure 1. Circuit diagram of

the model. Thick connections

represent the kinematic feed- ontral »caudal
back control aspect of the
model, with thin connections areas c.S. area 5

representing additional com-

i.p.s.

pensatory circuitry. GO—
scalable gating signal;
DVV-desired velocity vector;
OPV-—outflow position vector;
OFPV—outflow force + posi-
tion vector; SFV—static force
vector; IFV—inertial force vec-
tor; PPV—perceived position
vector; DV—difference vector;
TPV—target position vector;
'yd—dynamic gamma motor
neuron; Y’ —static gamma mo-
tor neuron; o.—alpha motor
neuron; la—type-la afferent
fiber; H—typel afferent fiber;
c.s.—central sulcus; i.p.s.—in-
traparietal sulcus. The symbol
+ represents excitation, — rep-
resents inhibition, X repre-
sents multiplicative gating,
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and +/ represents integration.

Cooke, 1983; Feldman, Adamovich, & Levin, 1995; Gil-
hodes, Roll, & Tardy-Gervet, 1986; Goodwin, McCloskey,
& Matthews, 1972b; Hagbarth & Eklund, 1966; Lackner
& DiZio, 19949).

The extensions to the model introduced in this report
add no new cell types, or any new connections, to that
introduced in Bullock et al. (1998). Instead, they suggest
how the brain adjusts the gains on otherwise fixed
movement pathways to optimize the balance of cooper-
ating mechanisms in different operating contexts. This
hypothesis is in keeping with evidence that neural cir-
cuits for sensory-motor control can often operate in a
number of distinct modes (Humphrey & Reed, 1983;
Loeb, 1985; Prochazka, 1992; Saltzman & Kelso, 1987,
Selverston, 1988), which are sometimes discussed in
terms of how the brain controls sensory-motor set (e.g.,
Evarts, 1974). Thus, a single circuit for trajectory genera-
tion and posture maintenance can exhibit various oper-
ating modes as determined by other centers that
influence pathway gains.

The following hypotheses summarize the model (Bul-
lock, Cisek, & Grossberg, 1998):

1. An arm movement difference vector (DV) is com-
puted in parietal area 5 from a comparison of a target
position vector (TPV) with a vector representation of
perceived arm position (PPV). The DV command may be
activated, or primed, prior to its overt performance.

2. The PPV is also computed in area 5, where it is
derived by subtracting spindle-based feedback of posi-
tion error, which is routed to area 5 via area 2, from an
efference copy of an outflow position vector (OPV) from
area 4.
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3. The primed DV projects to a desired velocity vector
(DVV) in area 4. A voluntarily scalable GO signal gates
the DV input to the DVV in area 4. By virtue of the scaled
gating signal, the phasic cell activity of the DVV serves
as a volition-sensitive velocity command, which activates
lower centers including gamma-dynamic motor neurons.

4. The DVV command is integrated by a tonic cell
population in area 4, whose activity serves as an outflow
position vector (OPV) to lower centers, including alpha
and static gamma motor neurons. This area 4 tonic cell
pool serves as source of the efference copy signal used
in area 5 to compute the perceived position vector
(PPV). As the movement evolves, the difference vector
(DV) activity in area 5 is driven toward baseline. This
leads to termination of excitatory input to area 4 phasic
cells and thus to termination of the movement itself.

5. A reciprocal connection from the area 5 perceived
position vector (PPV) cells to the motor-cortical tonic
cells (OPV) enables the area 4 position command to
track any movement imposed by external forces. This
reciprocal connection also helps to keep spindles loaded
and to avoid instabilities that would otherwise be asso-
ciated with lags due to finite signal conduction rates and
loads.

6. Phasic-tonic force-related (OFPV) cells in area 4
enable graded force recruitment to compensate for static
and inertial loads, using inputs to area 4 from the cere-
bellum and a center that integrates spindle feedback.
These area 4 phasic-tonic cells enable force of a desired
amount to be exerted against an obstacle without inter-
fering with accurate proprioception (PPV) and while
preserving a target position (TPV) should the obstacle
give way.
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Extensive evidence for the above six hypotheses was
reviewed in Bullock et al. (1998). The mode switches that
are needed to treat the additional experimental observa-
tions simulated below can be summarized with two
additional hypotheses:

7. During fast movements, the system shifts toward a
more feedforward and dynamically sensitive operating
mode. This is accomplished by reducing the gain of the
outflow position command (OPV) projection to static
gamma motor neurons. This reduces spindle sensitivity
to static position error. The same operating mode is used
when quick responses to unpredictable perturbations
are desired.

8. To generate the large forces needed to lift large
masses (€.g., to lift the body to upright stance), the gain
of the load-compensation mechanism is significantly in-
creased during the lifting phase.

The Model Development section reviews the model
and specifies its behavior through a system of differential
equations. It then focuses on pathway gating operations
that extend its operating modes. The Simulations section
presents simulations that illustrate how these operating
modes help to explain several additional sets of psycho-
physical observations.

MODEL DEVELOPMENT

The model of Bullock et al. (1998) elaborated the Vec-
tor-Integration-To-Endpoint (VITE) model of Bullock and
Grossberg (1988). That model addressed psychophysical
properties of normal human movements such as straight
trajectories in 3-D space, bell-shaped velocity profiles,
speed-accuracy trade-offs, and synchronization of syner-
gists. It also discussed movement-related activities in the
primary motor cortex such as directional-tuning and
responses to perturbation. The Bullock et al. (1998) ex-
tension of VITE achieved broader functionality and a
more detailed analysis of neural responses in cortical
areas 4 and 5, as discussed below.

Cortical Circuit Model for Trajectory Generation

Figure 1 depicts the model, which uses lumped repre-
sentations of neural variables postulated to be coded by
activity levels distributed across cortical populations
(Kalaska & Crammond, 1992). Once functional roles are
clarified by a lumped analysis, the model elements can
be unlumped as needed to study properties associated
with distributed representations. To simplify the mathe-
matical specification and computer simulation, only sin-
glejoint movements are treated. The model, however, is
compatible with related theories of movement control
that address multijoint coordination and the learning and
execution of spatial-motor transformations (Bullock,
Grossberg, & Guenther, 1993; Kettner, Marcario, & Port,
1993; Kuperstein, 1988), as noted in the “Discussion.”

Limb dynamics are described by the following equa-
tion:

Mc;, pi) —M(c;, p) + E; - dr ) (¢))

epi_1 ap,

a1 (
where p; is the position of a muscle 7 within its range of
origin-to-insertion distances, and p; = 1 — p, is the posi-
tion of the antagonist muscle j within its range. Indices
i and j are used in this way throughout. For simplicity,
the position ranges from 0 to 1, with 1 the maximally
compressed state of the muscle and 0 its maximally
extended state. The parameter V is the joint viscosity and
I is the limb moment of inertia. External forces are
represented by E;, which is positive if the force assists
movement in the ith direction and negative if it opposes.

The muscle function M() gives the force generated

by a muscle given some contractile activity c; and the
position p;. For simplicity, geometric effects due to mo-
ment arm, muscle yielding, and nonlinearities of force
generation are ignored (see Bullock & Grossberg, 1991
for one treatment of these factors). The muscle force
equation

Mcwp) = L+ M; - T @

depends on the length L; of the muscle, the contraction
level M;, and the muscle resting length I';. The threshold-
linear function [w]* is defined as max(w,0). Defining
L;=1~pyand I'— M; = 1 — ¢; yields the muscle force
function

M(cip) = lc;— pd* (€))

The contractile activity ¢, is governed by
dCi
dt = D(—Ci + al)

where o, represents alpha motor neuron activity, and v
scales the contraction rate.

The remainder of the system affects the limb by ad-
justing the alpha motor neuron activities. For voluntary
movements, the system operates via area 4. The process
of assembling the net descending command to alpha
motor neurons can be divided conceptually into kine-
matic and kinetic aspects, of which the former is treated
first. The kinematic aspect of trajectory control involves
specifying the time series of positions that the limb is
intended to occupy between its initial and its desired
final position. Guided by neurophysiological data
(Fromm, Wise, & Evarts, 1984; Kalaska, Cohen, Hyde, &
Prud’homme, 1989; Kettner, Schwartz, & Georgopoulos,
1988), Bullock et al. (1998) proposed that tonic cells in
area 4 correspond to this intended position command,
and model their activity by
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where y, is the average firing rate of a population of area
4 tonic cells called the Outflow Position Vector (OPV),
ui is the activity of area 4 phasic movement-time (MT)
cells called the Desired Velocity Vector (DVV), x; is the
activity of anterior area 5 cells called the Perceived
Position Vector (PPV), and m is the gain on a pathway
from the PPV to the OPV. The DVV and PPV cell popu-
lations are described below. Without input from the PPV,
Equation 5 says that the tonic cell population (OPV)
integrates the DVV inputs. Activation increments and
decrements depend on the difference between the
agonist (#;) and antagonist () phasic-MT activities. Ac-
tivity ranges between 0 and 1, and y, + y; = 1. Without
input from the DVYV, Equation 5 says that the tonic cell
population (OPV) tracks the PPV activation pattern. This
pathway acts to release tension and comply with exter-
nal forces when the system is in a passive state. When
both inputs to the OPV are active, the Outflow Position
Vector shifts in the direction specified by the DVV while
responding to information about externally imposed de-
mands specified by the PPV. The active and passive states
produced by these pathways are described in more de-
tail below.

The DVV in area 4 is interpreted to be a gated and
scaled version of a movement command that is continu-
ously computed in posterior area 5 as the vector differ-
ence between the target and the perceived limb position
vectors. Area 5 Difference Vector (DV) cell activity can
be described by

ry= [Ty — x; + BO1 ©

where 7, is the activity of a DV cell, and B® is its baseline
activity. The target position vector (TPV) is expressed as
T; and current limb position (PPV), as x;. These model
area 5 cells fire at the baseline rate except when current
and targeted limb position differ, such as during move-
ment and movement priming intervals. The proposal that
posterior area 5 phasic cells carry such a Difference
Vector signal is based upon their tuning to movement
direction, onset timing, and primability (Burbaud, Doegle,
Gross, & Bioulac, 1991; Chapman, Spidalieri, & Lamarre,
1984; Crammond & Kalaska, 1989; Kalaska, Cohen,
Prud’homme, & Hyde, 1990; Lacquaniti, Guigon, Bianchi,
Ferraina, & Caminiti, 1995).

Computation of perceived position depends on both
central commands and feedback from muscle receptors.
(Visual feedback is not treated here.) This function is
proposed to be performed by tonic cells in anterior area
5, which relate to the position of the limb, are load-
insensitive, and whose activity follows movement initia-
tion (Burbaud, Doegle, Gross, & Bioulac, 1991; Kalaska,
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Cohen, Prudhomme, & Hyde, 1990; Kalaska & Hyde,
1985; Lacquaniti, Guigon, Bianchi, Ferraina, & Caminiti,
1995). The following equations describe the computa-
tion of a Perceived Position Vector (PPV) by anterior area
5 tonic cells that are assumed to receive an efference

copy input from area 4 and position error feedback from
muscle spindles:

%: (1 -x)[ep+ s t-1) - t-1)]
~x (e s -1 - -] D

1 = Xy ®
1P = puy )

b =s(eryf - pi 1+ oyP - 224")

where x; is the average firing rate over a population of
anterior area 5 tonic cells (PPV), v¥ and y/” are the
activities of static and dynamic gamma motor neurons,
X and p are gain parameters, s is the activity of pri-
mary spindle afferents from muscle i, 8 is the sensitiv-
ity to a stretch of the static nuclear bag and chain
fibers, ¢ is the sensitivity of dynamic nuclear bag fibers
to rate of stretch, and © is the gain of the corollary
discharges from area 4 tonic cells, calibrated such that
© = 0 to ensure accurate PPV calculation. The variable ¢
represents the time step, and parameter 7 is the delay on
the feedback from spindles to central sites. Because y; =
1 —y,and p; = 1 — p,, Equation 7 implies that x; tracks
position p, at rate ©, while integrating velocity errors to
correct the estimation of the position.

The function S() in Equation 10 expresses the limited
dynamic range of spindle afferent activity and is defined
by the following equation:

w

S(w) = —————
@) 1 + 100w?

Equation 11 implies that feedback signals from spindles
are linear near the low end of their dynamic range but
begin to saturate around 0.04 (i.e., around 4% of the full
joint range).

Figure 2 illustrates how muscle spindles can be used
to compute a positional error. Spindles have long been
recognized to respond sensitively to small but not large
stretches, and it has been argued (Kuffler & Hunt, 1952)
that the intrafusal contraction serves to maintain spindie
sensitivity by resetting the base length relative to which
the spindle can sensitively register the degree (or rate)
of stretch. This is equivalent to saying that, to maintain
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Figure 2. Spindle computation of positional error. Alpha and gamma-
static motor neurons receive a desired contraction command. If the
extrafusal muscle is kept from contracting, the spindle organ is
stretched by the contraction of the intrafusal muscle and secondary
spindle afferents report a position error.

sensitivity, the intrafusal length is set to the expected
length of the extrafusal, in which case an above baseline
spindle firing rate will indicate a positive length discrep-
ancy of the extrafusal (“stretch” and a below baseline
spindle discharge rate will indicate a negative length
discrepancy of the extrafusal muscle (“excess contrac-
tion”). During voluntary movement, if the intrafusal
length is continuously updated to reflect the desired
extrafusal length, the measured length discrepancies can
serve as a signed error feedback to the neural controller.
If a load retards movement unexpectedly, the spindle
response may saturate in the agonist and fall silent in the
antagonist, but the sign of the error feedback will remain
accurate.

A similar scheme is used to compute velocity errors
by the spindles, with a projection of desired velocity
from the DVV to dynamic gamma motor neurons, result-
ing in type-la afferents carrying both position and veloc-
ity error information, as specified by Equation 10.

The model proposes that a gating operation allows DV
movement priming to be translated into an overt move-
ment. Gating is represented mathematically by multiply-
ing the DV activities by a scalar GO signal to yield the
Desired Velocity Vector (DVV), as described by the fol-
lowing equation:

u =g @ -1+ B 12
where %, is the area 4 phasic MT cell activity (DVV), r;
is the DV, g is the GO signal, and B® is the baseline
activity for the DVV. Phasic movement-time (MT) cells in
area 4 are a likely candidate for a DVV-like computation

because their activity profiles resemble a bell-shaped
velocity profile, they are tuned to direction of move-
ment, and they show little load-sensitivity (Fromm, Wise,
& Evarts, 1984; Georgopoulos, Kalaska, Caminiti, &
Massey, 1982; Kalaska, Cohen, Hyde, & Prud’homme,
1989).

The GO signal is assumed not to turn on abruptly but
rather to exhibit sigmoidal growth during the movement
generation interval. For simplicity, equations for a two-
step cellular cascade were used to generate the sigmoi-
dal GO signal:

4’5? =e[-gV+(C-g")g"

& el g + (- g) g

()]
= @8 "
8§=8""¢

where g is the GO signal that multiplies the Difference
Vector (see Equation 12, above), g® is the step input
from a forebrain decision center, € is a slow integration
rate, and C is the value at which the GO cells saturate.
Any cascade larger than 2 will also generate a sigmoidal
GO signal. An analysis of GO signal shape and its effect
on the bell-shaped velocity profile and other properties
observed during movements can be found in prior re-
ports (Bullock & Grossberg, 1988).

With system of Equations 1 through 13, inertial effects
can cause the limb’s trajectory to show transient mis-
matches with the trajectory specified by the evolving
OPV. The limb can lag the OPV at the beginning of
movement and overshoot the target briefly at the end.
Such undesirable effects can be partly compensated by
circuitry that reduces velocity errors. In the model, an
Inertial Force Vector (IFV), identified with activity of
area 4 phasic reaction-time (RT) cells (Kalaska, Cohen,
Hyde, & Prud’homme, 1989), extracts velocity errors
from the primary and secondary spindle feedback, as
described by the following equation:

g = Ms ¢ - v - sP¢ -1 - NI a9

where A is the feedback gain and A is a threshold.
Secondary spindle afferents are modeled as

s = se[y’ - p*) 15

where S$(-) and 0 are as in Equation 10. The IFV activity
qi,is added to the Outflow Position Vector and projected
to alpha motor neurons as described by Equations 17
and 18, below. This means that the velocity errors that
occur as rest inertia is being overcome at the beginning
of movement are translated into a launching pulse that
generates extra force in the agonist extrafusal muscle,
helping to get the limb moving. The same velocity errors
generate a braking pulse in the antagonist that helps to
slow the limb at the end of movement as momentum
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causes it to move faster than the decreasing Desired
Velocity Vector.

To compensate for static loads such as gravity, the
model integrates positional errors reported by the spin-
dles and adds these to the alpha motor neuron com-
mand. Spindle error integration is performed by a Static
Force Vector (SFV), which is described by

Yo ~fo w0 =)

—-Vfilf+sP -1 ae6

where b is a gain that controls the strength and speed
of load compensation (modulated by a muscle-specific
gain Ky, and ¥ is a parameter scaling inhibition by the
antagonist component of the SFV and by the antagonist
spindle. At present, no cortical cellular analogue is pro-
posed for the SFV, but the connectivity of this model
component to identified cells may provide a road map
for discovering it through a combination of staining and
physiological techniques.

Bullock et al. (1998) proposed that area 4 phasic-tonic
cells assemble a shifting positional command (OPV) with
inertial (AFV) and static (SFV) load compensating com-
mands, to yield a command to alpha motor neurons that
produces the desired kinematic result under variable
external forces. The activity of phasic-tonic cells consti-
tutes an Outflow Force + Position Vector (OFPV) and is
described by

ai=y;+q;+ f; an

An alpha-command assembly role for phasic-tonic
cells in area 4 seems reasonable because they are highly
load sensitive and relate both to the position and force
of a movement (Fromm, Wise, & Evarts, 1984; Kalaska,
Cohen, Hyde, & Prud’homme, 1989). (Although inter-
preted differently by the authors at the time, the data of
Georgopoulos, Ashe, Smyrnis, and Taira, 1992, also show
cell activities tuned to both position and force—see their
Figure 2.) The most likely candidates are pyramidal tract
neurons, and in particular, corticomotorneuronal cells, of
which about half exhibit the phasic-tonic profile and
load sensitivity expected from an OFPV command
(Cheney & Fetz, 1980). After the OFPV command has
been assembled, it projects to the alpba motor neu-
rons

0y = ay 4 8P as)

where & is the gain of the stretch reflex. The OFPV
command is not sent to gamma motor neurons for two
related reasons. Doing so would create a positive feed-
back and would disrupt the error measurement function
of spindles.

The system of Equations 1 through 18 can be used to
generate voluntary reaching movements at variable
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speeds while compensating for external perturbations
including inertial and static loads and transient deflec-
tions, to maintain posture against perturbations and to
exert forces against objects that obstruct a reaching
movement. When in a relaxed state, specified when no
target representation or GO signal is given, the system
passively complies with external forces while maintain-
ing an accurate internal representation of limb position.
Bullock et al. (1998) discuss how model elements exhibit
properties similar to the neurophysiological properties
of various cell types in cortical areas 4 and S. This
resemblance includes the activity profiles of movement-
related cells, their kinematic and kinetic sensitivities,
priming activity during delay periods, response to per-
turbations during movement, and activity onset latencies.
Figure 3 illustrates simulations of these cell activities
during a voluntary reaching movement.

Production of Different Operating Modes
through Gating

Properties of the circuit model described above can be
modified in accord with different task demands through
the addition of gating mechanisms that are sensitive to
task constraints. One kind of gating, volitional gating by
a scalable GO signal, was explored in the simulations of
Bullock and Grossberg (1988, 1991) and Bullock et al.
(1998) and is briefly reprised below. Other kinds of
gating are proposed below, and their effect on the be-
havior of the model is specified.

Gating Movement Speed and Compliance

GO signal scaling of the Difference Vector plays several
roles in the system. First, it controls the onset and speed
of voluntary movement by scaling the command that is
integrated by the Outflow Position Vector. This can be
used not only to change the average speed of the move-
ment but also to shape the velocity profile. Use of a
growing GO signal, such as that implemented by Equa-
tion 13, produces the bell-shaped velocity profile char-
acteristic of human movements (Atkeson & Hollerbach,
1985). Second, the GO signal can be used to withhold
execution of movement or to abort a movement in
progress. This gives the system independent control over
planning the movement target (TPV) and timing the
movement execution (Bullock & Grossberg, 1988).
Third, the GO signal controls the effort with which
the system resists external perturbations. This applies to
several scenarios. Consider first a case where the limb is
already at the target position specified by the TPV, but
the GO signal remains positive. This means that any
deviations from the target caused by external perturba-
tions will result in a nonzero Difference Vector, which
will immediately translate to a nonzero DVV and cause
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Figure 3. Comparison of cortical activity and model cell responses during a simple voluntary reaching task. Histograms in (a through d) are
taken from Kalaska et al. (1989) and (e) and (f) are from Kalaska et al. (1990). Histograms are centered on the onset of movement, which is in-
dicated in both the data and the simulations by a vertical line. In the simulations, the GO signal was set at g® = 0.5. Feedforward inertial load
compensation was simulated by reducing 7 to 0 and increasing A to 100. (Reprinted with permission from Bullock, Cisek, and Grossberg, 1998.)

OPYV integration to bring the limb back to the target. The
GO signal controls the speed of this return movement.
At the same time, however, the PPV-OPV pathway will
drag the OPV toward the actual deflected limb posi-
tion. The final equilibrium will depend on the balance
between the PPV-OPV gain and the magnitude of the
GO signal. When SFV integration is enabled, load-
compensation will reduce any residual errors and bring
the limb to the target.

Next, consider the case where a voluntary movement
is being made. Onset of the target and GO signals causes
OPYV integration and changes in muscle contraction pat-
terns. If no obstacles are present, the movement pro-
ceeds as planned and the PPV reflects the changing limb
position. Because the PPV is moving with the OPV, the
action of the PPV-OPV pathway is minimal. This pathway
helps to slow the shift of the movement command if
large limb masses cause a significant lag between the
PPV and the OPYV, thus adjusting the trajectory genera-

tion to the external load. However, if some object ob-
structs further movement, the difference between the
PPV and OPV will grow larger, and the PPV-OPV path-
way will keep the OPV from integrating too far past the
object. This helps to keep spindles from being stretched
out of their sensitive range. The distance by which the
OPV penetrates into the obstacle is dependent, again, on
the balance between the PPV-OPV gain and the magni-
tude of the GO signal. Thus, the GO signal controls the
effort with which the system resists obstruction.

In the absence of the GO signal, the system is in a
relaxed state. This means that any movements imposed
by external forces or objects cause changes in the PPV
and therefore also in the OPV due to the PPV-OPV
pathway, which is now its only source of input. Thus,
tension on the limb is released and the system passively
complies with external demands. Note that the kind of
compliance control treated in this section differs from
nondirectional joint compliance control, which may be
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achieved by an additive cocontraction command (e.g.,
Bullock & Grossberg, 1991; Bullock & Contreras-Vidal,
1993).

Gating Peripberal Sensitivity

As movement speeds increase, delays in peripheral feed-
back become a significant concern. Position error signals
arriving late are not only not helpful, but they can se-
verely jeopardize system stability. On the other hand,
velocity error signals become important for shaping
launching and braking pulses. These concerns motivate
the addition of a gating mechanism that controls the
balance of static and dynamic information in the sys-
tem’s feedback pathways.

One might expect that as movement speeds increase,
the motor system shifts from operating as a position
controller that relies on static error signals to operating
as a velocity controller dominated by a feedforward
command and dynamic error feedback. Psychophysical
evidence supports this view (Clark, Burgess, Chapin, &
Lipscomb, 1985; Gielen & Houk, 1987; McCloskey, 1973;
Sittig, Denier van der Gon, & Gielen, 1985).

Two functional rules are proposed to govern the con-
trol of the system’s utilization of static and dynamic
feedback signals:

1. While maintaining stationary posture, use static feed-
back signals to ensure accurate PPV computation.

2. When a fast voluntary movement is desired, ignore
static feedback and instead use dynamic feedback (or
learned feedforward compensation) to generate appro-
priate launching and braking pulses.

It is worthwhile to consider an additional case, where
a response must be made to a perturbation, the direction
of which is unpredictable. In this scenario, a quick re-
sponse to the perturbation is more important than an
accurate PPV representation, and the direction is of most
interest. For this purpose, dynamic feedback is most
useful, because it directly provides information on the
direction of external perturbations. Thus, one might for-
mulate a third rule:

3. When responding to perturbations of unpredictable
direction, concentrate on dynamic feedback information.

In the model, the shift from static to dynamic feedback
can be implemented in a number of ways. One is to
reduce the parameter 6, which controls the sensitivity of
the primary and secondary afferents to static position
errors (see Equations 10 and 15), or increase the parame-
ter ¢, which controls primary dynamic sensitivity (see
Equation 10). However, such sensitivity changes would
have to occur at the spindles themselves, and it is
difficult to imagine how they could be centrally con-
trolled. Alternately, the spindle sensitivity to static infor-
mation could be reduced by decreasing the parameter
%, which controls the gain of the OPV projection to static
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gamma motor neurons (Equation 8). Because the posi-
tion error signal is computed at the spindles as a rec-
tified difference of static gamma activity and position
(see Equations 10 and 15), this signal can be reduced if
the static gamma activity is reduced.

Another option is to explicitly separate the static and
dynamic errors and gate their input to the PPV inde-
pendently. This would allow central control of the con-
tributions of position error feedback versus velocity
error feedback to PPV computation. Such a central allo-
cation of “attention” among signal sources is common
across the nervous system and ensures that information
that may be detrimental toward one function (feedback
control of fast movement) is not lost to other systems to
which it remains valuable (e.g., cerebellar learning sites).

Issues of bandwidth suggest that peripheral, rather
than central, sensitivity should be the controlled variable.
The spindle saturation function (Equation 11) implies
that static and dynamic components of the primary spin-
dle response have to compete for a limited range of
firing frequency in the Ia fiber. As static signals increase,
they leave less range for dynamic signals, and vice versa.
Consider now the scenario described above where an
organism is trying to respond to unpredictable perturba-
tions. Its response is dominated by a decision regarding
the direction of the perturbation, and this decision must
be made as quickly as possible. Assuming noisy feedback,
the system needs to define thresholds that the signal
must cross before it is used to make the decision to
respond in one direction or another (see Figure 4b).

If the static component of the spindle response is
reduced, most of the Ia activity range remains available
for the dynamic component. This means that a given
velocity of perturbation generates a large change in the
Ia feedback (see Figure 4a). In contrast, if the static
component shifts the Ia response toward saturation, less
activity range is available to the dynamic component.
Thus, the dynamic signals are smaller and take longer to
cross the threshold at which the decision to respond
to the perturbation is made. Consequently, the response
to perturbation is delayed.

Similar issues arise in other situations. The limited
dynamic range of feedback fibers forces a trade-off be-
tween static and dynamic sensitivity that must be re-
solved at the level of the receptors. For this reason, it is
better to control changes in utilization of static versus
dynamic error signals by directly changing peripheral
sensitivities rather than through a central attentional
mechanism.

In the model, peripheral sensitivity is changed by
varying the parameter , which controls the gain of the
OPV projection to static gamma motor neurons (see
Equation 8). When this parameter is set at 1, the spindle
sensitivity to static errors is ideal for accurate computa-
tion of the PPV. As i is reduced slightly below 1, posi-
tional errors need to exceed a small threshold before
being registered by the spindle. As ¥ drops further, only
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Figure 4. Trade-off between

static and dynamic sensitivity.
(a) Input versus output func- (a)
tion of Ia fibers. With small
static input (1), a given
change in dynamic input re-
sults in a large activity change.
With a larger static input (2),
the dynamic component is
shifted toward saturation and
results in a smaller activity
change. (b) During a task that
requires detection of perturba-

(b)

tion direction, noise forces

the system to define thresh-
olds (dashed lines) before a re-
sponse decision is made. A

smaller static component in Ia
firing (1) implies that the dy-
namic component is greater
and more easily distinguish-
able from noise, resulting in a
faster response than that with
a higher static component (2).

large errors will be detected, and the system will be
insensitive to the kinds of errors that occur under nor-
mal conditions.

The following equation expresses the dynamics of
used in the model:

A1)
dt_(l X) XR a9

where R is a source of inhibition that causes ¥ to de-
crease. In the absence of this inhibition y grows to a
value of 1. The formulation of explicit equations govern-
ing R is a task for future research. The control of this
parameter may involve numerous central and peripheral
factors. The three rules listed above are a starting point.
Their translation into a mathematical formulation of neu-
ral mechanisms is not necessary to demonstrate some of
their behavioral consequences. In the simulations below,
the value of R is set in accordance with these rules and
reported in the corresponding figure captions. A key
condition used below, where R is set high to reduce the
gain ), is during vibration of muscle tendons. Such vibra-
tion is proposed to drive the system into a state where
dynamic sensitivity is increased.

The fusimotor gating scheme described above is pro-
posed primarily on functional grounds—it improves the
system’s performance during fast movements, and helps
it to reproduce several psychophysical effects described
below. Direct physiological and anatomical evidence for
the mechanism is lacking, although support is provided
by studies of “fusimotor set” during various movement
scenarios. For example, it has been reported that during
slow movements spindle activity is dominated by static
fusimotor activity, whereas for movements faster than

0.2 resting lengths per second, spindles are dominated
by velocity sensitivity (Prochazka, Stephens, & Wand,
1979). These results provide indirect support for rules 1
and 2, above. Prochazka, Hulliger, Trend, and Diirmiiller
(1988) provides some evidence for the third rule with
the observation that during sudden imposed move-
ments, dynamic fusimotor activity is high, while static
activity is reduced. Dynamic fusimotor activity increases
the system’s sensitivity to imposed velocity errors.

Gating the Gain of Load Compensation

Consider the scenario of a quadruped raising itself off
the ground and note that quadrupeds do not tonically
support themselves in the gravity field by muscular ac-
tion. Rather, muscular action is used only during the
lifting phase, after which most of the weight is sup-
ported by the legs acting as stilts. During the lifting
phase, contraction of the load-bearing muscles (exten-
sors) is strongly opposed by the body’s weight, requiring
a large force to be generated by these muscles. This
suggests that the gain of the load-compensation mecha-
nism is increased during the lifting phase and decreased
again once the body has been lifted onto its stilts. The
lifting state is signaled by a conjunction of highly excited
Golgi tendon organs and spindle receptors, and Ialb
interneurons (Baldissera, Hultborn, & Illert, 1981) may
detect this conjunction if their activity is contingent on
the simultaneous input from Ia and Ib afferents.

This motivates the introduction of the following hy-
pothesis. As the body is being lifted, the large muscle
tensions excite Golgi tendon organs and the large posi-
tion errors excite spindle receptors. This activates Ialb
interneurons, which open a high-gain force accumulator.
In the model, this function may be performed by the SFV
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if the x, parameter of the load-bearing muscle is in-
creased by Ialb input. During the lifting phase, this high-
gain mechanism helps to generate the large forces
needed to lift the body. Once an upright position has
been reached and the load has been transferred from the
muscles to the column of bone, Golgi input to Ialb
interpeurons disappears, and the SFV gain is again re-
duced to a modest value.

Vibration of an active load-opposing muscle may in-
duce a state similar to that during the lifting stage be-
cause it significantly excites both spindle receptors and
Golgi tendon organs (Burke, Hagbarth, Lofstedt, & Wallin,
1976a). Thus, it may also activate the Ialb interneurons
and cause high-gain SFV integration. Thus, we postulate
that vibration increases the gain on the SFV integration
of the vibrated spindle, changing the k; parameter (see
Equation 16) of the vibrated muscle 7.In our simulations,
we changed x; from its normal value of 1 to a value of
400.

SIMULATIONS

This section describes a series of simulations reproduc-
ing psychophysical phenomena that illustrate different
operating modes of the cortico-spinal trajectory gener-
ator.

Control of Fast versus Slow Movements:
Response to Elastic Loads

In an attempt to understand the nature of the descend-
ing command underlying voluntary movement, Feldman
et al. (1995) examined the differences between move-
ments performed freely and those performed against an
elastic load produced by a servomechanism pro-
grammed to behave like a linear spring. The subjects
were asked to make reaching movements without visual
feedback and instructed “not to correct arm deflections
in case of perturbations.” In control trials, subjects per-
formed the movements with a mean movement time of
about 100 msec, with the usual bell-shaped velocity
profile and with minor oscillations around the endpoint.
In test trials, a servomechanism applied force to the arm
in a direction opposite to the movement direction and
with a magnitude proportional to the displacement from
the initial starting position. The typical force was 80 to
90% of the voluntary maximum for a given subject.
During these trials, the movement stopped significantly
before the target was reached and at about the same
time that peak velocity was attained in the control move-
ment. When the servo disengaged, the arm rapidly swung
to the same position as that attained in the control
movements. A linear velocity feedback was used to
dampen endpoint oscillations.

Feldman et al. (1995) interpreted these results as sup-
port for the hypothesis that the descending motor com-
mand shifts the equilibrium point of the limb so rapidly
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that this shift stops well before the movement ends, in
particular, at about the time that peak velocity is
reached.

As discussed above, during fast movements the model
reduces the influence of static feedback signals on tra-
jectory generation. This frees the OPV command to shift
to its final target value well before the movement com-
pletes, and in the extreme case of the fastest ballistic
reaches, this shift completes before the arm overcomes
inertia and begins to move. One may thus be tempted to
describe the model’s operation in this case as “spring-to-
endpoint” movement. However, at these high speeds, the
launching and braking pulses dominate the descending
command, and the system’s operation is better described
as velocity control. Regardless, for the very fast move-
ments (100 msec) performed by the subjects of Feldman
et al. (1995), one may expect that static feedback has
been reduced, and the OPV shift occurs much faster
than the actual overt movement.

Figure 5 compares the data of Feldman et al. (1995)
with simulations generated by the model. The servo
action was simulated by augmenting Equation 1 as fol-
lows:

2
%gj.: [M(C{,pi) _M(Cj,pj)+Ej—4(0~5 _Pi)_

~ =

and no damping action was provided. As in the data, the
simulated loaded movement stops at about the same
time that the control movement reaches its velocity
peak, and the same target is reached when the servo
disengages.

Postural versus Compliant Operation: Effects of
Transient Perturbations

In the model, there are two kinds of influences on the
descending command to alpha motor neurons (OFPV).
Postural mechanisms work to maintain the limb in a
centrally determined position; these mechanisms include
DVV integration, SFV and IFV feedback loops, the stretch
reflex, and spring properties of muscles. At the same time
a compliance mechanism, the PPV-OPV pathway, re-
leases tension on the limb by changing the OPV compo-
nent of the descending command toward the actual
position of the limb. The way in which these opposing
influences interact is demonstrated by the following
simulation.

The limb starts at a central TPV position with a posi-
tive GO signal, and a transient perturbation is applied.
This perturbation exerts a force, which is a bell-shaped
function of time, pulling the limb into extension. At the
same time that the perturbing force disappears, the GO
signal is shut off. The result, shown in Figure 6a, is a brief
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Figure 5. Simulation of the elastic load paradigm of Feldman et al. (1995). (a) Experimental data. The top arrow indicates the time when the
servo action releases in a load trial. The lower arrow indicates the end of movement in a loaded trial. (b) Simulation results. The servo action

was simulated by adding a force of 4(0.5 — py) to the limb dynamics Equation 1. This force was shut off at time £ = 150. The GO signal scalar
was set at g(o) = 0.7 and static sensitivity reduced by setting R = 1. The simulated torque, angle, and velocity traces for the control movement
are shown as solid lines; the same variables for the perturbed movement are shown as dashed lines.

extension of the limb followed by a return movement
that does not quite reach the starting target position. The
return movement illustrates the action of the postural
mechanisms such as DVV integration and the spring
property of the muscles. At the same time, the residual

“endpoint error” illustrates the compliant influence of
the PPV-OPV pathway. Because of this pathway, the OPV
was drawn into extension, and shutting off of the GO
signal prevented complete recovery.

This result is interesting because it is similar to the

(a) Deviation with a (b) Coriolis-force effect (c) 2-D plot of deviation
transient perturbation on movement
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Figure 6. Simulation of the deviation in position caused by exposure to a force that was a bell-shaped function of time, peaking at E; =
0.0055. The GO signal was set at 0.1, and shut off at the same time that the force decayed back to zero. The moment of inertia was reduced to

I = 100. (a) Plot of the position over time. (b) Data from Lackner and

DiZio’s (1994) Coriolis-force experiment, showing the prerotation move-

ment (solid line), the first movement after rotation has started (open circles), and the first movement after rotation has stopped (filled circles)
showing the after-effects of adaptation. (c) Plot of the simulation shown in (a) now presented in 2-D to facilitate comparison with the Coriolis-
force data. The y-coordinate (deviation direction) is taken from the data shown in (a). The x-coordinate (movement direction) starts at 0.3 and
is incremented by a step proportional to the magnitude of the bellshaped force applied to the deviation direction.
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endpoint errors observed during voluntary reaches
made in a Coriolis force field (Lackner & DiZio, 1994).
In a rotating room such as that used by Lackner and
DiZio, a perturbing force is exerted upon the arm in a
direction perpendicular to the direction of movement
and of a magnitude proportional to the movement
speed. When the arm stops moving, the force disappears.
When first exposed to these conditions, subjects show
curved trajectories whose endpoints deviate from the
target position when movement terminates. This occurs
both when contact is made with the surface upon which
the target was displayed and when the arm is held above
the surface (although the endpoint errors are smaller in
the latter case). See Figure 6b for an example of such
endpoint errors.

That trajectories are curved is expected purely due to
the dynamics of the situation, on the assumption that
feedback compensation is partial and delayed and that
no feedforward compensation has yet been learned. Be-
cause subjects were instructed to “reach and touch the
location of the target in one continuous natural move-
ment without stopping” and were asked not to make
voluntary corrective movements afterward, the GO sig-
nal is shut off as appropriate for an unperturbed move-
ment. If the descending command were a purely
feedforward kinematic equilibrium point command, one
would expect it to move to the target just as it would in
an unperturbed movement, and spring properties to
bring the endpoint to the target with normal accuracy.
Thus, one would not expect any endpoint errors greater
than those normally observed to remain after external
forces have disappeared. That endpoint errors occur has
been taken as evidence against equilibrium point theo-
ries.

However, if one adds the assumption that movement
is influenced by peripheral feedback, these results are
not so surprising. Feedback could produce two kinds of
results. A feedback positional compensation scheme
with low gain and some lag would move the equilibrium
point in the direction opposite to the load, whereas a
system for complying with external forces would move
it in the same direction as the load. The data support the
Iatter, which is consistent with our hypothesis of a PPV-
OPV pathway that allows compliance with external de-
mands. Our simulation in Figure 6a is analogous to the
effect of the perturbing Coriolis force on the direction
perpendicular to the direction of movement. Along this
direction, the target is constant, and the perturbing force
is bell-shaped after the bell-shaped velocity profile along
the movement direction. Figure Gc replots the same
simulation in 2-D to facilitate comparison with the data.

Although subjects consistently exhibit the above-
mentioned effects when first placed in a Coriolis field,
they quickly adapt to the unusual force environment and
exhibit straight movements that accurately reach the
target (Lackner & DiZio, 1994; DiZio & Lackner, 1995).
When the force field disappears after the room has
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stopped rotating, the subjects show opposite and equal
aftereffects, including both curvature components and
endpoint errors. Interestingly, whereas the endpoint
error aftereffects are shown to transfer to the arm that
made no movements during rotation, trajectory curva-
ture aftereffects do not (DiZio & Lackner, 1995). This
suggests a distinction between the mechanisms of adap-
tation that correct for kinematic versus kinetic errors.

The present model does not address such adaptation,
although some of these effects may be generated if it is
embedded within the DIRECT model of motor equiva-
lent reaching and motor learning (Bullock, Grossberg, &
Guenther, 1993), which extends the VITE model in an-
other direction to learn spatial-to-motor coordinate trans-
formations and to carry out reaches with a redundant
arm (See “Discussion,” below).

Active versus Passive Operation: Tonic and
Antagonist Vibration Reflexes

The above simulation demonstrates how the system’s
active and passive modes of operation (controlled by the
GO signal) help to reproduce errors seen in movements
made in a Coriolis field. This section illustrates the differ-
ence between the states of active load-compensation
and passive compliance with loads (controlled by the
SFV integration parameter ») by comparing two different
effects of muscle tendon vibration.

Tonic Vibration Reflex

When low-amplitude vibration of high frequency is ap-
plied to the muscle tendon, several sensory receptors are
highly excited, including primary and secondary spindle
afferents (Burke, Hagbarth, Lofstedt, & Wallin, 1976a,
1976b; Roll & Vedel, 1982). The effects of such vibration
vary from subject to subject and depend in part upon
the contraction state of the vibrated muscle.

The most immediate motor effect of muscle tendon
vibration is a slow, continuous contraction of the vi-
brated muscle. This so called tonic vibration reflex (TVR)
is observed when subjects are maintaining posture
against gravity and does not occur when the vibrated
arm is relaxed (Hagbarth & Eklund, 1966).In the model,
the TVR can occur through several independent path-
ways: First, modest contraction is expected due to the
stretch reflex (Equation 18). Depending on the balance
of the response from primary versus secondary spindles,
a second pathway may involve the IFV, which excites the
agonist OFPV population and thus also causes muscle
contraction (Equations 14 and 17). However, the major
component of the reflex is generated in the model
through the static force vector (SFV).

When the limb is maintaining posture against gravity,
the b parameter in the SFV Equation 16 is positive. This
implies that vibration and spindle excitation will lead to
integration at the SFV celis. This integration produces the
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type of slow continuous contraction that is seen during
the tonic vibration reflex, as shown in Figure 7. When
vibration stops, the arm returns toward its initial position
due to the inhibition of the SFV by the antagonist spin-
dles and the consequent reduction of the alpha motor
neuron command.

In simulating vibration, a term is added to the input
of the spindie saturation function, and so Equations 10
and 15 become, respectively,

d +
s;n:s(ew?—pil*w[v?—%] + 9 uity) @D

and

5@ = S((-) [y,s - p,] 4 (p(z)vib,) 22)

where ¢ = 0.01 is the primary afferent sensitivity to
vibration, ¢® = 0.01 is the secondary afferent sensitivity,
and vib, is proportional to the vibration frequency ap-
plied to muscle i Note that because vibration drives
spindles to abnormally high activity levels, close to satu-
ration, it dominates the other sources of excitation. It is
postulated that during vibration, the system enters a
state analogous to the set adopted during exposure to
unexpected perturbations (e.g., Prochazka, 1992). Thus,
during vibration, static sensitivity is reduced by setting
R > 0 (see Equation 19). This means that vibration causes
the gating parameter ¥ to be reduced below 1 and the
system to shift into the dynamically sensitive state.

Antagonist Vibration Reflex

As mentioned above, the tonic vibration reflex occurs
only when the limb is actively maintaining posture
against gravity. When the limb is relaxed, vibration pro-
duces the opposite result; namely, EMG activity in the
antagonist of the vibrated muscle (Gilhodes, Roll, &
Tardy-Gervet, 1986). This effect is called the antagonist
vibration reflex (AVR).

In the context of the model, the difference between
the TVR and the AVR may be due to two factors. First, a
central variable (e.g., b in Equation 16) may shut off the
load compensation mechanism that underlies the TVR.
Second, relaxation of the muscle may render the Golgi
tendon organs much less responsive to vibration, thus
failing to excite the Ialb interneurons and activate the
high-gain force accumulation described above.

Below, the AVR is simulated by setting the SFV integra-
tion rate b to zero and keeping ¥; = 1. Without the
growth of the static force vector, the dominant effect of
biceps vibration is stimulation of the primary afferents
that project to the PPV. Because spindle afferents signal
stretch of the muscle from which they project
(McCloskey, Cross, Honner, & Potter, 1983), this produces
a percept of extension. Because the system is in a re-
laxed state, this percept induces activity changes at-

Tonic Vibration Reflex
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Figure 7. Simulation of the tonic vibration reflex. Vibration was ap-
plied by setting 24b;= 0.2 during the time period indicated by the
horizontal line. The limb was actively resisting gravity (.e., b =
0.025, and x; was increased to 400).

tempting to comply with imposed movement (through
the PPV-OPV pathway). The result is EMG activity in the
antagonist and generation of force into extension, as
shown in Figure 8.

The mechanisms by which the model generates the
TVR and AVR suggest testable predictions. Because the
TVR is mediated through a pathway that acts only
through alpha motor neurons, one should expect it to
cause unloading of the spindles in the vibrated muscle.
This is indeed observed in vivo (Burke et al., 1976b) as
a decreased response to vibration during the TVR. In
contrast, because the AVR involves a pathway through
the OPV, one should not expect unloading of the spin-
dles antagonistic to the vibrated muscle, because both
the intrafusals and extrafusals receive the OPV com-
mand. In addition, although the TVR appears to survive
decerebration, at least in the cat (Matthews, 1966)
(which suggests that a subcortical SFV may project to
subcortical or spinal regions in addition to the cortical
OFPYV), the AVR is expected not to.

Antagonist Vibration Reflex
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Figure 8. Simulation of the antagonist vibration reflex. Vibration
was applied by setting vib; = 0.2 during the time indicated by the
horizontal line. The limb was relaxed (i.e., » = 0.0) and held at a po-
sition of 0.5. The solid line shows the value of the alpha motor
neuron activation 0,; the reduction of this variable implies that
forces are exerted into extension.
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In the model, the effect is generated in the same way
as the TVR of Figure 7, only an obstacle is introduced,
which prevents the position from exceeding a flexion
value of 0.7. As simulated in Figure 11b, model behavior
closely emulates the data, including the brief percept of
extension, followed by a percept of flexion that lags the
actual movement, followed by an illusion of extension,
and finally the rapid accurate PPV computation accom-
panied by a small return movement.

Some intersubject variability can be simulated by the
model as well. Specifically, during the actual arm move-
ment, some subjects indicate a position that lags the
actual position, but the lag does not increase over time
(Goodwin et al., 1972b). After the obstacle is reached,
some subjects report only a brief illusion of movement
that quickly stops at a stable, albeit inaccurate, position.
Both these effects can be produced in the model if the
X parameter is not sufficiently reduced during vibration,
as shown in Figure 12.

Reaching Inaccuracies under Vibration

If the central representation of current limb position
(PPV) is based in part on peripheral feedback from
muscle spindles, and if this representation is used in
computing the planned movement (DV), one would ex-
pect tendon vibration to disrupt reaching movements in
predictable ways. For example, when muscle vibration
causes an illusion that the arm is more flexed than it
actually is, reaching movements into flexion should ex-
hibit undershoots. In the model, this occurs because the
DV is prematurely driven to zero by a PPV that is mis-
representing the actual limb position.

When humans perform reaching movements while
their muscle tendons are vibrated, undershoots in reach-
ing are observed (Capaday & Cooke, 1981, 1983). The
typical effects, shown in Figure 13a, were obtained when
subjects made alternating flexion and extension move-
ments, without visual feedback, while their triceps ten-
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Figure 12. Static version of the obstructed TVR illusion. Unlike the
simulation shown in Figure 11b, the plot shown above was ob-
tained with R = 0.05 during the period of vibration.
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don was vibrated. Note that the movements show under-
shoots in the flexion phase but not in the extension
phase. This asymmetry in the effects of vibration on
reaching movements has been consistently observed in
similar studies and has led to the conclusion that, during
movement, the motor system is only attending to the
feedback information coming from the muscle that is
being stretched (Capaday & Cooke, 1983). This makes
sense when one considers that the spindles in the con-
tracting muscle are more likely to become unloaded and
are thus a less reliable source of feedback information.

Figure 13b shows a simulation generated by the
model. The model generates the same kind of under-
shoots during the flexion phase. The magnitude of these
undershoots in the simulation is smaller, as a percentage
of the total movement extent, than those observed in the
data. This might indicate other influences upon the PPV
and/or the movement command or may simply be a
consequence of the mathematical simplifications used
above in formalizing the neural circuit.

Capaday and Cooke (1981) also showed that when
subjects are allowed visual feedback of their arm, the
effects of vibration disappear, and movements are made
accurately regardless of which muscle is vibrated. Again,
this makes sense in the context of the model if it is aug-
mented by visually sensitive mechanisms of the DIRECT
model (Bullock et al., 1993). Then visual information, if
available, dominates the proprioceptive feedback in the
computation of the PPV. Therefore, one would expect

(a) Experimental data
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Figure 13. Reaching movements performed with vibration. (a) Data
from Capaday and Cooke (1981) on aiternating reaching movements
performed with triceps vibration. The solid line indicates position
and dotted lines indicate the targets. The solid bar shows the time

of vibration. (b) Simulation of reaching movements made between
the targets shown by dotted lines, with GO = 0.5, and » = 0. During
the period of vibration, indicated by the horizontal line, vib; = 2

and R = 1. The moment of inertia was set to J = 50 to reduce oscilla-
tions.
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the misleading spindle information to be ignored in the
DV computation and the reaching movements to be
performed accurately.

DISCUSSION

In order to perform voluntary goal-directed reaching, the
motor system must generate movement commands ap-
propriate for both the internal demands (target and
speed of movement) and external conditions (loads and
obstacles). This means that central and peripheral signals
must be integrated in the nervous system and together
used to guide the development of contraction in the
muscles. Bullock et al. (1998) have described a circuit
model that performs such integrated control of volun-
tary movements and proposed how its elements corre-
spond to neurophysiologically identified cortical and
subcortical cell types. However, the operation described
therein is not appropriate for all movement contexts. For
example, for slow precise movements, a representation
of limb position derived in part from peripheral feed-
back information is desirable, but such feedback may be
undesirable during very fast movements when lags ren-
der the information useless and even detrimental to
stability. The motor system must allow modification of its
operating mode toward one appropriate to the given
movement context. Such modification may be imple-
mented through automatic or volitional gating mecha-
nisms that control the balance of various influences
acting upon the movement command.

This report discusses such influences, which may be
summarized as follows:

1. Passive versus active operation. The balance be-
tween the response to internal versus external demands
is controlled by two separate gating operations. The GO
signal controls the speed of voluntary movement, as well
as the effort with which forces are exerted against ob-
structions and the speed of the response to perturba-
tions. The SFV integration rate (parameters b) controls
the gain of the load-compensation machinery.

2. High-gain versus low-gain force generation. The
magnitude of forces exerted against perturbing loads is
also controlled through muscle-specific gains on SFV
integration (parameter x,). During normal operation, this
gain is modest, but it is increased during tasks that de-
mand large force generation such as during the process
of lifting a body off the ground.

3. Fast versus slow movement. During fast move-
ments, static positional error signals are outdated and
potentially destabilizing. Thus, the system reduces the
sensitivity of muscle spindles to stretch by reducing the
activation of static gamma motor neurons. This shifts
the system from a feedback position controller during
slow movements to a feedforward trajectory generator
with feedback velocity compensation during fast move-
ments.

4. Static versus dynamic sensitivity. When fast re-
sponses are desired to perturbations from unpredictable
directions, the system changes the balance of static ver-
sus dynamic information in the feedback streams. This is
also controlled by reduction of the activation of static
gamma motor neurons, leaving more of the firing range
of Ia fibers for the dynamic velocity information.

Still other kinds of gating seem to exist in vivo. One
example is stiffness control, which is accomplished in
part by cocontractions of antagonistic muscles. Although
the role of higher brain centers in stiffness control has
not been definitively established (see Smith, 1996, and
associated commentaries), there have been many obser-
vations of systematic variations in cocontraction as a
function of variables such as subject age and load size
(Gachoud, Mounoud, Havert, & Viviani, 1983) and the
frequency of perturbations to posture (Humphrey &
Reed, 1983). The FLETE model (Bullock & Grossberg,
1989, 1990, 1992; Bullock & Contreras-Vidal, 1993; Bul-
lock, Contreras-Vidal, & Grossberg, 1993) describes how
spinal circuits would enable a descending cocontractive
signal to control stiffness independent of position. The
present model is consistent with such a spinal circuit
model.

Additional Psychophbysical Phenomena Relevant to
the Model

The computation of the Perceived Position Vector (PPV)
from central and peripheral information allows the po-
tential explanation of several additional psychophysical
phenomena involving tendon vibration. One is the re-
port by Craske (1977) that when vibration is applied to
the biceps while the arm is passively moved into full
extension, subjects report perceptions of hyperexten-
sion. Although no actual pain is felt by these subjects,
they experience the very unpleasant sensation that their
arm “is bent backward” or “being broken.” These results
led Craske (1977) to conclude that the computation of
position involves an extrapolation based on central and
peripheral signals, operating on the previously calibrated
natural position domain. In the context of the model,
one may suppose that normal joint angles are coded by
a central range of firing frequencies of the cells that
represent the Perceived Position Vector. This would assist
PPV accuracy by keeping computations away from non-
linear extremes of cell activity. Vibration applied to an
extending biceps may then push these cells to their
extremes and be interpreted as hyperextension of the
elbow.

The present model is intended to fit within a larger
theory of motor control, which includes the DIRECT
model of motor-equivalent reaching and learning (Bul-
lock et al., 1993). One focus of the DIRECT model is to
analyze the way in which visual and somatosensory
signals are combined in the construction of a spatial
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representation of the PPV, which is used to compute a
movement direction vector (DV) in spatial coordinates
rather than in the motor coordinates used here for
simplicity. The present model naturally fits within the
DIRECT framework through the elaboration of the com-
putations involving PPV, TPV, and DV. In brief, a PPV
representation in joint coordinates can be used to up-
date a visuo-spatial representation of end-effector per-
ceived position.

With this in mind, one may begin to make sense of
some remarkable illusions first reported by Lackner and
Levine (1978). In these experiments, a small LED was
attached to the finger of a human subject, who was
placed in a completely dark room. The subject’s relaxed
arm was held immobile in a brace, and tendon vibration
was applied to the biceps. The standard somatosensory
illusions described above were observed. However, in
addition to these, subjects reported seeing the move-
ment of the LED in the direction consistent with exten-
sion of their elbow. In other words, the proprioceptive
stimulation produced a visual effect, called the oculo-
bracbial illusion.

Consideration of how the present model may be
joined to DIRECT mechanisms offers some potential of
explaining this effect. If visual and somatosensory signals
combine in the computation of the PPV, the conscious
interpretation of the result of this computation may
ascribe the perceived movement to be due to a visual
stimulus. When a single small light is visible in an other-
wise dark room, it is often perceived to move around
haphazardly as the eye jitters about. This autokinesis may
result from a slight miscalibration of corollary discharge
signals from extraocular muscles and retinal slip signals.
In the oculobrachial illusion, the somatosensory illusion
of movement passing through to the PPV may be enough
to bias autokinesis in the direction consistent with arm
extension, especially because the subjects are con-
sciously aware that the LED is fixed to their finger.

Conclusions

Modulation of a cortico-spinal circuit model for trajec-
tory generation and dynamics compensation with auto-
matic and volitional mechanisms allows the system to
achieve a high degree of task sensitivity. The model
reproduces a number of illustrative psychophysical phe-
nomena, including responses to elastic loads during fast
movements, endpoint errors in Coriolis force fields, and
several kinds of effects caused by muscle tendon vibra-
tion. The model realizes a set of functional hypotheses
about flexible movement control, which enable it to
unify neurophysiological, anatomical, and psychophysi-
cal data, within a computational framework. This devel-
oping theory can be extended in a number of directions.
First, model cell populations may be unlumped toward
a more detailed treatment of physiological phenomena
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such as recruitment gradients and distributed repre-
sentations (see Bullock et al., 1998). Second, the model’s
trajectory formation circuit may be embedded within
several theories that address sensorimotor transforma-
tions and multijoint control (Bullock et al., 1993; Jordan,
1990; Kettner, Marcario, & Port, 1993; Kuperstein, 1988;
Mel, 1991). Finally, the model may be joined to VITElike
circuits that illustrate how more complex movement
sequences are planned and executed with variable
speed, size, and shape, as in the kinds of curved move-
ments that are synthesized during handwriting (Bullock,
Grossberg, & Mannes, 1992).

Appendix A. Model Parameters

Except where noted, all the simulations above use the
following parameter settings: I = 200, V = 10, v = 0.1,
B® =0.1,p=0.07,6 =0.7,6 = 1.0, B* = 0.01,£ = 0.01,
C=251n=074=10,A = 0.003, P = 0.0001,5 = 0.1,
b = 0.025,k; = 1, ¥y = 15, R = 0. The delay in feedback
from spindles to central variables (PPV, SFV, and IFV) is
controlled by the parameter T, normally set at T = 5.
Because a moderate-speed movement takes about 100
time steps in the model, the delay is approximately 5%
of movement time. The adverse effects of larger feedback
delays may be reduced by feedforward compensatory
machinery in addition to the reduction of static sensitiv-
ity discussed above.
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