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global Liapunov function. The absolute stability of systems Mth infinite but
totally disconnected sets of equilibrium points can then be studied using the
LaSalle invariance principle, the theory of several complex variables, and
sam's theorem. The symmetry of matrix C is important since competitive
systems of the form (1) exist wherein C is arbitrarily close to a symmetric
matrix but almost all trajectories persistently oscillate, as in the voting
paradox. SloMng do-m the competitive feedback Mthout violating symme-

try, as in the systems

% -Q,(X,)[ b,(x,) -"tlc,kdk(Yk)]

~ -e,(x,)[f,(x,) -y,].
also enables sustained oscillations to occur. Our results thus show that the
use of fast symmetric competitive feedback is a robust design consrraint for
guaranteeing absolute stability of global pattern formation.

Abstract- The process whereby input patterns are transfonned and
stored by competitive cellular networks is considered. This process arises in
such diverse subjects as the short-tenD storage of visual or language
patterns by neural networks, pattern fonnation due to tile firing of morpho-
genetic gradients in developmental biology, control of choice behavior
during macromolecular evolution, and the design of stable context-sensitive
parallel processors. In addition to systems capable of approaching one of
perhaps infinitely many equilibrium points in response to arbitrary input
patterns and initial data, one finds in these subjects a ~ride variety of other
behaviors, notably traveling waves, standing waves, resonance, and chaos.
The question of what general dynamical constraints cause global approach
to equilibria rather than large amplitude waves is therefore of considerable
interest. In another tenninology, this is the question of whether global
pattern fonnation occurs, A related question is whet~~r the global pattern
fonnation property persists when system parameters slowly change in an

unpredictable fashion due to self-organization (devlelopment, learning).
This is the question of absolute stability of global pattern fonnation. It is
shown tha: many model systems which exhibit the a~;olute stability prop-
erty can be ftTitten in the fonD

dx r ~ 1df -Qj{X;)l bj{x;) -k1;:lc,kdk{):k) (I)

i-I, 2." '.n, where the matrix C -lIc,kll is symmet1ric and the system as
a whole is competitive, Under these circumstances, lhis system defines a
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I. INTRODUCTION: ABSOLUTE STABILITY OF
GLOBAL PATTERN FORMATION IN
SELF -ORGANIZING NETWORKS

T HIS ARTICLE proves a global limit theorem for a

class of n-dimensional competitive dynamical systems
that can be written in the form

x; = a;(Xi) [ b;(X;) -t Cikdk(Xk» )' (1)
k-l

i = 1,2,.. .,n, where the coefficients IIC;jll form a symmet-
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ric matrix. The systems (1) are more general in some
respects but less general in other respects than the adapta-
tion level competitive dynamical systems

X, = a,(x)[bi(x;) -c(x)] (2)

where x = (Xl' X2'.' .,x,,) and i = 1,2," ',n, that have
previously been globally analyzed (Grossberg [14], [18],
[21]). To clarify the significance of the present theorem,
some of the varied physical examples that can be written in
the form (1) are summarized in this section. Section II
indicates how these examples physically differ from related
examples wherein sustained oscillations of various types
can occur. Section III begins the mathematical develop-
ment of the article.

System (1) includes the nonlinear neural networks

X = -Ax + ( B -Cx )[ I + r ( x )], I I , I I , J, ,

-(Dix; + E;) [J; + i: J;kgk(Xk) ]' (3)
k-l

i = 1,2," ',n. In (3), x; is the potential, or short-term
memory activity, of the ith cell (population) v; in the
network. Term -A;x; describes the passive decay of activ-
ity at rate -A;. Term

(B; -C;x;)[I; +/;(x;)] (4)

describes how an excitatory input I; and an excitatory
feedback signal /;(Xj) increase the activity x;. If C; = 0,
then term (4) describes an additive effect of input and
feedback signal on activity [10]. If C; > 0, Ilhen the input
and feedback signal become ineffective when x; = BjCi-l
since then B; -C;X; = O. In this case, term {4) describes a
shunting or multiplicative effect of input and feedback
signal on activity. In a shunting network, Ule initial value
inequalityx;(O) ~ BjC;-l implies thatx;(t)~; B;C;-l for all
t ~ 0, as occurs in nerve cells which obey the membrane
equation (Hodgkin [24], Katz [26], Kuffler and Nicholls
[28]). Term

-(Dixi + Ei) [ ;; + t r;kgk(Xk)] (5)
k-l

in (3) describes how an inhibitory input Ji and inhibitory
feedback signals r;kgk(xk) from cell Vk to Vi decrease the
activity Xi of Vi. If Dj = 0, then (5) describes an additive
effect of input and feedback signals on acti1rity. If Di > 0,
then the input and feedback signals become ineffective
when Xi = -Di-1Ei, since then DiXj + Ei = O.In this case,
(5) describes a shunting effect of input and feedback
signals on activity. An initial value choice Xi(O) ~ -Di-1Ei
implies that Xi(t) ~ -Di-1Ei for all t ~ O. Thus in a
shunting network, but not an additive network, each activ-
ity ~i(t) is restricted to a finite interval for all time t ~ O.
Suitably designed shunting networks can automatically
retune their sensitivity to maintain a sensitive response
within these finite intervals even if their inputs fluctuate in
size over a much broader dynamic range (Grossi?erg [12],
[21]).

The networks (1) are part of a mathematical classifica-
tion theory, reviewed in [21], which characterizes how

(6)

prescribed changes in system parameters alter the transfor-
mation from input patterns (II,I2,...,I",JI,J2,...,J;,)
into activity patterns (xI' X2'.. .,.\",,). In addition to the
study of prescribed transformations, the mathematical clas-
sification theory seeks the most general classes of networks
wherein important general processing requirements are
guaranteed. In the present article, we study a class of
networks which transform arbitrary input patterns into
activity patterns that are then stored in short-term memory
until a future perturbation resets the stored pattern. This
property, also called global pattern formation, means that
given any physically admissible input pattern
(11,12,.. ',I", Jl, J2,.. .,J,,) and initial activity pattern
x(O) = (Xl(O), X2(O),.. .,x,,(O», the limit x(~) =
limr_~(xl(t), X2(t),.. .,x,,(t» ex.ists. The networks (1) in-
clude examples wherein nondenumerably many equi-
librium points x(oo) ex.ist (Grossberg [12], [21]).

A related property is the absolute stability of global
pattern formation, which means that global pattern forma-
tion occurs given any choice of parameters in (1). The
absolute stability property is of fundamental importance
when (1) is part of a self-organizing (e.g., developing,
learning) system, as in [15], [19]. Then network parameters
can slowly change due to self-organization in an unpredict-
able way. Each new parameter choice may determine a
different transformation from input pattern to activity
pattern. An absolute stability theorem guarantees that,
whatever transformation occurs, the network's ability to
store the activity pattern is left invariant by self-organiza-
tion. Thus the identification of an absolutely stable class of
systems constrains the mechanisms of self-organization
with which a system can interact without becoming
destabilized in certain input environments.

The neural networks (3) include a number of models
from population biology, neurobiology, and evolutionary
theory. The Yolterra-Lotka equations

(1 -t Hik.\"k
)k-1

of population biology are obtained when A, = C, = I, = £,
= 1; = 0 and f,( w) = g,( w) = w for all i = 1,2,. .'. n. The
related Gilpin and Ayala system [6]

"
x=GxI 1 7)

(9)

X, = G,X;

n
X .~ ( Xk 1 --!- -~ Hik -

,K; k-l Kk
is obtained when A; = C; = I; = E; = Ji = O. /;(w) = 1 -
w"K-:-'. and g( w ) = wK-1 for all i = 1 2 ...n, , I The Hartline-Ratliff equation [34]

n

r;=e,- LK;kmax(rk-r;~O).O) (8)
k-l

for the steady-state outputs r; of the limulus retina arises
as the equation of equilibrium of an additive network
(C; = D; = 0) if, in addition. /;(w) = 0 and g,(w) =
max(w -L;,O) for all i = 1.2... ',n (Grossberg [8], [9]).

The Eigen and Schuster equation [4]
n

).p-l P Xi = X mix; -q L mkxk
k-l
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for the evolutionary selection of macromolecular quasi-
species is a special case of (3) such that A, = Cj = Ii = Ei
=;; = O. Hj = ~k = 1. Dj = q, and /;(w) = g,(w) = mix[
for all i, k = 1,2.. ..,no Feedback interactions among exci-
tatory and inhibitory morphogenetic substances leading to
"firing," or contrast enhancement, of a morphogenetic
gradient can also be modeled by shunting networks (Gross-

berg [13], [16], [20)).

II. SOME SOURCES OF SUSTAINED OSCILLATIONS

The tendency of the trajectories of (1) to approach
equilibrium points is dependent on the symmetry of the
matrix IIC;jl! of interaction coefficients. Examples exist
wherein the coefficient matrix may be chosen as close to a
symmetric matrix as one pleases, yet almost all trajectories
persistently oscillate even if all the functions a;(x;), b;(x;),
and dk(Xk) are linear functions of their arguments. The
May and Leonard model [33] of the voting paradox is
illustrative. This model is defined by the three-dimensional

system

where W, is the potential of an excitatory interneuron and Yi
is the potential of an inhibitory interneuron that is activated
by Xi. Large amplitude standing and traveling periodic
waves have been found in continuum analogs of (12)-(14)
(Ellias and Grossberg [5]). System (12)-(14) is more gen-
eral than (3) because (12)-(14) reduce to a system of the
form (3) when both Wi and Yi equilibrate very rapidly to
fluctuations in Xi' Thus the tendency to approach equi-
librium in (1) is due to both the symmetry and the speed of
its feedback signals. Often as one perturbs off system (3) to
a system of the form (12)-(14), one finds limiting patterns
followed by standing waves followed by traveling waves
[5]. In the neural network theory of short-term memory
storage, both limiting patterns and standing waves are
acceptable storage mechanisms; see [15], [19] for physical
background. One approach to achieving these properties is
to prove directly the global existence of limiting patterns
for fast feedback systems such as (1), as we do in this
article, and then to perturb off (1) by slowing down the
feedback to characterize the parameter region wherein
large amplitude standing waves are found before they
bifurcate into large amplitude traveling waves.

Much more complex oscillations can also be inferred to
exist in neural networks due to a mathematical relationship
that exists between neural networks and models of individ-
ual nerve cells wherein complex oscillations have been
proved to exist (Carpenter [1], [2]). This relationship allows
the inference that traveling bursts and chaotic waveforms
can be generated by suitably designed networks. To see
why this is so, consider the following generalization of
system (12)-(14):(11)

Xj = -Ajxj +(B -C;Xj) [ I; + t h/c(w/c)z,/c
/C-l

-(Dj>.j + E;) [ ;; + t gj/C(Y/C)
]/c-l

W, = v;(x,)[ ~(Xj) -Wi]

}Ii = V;(Xj)[r;(X;) -y,]

15)

(13)

(14)

and
Zik = Mik -NikZik -P,khk(wk)z,k. (16)

Equation (15) permits excitatory feedback signaling from a
cell Vk to Vi via the term hk(Wk)Zik' as well as inhibitory
feedback signaling via the term g,k(Yk). The new terms Zik
gate the excitatory feedback signalhk(wk) before it reaches
Vi. In vivo such a gating action often corresponds to the
release of a chemical transmitter at a rate proportional to
hk(wk)Zik. Correspondingly, term Mik -~kZ'k in (16) de-
scribes the transmitter's slow accumulation to an asymp-
tote M'k~kl, whereas term Pikhk(wk)Z,k describes the
removal of transmitter at a rate proportional to hk(wk)Z,k
(Grossberg [8], [11]). Equation (16) can be rewritten. analo-
gous to (13) and (14), in the form

Xl = xl(1 -Xl -ax2 -.8X)

X2 = x2(1- .8Xl -X2 -ax)

X) = x)(1 -axl -.8x2 -x). (10)

Grossberg [17] and Schuster et al. [36] proved that if
.8 > 1 > a and a + .8 > 2, then all positive trajectories
except the uniform trajectories Xl(O) = X2(:0) = x)(O) per-
sistently oscillate as t -+ 00. The matrix

1 a .8'
.8 1 a
a .8 1

can be chosen arbitrarily close to a symmetric matrix by
letting a and .8 approach one without violating the hy-
potheses of Grossberg's theorem.

In a neural network such as (3), the hypothesis that the
coefficient matrix II;;}II is symmetric is justified when the,
inhibitory interaction strengths ;;} and fjj between cell Vi
and cell vi depend on the interc.ellular distance, Thus the
tendency of the trajectories of (1) to approach equilibrium
is interpreted in physical examples as a consequence of
intercellular geometry.

The tendency to approach equilibrium also depends
upon the rapidity with which feedback signals are reg-
istered. In (3), for example, the excitatory and inhibitory
feedback signals /;(Xj) and ;;kgk(Xk)' re:;pectively, both
depend explicitly on the excitatory activities Xi' In vivo
these feedback signals are often emitted by interneuronal
cells that are activated by the activities Xj before they
return signals to Vi' Then (3) is replaced by the more
general system

x=-Ax+, I I Bj -C,xj)[lj +/;(Wj)]

-(D;x; + £;) [ .1; + t r:kgk(Yk)
]k-l

W; = ~(X;)[~(Xi) -Wi]

]i. = ~(Xi)[~(Xi~ -Yj]

(12)

(13)

(14)

Z,k = Q,k(Wk)(Z;k(Wk) -Z;k]' (17)

However, whereas W:(x;) and Y;(Xj) in (13) and (14) are
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increasing functions of Xi' of MacArthur [32]. Global Liapunov functions for Yolt-
erra-Lotka and Gilpin-Ayala systems have been found in
cases where only one equilibrium point exists (Goh and
Agnew [7]). This constraint is much too strong in systems
that are designed to transform and store a large variety of
patterns. Our analysis includes systems which possess in-
finitely many equilibrium points. Liapunov functions have
also been described for Yolterra-Lotka systems whose
off-diagonal interaction terms are relatively small (Kilmer
[27], Takeuchi et al. [37]). We do not need this type of
constraint to derive our results.

The function
n x

V(x) = -L 1 /bi(~i)di'(F.i) d~i
i-1 0

Zik(Wk) = Mik[Nik + Pikhk(Wk)] -1 (18)

1 n

+"2 ~ cjkdj(xj)dk(Xk) (21)
J, k-1

is a global Liapunov function for (1) because

n [ n ]2
V(x) = -~ aj(xj)dj'(x;) bj(x;) -~ Cjkdk(Xk) .

j-1 k-l

(22)
Function V(x) ~ 0 along trajectories just so long as every
function dj(Xi) is monotone nondecreasing. This condition
implies that (1) is competitive. In (3), where d, = gj' the
condition means that inhibitory feedback g, (X I) cannot
decrease as activity Xi increases. Systems (1) can, in fact. be
written in the gradient form

x =A(x)VB(x) (23)

if each function dj(x,) is strictly increasing by choosing the
matrix A(x) = IIAij(x)11 to satisfy

a(x)t5A,j(X} = , I I] /.,A\-

d,'(x;)

III. A GLOB~L LIAPUNOV FUNCTION

The adaptation level competitive systems

Xi = a;(x)(bi(Xi) -c(x) (2)

were globally analyzed by associating a suitable Liapunov
functional M+(x,) to every such system. This functional,
which is an integral of a maximum function

M+('~t) = l'maxj [b;(Xj(u» -c(x(u))] du, (20)
0

and B(x) = -V(.~).

The standard theorems about Liapunov functions and
gradient represcntations imply that each trajectory con-
verges to the largest invariant set M contained in the set E
where [22]

permitted a concept of jump, or decision, to be associated
with (2). Using this concept, the idea could be explicated
that the decision schemes of adaptation level systems are
globally consistent and thereby cause every trajectory to
approach an equilibrium point [14], [18]. By contrast. when
the same method was applied to the voting paradox system
(10), it was found that the decision scheme of this system is
globally inconsistent, and thus almost all trajectories per-
sistently oscillate [17], [18]. Although every competitive
system defines such a Liapunov functional and a decision
scheme. this method has not yet succeeded in proving that
the decision scheme of (1) is globally consistent. Such a
theorem is greatly to be desired.

In its absence. we have found that the systems (1) admit
a global Liapunov function which can be analyzed. A
considerable amount of work has already been done on
finding Liapunov functions for special cases of (1). For
example. a Liapunov function which proves local asymp-
totic stability of isolated equilibrium points of
Volterra-Lotka systems was described in a classical paper

ddl v = o. (25)

Given definition (21) of V(x), it is easy to see that points
in E are equilibrium points if each function d,(x,) is
strictly increasing. It still remains to show in this case that
each trajectory approaches a unique equilibrium point,
although for all practical purposes every trajectory that
approaches .\{ becomes approximately constant in any
bounded interval of sufficiently large times.

Further argument is required when each function d, (.\",)
is not strictly increasing, which is the typical situation in a
neural network. There each inhibitory feedback signal
function dj(x;) can possess an inhibitory signal threshold
r,- such that dj(x,) = 0 if .\", ~ r,- and d:(.\",) > 0 if

x, > r,-. Since each d I (.\" ,) is still monotone nondecreas-
ing, although not strictly increasing, function V(.\") in (21)

is a decreasing function of wk' Often in vivo the excita-
tory interneuronal potential Wi equilibrates rapidly to Xj
in (13). Then Zjk(Wk) may be approximated by a decreas-
ing function of Xi' When this is true, the variables
Wi' Yj' and Zjk playa role in the network that is formally
analogous to the role played by the variables m, n, and
h of the Hodgkin-Huxley equations for nerve impulse
transmissions [1], [2]. By relabeling cells appropriately, let-
ting Wi rapidly equilibrate to Xi' and making a special
choice of parameters and signals, the sum -AjXj + (B -
CiXj)I:Z-1.l:k(wk)Zjk in (15) can be rewritten in the form

D(Xj-l + Xj+l -2Xj) +(B -Xj)hj(Xi)Zj' (19)

Term D(Xj-l + Xj+l -2Xj) plays the role of the diffusion
term in the Hodgkin-Huxley equations. Carpenter's results
on bursts and chaotic waves therefore hold in neural
networks just so long as a spatially discrete version of the
Hodgkin-Huxley equations can also support these waves.

Our concern in this article is not, however, to generate
complex traveling waves but rather to rule them out. To
accomplish this in a robust fashion, we turn to (1) because
it eliminates both the waves due to fast feedback in an
asymmetric geometry and the waves due to slow feedback
in a symmetric geometry.
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continued to define a Liapunov function. Consequently,
every trajectory still converges to the invariant set M.
However. further analysis is now required to guarantee that
M consists of equilibrium points, let alone isolated equi-
librium points. Even in the cases wherein no such degener-
acy occurs, it has not previously been noticed that so many
physically important examples can be written in the form
(1) and that (1) admits a global Liapunov function.

d) smoothness and monotonicit.v: function d,(~) is dif-

ferentiable and monotone nondecreasing for ~ ~ o.

To prove that V(x) is a Liapunov function. \\"e first
show that positive initial data generate positive bounded
trajectories of (I), henceforth called admissible trajectories.
This can be shown if two more hypotheses are assumed.
The choice of hypotheses (34)-(36) below is influenced by
the fact that function b, in (30) may become unbounded as
.~i -+ 0 + .

Lemma 1 (Boundedness and Positivity):
Boundedness: For each i = 1,2,. ..,n, suppose that

lim sup [bi(~) -C"di(~)] < O. (3
~-~

Positivity: For each i = 1,2, ,n, suppose either that

IV. ApPLICATION OF THE LASALLE INVARIANCE

PRINCIPLE

We will study the general system

X, = a;(X;) [ b;(X;) -f: Clkdk(Xk)] (1)
k-l

under hypotheses that include the shunting competitive
neural networks

lim bj(g) = 00
(-0+ (34)

or that

lim bi(~) < 00
(-0+ (35)

and

Y; = -A;y; +(B; -C;Y;)[I; +/;(y;)]

-(D;y; + E;) [J; +' t F:kgk(Yk)] .(26)
k-l

In the shunting case. C; * 0 * Dj' The simpler additive
neural networks wherein C; = 0 = D, are also included in
our analysis but will not be explicitly discussed. In the
shunting case. (26) can be rewritten without loss of general-
ity in the form

for some f > O.

-=00

i ( d~

o~~)

Then any positive initial data generate an admissible
trajectory.

Proof Boundedness is proved using (33) as follows.
Inequality

y; = -A;y; +(B; -y;)[I; + /;(y;)]

-(y; + C;)[;; + t F;kgk(Yk)
]k-l

(27)
"

b,(x;) -L Cjkdk(Xk) ~ bj(xj) -c;jdj(.t;)
k-l

by a suitable redefinition of terms.
We distinguish Xi in (1) from y, in (27) because our

hypotheses hold when

Xi = Yi + C;.

Then (27) reduces to (1) via the definitions

(28)

(29)Qj(Xj) = Xi'

b,(Xj) = Xj-l{ AjCj -(A, + Jj)Xj

+(Bj + Cj -x;)[Ij +J;(X, -Cj)]}.

C,k = F;k'
(30)

(31)
and

is true because all C,k and dk are nonnegative. Since also
a,(x,) is positive at large .~, values, (37) shows that
(d/dt)xj < 0 at large .~, values. Indeed, given any positive
initial data, an L, < ~ exists such that .~,(t) ~ L, at suffi-
ciently large times t, i = 1,2,.. .,n.

Condition (34) implies positivity because each term
[Z-lC'kdk('~k) is bounded if all .~k ~ Lk' k = 1,2,.. .,n;

hence term bj(x,) -[Z-lC,kdk(Xk) becomes positive if all
Xk ~ Lk,k = 1,2,...,nasxj -+ 0 + .Sincealsoa'('~j) > 0
for x, > 0, (d/dt)xj > 0 before .~, reaches 0, hence .~, can
never reach zero.

If (35) and (36) hold, then at the first time t = T such
that Xj(T) = 0,dk(Xk) = gk(Xk -Ck) (32)

which is a contradiction. Hence .\",(/) remains positive for
alII ~ O.

Our first task is to prove that V(x) is a Liapunov
function of x in the positive orthant R:. To do this, we
'study (1) under the following hypotheses:

a) symmetry: matrix Ilc;jll is a symmetric matrix of non-

negative constants;
b) continuity: function a,(~) is continuous for ~ ~ 0;

function b,(~) is continuous for ~ > 0;
c) positivity: function a,(~) > 0 for ~ > 0; function

d,(~) ~ 0 for ~ E (-00.00).
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Using the fact that positive initial data generate admissi-
ble trajectories. we can easily verify that the function

n t

V(x) = -r-1 'b,(~,)d,'(~,) d~1
1.-10

nondecreasing function of the variable '~A' where 0 ~ '~A ~
LA at sufficiently large times.k = 1.2.'...n.Consequently.

a positive finite L exists such that
"
LC'AdA(.'"k)~L (44)
A-l

on all admissible trajectories at sufficiently large times.
Since (34) holds. an interval [0.2'\,] exists such that

n

b;(x,) -r. c,kdk(Xk) ~ L (45)
k-l

is a Liapunov function.

Proposition 1 (Liapunov Function): The function V( x)

satisfies
and thus

X, ~ La;(x,)

whenever 0 < ."1:, ~ 2A, on any admissible trajectory at
sufficiently large times. Since function a, is positive on any
interval [xj(T),2A,] where Xj(T) > O. a, has a positive
lower bound on this interval. Thus by (46), if T is chosen
so large that (44) holds for t ~ T, then x,(t) increases at
least at a linear rate until it exceeds A, and remains larger
than Ai thereafter. Since this argument holds for any ad-
missible trajectory, the choice of A, in the integral f,,'- isjustified. -

Continuity follows by inspection of each term in (21).

replacing the integral ft' by fx: where necessary.

The LaSalle invariance principle therefore implies the

following theorem.
Theorem I (Convergence of Trajectories): In any system

Xi = a/(Xi) [ b;(X;) -t C/kdk('~k)
)k-l

(1)

such that

a) matrix IICij11 is symmetric and all C'j ~ 0;
b) function 0, is continuous for ~ ~ 0; function b, is

continuous for ~ > 0;
c) function 0, > 0 for ~ > 0; fun~tion d. ~ 0 for all ~;
d) function d; is differentiable and monotone nonde.

creasing for ~ ~ 0;
e) lim sup(_~'X)[b,(~) -c"d,(~)] < 0 (33)

foralli=1.2,...,n;
f) and t:ither

(34)lim bi(~) = 00
(-0+

or
(35)lim bi(~) < ~

~-O+
and

~

I
;

t
1

\

(36)for some ( > 0;
i ( d~

o~=~

d
dI V(x(t») ~ 0 (39)

on admissible trajectories.
Proof By direct computation,

d n

-d V(x(t» = -r. a;(x;(t))d;(x;(t))
t 1,-

. [ b;(X;(t») -t Clkdk(Xk(t») ] 2. (22)

k-1
Since a, ~ 0 on admissible trajectories and d; ~ 0 by

hypothesis. (39) follows.

In some cases where d, admits a threshold, d; is only

piecewise differentiable. In these cases. the trajectory de-

rivative (d/dt)V can be replaced by .

D"'V(x) = lim inf- h1 [V(.~ + hx) -V(.~)] (40)

h-O+
and the Riemann integral lo'bi(~I)d;(~I) d~ in the defini-

tion of V(x) can be replaced by a Radon integral.

To apply the LaSalle invariance principle [22], [29]. [30]
to V(x). we also need to guarantee that V(x) is bounded

and continuous on admissible trajectories.

Proposition 2: If the hypotheses of Lemma 1 hold. then

V(.~) (or a simple redefinition thereof) is bounded and

continuous on admissible trajectories.
Proof: If (35) holds. then the integrals

["bi(~I)d;(~,) d~1 (41)
0

in (21) are bounded because admissible trajectories are

bounded. The remaining terms

n

r. c)kdj(x))dk(Xk) (42)

)./;-1

of (21) are bounded because the functions d) (x)) are

continuous functions of bounded variables.

If (34) holds but

lim Ib;(~)di'(~)1 < 00. (43)
~-o...

then the same argument as above is valid. If (43) does not

hold. then the integral 10" in (21) can be replaced by an

integral I{'. where Ai is a positive constant that is chosen
below. Such a choice is possible due to several facts work-

ing together. Each d k is a nonnegative and monotone

all admissible trajectories approach the largest in-

variant set M contained in the set
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where

~

d /I [ /I ]2 -V = -r. a,d;' h; -r. c,kdk. (22)

dr ;-1 k-1

c.'orollat:j,. I: If each function d, is strictly increasing.
then the set E consists of equilibrium points of (1).

Proof Because each function a, and d: is nonnegative
on admissible trajectories. each summand in (22) is non-
negative. Hence the result follows by inspection of (47) and
(22).

Let Xbe an open set in Rm, P an open set in Rk, and Z
an open set in Rn, Let S: X X P --Z be a ci map, A
point.; ERn is said to be a regular t'alue of S if rank
dS( " ,) = n whenever S( -~, p) = :. where dS denotes the

n X (m + k) Jacobian matrix of S,
Theorem 2 (Sard): Let.; be a regular value of S, Then:

is a regular value of S(., p) for almost all pEP in the
sense of Lebesque measure,

Corollary 2: Let each a" hi, and d, be in C1(o. ~). Let P
denote the matrix of parameters Ilc'kll. Then a measure zero
subset Q c P exists such that the suprathreshold equilibria
of (1) corresponding to parameters pEP \ Q are count-
able.

Proof To consider the equilibrium points of (1). we
let: = 0 and define the vector function S = (St' S~." '.S,,)

by

$,(x) = a,(X;) [ b;(.t";) -t C/kdk(Xk)

]k-l

V. DECOMPOSITION OF EQUILIBRIA INTO
SUPRA THRESHOLD AND SUBTHRESHOLD VARIABLES

Our strategy for analyzing M when the functions d, can
have thresholds is to decompose the variables '~I into
suprathreshold and subthreshold variables. and then to
show how sets of suprathreshold equilibria can be used to
characterize the (oJ-limit set of the full system (1). To say
this more precisely, we now define some concepts.

The inhibitory threshold of dj is a 'constant r;- ~ 0 such
that

d,(~) = o.

d:(~) > o.
if ~ ~ r;-

if ~ > r;-

The function x,(t) is suprathreshold at t if x,(t) > f;- and
subthreshold at t if x,(t) ~ f,-. At any time t, supra-
threshold variables receive signals only from other supra-
threshold variables.

Because only suprathreshold variables signal other
suprathreshold variables, we can first restrict attention to
all possible subsets of suprathreshold values that occur in
the (oJ-limit points !oJ(Y) of each admissible trajectory y.
Using the fact that each function d, is strictly increasing in
the suprathreshold range, we will show that the suprath-
reshold subset corresponding to each (oJ-limit point defines
an equilibrium point of the subsystem of (1) that is con-
structed by eliminating all the subthreshold variables of
that (oJ-limit point. We will show that the set of all such
subsystem suprathreshold equilibrium points is countable.
We can then show that under a weak additional hypothe-
sis. the (oJ-limit set of each trajectory is an equilibrium
point, and that the set of equilibrium points is totally
disconnected. First we make a generic statement about
almost all systems (I), and then we study particular classes
of neural networks (3) whose global pattern formation
properties can be directly verified.

VI. ALMOST ALL SUPRATHRESHOLD EQUILIBRIUM
SETS ARE COUNT ABLE

In this sectio!1, we observe that, for almost all choices of
the parameters c,~ in (1), Sard's theorem routinely implies
that the set of suprathreshold equilibrium points is count-
able [23), [25]. A generic statement can also be made by
varying functions ai, hi, and d, within the class C' by
combining the Sard theorem with Fubini'~ theorem. The
Sard theorem is stated as Theorem 2 for completeness.

(48)

(:)UI

'I

where, by the positivity of aj when x, > 0 and the Inhibt-
tory threshold condition (48), a,(x,)d,(.\",) > 0 at any
suprathreshold value of x," The corresponding n rows and
columns of dS form a diagonal sub matrix whose ith entry
is given by (50). Matrix dS therefore has rank n at all
suprathreshold vectors x.

The main condition of Sard's theorem is hereby satisfied
by this matrix S. Thus a set Q of measure zero exists such
that dS(., p) has rank n for all pEP \ Q. Now the inverse
function theorem can be used at each pEP \ Q to show
that the suprathreshold equilibrium points y of S(.\". p) = 0

are isolated. hence countable

=0 (51)b,(.1:,
"

-L c'kdk(.tk
1,;-1

(52)d;'(.t,) = O.

;=1.2...'.n. (49)
Then the points for which S = 0 are the equilibrium points
of (1).

To prove that dS(.. .) has rank n at the suprathreshold
equilibria S = 0, we prove the stronger statement that
dS(', .) has rank n at all suprathreshold vectors .~; that is.
at all.~, > rj- ~ 0.; = 1.2,.. .,n. By (49)

as~ = -a;(x;)d;(x;) :-'"~:

_c'~~- ~L- ..~

VII. ALL ",.LIMIT POINTS ARE EQUILIBRIA

Theorem 3 (Global Pattern Formation) Let all the hy-
potheses of Theorem 1 hold. Also suppose that no level sets
of the functions b, contain an open interval and that the
subsystem suprathreshold equilibrium vectors are count-
able. Then each admissible trajectory converges to an
equilibrium point.

Proof Consider the ",-limit set "'(y) of a given admis-
sible trajectory y. Since Theorem 1 holds. each component
.~, of .~ E "'( y) satisfies either

a,(.~,

or
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Then for almost all ch-oices of the parameters C,A' global
pattern formation oc'turs.

Proof The proof follows directly from Corollary 2
and Theorem 3.

The hypotheses of Theorem 3 allow us to conclude that
the set of all equilibrium points of (1) is a totally discon-
nected set. A totally disconnected set is a set whose largest
connected subset is a point.

Instead of considering the solutions of b, (~) = e I corre-
sponding to the tIJ-limit set tIJ( y) of individual trajectories.
as we did to prove Theorem 3, in this proof we consider the
set of solutions of bj(~) = e, generated by arbitrary admis-

sible trajectories.
Theorem 4 (Totally Disconnected Equilibrium Set): Sup-

pose that each bj is continuous, that no level set of b,
contains an open interval, and that the system
suprathreshold equilibrium vectors are countable. Then the
set of all equilibrium points of (1) is totally disconnected.

Proof Each choice of subsystem suprathreshold vec-
tor defines a constant value of e; in (54). For fixed ej, the
level set

In the former case, Xi is suprathreshold; in the latter case,
subthreshold.

Using this decomposition, we can show that a unique
vector of subsystem suprathreshold values exists corre-
sponding to each '-J(Y) in the following way. The set '-J(Y)
is connected. If two or more vectors of subsystem supra-
threshold values existed, an uncountable set of subsystem
suprathreshold vectors would exist in '-J( y). This basic fact
can be seen by projecting '-J(Y) onto a coordinate where the
two hypothesized vectors differ. The image of '-J (y) on this
coordinate is a connected set. This fact, together with the
definition of a supra threshold value, implies that a nontriv-
ial interval of suprathreshold values exists in this image.
The inverse image of this interval therefore contains a
nondenumerable set of subsystem suprathreshold vectors, a
conclusion that contradicts the hypothesis that the set of
subsystem suprathreshold vectors is countable. Hence no
more than one subsystem suprathreshold vector exists in
each '-J(Y).

Using this fact, we now show that the subthreshold
values of each '-J(Y) are uniquely determined. Let U(y) be
the indices of the unique subsystem suprathreshold vector
(Xi-: i E U(y» of '-J(Y). For every i e U(y), (1) can be
rewritten as

X; = a;(x;)(b;(x;) -e;] + ((I)

where the constant e; satisfies

(53)

{F.: bi(~) -ei = O} (56)

is nowhere dense, since if (56) were dense on some interval.
the continuity of bi would imply that the level set (56)
contains an open interval, which is impossible.

By hypothesis, only countably many choices of ei exist
for each j = 1,2,.",n. Since each set (56) is nowhere

dense, the set of all subthreshold equilibrium solutions of
(53) is a countable union of nowhere dense sets and is
therefore nowhere dense by the Baire category theorem. By
hypothesis. the set of all subsystem suprathreshold equi-
librium solutions of (1) is countable. The set of all x,
corresponding to the subsystem supra threshold equilibrium
solutions of (1) is therefore also countable. The union P, of
the nowhere dense subthreshold set and the countable
suprathreshold set is totally disconnected. The product set
Xi"-l Pi is also totally disconnected. Since the set of all
equilibria of (1) is contained in Xi"-lP" it is totally discon-
nected.

~
kEU(y)

c;kdk(x:) (54)e =
I

and

lim f(t) = 0
t-~ (55)

VIII. NEURAL NETWORKS WITH FINITELY MANY

SUPRATHRESHOLD EQUILIBRIUM POINTS

To remove the "almost all" from results such as Corollary
3. we consider various special cases that are of physical
interest, notably the shunting competitive networks (27)
with polynomjal or sigmoid feedback signal functions. We
write the networks (27) using the change of variables

Xi = Yi + C; (28)

to make the results comparable to previous results about
(1). Then (27) can be written as

X, = S;(x), i = l,2,"',n (57)

such that

S,(x) = a, +(.8; -Ix,)f;(x;

because a, is bounded on admissible trajectories. To com-
plete the proof, we use the fact that the level sets of bi do
not contain an open interval to conclude that each Xi'
i e U(y), has a limit. Since also each Xi' i E U(y), has a
limit, it will follow that each "'( 'Y) is an equilibrium point.

The proof shows that the ",-limit set of the one-dimen-
sional equation (53) is a point. Suppose not. Since (53)
defines a one-dimensional system, the ",-limit set, being
connected, is then a nontrivial closed interval ~. By hy-
pothesis, the function bi -e, in (53) cannot. vanish identi-
cally on any nontrivial subinterval of ~. Since function
hi -ei is continuous, a sUbinterval ~ c V; and an ( > 0
exist such that either bi«() -ej ~ ( if ~ E ~ or b,(~) -e,
~ -( if ~ E ~. In either case, Xj will be forced off
interval ~ at all sufficiently large times by (55) and the
fact that a > 0 except when X = O. Hence no nontrivialI .
interval ~ can be contained in the ",-limit set of (53). This
",-limit set is thus a point, and the proof is complete.

Corollary 3 (Almost Absolute Stability): Consider the class
of systems (1) such that

1) hypotheses a)-f) of Theorem 1 hold;
2) each function ai, b., and dj is in CI(o, 00);
3) none of the level sets of bi contains an open interval.
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where

(59)

(60)

(61)

(62)

at = a,c, +(bj + c,)/t,

/3, = ht + C"

'Y, = at + Ij + ii'

I:(Xj) = /;(Xj -c,),

and

(66)

and

(67)

where Mj and N; are positive integers. i = 1.2..".n. The

asymptote of G, is set equal to one without loss Io)f general-
ity because G; multiplies a coefficient c" in all its ap-

G;(x;) = g,(x; -c;). (63)

One natural approach to proving that only finitely many
suprathreshold equilibrium points exist is to apply a basic
theorem from the theory of several complex variables [35].
The following results illustrate rather than exhaust the
applications of this theorem to our systems.

The theorem in question concerns analytic subvarieties
of a connected open set !2 of C n = {n-tuplets of complex

variables}. A set V c !2 is an analytic subvariety of !2 if
every point p E !2 has a neighborhood N( p) such that

r
vn N(p) = n Z(h;) (64)

;-1
where Z(h,) is the set of zeros of the function h; holomor-
phic in N( p). Our applications derive from the following
theoretn.

Theorem 5: Every compact analytic subvariety of a con-
nected open set !2 is a finite set of points.

A general strategy for applying Theorem 5 to neural
networks can be stated as five steps.

1) Choose the signal function 1; and G; in (62) and (63),
respectively, to be real analytic on their !;uprathreshold
intervals.

2) Extend the definitions of 1; and G; t:o make them
complex analytic inside a sufficiently large open disk. (It
does not matter that the analytic extension of the signal
function to the subthreshold interval no longer agrees with
the original definition of the function.)

3) Extend S; in (58) to be an analytic function ~;(z) in
an open connected set !2; c cn.

4) Show that the solutions to the system of equations

cp;(z) =0, i=I,2,...,n (65)

are contained in a bounded open set P whose closure is
<;ontained in !2 = n 7-1!2j. Since the set of zeros is closed,
the set of zeros is a compact analytic subvariety of !2, hence
finite.

5) Set all imaginary parts of these zeros equal to zero to
prove that finitely many suprathreshold equilibria exist.

The method is illustrated by the followil1g three theo-
rems.

Theorem 6 (Polynomial Signals): Let each function 1;(~)
and G,(~) be a polynomial in the suprathrl~shold domain
~ ~ f,-, and suppose that deg 1; > deg Gj whenever C;j > 0,
i, j = 1.2... ',n. Then only finitely many suprathreshold
equilibrium points of (1) exist.

Proof: Analytically continue the functions S,{.~). '~i ~
f,-. i = 1.2."',n to be polynomial functions 5;{z) of n
complex variables z. The zeros of system 5, (z) = O. i =
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rk-pearances in (55), and the symmetry C'j = Cji is not needed

in the following estimate.
Theorem 7 (Sigmoid Signals): Suppose that the parame-

ters in (66) and (67) are chosen to satisfy the following
three conditions

1) ( > 0 and c5 > 1 exist such that

max (hi + C; -ri-. qi) < ( < c5( < rj,

~(z) = -Z;V,+l[Yi + p, + Rj(z)]

+z;V'[a, -y,r,- + p,(.B, -r,-) -r,-R,(:)]

-z,q;V,[y, + r,-R,(:)]

+qiV'[aj -y,r,- -r,-Rj(z)]. (73)

The analytic continuation Gk(Zk) of Gk(wk + r:-) can be
rewritten as(68)1"- 1 2 .., n-..,.

12) The constants Gk(Zk) = M -M. \'~I
r'z .+ 1k k

Because Izkl ~ (, (68) implies

IGk(Zk)1 ~ (8M. -1)-1. (75)

Since (75) is true for every Zk when Z E ~. it follows for
every i = 1,2,.. .,n that

IR;(z)1 ~ s; ifz E~. (76)

By (73) and (75), if Z E ~

100(z)1 ~ L;(lz;l) ,.",

(69)

(70)

(71)

/I

Sj= LCjk(8Mk-l)-1
k-l

satisfy the inequalities

2s;<p;, i=l,2,...,n.

3) The inequality

(p; -2s;)q; > 21a; -y;f;-1

+ p;I.B; -f;-1 + 2s;f;-
(77)

where

Lj(~) = ~N,+l( Yj + pj -S;)

-~N'[la; -Yjrj-1 + P;I.Bi -r;-1 + rj-Sj]

-~qf'[Yj + Sj] -qf'[laj -Yjrj-\ + rj-1Sj]

holds, i = 1,2,...,n.

Then at most finitely many supra threshold equilibrium
points of (57) exist.

Remark: Inequality (68) says that the exc:itatory signal
functions change faster-than-linearly at smaller activities
than the inhibitory signal functions, and that the turning
points qj and rj are uniformly separated across signal
functions. Inequality (70) says that the excitatory feedback
elicited by large activities dominates the total inhibitory
feedback elicited by these activities. These two inequalities
are thus analogous to the conditions on polYJ1lomial degrees
in the previous theorem. The left-hand side of inequality
(71) refines these constraints by requiring the faster-than-
linear range of the excitatory signal function to occur at
large activities if the strength of feedback inhibition is close
to the strength of feedback excitation at these activities.

Proof' To simplify notation, let Wj = x; -rj- and de-
fine S;*(w) = S;(x). Now multiply Sj*(w) by the de-
nominator of r; to find

(78)
To show that L,(lz,D > 0 if ( > Iz;1 ~ qj, we verify that
Lj(qj) > 0 and (dL;/d~)(F.) ~ 0 for ( > F. ~ qj using (71).
This fact along with (76) completes the proof.

Inequality (68) requires that qj < r;. Analogous results
hold even if qj ~ rj when both qj and rj are chosen suffi-
ciently large. We state without proof such a theorem.

Theorem 8 (Sigmoid Signals): Suppose that ( > 0 and
.5 > 1 exist such that

max (b + c -'Y, v) < ( < .5( < min(qk' rk) (79)
, I , , I,

J."-

where
la - Yr- 1 + /JI + r- ( S + I )v -I I I P, I I I I

j- Y;-(S;+I;)(72)~(w) = (q~' + z;V')Sj*{W).

Sj is defined as in (69),

1, = (ISH, -1)-1

and

Yj>Sj+tj' (82)

i = 1,2,' .'. n. Then there are at most finitely many
suprathreshold equilibrium points of (57).

Because not all parameter choices of the sigmoid signal
functions (66) and (67) have been shown to imply global
pattern formation, it is inappropriate to summarize Theo.
rems 7 and 8 as absolute stability results. Instead we
summarize the constraints which have been shown to yield

Function U;(w) = 0 at some wE R: iff .s:;(x) = 0 at a
supra threshold value of x, i = 1,2,.' ',n. 1Jse inequality
(68) to analytically continue U;(w) to a function li;(z)
analytic on the polydisk ~ = {z: Iz;1 < (}. (In fact, we
could define li;(z) analytically for Iz;1 < rj)' 'Inequality (68)
guarantees that all real suprathreshold zeros are included
in ~~. We will show the subvariety W of zeros li; (z) = 0,
i = 1,2," ",n, is contained in the polydisk f.!' = {z: Iz,l <
q,}. By (68), qj < (, i = 1,2,.. ',n. Hence thc~ subvariety W

is compact, and the theorem will follow.
To complete the proof, we write li;(z) in the following

form using the notation R;(z) for the sum of inhibitory
feedback terms that analytically continue EZ-1C,kGk(Wk +
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librium points [14], [18], [21], will ultimately handle all of
the physically important cases.

global pattern formation when these sigmoid signal func-

tions are used.
Corollary 5 (Sigmoid (;//}bal Pattern Formation): Let sys-

tem (57) possess a nonnl.'gative symmetric interaction ma-
trix Ilc'jll. positive dccay rates Aj' and suprat~reshold
sigmoid signal functions (66) and (67) that satisfy the
constraints of Theorem 7 or 8 and the inequalities Mj > 1
in (67), i= 1,2, n. Then global pattern formation oc-

curs.
Proof." The new constraint Mj> 1 implies that dj is

differentiable even when x; = rj-, as is required by Theo-
rem 1. The constraint of Theorem 3 that h; possess no
nontrivial level intervals can be violated in (30) only if

A;Cj+(Bj+C,)Ij=O. (83)
Since Aj > 0, this case can only occur if C; =, 0 = I" which
implies that xj remains between 0 and Hj' Suppose rj- = O.

Then all Xj > 0 are suprathreshold values, and x can attainI

only one subthreshold equilibrium value, namely zero.
Suppose rj- > O. If x;(T) ~ r;- for some t = T, then
x;(t) ~ rj- for all t = T. This is true because: the excitatory

threshold of r; in (66) equals the inhibitory threshold r- of
Gj in (67), no input Ij can excite x; due to (83), and all
other Ok' k ,;. i, can only inhibit x,, Thus f,or t ~ T, Xj ~
-Ajxj' so that xj approaches the uniquf~ subthreshold
value zero. In all cases, only one subthreshold equilibrium
value of each Xj can exist, which completes the proof.
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IX. CONCLUDING REMARKS

The present article notes that systems (1) that are com-
petitive and possess symmetric interactions admit a global
Liapunov function. Given this observation, it remains to
characterize the set E and its relationship to the equi-
librium points of (1). Despite useful partial results, this
approach has not yet handled all of the physically interest-
ing neural networks wherein absolute stability may be
conjectured to occur. For example, extensive numerical
analysis of neural networks of the form

X, = -Ajx, +(Bj -C,X,)
[ /j + t Dikfk('~k)

]k-l

-(Eixi + 1;)[1; + t Gikgk{Xk) ] (84)
k-l

where both matrices D = IIDikl1 and G = IIG'kl1 are symmet-
ric suggests that an absolute stability result should exist for
these networks, which generalize (3) [3], [5], [31]. In these
networks, cooperative interactions EZ-1Dikfk(xk) as well
as competitive interactions EZ-1Gikgk(Xk) are permissible.
A global Liapunov function whose equilibrium set can be

effectively analyzed has not yet been discovered for the
networks (84).

It remains an open question whether the Liapunov func-
tion approach, which requires a study of equilibrium points.
or an alternative global approach, such as the Liapunov
functional approach which sidesteps a direct study of equi-



826 IEEE TRANSACTIONS ON SYSTEMS. MAN. AND CYBERNETICS. YOlo SMC-13. NO 5. ~C:PTE~{BER/OCTOBER 19113

(33] R. M. May and W. J. Leonard. "Nonlinear aspects or competition
between three species:' SIA M J. Appl. ""fach., vol. 29, pp. 243-253.
1975.

[34] F. Ratlirr. ,\,(ach Bands: Quuncicacit'e Scudies of Neural Nec..'orks III
che Recina. San Francisco. CA: Holden-Day, 1965.

(35J W Rudin. Funccion Theo,!' on che UncI Ball of C". New York:
Springer-Verlag, 1980.

(36] P. Schuster, K. Sigmund. and R. Wolrf, "On ",.limits Cor compe-
tition between three species:' SIAM J. Appl. I~fach.. vol. 37. pp
49-54, 1979.

(37] Y. Takeuchi, N. Adachi. and H. Tokumaru, "The stability of
generalized Volterra equations," J. .\tach. Anal. Appl.. vol. 62. pp.
453-473, 1978.

mathematics," J, Theoret, Bioi., vol. 36, pp. 9-22, 1972.
[28) S. W. Kuffler and J. G. Nicholls, From Neuron to Brain. Sunden-

land, MA: Sinauer Assoc., 1976.
[29) J. P. LaSalle," An invariance principle in the theory of stability:' in

Dtfferenttal Equations and D)'namical S).stems, J. K. Hale and J. P.
LaSalle. Eds. New York: Academic, 1967.

[30] -, "Stability theory for ordinary differential equations," J,
Differential Equations, vol. 4. pp. 57-65, 1968.

[31) D. Levine and S. Grossberg. "On visual illusions in neural net-
works: Line neutralization, tilt aftereffect, and ang;le expansion," J.
Theoret. Bioi., vol. 61, pp. 477-504, 1976.

[32J R. H. MacArthur, "Species packing and competitive equilibrium for
many species," Theoret. Population Bioi., vol. I, pp. I-II, 1970.

0018-9472/83/0900-0826$01.00 @1983 IEEE


