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A real-time visual processing theory is used to unify the explanation of monocular and binocular
brightness data. This theory describes adaptive processes which overcome limitations of the visual
uptake process to synthesize informative visual representations of the external world. The bright-
ness data include versions of the Craik-O'Brien-Cornsweet effect and its exceptions, Bergstrom's
demonstrations comparing the brightnesses of smoothly modulated and step-like luminance pro-
files, Hamada's demonstrations of nonclassical differences between the perception ofltlminance
decrements and increments, Fechner's paradox, binocular brightness averaging, binocular bright-
ness summation, binocular rivalry, and fading of stabilized images and ganzfelds. Familiar con-
cepts such as spatial frequency analysis, Mach bands, and edge contrast are relevant but insuffi-
cient to explain the totality of these data. Two parallel contour-sensitive processes interact to
generate the theory's brightness, color, and form explanations. A boundary-contour process is
sensitive to the orientation and amount of contrast but not to the direction of contrast in scenic
edges. It generates contours that form the boundaries of monocular perceptual domains. The spatial
patterning of these contours is sensitive to the global configuration of scenic elements. A feature-
contour process is insensitive to the orientation of contrast, but is sensitive to both the amount
of contrast and to the direction of contrast in scenic edges. It triggers a diffusive filling-in reac-
tion of featural quality within perceptual domains whose boundaries are dynamically defined
by boundary contours. The boundary-contour system is hypothesized to include the hypercolumns
in visual striate cortex. The feature-contour system is hypothesized to include the blobs in visual
striate cortex. These preprocessed monocular activity patterns enter consciousness in the theory
via a process of resonant binocular matching that is capable of selectively lifting whole monocu-
lar patterns into a binocular representation of form-and-color-in-depth. This binocular process
is nypothe;:;ized to OCC';," in area V4 of the visual prestriate cortex.

(1) Paradoxical Percepts as Probes of
Adaptive Processes

This article describes quantitative simulations of
monocular and binocular brightness data to illustrate and
support a real-time perceptual processing theory. This the-
ory introduces new concepts and mechanisms concern-
ing how human observers achieve informative perceptual
representations of the external world that overcome limi-
tations of the sensory uptake process, notably of how dis-
tributed patterns of locally ambiguous visual features can
be used to generate unambiguous global percepts.

For example, light passes through retinal veins before
it reaches retinal photoreceptors. Human observers do not
perceive their retinal veins due to the action of mecha-
nisms that attenuate the perception of images that are stabi-
lized with respect to the retina. Mechanisms capable of

generating this adaptive property of visual percepts can
also generate paradoxical percepts, as during the percep-
tion of stabilized images or ganzfelds (Pritchard, 1961;
Pritchard, Heron, & Hebb, 1960; Riggs, Ratliff, J. C.
Cornsweet, & T. N. Cornsweet, 1953; Yarbus, 1967).
Once such paradoxical percepts are traced to an adaptive
perceptual process, they can be used as probes to discover
the rules governing this process. This type of approach
has been used throughout the research program on per-
ception (Carpenter & Grossberg, 1981; Cohen & Gross-
berg, 1984; Grossberg, 1980, 1982a, 1983a, 1983b;
Grossberg & Mingolla, 1985, in press) of which this work
forms a part.

Suppressing the perception of stabilized veins is insuffi-
cient to generate an adequate percept. The images that
reach the retina can be occluded and segmented by the
veins in several places. Somehow, broken retinal contours
need to be completed, and occluded retinal color and
brightness signals need to be filled in. Holes in the ret-
ina, such as the blind spot or certain scotomas, are also
not visually perceived (Gerrits, de Haan, & Vendrick,
1966; Gerrits & Timmermann, 1969; Gerrits & Vendrick,
1970) due to some sort of filling-in process. These com-
pleted boundaries and filled-in colors are illusory percepts,
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albeit illusory percepts with an important adaptive value.
The large literature on illusory figures and filling in can
thus be used as probes of this adaptive process (Arend,
Buehler, & Lockhead, 1971; Day, 1983; Gellatly, 1980;
Kanizsa, 1974; Kennedy, 1978, 1979, 1981; Parks, 1980;
Parks & Marks, 1983; Petry, Harbeck, Conway, &
Levey, 1983; Redies & Spillmann, 1981; van Tuijl, 1975;
van Tuijl & deWeert, 1979; Yarbus, 1967). The bright-
ness simulations that we report herein illustrate our the-
ory's proposal for how real and illusory boundaries are
completed and features are filled in.

Retinal veins and the blind spot are not the only blem-
ishes of the retinal image. The luminances that reach the
retina confound inhomogeneous lighting conditions with
invariant object reflectances. Workers since the time of
Helmholtz (Helmholt,1962) have realized that the brain
somehow "discounts the illuminant" to generate color
and brightness percepts that are more accurate than the
retinal data. Land (1977) has shown, for example, that
the perceived colors within a picture constructed from
overlapping colored patches are determined by the rela-
tive contrasts at the edges between the patches. The lu-
minances within the patches are somehow discounted.
These data also point to the existence of a filling-in
process. Were it not possible to fill in colors to replace
the discounted illuminants, we would perceive a world
of boundaries rather than one of extended forms.

Since edges are used to generate filled-in percepts, an
adequate perceptual theory must define edges in a way
that can accomplish tllis goal. We suggest that the edge
computations whereby boundaries are completed are fun-
damentally different-in particular, they obey different
rules-from the edge computations leading to color and
brightness signals. We claim that both types of edges are
computed in parallel before being recombined to gener-
ate filled-in percepts. Our theory hereby suggests that the
fundamental question "What is an edge, perceptually
speaking?" has not adequately been answered by previ-
ous theories. One consequence of our answer is a physi-
cal explanation and generalizatIon of the retinex theory
(Grossberg, 1985), which Land (1977) has developed
to explain his experiments.

The present article further supports this conception of
how edges are computed by qualitatively explaining, and
quantitatively simulating on the computer, such paradox-
ical brightness data as versions of the Craik-O'Brien-
Comsweet effect (Arend et al., 1971; Comsweet, 1970;
O'Brien, 1958) and its exceptions (~oren, 1983; Heg-
gelund & Krekling, 1976; van den Brink & Keemink,
1976; Todorovic, 1983), the Bergstrom demonstrations
comparing the brightnesses of smoothly modulated and
step-like luminance profiles (Bergstrom, 1966, 1967a,
1967b), and the demonstrations of Hamada (1980) show-
ing nonclassical differences between the perception of lu-
minance decrements and increments. These percepts can
all be seen with one eye. Our theory links these
phenomena to the visual mechanisms that are capable of

preventing perception of retinal veins and the blind spot,
and that fill in over discounted illuminants, which also
operate when only one eye is open.

Due to the action of binocular visual mechanisms that
generate a self-consistent percept of depthful forms, some
v~sual images that can be monocularly perceived may not
be perceived during binocular viewing conditions. Binocu-
lar rivalry provides a classical example of this fact (Blake
& Fox, 1974; Cogan, 1982; Kaufman, 1974; Kulikowski,
1978). To support the theory's conception of how depth-
ful form percepts are generated (Cohen & Grossberg,
1984; Grossberg, 1983a, 1983b), we suggest explanations
and provide simulations of data concerning inherently
binocular brightness interactions. These data include
results on Fechner's paradox, binocular brightness sum-
mation, binocular brightness averaging, and binocular
rivalry (Blake, Sloane, & Fox, 1981; Cogan, 1982;
Cogan, Silverman, & Sekuler, 1982; Curtis & Rule, 1980;
Legge & Rubin, 1981; Levelt, 1965).

These simulations do not, of course, begin to exhaust
the richness of the perceptual literature. They are meant
to be illustrative, rather than exhaustive, of a perceptual
theory that is still undergoing development. On the other
hand, this incomplete theory already reveals the perhaps
even more serious incompleteness of rival theories by sug-
gesting concepts and explaining data that are outside the
range of these rival theories. The article also illustrates
the theory's burgeoning capacity to integrate the expla-
nation of perceptual data by providing simulations of data
about Fechner's paradox, binocular brightness averaging,
binocular brightness summation, and binocular rivalry us-
ing the same model parameters that were established to
simulate disparity matching, filling-in, and figure-ground
synthesis (Cohen & Grossberg, 1984).

Although our theory was derived from perceptual data
and concepts, after it reached a certain state in its develop-
ment, striking formal similarities with recent neurophysio-
logical data could not fail to be noticed. Some of these
relationships are briefly summarized in Table 1 below.
Although the perceptual theory can be understood without
considering its neurophysiological interpretation, if one
is willing to pursue this interpretation, then the percep-
tual theory implies a number of neurophysiological and
anatomical predictions. Such predictions enable yet
another data base to be used for the further development
and possible disconfirmation of the theory.

A search through the neurophysiological literature has
revealed that some of these predictions were already sup-
ported by known neural data, albeit data that took on new
meaning in the light of the perceptual theory. Not all of
the predictions were known, however. In fact, two of its
predictions about the process of boundary completion have
recently received experimental support from recordings
by von der Heydt, Peterhans, and Baumgartner (1984)
on cells in area 18 of the monkey visual cortex. Neu-
rophysiological interpretations and predictions of the the-
ory are described. in Grossberg and Mingolla (in press).

"
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Due to the existence of this neural interpretation, we will
take the liberty of calling the formal nodes in our network
"cells" throughout the article. The next sections sum-
marize the concepts that we use to explain brightness data.

(a)

(b)

(2) The Boundary-Contour System and the
Feature-Contour System

The theory asserts that two distinct types of edge, or
contour, computations are carried out within two parallel
systems. We call these systems the boundary-contour sys-
tem and the feature-contour system. Boundary-contour
signals are used to synthesize the boundaries, whether
"real"or "illusory," that the perceptual process gener-
ates. Feature-contour signals initiate the filling-in
processes whereby brightnesses and colors spread until
they either hit their first boundary contour or are attenu-
ated due to their spatial spread. Boundary contours are
not, in themselves, visible. They gain visibility by re-
stricting the filling-in that is triggered by feature-contour

signals.
These two systems obey different rules. The main rules

can be summarized as follows.

+(d)

Figure 1. (a) Boundary-contour inputs are sensitive to the orien-
tation and amount of contrast at a scenic edge, but not to its direc-
tion of contrast. (b) Like orientations competl~ at nearby percep-
tual locations. (c) Differ~nt orientations compete at each perceptual
location. (d) Once activated, aligned orientations can cooperate
across a larger visual domain to form real or illusory contours.

of competition between perpendicular orientations at the
same position.

(c) Long-range oriented cooperatiolll and boundary
completion. The outputs from the last competitive stage
input to a spatially long-range cooperative process that
is called the "boundary-completion" process. Outputs due
to like-oriented masks that are approximately aligned
across perceptual space can cooperate via this process to
synthesize an intervening boundary. The boundary-
completion process is capable of synthesizing global visual
boundaries from local scenic contours (Grossberg & Min-
golla, 1985, in press). Both "real" and "illusory" bound-
aries are assumed to be generated by this boundary-

completion process.
Two simple demonstrations of a boundary-completion

process with properties a-c can be made as follows. In
Figure 2a, four Pac-man figures are arranged at the ver-
tices of an imaginary rectangle. It is a familiar fact that
an illusory Kanizsa (1974) square can be seen when all
four Pac-man figures are black against a white back-
ground. The same is true when two Pac-man figures are
black, the other two are white, and the background is gray,
as in Figure 2b. The black Pac-man figures form dark-
light edges with respect to the gray background. The white
Pac-man figures form light-dark edges with the gray back-
ground. The visibility of illusory edges around the illusory

(3) Boundary Contours and Boundary

Completion
The process whereby boundary contours are built up

is initiated by the activation of oriented masks, or elon-
gated receptive fields, at each position of perceptual space
(Rubel & Wiesel, 1977). Our perceptual analysis leads
to the following hypotheses about how these masks acti-
vate their target cells, and about how these cells interact
to generate boundary contours.

(a) Orientation and contrast. The output signals from
the oriented masks are sensitive to the orientation and to
the amount of contrast, but not to the direction of con-
trast, at an edge of a visual scene. Thus, a vertical bound-
ary contour can be activated by either a close-to-vertica1
dark-light edge or a close-to-verticallight-dark edge at
a fixed scenic position. The process whereby two like-
oriented masks that are sensitive to direction of contrast
at the same perceptual location give rise to an output sig-
nal that is not sensitive to direction of contrast is desig-
nated by a plus sign in Figure 1a.

(b) Short-range competition. (i) The cells that react
to output signals due to like-oriented masks compete be-
tween nearby perceptual locations (Figure 1b). Thus, a
mask of fixed orientation excites the like-oriented cells
at its location and inhibits the like-oriented cells at nearby
locations. In other words, an on-center off-surround or-
ganization of like-oriented cell interactions exists around
each perceptual location. (ii) The outputs from this com-
petitive stage input to the next competitive stage. At this
stage, cells compete that represent perpendicular orien-
tations at the same perceptual location (Figure 1c). This
competition defines a push-pull opponent process. If a
given orientation.is inhibited, then its perpendicular orien-

tation is disinhibited.
In all, a stage of competition between like orientations

at different, but nearby, positions is followed by a stage
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gle, and color end 2 a darker shade tllan the uniform gray
of the other rectangle. Then, as ont~ moves from end 1
to end 2, an intermediate gray region is passed whose lu-
minance approximately equals that of the uniform rectan-
gle. At end 1, a light-dark edge exists from the nonuni-
form rectangle to the uniform rectangle. At end 2, a
dark-light edge exists from the nonuniform rectangle to
the uniform rectangle. Despite this reversal in the direc-
tion of contrast from end 1 to end 2, an observer can see
an illusory edge that joins the two edges of opposite con-
trast and separates the intermediate rectangle region of
equal luminance.

This boundary completion process, which seems so
paradoxical when its effects are seen in Kanizsa squares,
is also hypothesized to complete boundaries across the
blind spot, across the faded images of stabilized retinal
veins, and between all perceptual domains that are sepa-
rated by sharp brightness or color differences.

(d) Binocular matching. A monocular boundary con-
tour can be generated when a single eye views a scene.
When two eyes view a scene, a binocular interaction can
occur between outputs from oriented masks that respond
to the same retinal positions of the tlWO eyes. This inter-
action leads to binocular competition between perpendic-
ular orientations at each position. This competition takes
place at, or before, the competitive stage bii.

(b)
Figure 2. (a) An illusory Kanizsa square is induced by four black

Pac-man figures. (b) An illusory square is induced by two black and
two white Pac-man figures on a gray background. Dlusory contours
can thus join edges with opposite directions of contrast (The effect
may be weakened by the photographic reproduction process.)

square shows that a process exists that is capable of com-
pleting contours between edges with opposite directions
of contrast. This contour-completion process is thus sen-
sitive to amount of contrast but not to direction of contrast.

Another simple demonstration of these contour-
completing properties can be constructed as follows. Di~
vide a square into two equal rectangles along an imagi-
nary boundary. Color one rectangle a uniform shade of
gray. Color the other rectangle in shades of gray that
progress from light to dark as one moves from end 1 of
the rectangle to end 2 of the rectangle. Color end 1 a
lighter shade than the uniform gray of the other rectan-

(4) Feature Contours and
Diffusive Filling-In

The rules of contrast obeyed by the feature-contour
process are different from those obeyed by the boundary-
contour process.

(a) Contrast. The feature-contour process is insensi-
tive to the orientation of contrast in a scenic edge, but
it is sensitive to both the direction of contrast and the
amount of contrast, unlike the bounwLry-contour process.
For example, to compute the relative brightness across
a scenic boundary, it is obviously imI>ortant to keep track
of which side of the scenic boundary has a larger reflec-
tance. Sensitivity to direction of contrast is also needed
to determine which side of a red-green scenic boundary
is red and which is green. Due to its sensitivity to the
amount of contrast, feature-contour signals" discount the
illuminant."

In the simulations in this article, only one type of
feature-contour signal is considered, namely, achromatic
or light-dark signals. In the simulations of chromatic per-
cepts, three parallel channels of double-opponent feature-.
contour signals are used: light-dark, ]~ed-green, and blue-
yellow. The simulations in this articll~ consider only how
input patterns are processed by a single network channel
whose on-center off-surround spatial filter plays the role
of a single spatial frequency channel (Grossberg, 1983b).
We often call such a network a "spatial scale" for short.
From our analysis of the dynamics of individual spatial
scales, one can readily infer how multiple spatial scales,

.acting in parallel, transform the same input patterns.
The rules of spatial interaction that. govern the feature-.
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a boundary-contour input also acts as a feature-contour
input to its target syncytial cells.

Such a diffusive filling-in reaction is hypothesized to
instantiate featural filling-in over the blind spot, over the
faded images of stabilized retinal veins, and over the il-
luminants that are discounted by feature-contour prepro-
cessing.

Three distinguishable types of spatial interaction are im-
plied by this description of the feature-contour system:
(i) Spatial frequency preprocessing: Feature-contour sig-
nals arise as the outputs of several distinct on-center off-
surround networks with different receptive field sizes, or
spatial scales. (ii) Diffusive filling-in: The feature-contour
signals within each spatial scale then cause activity to
spread across scale's cell syncytium. This ftIling-in
process has its own diffusive bandwidth. (iii) Figural
boundaries: The boundary-contour signals define the
limits of featural ftIling-in. Boundary contours are sensi-
tive to the configuration of all edges in a scene, rather
than to any single receptive field size. The interplay of
these three types of spatial interaction will be essential
in our explanations of brightness data.

contour process are also different from those that govern
the boundary-contour process.

(b) Diffusive filling-in. Boundary contours activate a
boundary-completion process that synthesizes the bound-
aries that define monocular perceptual domains. Feature
contours activate a diffusive filling-in process that spreads
featural qualities, such as brightness or color, across these
perceptual domains. Figure 3 depicts the main properties
of this filling-in process.

It is assumed that featural filling-in occurs within a syn-
cytium of cell compartments. By a syncytium of cells,
we mean a regular array of cells in such an intimate rela-
tionship to one another that contiguous cells can easily
pass signals between each other's compartment mem-
branes. In the present instance, a feature-contour input
signal to a cell of the syncytium activates that cell. Due
to the syncytial coupling of this cell with its neighbors,
the activity can rapidly spread to neighboring cells, then
to neighbors of the neighbors, and so on. Since the spread-
ing occurs via a diffusion of activity (Appendix A), it
tends to average the activity that was triggered by the
feature-contour input signal across the cells that receive
this spreading activity. This averaging of activity spreads
across the syncytium with a space constant that depends
upon the electrical properties of both the cell interiors and
their membranes. The electrical properties of the cell
membranes can be altered by boundary-contour signals
in the following way.

A boundary-contour signal is assumed to decrease the
diffusion constant of its target cell membranes within the
cell syncytium. It does so by acting as an inhibitory gating
signal that causes an increase in cell membrane resistance
(Appendix A). At the same time that a boundary-contour
signal creates a barrier to the ruling-in process at its tar-
get cells, it also acts to inhibit the activity of these cells.
Thus, due to the physical process whereby a boundary
contour limits featural spreading across the syncytium,

(5) Macrocircuit of Processing Stages
Figure 4 describes a macrocircuit of processing stages

into which the microstages of the boundary-contour sys-
tem and feature-contour system can be embedded. The
processes described by this macrocircuit are capable of
synthesizing global properties of depth, brightness, and
form information from monocularly and binocularly
viewed patterns (Grossberg, 1983a, 1984). Table 1 lists
the full names of the abbreviated macrocircuit stages, as
well as the neural structures that seem most likely to exe-cute analogous processes. .

Each monocular preprocessing stage MPL and MPR can
generate inputs to a boundary-contour system and a
feature-contour system. The pathway MPL -BCS carries
inputs to the left-monocular boundary-contour system.
The pathway MPL -MBCL carries inputs to the left-
monocular feature-contour system. Only after all the
micro stages of scale-specific, orientation-specific,
contrast-specific, competitive, and ccJOperative interac-
tions (Section 3) take place within the JBCS stage does this
stage give rise to boundary-contour signals BCS -MBCL
that act as barriers to the diffusive filling-in triggered by
MPL -MBCL feature-contour signals (Section 4). Thus,
the divergence of the pathways MPL -MBCL and
MPL -BCS allows the boundary-contour system and the
feature-contour system to undergo significant processing
according to different rules before their signals recom-
bine within the cell syncytia.

;

~"(6) FIRE: Resonant Lifting of Prel[Jerceptual
Data into a Form-in-Depth Percept

The activity patterns generated by feature-boundary in-
teractions at the monocular brightness and color stages
MBCL and MBCR must undergo further processing be-
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Figure 4. A macrocircuit of processing stages: Table 1 lists the
functional names of the abbreviated stages and indicates a neural
interpretation of these stages. Boundary~ontour formation is as-
sumed to occur within the BCS stage. Its output signals to the
monocular MBCL and MBCR stages define boundaries within which
feature~ontour signals from MPL or MPR can trigger the spread-
ing, or diffusion, of featural quality.

fore they can be perceived. This property is analogous
to the fact that a contoured monocular image is not al-
ways perceived. It can, for example, be suppressed by
a discordant image to the other eye during binocular
rivalry. Only activity patterns at the binocular percept (BP)

stage of Figure 4 are perceived. Signals from stage MBCL
and/or stage MBCR that are capable of activating the BP
stage are said to "lift" the preprocessed monocular pat-
terns into the perceptual domain (Cohen & Grossberg,
1984; Grossberg, 1983b). We use the word "lift" instead
of a word like "search" because the process occurs
directly via a single parallel processing step, rather than
by some type. of serial algorithm. This lifting process
works as follows.

Monocular arrays of cells in MBCL and MBCR send
topographically organized pathways to BP and receive
topographically organized pathways from BP. A monocu-
lar activity pattern across MBCL can elicit output signals
in the MBCL -BP pathway only from positions that are
near contours, or edges, of the MBCL activity pattern
(Figure 5). Contours ofa MBCL pattern must not be con-
fused with edges of an external scene. They are due to
boundary-contour signals in the BCS.- MBCL pathway,
which themselves are the result of a great deal of
preprocessing. Thus, no contour signals are initially
elicited from the MBCL stage to the BP stage at positions
within the interiors of filled-in regions. Similar remarks
hold for contour signals from the MBCR stage to the BP
stage.

Pairs of contour signals from MBCL and MBCR that
correspond to similar perceptual locations are binocularly
matched at the BP stage. If both contour signals overlap
sufficiently, then they can form a fused binocular con-
tour with the BP stage. If their positions mismatch by a
larger amount, then both contours can mutually inhibit
each other, or the stronger contour can suppress the
weaker contour. If their positions are even more disparate,
then a pair, or "double image," of contours can be acti-
vated at the BP stage. These possibilities are due to the
fact that the contour signals from MBCL and MBCR to
BP possess an excitatory peak surrounded by a pair of
inhibitory troughs. Under conditions of monocular view-
ing, the contour signals from (say) MBCL to BP are al-
ways registered, or "self-matched," at BP because no
contours exist from MBCR that are capable of suppress-
ing them.

Contours at the BP stage that survive this binocular
matching process can send topographic contour signals
back to MBCL and MBCR along the feedback pathways
(Figure 5). Remarkably, feedback exchange of such lo-
cal contour signals can trigger a rapid filling-in reaction
across thousands of cells. This filling-in reaction is due
to the form of the contour signals that are fed back from
BP to MBCL and MBCR. These signals also possess an
excitatory peak surrounded by a pair of inhibitory troughs.
The inhibitory troughs cause local nonuniformities in the
activity pattern near the original MBCL or MBCR con-
tour. These local nonuniformities are seen by the
MBCL -BP and MBCR -BP pathways as new contigu-
ous contours, which can thus send signals to BP. In this
way, a matched contour at BP can trigger a standing wave
9f activity that can rapidly spread, or fill in, across BP

MPR

MBCR

BP

Left Monocular Preprocessing Stage
(Lateral geniculate nucleus)

Right Monocular Preprocessing Stage
(Lateral geniculate nucleus)

Boundary Contour Synthesis Stage
[Interactions initiated by the hypercolumns in striate
cortex-Area 17 (Hubel and Wiesel, 1977)]

Left Monocular Brightness and Color Stage
[Interactions initiated by the cytochrome oxydase stain-
ing blobs-Area 17 (Hendrickson, Hung, & Wu, 1981;
Horton & Hubel, 1981; Hubel & Livingstone, 1981;
Livingstone & Hubel, 1982)]

Right Monocular Brightness and Color Stage
(Interactions initiated by the cytochrome oxydase stain-
ing blobs-Area 17)

Binocular Percept Stage
[Area V4 of the prestriate cortex (Zeki, 1983a, 1983b)]
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depth, brightness, and form information. In this article,
we show that these ensembles also mimic data about Fech-
ner's paradox, binocular brightness summation, and bin-
ocular brightness averaging (Sections 13-15). The fact that
a single process exhibits all of these properties enhances
the plausibility of the rules whereby FIRE contours are
computed and matched within BP. The standing waves
in the BP stage may themselves be further transformed,
say by a local smoothing operation. This type of refine-
ment does not alter our discussion of binocular bright-
ness data; hence, it will not be further discussed.

A--A U -A Jt-c=:> ~ -

'~~J""--- 

L
Figure 5. Binocular representation of MBC patterns at the BP

stage: Each MBCL and MBCR activity pattern is filtered in such
a way that its contours generate topographically organized inputs
to the BP stage. At the BP stage, these contour signals undergo a
process of binocular matching. This matching process takes place
simultaneously across several on-i:enter off-sourround networks, each
with a different spatial interaction bandwidth. Contours capable of
matching at the BP stage send feedback signals to their respective
MBCL or MBCR patterns. Closing this feedback loop of local edge
signals initiates the rapid spreading of a standing wave that
resonantly "lifts" a binocular representation of the matched monocu-
lar patterns into the BP stage. This standing wave, or filling-in
resonant exchange (FIRE), spreads until it hits the first binocular
mismatch within its spatial scale. The ensemble of all resonant stand-
ing waves across the multiple spatial scales of the BP stage consti-
tutes the network percept. If all MBCL or MBCR contour inputs
are suppressed by binocular matching at a spatial scale of the BP
stage, then their respective monocular activity patterns cannot be
lifted into resonant activity within this BP spatial scale. The BP spatial
scales selectively resonate with some, but not all, monocular pat-
terns within the MBCL and MBCR stages.

(7) Binocular Rivalry, Stabilized Images:,
and the Ganzfeld

The following qualitative properties of the FIRE process
illustrate how binocular rivalry and the fading of ganz-
felds and stabilized images can occur within the network
of Figure 4.

Suppose that, due to binocular matching of perpendic-
ular orientations, as in Section 3d, some left-monocular
boundary contours are suppressed within the BCS stage.
Then these boundary contours cannot send boundary-
contour signals to the corresponding region of stage
MBCL. Featural activity thus quickly diffuses across the
network positions corresponding to these suppressed con-
tours (Gerrits & Vendrick, 1970). Consequ~:ntly, no con-
tour output signals can be emitted from these positions
within the MBCL stage to the BP stage. No edge matches
within the BP stage can occur at these positions, so no
effective feedback signals are return~d to the MBCL stage
at these positions to lift the corresponding monocular sub-
domain into perception. Thus, the subdomains whose
boundary contours are suppressed within the BCS stage
are not perceived. As soon as these boundary contours
win th~ BCS binocular competition, their subdomain con-
tours can again rapidly support the resonant lifting of the
subdomain activity pattern into perception at the BP stage.
During binocular rivalry, an interaction between rapidly
competing short-term memory traces and slowly habitu-
ating transmitter gates can cause oscillatory switching be-
tween left and right BCS contours (Grossberg, 1980,
1983a).

The same argument shows that a subdomain is not per-
ceived if its boundary edges are suppressed by binocular
rivalry within the BCS stage or by image stabilization,
or if they simply do not exist, as in a ganzfeld.

until it hits the first pair of mismatched contours. Such
a mismatch creates a barrier to filling-in. As a result of
this filling-in process across BP, the activities at interior
positions of filled-in regions of MBCL and MBCR can be
lifted into perception within BP. Although such an interior
cell in MBCL sends topographic signals to BP, these sig-
nals are not topographically related to MPL in a simple
way, due to syncytial filling-in within MBCL.

The properties of the resonant filling-in reaction imply
that MBCL or MBCR activity patterns that do not emit
any contour signals to BP cannot enter perception. Ac-
tivity patterns, all of whose contour signals are inhibited
within BP due to binocular mismatch, also cannot enter
perception. Only activity' patterns that lie between a con-
tour match and its nearest contour mismatch can enter per-

ception.
Such a filling-in reaction, unlike diffusive filling-in

(Section 4), is a type of nonlinear resonance phenome-
non, which we call a "filling-in resonant exchange"
(FIRE). In the full theory, multiple networks within
MBCL and MBCR that are sensitive to different spatial
frequencies and disparities are topographically matched
within multiple networks of BP. The ensemble of all such
resonant standing waves constitutes the network's percept.
Cohen and Grossberg (1984) and Grossberg (1983b)
describe how these ensembles encode global aspects of

(8) The Interplay of Controlled
and Automatic Processes

The most significant technical insights that our theory
introduces concern the manner in which local computa-
ti9ns can rapidly generate global context-sensitive
representations via hierarchically organized networks
whose individual stages undergo parallel processing. Us-
ing these insights, one can also begin to understand how
internally generated "cognitive" feature-contour signals
or "cognitive" boundary-contour signals can modify the
global representations generated within the network of
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(a)

Figure 4 (Gregory, 1966; Grossberg, 1980}. Indeed, the
network does not know which of its contour signals are
generated internally and which are generated externally.
One can also now begin to understand how state-dependent
nonspecific changes in sensitivity at the various network
stages (e.g., attentional shifts) can modify the network's
global representations. For example, the contrast sensi-
tivity of feature-contour signals can change as a function
of background input intensity or internal nonspecific
arousal (Grossberg, 1983b, Sections 24-28). The balance
between direct feature-contour signals and diffusive
filling-in signals can thus be altered by changes in input
luminance or arousal parameters, and can thereby in-
fluence how well filling-in can overcome feature-contour
contrast effects during the Craik-O'Brien illusion
(Section 9).

Once such internally or externally controlled factors are
specified, however, the network automatically generates
its global representations using the intrinsic structure of
its circuitry. In all aspects of our theoretical work, con-
trolled and automatic factors participate in an integrated
network design (Grossberg, 1982a), rather than forming
two computationally disjoint serial and parallel sub-
systems, as Schneider and Shiffrin (1977) have suggested.
Even the complementary attentional and orienting sub-
systems that have been hypothesized to regulate the sta-
bility and plasticity of long-term memory encoding
processes in response to expected and unexpected events
(Grossberg, 1975, 1982a, 1982b) both utilize parallel
mechanisms that are not well captured by the controlled
vs. automatic processing dichotomy.

(b)

Figure 6. (a) A one-dimensional slice acrt)ss a two-dimensional
Craik-Q'Brien luminance profile. The background luminances at
the left and right sides of the profile are equ:aI. (b) This luminance
profile appears like a series of two (approxilnate) steps in increas-
ing brightness.

(9) Craik-O'Brien Luminance Profiles and
Multiple Step lliusions
Arend et al. (1971) have studied the perceived brightness
of a variety of luminance profiles. The construction of
these profiles was suggested by the seminal article of
O'Brien (1958). Each of the luminance profiles was
produced by placing appropriately cut sectors of black and
white paper on a disk. The disk was rotated at a rate much
faster than that required for flicker fusion. The luminances
thereby generated were then independently calibrated~ The
subjects were asked to describe the relative brightness dis-
tribution by describing the locations and directions of all
brightness changes, and by ordering the brightnesses of
regions that appeared uniform. Ordinal, rather than ab-
solute, brightness differences were thereby determined.

One of their important results is schematized in
Figure 6. Figure 6a describes a luminance profile in
which two Craik-O'Brien luminance cusps are joined to
a uniform background luminance. The luminances to the
left and to the right of the cusps are equal, and the aver-
age luminance across the cusps equals the background lu-
minanc~. Figure 6b shows that this luminance profile is
perceived as (approximate) steps of increasing brightriess.
In particular, the perceived brightnesses of the left and
right backgrounds are significantly different, despite the
fact that their luminances are equal.

This type of result led Arend et al. (1971, p. 369) to
conclude that "the brightness information generated by
moving contours is difference information only, and the
absolute information hypothesis is rejected." In other
words, the nonuniform luminances between successive
edges are discounted, and only the lunlinance differences
of the edges determine the percept. Similar concepts were
developed by Land (1977).

This conclusion does not explain how the luminance
differences at the edges are computed, or how the edges
determine the subjective appearance of the perceptual do-
mains that exist between the edges. The incomplete na-
ture of the conclusions does not, however, limit their use-
fulness as a working hypothesis. This hypothesis must,
however, be tempered by the fact that it is not univer-
sally true. For example, the hypothesis does not explain
illusory brightness differences that can exist along illu-
sory contours that cross regions of uniform luminance
(Kanizsa, 1974; Kaufman, 1974; Kennedy, 1979). It does
not explain how Craik-O'Brien filling-in can improve or
deteriorate as the balance between background illumina-
tion and edge contrast is varied (Heggelund & Krekling,
1976; van den Brink & Keemink, 1976). It does not ex-
plain why a strong Craik-O'Brien effect is seen when a
vertical computer-generated luminance cusp on a uniform
background is enclosed by a black border that touches the
two ends of the cusp, yet vanishes completely when the
black border is removed and the cusp is viewed within
a uniform background on all sides (T(ldorovic, 1983). It
does not explain why, in response to five cusps rather than
two, subjects may see a flattened percept rather than five
rising steps (Coren, 1983). The present theory suggests
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lutions of such networks. These networks define one-
dimensional arrays of cells due to the one-dimensional
symmetry in the luminance profIles.

Figure 7a describes the input pattern to the network.
The double cusps are surrounded by a uniform luminance
level that is Guassianly smoothed at its edges to minimize
spurious edge effects. Figure 7b shows that each of the
two luminance cusps in the input pattern generates a nar-
row boundary-contour signal. Each boundary-contour sig-
nal causes a reduction in the rate of diffusion across the
membranes of its target cells at the MBCL or MBCR stage.

an explanation of all these properties. The illusory bright-
ness properties are discussed in Grossberg (1984) and
Grossberg and Mingolla (in press). The remaining issues
are clarified below.

Figure 7 describes the results of a computer simulation
of the two-step brightness illusion that is described in
Figure 6. The networks of differential equations on which
the simulation is based are summarized in Appendix A.
Figure 7 depicts equilibrium solutions to which these net-
works of differential equations rapidly converge. All of
the simulation results reported herein are equilibrium so-

TWO STEP ILLUSION

INPUT PAm:RN BOUNDARY CONTOUR PATTERN

0
1.1010

.
-1.1810

rEATURE CONTOUR PATTERN

-I8.7.10

MONOCULAR BRIGHTNESS

PAmRN

""fl~"

POS 3500

d-8.7.10-'

Figure 7. Simulation of the two-step illusion: (a) Input luminance pattern. (h) The pattern of diffusion
coefficients that is induced by boundary contours. This pattern determines the limits of featural spreading
across the cell syncytium. The two luminance cusps in (a) determine a pair of boundary contours at wbtich
the diffusion coefficients are small in (h). (c) The feature-contour pattern induced by (a). The background
luminance is attenuated, and the relative contrasts of the luminance cusps are accentuated. (d) When pat-
tern c diffuses within the syncytial domains determined by (b), a series of two approximate steps of ac-
tivity results.

,i~
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A reduced rate of diffusion prevents the lateral spread of
featural activity across the membranes of the affected
cells. A reduced diffusion rate thereby dynamically gener-
ates boundary contours within the cell syncytium (Fig-
ure 3). Successive boundary contours determine the spa-
tial domains within which featural activity can spread.

The feature-contour process attenuates the background
luminance of the input pattern and computes the relative
contrasts of the cusps. It does this by letting the individual
inputs interact within a shunting on-center off-surround
network (Grossberg, 1983b). Such a network is defined
in Appendix A, Equation 1. The resultant feature-contour
activity pattern is an input pattern to a cell syncytium.
The boundary-contour signals from the BCS stage also

FIVE Sl

INPUT PATTERN BOUNDARY CONTOUR PA TTERN.1.1-10

rEATURE CONTOUR PATli:RN MONOCULAR BRIGHTNESS

PATTERN
-I8.7.10

-I
-8.7.10

Figure 8. Simulation of the five-step illusion: The main difference between Figures 7b and 8b is that
Figure 8b contains six syncytial domains whereas Figure 7b contains only three. Each domain averages
only the part of the feature-contour pattern that it receives. The result in Figure 8d is a much flatter pat-
tern than one might expect from Figure 7do

contribute to this input pattern. Boundary-contour signals
generate feature-contour signals as well as boundary-
contour signals because they increase cell membrane
resistances in order to decrease the cells' diffusion con-
stants, as described in Section 4b. Due to this effect on
cell-membrane resistances, boundary-contour signals are
a source of inhibitory feature-contour signals. These in-
hibitory signals act on a narrower spatial scale than the
feature-contour signals from the MPL and MPR stages.
The total feature-contour input pattern received by MBCL
is the sum of the feature-contour patterns from the MPL
and BCS stages. This total feature'-contour input pattern
is depicted in Figure 7c. (The flanks of this pattern were
artificially extended to the left and to the right to avoid

rEP ILLUSION
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spurious boundary effects and to simulate the output when
the input pattern is placed on an indefinitely large field.)
When the feature-contour input pattern of Figure 7c is
allowed to diffuse within the perceptual domains defined
by the boundary-contour pattern of Figure 7b, the step-
like activity pattern of Figure 7d is the result.

Figure 8 simulates a luminance profile with five cusps,
using the same equations and parameters that generate
Figure 7. The activity pattern in Figure 8d is much flat-
ter than one might expect from the step-like pattern in
Figure 7d. Coren (1983) fo~nd a similar result with this
type of stimulus. Figure 7 suggests that the result of Coren
(1983), which he attributes to cognitive factors, may be
partially explained by feature-contour and boundary-
contour interactions due to a single spatial scale.

Such a single-scale reaction does not, however, exhaust
even the noncognitive monocular interactions that are
hypothesized to occur within our theory. The existence
of multiple spatial scales has been justified from several
points of view (Graham, 1981; Graham & Nachmias,
1971; Grossberg, 1983b; Kaufman, 1974; Kulikowski,
1978). The influence of these multiple scale reactions are
also suggested by some displays of Arend et al. (1971).
One such display is redrawn in Figure 9. The transfor-
mation of cusp in Figure 9a into step in Figure 9b and
the computation of the relative contrast of the increments
on their backgrounds are easy for the single-scale network
that simulates Figures 7 and 8. This network cannot,
however, generate the same brightness on both sides of
the increments in Figure 9b, because the boundary-
contour signals due to the increments prevent the feature-
contour signals due to the cusps from diffusing across the
increments. Thus, to a single-scale network, the left and
right distal brightnesses appear more equal than the bright-
nesses on both sides of the cusps.

This difficulty is partially overcome when multiple spa-
tial scales (viz, separate shunting on-center off-surround
networks with different intercellular interaction coeffi-
cients) process the same input pattern, and the perceived
brightness is derived from the average of all the resultant
activity patterns across their respective syncytia. In this
setting, a low-frequency spatial scale may generate a
boundary contour. in response to the cusp, but not in
response to the increments (Grossberg, 1983b). The
monocular brightness pattern generated by such a scale
is thus a single step centered at the position of the cusp.
When this step is averaged with the monocular bright-
ness pattern of a high-spatial-frequency scale, the differ-
ence between proximal and distal background brightness
estimates becomes small relative to the difference between
step and background brightnesses. This explanation of
Figure 9 may be testable by selectively adapting out the
high- or low-spatial-frequency scales.

The action of low- spatial-frequency scales can also con-
tribute to the flattening of the perceived brightnesses in-
duced by a five-cusp display. Five cusps activate a broader
network domain than do two cusps of equal size. Low-
spatial-frequency scales that do not significantly react to
two cusps may generate a blob-like reaction to five cusps.
When such a reaction is averaged in with the already flat-
tenedhigh-spatial-frequency reaction, an even flatter per-
cept can result.

(a)

(10) Smoothly Varying Luminance Contours vs.
Steps of Luminance Change

Bergstrom (1966, 1967a, 1967b) has collected data that
restrict the generality of the conclusion that sharp edges
control the perception of brightness. In those experiments,
he compared the relative brightness of several luminance
displays. Some of the displays possessed no sharp lu-
minance edges within their interiors. Other displays did
possess sharp luminance edges. Bergstrom used a vari-
ant of the rotating prism method to construct two-
dimensional luminance distributions in which the lu-
minance changed in the horizontal direction but was con-
stant in each narrow vertical strip. The horizontal changes
in two such luminance distributions are shown in
Figure 10.

Figure lOa depicts a luminance profIle wherein the lu-
minance continuously decreases from left to right. Berg-
strom constructed this profile to quantitatively test the the~
ory of Mach (1866) that attributes brightness changes to
the second derivatived2L(x)/dx2 with respect to the spa-
tial variable x of the luminance profile L(x) (see Ratliff,
1965). Mach (1866) concluded that, if two adjacent points
Xl and X3 have similar luminances [L(XI:) = L(X3)]' then
the point x3 at which the second derivative is negative
{[d2(x3)/dx2] < O}, looks brighter than the point Xl at
which the second derivative is positive {[d2L(x.)/dx2] >
O}, and that a transition between a darker and a lighter
percept occurs at the intervening inflection point X2
{[d2L(xJ/dx2] = O}. In Figure lla, as Mach would
predict, the position X3 to the right of X2 looks brighter
than the position Xl to the left of X2. Figure lla describes

(b)

~I.-:

Figure 9. The luminance profile in (a) generates the brightness
profile in (b). (Redrawn with permission from Arend, Buehler, &
Lockhead, 1971.)
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shows that position xt looks darker, not brighter, than po-
sition X3. These data cast doubt on the conclusion of Arend
et al. (1971), just as the data of Arend et al. cast doubt
on the conclusion of Mach (1866).

Our numerical simulations reprodu,::e the main effects
summarized in Figures 10 and 11. Th4~ critical feature of
these simulations is that the two lunlinance profIles in
Figure 10 generate different boundary-contour patterns
as well as different feature-contour patterns. The lu-
minance profIle of Figure 12a generates boundary con-
tours only at the exterior edges of the luminance profIle
(Figure 12b). By contrast, each interior step of luminance
of Figure 13a also generates a bouruiary contour (Fig-
ure 13b). Thus, the monocular perceptual domains that
are defined by the two luminance profiles are entirely
different. In this sense, the two profIles induce, and are
processed by, different perceptual spaces. These differ-
ent parsings of the cell syncytium not only define differ-
ent numbers of spatial domains, but also different sizes
of domains over which featural quality can spread.

In addition, the smooth vs. sharp contours in the two
luminance profiles generate different feature-contour pat-
terns (Figures 12c and 13c). The differences between the
feature-contour patterns do not, however, explain Berg-
strom's data, because the feature-contour pattern at po-
sition x.t in Figure 13c is more intense than the feature-
contour pattern at position X3 in Figure 12c. This is the
result one would expect from classic,l1 analyses of con-
trast enhancement. By contrast, when these feature-
contour patterns are diffusively averaged between their
respective boundary contours, the result of Bergstrom is
obtained. The monocular brightness pattern at position
X3 in Figure 12d is more intense than the monocular
brightness pattern at position x.tin Figure 13d. We there-
fore concur with Bergstrom in his claim that these results
are paradoxical from the viewpoint of classical notions
of brightness contrast. We know of no other brightness

X1 X2 Xa

~ .1.1.1. :1 x. x. x.

1 2 3

Figure 10. Two luminance profiles studied by Bergstrom. Posi-
tion x, of (a) looks brighter than position x~ of (b). Also position
x, looks brighter than position x, in (a), and position x~looks some-
what brighter than position x~ in (b). These data challenge the
hypothesis that sharp edges determine the level of brightness. They
also challenge the hypothesis that a sum of spatial-frequency-filtered
patterns determines the level of brightness.

the results of a magnitude-estimation procedure that was
used to determine the brightnesses of different positions
along the lwninance profile. For details of this procedure,
Bergstrom's original articles should be consulted.

Figure lla challenges the hypothesis that brightness
perception depends exclusively upon difference estimates
at sharp luminance edges. No edge exists at the inflec-
tion point X2, yet a significant brightne~s difference is
generated around position X2' Moreover the brightness
difference inverts the luminance gradient, since Xl is more
luminous than xa, yet xa looks brighter than Xl'

One might attempt to escape this problem by claiming
that, although the luminance profile in Figure lOa con-
tains no manifest edges, the luminance changes sufficiently
rapidly across space to be edge-like with respect to some
spatial scale. This hypothesis collapses when the lu-
minance profile of Figure lOb is considered. The lu-
minance profile of Figure lOb is constructed from the lu-
minance profile of Figure lOa as follows. The luminance
in each rectangle of Figure lOb is the average luminance
taken across the corresponding positions of Figure lOa.
Unlike Figure lOa, however, Figure lOb possesses
several sharp edges. If the hypothesis of Arend et al.
(1971) is taken at face value, then position x,f of
Figure lOb should look brighter than position X3 of
Figure lOa. This is because mean luminances are pre-
served between the two figures and Figure lOb has sharp
edges, whereas Figure lOa has no interior edges what-
soever.

A magnitude estimation procedure yielded the data
shown in Figure lIb. Comparison of Figures lla and lIb

Figure 11. Magnitude estimates of brightness in response to the
luminance profiles of Figure 10. (Redrawn from Bergstrom, 1966.)
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quate framework with which to explain brightness per-
cepts. For example, the low-frequency spatial components
in the two Bergstrom profIles in Figure 10 are similar,
whereas the step-like contour in Figure lOb also contains
high-spatial-frequency components. One might therefore

theory that can provide a principled explanation of both
the Arend et al. (1971) data and the Bergstrom (1966,
1967a, 1967b) data.

In particular, both types of data cause difficulties for
the Fourier theory of visual pattern perception as an ade-

INPUT PAmRN BOUNDARY CONTOUR PATTERN

FEAT1JRE CONTOUR PATTERN

09.6-10

0
-9.6010

Figure 12. Simulation of a Bergstrom (1966) brightness experiment. The input pattern (a) generates bound..
ary contoUl'S in (b) only around the luminance profile ~ a whole. By contrast, the input pattern in Figure 13a
generates houndary contours around each step in luminance (Figure 13b). The input patterns in Figur~;
12a and 13a thus detennine different syncytial domains within which featural filling-in can occur. Tht~
input patterns in Figures 12a and 13a also determine different feature-contour patterns (Figures 12c and
13c). The feature-contour pattern in Figure 13c is mor:e active at position x~than is the feature-contoUJ~
pattern of Figure 12c at the corresponding position x3. (See Figure 10 for definitions of X3 and x~.) The
feature-contour pattern of Figure 12c diffuses within the syncytial domains of Figure 12b, and the feature-
contour pattern of Figure 13c diffuses within the syncytial domains of Figure 13b. The resultant bright-
ness pattern of Figure 12d is more active at position X3 than is the brightness pattern of Figure 13d at
position x~. This feature-to-br:ightness reversal is due to the fact that the boundary-contour patterns and
feature-contour patterns induced by the two input patterns are different. The global structuring of each
featurc-contour pattern within each syncytial domain determines the ultimate brightness pattern.
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INPUT PATTtRN BOUNDARY CONTOUR PATTERN

9.4~10-'

-9.4-10'

rEA ruRE CONTOUR PATTERN

.9.6-10

0
-9.6010

Figure 13. Simulation of a Bergstrom (1966) brightness experiment. See caption of Figure 12.

that the interior and exterior activities of a Craik-O'Brien
contour are the same and differ from the activities of the
cusp boundary, whereas the interior and boundary activi-
ties of a rectangle are the same and differ from the ac-
tivities of the rectangle exterior. The problem is not
merely one of the equivalence between two patterns. It
is also one of the recognition of an individual pattern.
These difficulties of the Fourier approach do not imply
that multiple spatial scales are unimportant during visual
pattern perception. Multiple scale processing does not,
however, provide a complete explanation. Moreover, the
feature-contour processing within each scale needs to use
shunting interactions, rather than the additive interactions
of the Fourier theory, in order to extract the relative con-

expect position XJ to look brighter than position xt,
whereas the reverse is true. In a similar fashion, when
a rectangular luminance profile is Fourier analyzed us-
ing the human modulation transfer function (MTF), it
comes out looking like a Craik-O'Brien contour (Com-
sweet, 1970). A Craik-O'Brien contour also comes out
looking like a Craik-O'Brien contour. Our explanation,
by contrast, shows why both Craik-O'Brien contours and
rectangular contours look rectangular.

Some advocates of the Fourier approach have responded
to this embarrassment by saying that what the outputs of
the MTF look like is irrelevant, since only the identity
of these outputs is of interest. This argument has care-
fully selected its data. It does not deal with the problem
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trasts of the feature-contour pattern (Appendix A and B;
Grossberg, 1983b).

1

(11) The Assymmetry between Brightness
Contrast and Darkness Contrast

In the absence of a theory to explain the Arend et al.
and Bergstrom data, one might have hoped that a more
classical explanation of these effects could be discovered
by a more sophisticated analysis of the role of contrast
enhancement in brightness perception. In both paradigms,
it might at first seem that contrast enhancement around
edges or inflection points could explain both phenomena
in a unified way, if only a proper definition of contrast
enhancement could be found. The following data of
Hamada (1980) indicate, in a particularly vivid way, that
more than a proper definition of contrast enhancement is
needed to explain brightness data.

Figure 14 depicts three luminance profIles. Figure 14a,
a uniform background luminance is depicted. (Although
the background luminance is uniform, it is not, strictly
speaking, a ganzfeld, for it is viewed within a perceptual
frame.) In Figure 14b, a brighter Craik-O'Brien lu-
minance profIle is added to the backgound luminance. In
Figurel4c, a darker Craik-O'Brien luminance profile is
subtracted from the background luminance. The purity
of this paradigm derives from the facts that its two Craik-
O'Brien displays are equally long and that the background

(a)

luminance is constant in all the displays. Thus, brighten-
ing and darkening effects can be studied uncontaminated
by other variables.

The classical theory of brightness contrast predicts that
the more luminous edges in Figure 14b will look brighter
than the background in Figure 14a and that, due to bright-
ness contrast, the background around the more luminous
edges in Figure 14b will look darker than the uniform pat-
tern in Figure 14a. This is, in fact, what Hamada found.
The classical theory of brightness contrast also predicts
that the less luminous edges in Figure 14c will look darker
than the background in Figure 14a and that, due to bright-
ness contrast, the background around the less luminous
edges in Figure 14c will look brighter than the background
in Figure 14a. Hamada (1980) found, contrary to classi-
cal theory, that both the dark edges and the background
in Figure 14c look darker than the bacl~ground in Fig-
ure 14a. These data are paradoxical because they show
that brighter edges and darker edges are, in some sense,
asymmetrically processed, with brighter edges eliciting
less paradoxical brightness effects than darker edges.

Hamada (1976, 1978) developed a multistage mathe-
matical model to attempt to deal with his challenging data.
This model is remarkable for its clear recognition that a
"nonopponent" type of brightness proce:ssing is needed
in addition to a contrastive, or edge-extracting, type of
brightness processing. Hamada did not define boundary
contours or diffusive filling-in between these contours,
but his important model should nonetheless be better
known.

Figures 15 and 16 depict a simulation of the Hamada
data using our theory. As desired, classical brightness con-
trast occurs in Figure 15, whereas as nonclassical dark-
ening of both figure and ground occurs in Figure 16. The
dual action of signals from the BCS stage to the MBC
stages as boundary-contour signals and as inhibitory
feature-contour signals contributes to this result in our
simulations.

All of the results described up to now consider how ac-
tivity patterns are generated within the MBCL and MBCR
stages. In order to be perceived, these patterns must acti-
vate the BP stage. In the experiments aln~ady discussed,
the transfer of patterned activity to the BP stage does not
introduce any serious constraints on the brightness proper-
ties of the FIRE model. This is because all the experi-
ments that we have thus far considered present the same
image to both eyes. The experiments that we now dis-
cuss present different combinations of images to the two
eyes. Thus they directly probe the prlDCess whereby
monocular brightness domains interact to generate a
binocular brightness percept.

(b)

j
~

(12) Simulations of FIRE
In the remaining sections of the article, we describe

computer simulations using the simplest version of the
FIRE process and the same model parameters that were
used in Cohen and Grossberg (1984). We show that this
model qualitatively reproduces the main properties of

Figure 14. The luminance contours studied by Hamada (1980).
All backgrounds in (a)-(c) have the same luminance.
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Figure 15. Simulation of the Hamada (1980) brightness experiment. The dotted line in (d) describes the
brightness level of the background in Figure 13a. Classical contrast enhancement is obtained in (d).

Fechner's paradox (Levelt, 1965), binocular brightness
summation and averaging (Blake, Sloane, & Fox, 1981;
Curtis & Rule, 1980), and a parametric brightness study
of Cogan (1982) on the effects of rivalry, nonrivalry
suppression, fusion, and contour-free images. Thus,
although the model was not constructed to simulate these
brightness data and does not incorporate many known
theoretical refinements, it performs in a manner that
closely resembles difficult data. We believe that these
simulations place the following quotation from a recent
publication into a new perspective: "The emerging pic-
ture is not simple. ..Levelt's theory. ..works for
binocular brightness perception, but not for sensitivitY to
a contrast probe. ..it seems unlikely that any single
mechanism can account for binocular interactions. ...The

theory of binocular vision is essentially incomplete" (Co-
gan, 1982, pp. 14-15).

Before reporting simulations of brightness experiments,
we review a few basic properties of this FIRE model. All
the simulations were done on one-dimensional arrays of
cells, for simplicity. All the simulations use pairs of input
patterns that have zero disparity with respect to each other.
The reaction of a single spatial scale to these input patterns
will be reported. Effects of using nonzero disparities and
multiple spatial scales are described in Cohen and Gross-
berg (1984) and Grossberg (1983b). The input patterns
should be interpreted as monocular patterns across MBCL
and MBCR, rather than the scenic images themselves.

(a) Insensitivity to functional ganzfelds. In Figure 17,
two identical input patterns exist at the MBCL and MBCR
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Figure 16. Simulation of the Hamada (1980) brightness experiment. The dotted line in (d) describes the
brightness level of the background in Figure 13a. Both background and cusp of (a) look darker than th.is
reference level.

stages (Figure 17a). Both input patterns are generated by
putting a rectangular pattern through a Gaussian filter.
This smoothing operation was sufficient to prevent the
pathways MBCL -BP and MBCR -BP in Figure 4 from
detecting suprathreshold contours in the input patterns.
We call an input pattern that has no contours that are de-
tectable by these pathways a "functional ganzfeld." The
FIRE process does not lift functional ganzfelds at any in-
put intensity. The simulation illustrates that the BP stage is
insensitive to input patterns that include no boundary
contours detectable by its filtering operations.

(b) Figure-ground synthesis: Ratio scale and power
law. Figure 18 describes the FIRE reaction that is trig-
gered when a rectangular input pattern is superimposed
upon a functional ganzfeld. Such an input pattern ideal-

izes a region of rapid change in activity with respect to
the network's filter bandwidth. The entire input pattern
is now resonantly lifted into the BP stage. Although the
BP stage is totally insensitive to the functional ganzfeld
taken in isolation, the sharp edges of the rectangle trig-
ger a resonant reaction that structures, indeed defmes, the
functional ganzfeld as a "ground" for the rectangular
"figure." Instead of being treated as merely formless
energy, the functional ganzfeld now energizes a standing
wave that propagates from the rectangle edges to the
perimeter of the pattern.

Due to the rectangle's edges, the network is now exqui-
sitely sensitive to the ratio of rectangle-to-ganzfeld input
activities. When the entire input pattern is parametrically
increased by a common multiple, FIRE activity levels
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Figure 17. Matched ganzfelds in (a) cause no suprathreshold reaction at the BP stage at any input
intensity. Left input in (a) denotes the input pattern that is delivered to both the MPL stage and the
MPR stage. Left field in (b) denotes the activity pattern that is elicited at both the MBCL stage :ind
the MBCR stage. Match field in (c) denotes the activity pattern that is elicited at the BP stage. Filtered
match field in (d) denotes the feedback signal pattern that is emitted from the BP stage to both the
MBCL and MBCR stages. No feedback is elicited because the BP stage does not generate any
suprathreshold activities in response to the edgeless input pattern, or functional ganzfeld, in (a).
(Reprinted from Cohen & Grossberg, 1984.)

obey a power law (Figure 19). Both the intensity of the
standing wave corresponding to the rectangle and the
intensity of the standing wave corresponding to the
functional ganzfeld grow as a power of their correspond-
ing input intensities. In these simulations, the power
approximates .8. This power is not built into the network.
It is a collective property of the network as a whole.

Figure 20 (Cogan, 1982; Levelt, 1965). Figures 20a-2Oc
depict three pairs of images. One image is viewed by each
eye. In Figure 20a, an uncontoured image is viewed by
the left eye and a black disk on a uniform background
is viewed by the right eye. In Figure 2Gb, black disks are
viewed by both eyes. In Figure 20c, the interior of the
left disk is white. Given appropriate boundary conditions,
the binocular percept generated by tile images in Fig-
ure 20a looks about as dark as the binocular percept gener-
ated by the images in Figure 20b, despite the fact that a
bright region in Figure 20a replaces a black disk in
Figure 20b. Figure 2Oc, by contrast, l()()ks much brighter.

The input patterns that we used to simulate these images
are displayed in Figures 20d-20g. These input patterns
represent the images in only a crude way, because the
input patterns correspond to activity patterns across stages
MBCL and MBCR rather than to the images themselves.

(13) Fechner's Paradox
The simplest version of Fechner's paradox notes that

the world does not look half as bright when one eye is
closed. In fact, suppose that a scene is viewed through
both eyes but that one eye sees it through a neutral den-
sity filter (Hering, 1964). When the filtered eye is entirely
occluded, the scene looks brighter and more vivid despite
the fact that less total light reaches the two eyes.

Another version of this paradox is described in
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Figure 18. Figure on ganzfeld: The pair of sharp contours within the input pattern of (a) sensitizes the

BP stage to the activity levels of both the rectangle figure and the ground, despite the total insensitivity
of the BP stage to a functional ganzfeld in Figure 17 at any input intensity. Binocular matching of the
contours at the BP stage lifts a standing wave representation (c) of figure and ground into the BP st.age.
(Reprinted from Cohen & Grossberg, 1984.)

It is uncertain how, for example, to choose the activity
of the ganzfeld in Figure 20a, since this activity depends
upon the total configuration of contours throughout the
field of view. We therefore carried out a simulation using
a zero intensity ganzfeld, as well as a simulation with a
functional ganzfeld whose intensity equals the background
intensity of the input pattern to the the other MBC stage.
The actual functional ganzfeld intensity should lie
somewhere in between these two values. Other approxi-
mations of this type are used throughout the simulations.

The numbers listed in Figures 2Od-20g describe the total
rectified output from the FIRE cells that subtend the region
corresponding to the black disk. As in the data, Figure 20g
generates a much larger output than Figure 20f. Fig-
ure 20g also generates a larger output than either Fig-
ure 2Od or Figure 20e. If the actual functional ganzfeld
level is small due to the absence of nearby feature-contour
signals, then Figures 20a and 20b will look equally bright
to the network.

A comparison between Figures 2Od and 20e provides
the first evidence of a remarkable formal property of this
version of the FIRE model. Although the FIRE process
is totally insensitive to a pair of functional ganzfelds, when
a functional ganzfeld is binocularly paired with a
contoured figure, it can influence the overall intensity of
binocular activity within the BP stage..

(14) Binocular Brightness Averaging
and Summation

Experimental studies of the conditions under which
Fechner's paradox hold have led to the conclusion that
"binocular brightness should represent a compromise
between the monocular brightnesses when the luminances
presented to the two eyes are grossly different and. ..
it should exceed either monocular brightness when their
luminances approach equality" (Curtis & Rule, 1980.
p. 264). Curtis and Rule point out that "these results were
in conflict with the prediction of averaging models, such
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Figure 19. Power-law processing of figure and ground activity levels at the BP stage as the
intensities of the input pattern (in the insert) are proportionally incr~ed by a common factor.
The abscissa (scaled input) measures this common factor. The ordinate (scaled activity) mea-
sures the peaks of BP activity at the rectangle (circles) and the ground (squares). (Reprinted
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Figure 21a shows that the binocular figural activity in
Figure 21d is significantly greater than the monocular
figural activity in Figure 21a; that is, binocular bright-
ness summation has occurred. Using these inputs, the
binocular brightness is about 25% greater than the
monocular brightness. Using a fully attenuated (zero)
ganzfeld in one eye during the monocular condition, the
binocular brightness is about 63 % brighter than the
monocular brightness. Nonlinear binocular summation in
which the binocular percept is less than twice as bright
as the monocular percept has been described by a number
of investigators (Blake et al. 1981; Cogan et al., 1982;
Legge & Rubin, 1981).

as those of Engel (1969) and Levelt (1965)" (p. 263).
They introduce a vector model to partially overcome this
difficulty. Although the averaging and vector models are
useful in organizing brightness data, they do not provide
a mechanistic explanation of these data.

Figure 21 describes an example of binocular averag-
ing by the FIRE process. In Figures 2la and 2lb, one
of the input patterns is a functional ganzfeld. The other
input pattern is an increment or a decrement on a back-
ground. Since these monocular input figures differ greatly
in intensity, binocular brightness averaging should occur
when they are binocularly presented. In Figure 2lc, the
increment input pattern is paired with a decreme;nt input
pattern. The binocular figural activity in Figure 2lc
almost exactly equals the average of the monocular figural
activities in Figures 2la and 21b.

In Figure 2ld, a pair of increment input patterns is
presented to the model. A comparison of Figure 2Id with

(15) Simulation of a Parametric Binocular \

Brightness Study
Cogan (1982) has analyzed binocular brightness inter-

actions by studying a subject's sensitivity to monocular
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test flashes while the subject binocularly views different
pairs of monocular images. Cogan used this method of
limits to obtain psychometric curves, and then rank-
ordered paradigms in terms of subject sensitivity. Fig-
ure 22 describes the five conditions that Cogan studied
in his Experiment 2. In each condition, a brief disk-shaped
flash was presented to the left eye. The flash area was
chosen to fit exactly within the circular contour in the left
image. Figure 23 describes the sensitivity of six differ-
ent subjects to each of the five pairs of images. Mean
detection sensitivity tended to rank-order the images from
Figure 22a to Figure 22e in order of decreasing sensitiv-
ity. Mean sensitivity to the images of Figure 22a was
significantly greater than to the other images over a wide
range of probe contrasts (MIl). Mean sensitivity to
Figure 22e was significantly less than to the other images
over a wide range of probe contrasts. Mean sensitivity
to the other images grouped more closely together. The
rank orderings of individual observers did not, moreover,
always decrease from Figure 22b to Figure 22d.

Simulations using the simplest one-dimensional input
versions of the images in Figure 22 tended to reproduce
this pattern of results. Figure 24 illustrates the input pairs
that were used. Each input pair represents the flash condi-
tion. The increment above the background level on the
left input pattern represents the flash. To estimate flash
visibility, we first computed the figural activity within the
flash area that was generated before the flash, then com-
puted the figural activity within the flash area that was
generated during the flash, and then subtracted the bef~ie-
flash activity from the after-flash activity. The before-flash
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Figure 20. Fechner's paradox: In human experiments based on
the images in (a)-(c), the left image is viewed by the left eye while
the right image is viewed by the right eye. The simulations used the
pairs of patterns in (d)-(g) as left and right input patterns to the
FIRE process. Ganzfelds of different intensity are used as left in-
put patterns to the FIRE model in (d) and (e). The FIRE activity
levels corresponding to the dark region positions in the right input
patterns are printed above. In vivo, the ganzfeld intensity of a large
field will be close to zero at the MBC1 stage, as in (e). In (c), identi-
calleft and right input patterns elicit zero FIRE activity in the dark
region. In (g), the dark region generates the largest FIRE activity
of the series.
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FIRE activity that is greater at its center than the FIRE activity
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Figure 22. Flash displays used by Cogan (1982) to study binocu-
larbrightness processing. The dashed lines denote the regions that
receive monocular flashes. Cogan tested the sensitivity of subjects
to flashes in the designated positions.
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crepancy with the data is due to the fact that sensitivity
to the images in Figure 24d slightly exceeds that to the
images in Figures 14c and 24b. This type of order inver-
sion also occurred, however, in two out of six of Cogan's
subjects (Cogan, 1982, Figure 6, p. 11). Considering the
simplicity of the model and its input patterns, and the num-
ber of qualitatively correct effects that it can generate,
this seems to be a relatively minor point.

Figure 25 displays the resonant patterns that are gener-
ated by four pairs of distinct monocular images. Figures
25a and 25b illustrate the computer experiment in Fig-
ure 24d. In Figure 25a, a ganzfeld is paired with a black
disk. Although the network is insensitive to a pair of
ganzfelds (Figure 17), the black disk at the MBCR stage
structures and energizes the ganzfeld at the MBCL stage
via the BP stage. The structured ganzfeld, in turn,
modifies the activity level at the BP stage. The monocu-
lar MBCR pattern remains inactive at cells that receive
the black input, despite the fact that the binocular FIRE
pattern is active within the corresponding region due to
the influence of the ganzfeld. Figure 25b adds an incre-
ment, or flash, to the ganzfeld in Figure 25a. Again, the
MBCR pattern remains inactive at cells that receive the
black input. A comparison of Figures 25a and 25b shows,
however, that the BP stage is sensitive to the activity levels
of both monocular patterns within this region. In fact, the
activity level in this region of the BP stage in Figure 25b
averages the corresponding monocular activities.

Figures 26a and 26b illustrate the computer experiment
in Figure 24e. Note that the dark contour in the MBCL
input pattern is detected by the resonance. This contour
monocularly energizes the binocular resonance in Fig-
ure 26a much more than does the ganzfeld of equal back-
ground intensity in Figure 25a.
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Figure 23. Sensitivity of individual subjects to the flash displays
described in Figure 22. Each bar height corresponds to a subject's
sensitivity to a particular flash display. The labels (A)-(E) refer to
the flash conditions in Figure 22. (Redrawn from Cogan, 1982.)

FlASH PROFlLES

IAI IBI

IC! [01

tEl

Figure 24. Flash profiles used to simulate the Cogan (1982) ex-
periment. These profiles depict the profile when the flash is on. Be-
fore the flash is on, all the increments above the background lu:'
minance are absent.

(16) Concluding Remarks
The results in this article suggest that several of the most

basic concepts of visual theory need to be refined. For
example, the simulations described above include at least
three mechanistically different concepts of contour:
boundary contour, feature contour, and FIRE contour.
They also include two different types of fIlling-in: diffu-
sive fIlling-in, which is monocular, and resonant filling-
in, which is binocular. Although these concepts add some
complexity to the visual modeling literature, they have
begun to simplify and unify the explanation of a large body
of visual data. The same concepts have been used, for
example, to suggest explanations of data concerning
monocular and binocular rivalry, illusory figures, fading

Table 2
Simulation of Brightness Experiment in Figure 24

Activity of Activity of
Inner Region Inner Region Activity

Figure Before Flash During Flash Increment

24a .00000o .015740 .015740

24b .012356 .016165 .003809

24c .011824 .015689 .003865

24d .005031 .008904 .003873
24e .007075 .010407 .003332

activities, after-flash activities, and flash-induced activity
differences are listed in Table 2. As in the data, the images
in Figure 24a generated the largest increment, those in
Figure 24e generated smallest increment, and the other
three increments were clustered together. The main dis-
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of stabilized images, neon color spreading, illusory com-
plementary color induction, the Land retinex demonstra-
tions, nonlinear multiple scale interactions, and various
global interactions between depth, lightness, length, and
form properties (Cohen & Grossberg, 1984; Grossberg,
1980, 1983b, 1985; Grossberg & Mingolla, in press).
Moreover, the concepts seem to have more than a formal
existence. Boundary contour and feature contour inter-
actions can, for example, be interpreted in terms of re-
cent physiological data concerning the orientation-
sensitive but color-insensitive hypercolumn system in the
striate cortex and the orientation-insensitive but color-
sensitive blob system in the striate cortex (Table 1; Gross-
berg & Mingolla, in press). It remains to be seen just how
far these new concepts and mechanisms can be developed
for the further explanation and prediction of complex
visual phenomena.
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APPENDIX A

This appendix describes the neural network that was used to
simulate feature-<:ontour and boundary-<:ontour interactions. The
following simulations were done on one-dimensional fields of
cells. The input pattern (I,. 11. In) is transformed into the
output pattern (z,. Z1. zn) via the following equations.

Feature Contours
The input pattern (I., L, ..., In) is transformed into feature

contours via a feed-forward on-center off-surround network of
cells undergoing shunting, or membrane equation, interactions.
The activity, or potential Xi, of the ilb cell in a feature-contour
pattern is

d n n
""(it Xi = -Axi+(B-xi)EIkCki-(xi+D)EIkEki. (1)

k=l k=l

Both the on-center ceofficients Cki and the off-surround coeffi-
cients Eki are Gaussian functions of intercellular distance 1 k -i I.
System 1 is assumed to react more quickly than the diffusive
filling-in process. Hence, we assume that each Xi is in approxi-
mate equilibrium with respect to the input pattern. At
equilibrium, (d/dt)xi=O and

n

E (BCki -DEki)Ik
k=l

(2)Xi =
n

A + 1:: (Cki + Eki)Ik
k=l

The activity pattern (XI' X2, ..., xn) is sensitive to both the
amount and the direction of contrast in edges of the input pat-
tern (Grossberg, 1983b). These feature-contour activities gener-
ate inputs of the form

(3)
Xi

Fi= l~i

to the diffusive filling-in process. The inhibitory term Sj is de-
fined by the boundary-contour process in Equation 6 below.

Boundary Contours
.The input pattern (I" I" ..., In) aJso activates the boundary-

contour process, which we represent as a feed-forward on-center
off-surround network undergoing shunting interactions. This
simplified view of the boundary-contour process is permissible
in the present simulations because the simulations, being one-

dimensional and monocular, do not need to account for orien-
tational tuning, competition, or binocular matching. Since the
simulations do not probe the dynamics of illusory contour for-
mation, the boundary completion process can also be ignored.
(See Grossberg & Mingolla, in press, for these extensions.)

As in Equation 2, the intput pattern rapidly gives rise to an

activity pattern
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n

E (BCki -DEkUIk
k=1

(4)Yi =

tivity between compartments are less accessible to the signals
Sj than are the exterior surface membranes that bound the cel-
lular syncytium.

The following parameters were used in all the simulations with
Equations 1-9. We let

n

A + E (Cki + Eki)Ik
k=\

Cik = C exp(-ln 2[(i-k)/p.PI

Eik = Eexp(-ln2[(i-k)/JlPI
where Cki and Eki are Gaussian functions of intercellular dis-
tance. It is assumed that these boundary contours are narrower
than the feature contours defined by Equation 2.

The activity pattern (y" y., ..., Yn) is sensitive both to the
direction and amount of contrast in the input pattern (I., I., ...,
In). The sensitivity to the direction of contrast is progressively
eliminated by the following operations. Let the output signals
from BCS to MBC that are elicited by activity Yi equal f(yu,
where f(w) is a sigmoid signal of the rectified part of Yi; viz,

Cik = C exp(-ln 2[(i-k)/jL]2)

Eik = E exp(-ln 2[(i-k)/j,fJ

and

Gik = G exp( -In 2[(i-k)/co>rJ

.B[(yj)+]"'

1 +6[(yj)+]"'
f(Yi) = (5) where A = 1, B = 96, C = .0625, E = .0625, G = .2349,

H = 1, A = 1, B = 35.5546, C = 50, D = 12.5828, E =
50, {J = 4xl0'o, 'Y = 5,0 = lxl0'o, jL = .5, jI = 1.5.

The remaining parameters vary from simulation to simula-
tion and will be given for each figure by title.

The notation [w]+ = max(w,O) and 'Y > 1. The output signals
f(yJ are spatially distributed before influencing cell compart-
ments of the cell syncytium. The total signal to the ith cell com-
partment due to the activity pattern (y., Yl, ..., yo) is (1) Two-Step and Five-Step Illusions (Figures 7 and 8)

n
Si = EGikf(Yk),

k=!
(6)

where Gik is a Gaussian function of intercellular distance. This
Gaussian falloff is less narrow than that of boundary contours
in Equation 4, but more narrow than that of feature contours
in Equation 2.

Diffusive Filling-In
The activity Zi of the jib cellular compartment of the cellular

syncytium obeys the nonlinear diffusion equation

n = 3,500,

D = 9.12,

a = 1,

p. = 10,

p = 100,

>. = 1.926 X 10',

x = 1.926 X 107,

<11= 1,
r = 1.7.

where the input Fi is defined by Equation 3. The diffusion coeffi-
cients Ji+ I,i and Ji-I,i are determined by boundary contour sig-
nals according to equations of the form

A

The inputs. The inputs consist of a step input filtered through
a Gaussian kernel with a set of ramping functions superimposed
on the output of the filter. The steady state level of the output
is extended outward to simulate viewing the central portion of
an indefinitely large field with ramps superimposed. In the two-
cusp pattern of Figure 7a,

Ik = <I>(k-350/100) -<I>(k-3150/100) + R~l),(8)J;+I.i = .
1 +X[Si+ l-rj++X[Si-rj'

where
and

clI(x) = 1/.J'IiIx e-Yzz'dz
-~

>.
(9)--. Ji-1,; = 1

+X[Si-t-r]++X[Si-rr
and

where the threshold r > O. Thus, an increase in the boundary
signal Si decreases both diffusion coefficients Ji + I,i and Ji -I,i.
The feature-contour signal Fi also decreases when the bound-
ary signal Si increases. In Equations 3,8, and 9, the inhibitory
effects of boundary signals Si on cell compartment membranes
act via shunting inhibition. A positive threshold r occurs in
Equations 8 and 9, but not in Equation 3, because, we assume,
the intercompartmental membran~s that regulate diffusion of ac-

R I" k =

[ 0 ifOoSkoS1450 .12 tan[.9r/2(145\-k/149»)/tan[.9r/) if 145\ oS k oS 1600

.12 tan[.9r/2(\750.5-k/149.5»)/tan[.9r/2) if 160\ oS k s 1900

.12 tan[.9~/2(2050-k/149»)/tan[.9r/2) if 190\ oS k s 2050

0 if 2051 s k s 3500
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JI = 6,

A = 6000,

x = 500,

(&! = !,

r = 1.6.

In the five-cusp pattern of Figure 8a,

Ik = oI>(k-350/100)lol>(k-3150/100)+Rk5)

where

R~5) =

0 if 0 s k s 100)

.12 tan[.911"/2(1001-k/149)]/tan[.911"/2] if 1001 s k s 1450

.12 tan[.9-r/2(1600.5-k/149.5)]/tan[.911"/2] if 1451 s k s 1750

.12 tan[.9-r/2(1900.5-k/149.5)]/tan[.9-r/2] if 1751 s k s 2050

.12 tan[.9-r/2(2300.5-k/149.5)]/tan[.9-r/2] if2051 s k s 2350

.12 tan[.9-r/2(2500.5-k/149.5)]/tan[.9-r/2] if2351 s k s 2650

.12 tan[.9-r/2(2800-k/149)]/tan[.9-r/2] if 2651 s k s 2800.

0 if 2801 s k s 3500.

The inputs. The inputs were chosen to simulate Hamada's
experimental displays. The inputs consist of a step input filtered
through a Gaussian filter with a parabolic segment superimposed
on the output of this filter. Specifically, in Figure 15a, let

Ik = .3c1>(k-351/100)-.3c1>(k-1350/100)+Pk,

where

I 

:O5454(850o5-k/99.5f

if 0 s k s 750

if751sks950

if951sks1700.

(3) Bergstrom Brightness Paradox (Figures 12 and 13) Pk =

n = 700

D = 12,

a = 4,

JL = 10,

p = 60,

}.. = 1000,

x = 116.7,

(11=10,
r = 2.6.

In Figure 16a,

Ik = .3c1t(k-351/100)-.3c1t(k-1350/100)-Pko

APPENDIX B

The following system of equations defines a binocular inter-
action capable of supporting a fIlling-in resonant exchange, or
FIRE (Cohen & Grossberg, 1984; Grossberg, 1983b).

Monocular Representations
The inputs. The .inputs represent Bergstrom's experimental

inputs. The inputs consist of two normal curves splined together
at ::1:3 standard deviations away from the 50 percentile point
and placed on a pedestal. Thus, in Figure 12a,

Left Field:

0

.6+.4ci'(3(1-(k-149/100»)

.2+.4ci'(3(1-(k-349/100»)
0

if 0 s k s 149

if 150 s k s 349

if350sks549
if 550 s k oS 700.

Ik = n

-(XiL + D) E IkL[JkL + zk]+Eki
k=!

(10)

and right field:In Figure 13a, the inputs were chosen to be four steps of length
100 whose value is equal to the corresponding average value
in the previous set of runs. Thus, d n

-d XiR = -AXiR +(B-XiR) }::;IkR[JkR +Zk]+Cki
t k=l

0 if 0 s k s 150

.94 if 150 s k s 249

.60 if 250 s k oS 349

.54 if 350 oS k s 449

.26 if 450 s k s 549

0 if 550 oS k s 700.

n

-(XiR + D) E IkR[JkR +zk]+Eki
k=\

(11)Ik =

where [wj+ = max(w,Q).

Binocular Matching (Match Field)
(3) Hamada Brightness Paradox (Figures 15 and 16)

n = 700,

D = 14.4,

a = 1,

p. = 1,

n

E Fki[f(XkL)+f(XkR)]
k=1

(12)Yi =
n

A+ EGki[f(XkU+f(XkR)]
k=\
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where tive signals (15) with the same spatial bandwidths as are used
throughout the computation. The parameters used in these simu-
lations are exhaustively listed in Cohen and Grossberg {1984).

The parameters used herein are the same as the parameters
used in simulations 15-23 of Cohen and Grossberg (1984), ex-
cept that in the present simulations we chose n = 200.

Fki = BCki -DEki (13)

and

Gki = Cki+Eki. (14)
Inputs

The inputs are defined in tenns of the functionsBinocular-To-Monocular Feedback (Filtered Match Field)

n

E F~ig(Yk)
k=1

Nk = .O25<1>[..jZ/5(k-15)]-.O25<1>[..jZ/5(k-186)]

(15)Zi =
n

A * + I:: G:~(Yk)
k=l

Fechner's Paradox (Figure 20):

(0) Let JkL = Nk, 1 oS k oS 200, and

Nk if 1 oS k oS 80

0 if 81 oS k oS 120

Nk if 121 oS k oS 200.

JkR =

F:i = B*C:i-D*E:i (16)

and

Q*. - C*.+E*k. -k. ki. (17)

(F) Let

{:k
Nk

iflsks80

if81sks120

if 121 s k s 200.

JkL = JkR =

(G) Let

Nk

0

Nk

0

Nk

if 1 :s k :s 70

if 71 :s k :s 80

if 81 :s k :s 120

if 121 :s k :s 130

if 131 :s k :s 200

JkL =

and

!

:k
Nk

if 1 :s k :s 70

if 71 :s k :s 130

if 131 :s k :s 200.

JkR =

Brightness Averaging and Summation (Figure 21)

Equation 10 describes the response of the activities XiL, i = 1,
2, ..., n, in the left monocular representation. Each XiL obeys
a shunting equation in which both the excitatory interaction
coefficients Cki and the inhibitory interaction coefficients Eki
are Gaussian functions of the distance between Vk and Vi. Two
types of simulations have been studied:

Additive inputs. All IkL are chosen equal. The terms JkL
register the input pattern It.. summate with the binocular-to-
monocular feedback functions Zk. This is the form of the sys-
tem that appears in the simulations reported herein.

Shunting inputs. All JkL are chosen equal. The terms IkL
register the input pattern. The binocular-to-monocular feedback
functions Zk modulate the system's sensitivity to the inputs IkL
in the form of gain control signals.

Equation 11, for the activities XiR, i = 1, 2, ..., n, in the
right monocular representation, has a similar interpretation. Note
that the same binocular-to-monocular feedback functions Zk are
fed back to the left and right monocular representations.

The binocular matching stage (12) obeys an algebraic equa-
tion rather than a differential equation due to the simplifying
assumption that the differential equation for the matching ac-
tivities Yi reacts quickly to the monocular signals f(xkL) and
f(xkR). Consequently, Yi is always in an approximate equilibrium
with respect to its input signals. This equilibrium equation says
that the monocular inputs f(xkL) and f(XkR) are added before
being matched by the shunting interaction. The signal functions
f(w) are chosen to be sigmoid functions of activity w. The ex-
citatory interaction coefficients Cki and inhibitory interaction
coefficients Eki are chosen to be Gaussian functions of distance.
The spatial decay rates of Cki, Cki, and C~i are chosen equal.
The spatial decay rates of Eki, Eki, and Elti are chosen equal.
The on-center is chosen narrower than the off-surround.

After the monocular signal patterns (f(XIL), f(x2L), ..., f(xnL»
and (f(XIR), f(x2R), ..., f(xnR» are matched at the binocular
matching stage, the binocular activities Yk are rectified by the
output signal function g(Yk), which is typically chosen to be a
sigmoid function of Yk. Then these rectified output signals are
distributed back to the monocular representations via competi-

(B) Let JkR = N, :$ k :$ 200, and

{ Nk if 1 :$ k :$ 80

0 lf81:$k:$120

Nk if 121 :$ k :$ 200.

JkL =
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(C) Let and

Nk if 1 :S k :S 80

Nk+.009 if 81 :S k :S 120

Nk if 121 :S k :S 200
{:k

Nk

ifl.sk.s80

if 81 .s k .s 120

if 121 .s k .s 200.

JkL =
JkR =

and
Boundary Plus Dark Figure (Figure 26a):

{:k
Nk

iflsks80

if 81 s k s 120

if 120 s k s 200.

LetJkR =

Nk

0

Nk

0

Nk

if 1 :s k :s 70

if 71 :S k :S 80

if 81 :S k :S 120

if 121 :S k :S 130

if 131 :S k :S 200

(D) Let
JkL =

Nk if 1 :s k :s 80

Nk+.OO9 if 81 :s k :s 120

Nk if 121 :S k :S 200.

JkL = JkR =

and

{:k
Nk

if1:Sk:S70

if 71 :s k :s 130

if 131 :s k :s 200.

The input patterns in Figures 24d and 24e are listed below to
illustrate the parameter choices used in this figure and to charac-
terize the FIRE patterns depicted in Figure 25.

JkR =

Ganzfeld Plus Dark Figure (Figure 25a):
Increment in Boundary (Figure 26b):

Let
iflsks80

if 81 s k s 120

if 121 s k s 200.

Nk if 1 :s k :s 70

0 if 71 :s k :s 80

Nk+.009 if 81 :s k :s 120

v if 121 s k :s Ijv

Nk if 131 :s k :s 200

JkL =

Increment Plus Dark Figure (Figure 25b):

Let and

Nk if 1 ~ k ~ 80

Nk+.009 if 81 ~ k ~ 120

Nk if 121 ~ k ~ 200

{:k
Nk

if 1 s k s 70

if 71 s k s 130

if 131 s k s 200.

JkL = JkR =

(Manuscript received March 23, 1984;
revision accepted for publication August 20, 1984.)




