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Summary. A computational theory of how an observer parses
a speech stream into context-sensitive language representa-
tions is described. It is shown how temporal lists of events
can be chunked into unitized repre~ntations, how perceptual
groupings of past item sublists can be reorganized due to in-
formation carried by newly occurring items, and how item
information and temporal order information are bound to-
gether into context-sensitive codes. These language units
are emergent properties due to intercellular interactions
among large numbers of nerve cells. The controlling neural
networks can arise through simple rules of neuronal develop-
ment: random growth of connections along spatial gradients,
activity-dependent self-similar cell growth, and competition
for conserved synaptic sites. Within these networks, a spatial
frequency analysis of temporally evolving activity patterns
leads to competitive masking of un appropriate list encodings
in short term memory. The neurons obey membrane equa-
tions undergoing shunting recurrent on-center off-surround
interactions. Several design principles are embodied by the
networks, such as the sequence masking principle, the long-
term memory invariance principle, and the principle of self-
similar growth.

Key words: Unitization -Temporal order -Speech -Com-
petition -Neural networks

Introduction: Context-sensitivity of self-organizing language
units

One of the fundamental problem areas in speech and language
research concerns the characterization of the functional
units into which speech sounds are integrated by a fluent
speaker. A core issue concerns the context-sensitivity of
these functional units, or the manner in which the perceptual
grouping into functional units can depend upon the spatio-
temporal patterning of the entire speech stream. Such
context-sensitivity is evident on every level of speech and
language organization. For example, a word such as Myself
is used by a fluent speaker as a unitized verbal chunk. In
different verbal contexts, however, the components My,

Self, and Elf or Myself are all words in their own right. More-
over, although an utterance which ended at My would
generate one grouping of the speech flow, an utterance which
went on to include the entire word Myself could supplant
this encoding with one appropriate to the longer word. Thus
in order to understand how context-sensitive language units
are perceived by a fluent speaker, one must analyse how all
possible groupings of the speech flow are analysed through
time, and how certain groupings can be chosen in one con-
text without preventing other groupings from being chosen
in a different context.

This problem has been stated in different ways by differ-
ent authors. Darwin (1976) has, for example, asked how
"our conscious awareness. ..is driven to the highest level
present in the stimulus." Repp (1982) has noted "that the
perception of phonetic distinctions relies on the integration
of multiple acoustic cues and is sensitive to the surrounding
context in very specific ways. ..listeners make continuous
use of their tacit knowledge of speech patterns." Studdert-
Kennedy (1980) has written that "The view of speech per-
ception that seems to be emerging. ..is of an active contin-
uous process. ..of perceptual integration across the syl-
lable."

The functional units into which a fluent speaker groups
a speech stream are dependent upon the observer's prior
language experiences. For example, a unitized representation
for the word Myself does not exist in the brain of a speaker
who is unfamiliar with this word. Thus an adequate theory
of how an observer parses a speech stream into context-
sensitive language units needs to analyse how developmental
and learning processes bias the observer to experience some
perceptual groupings above others. Such developmental and
learning processes are often called processes of self-organiza-
lion in theoretical biology and physics (Basar et al. 1983).
Undblom et al. (1983) have recently suggested the import-
ance of self-organizing processes in speech perception.

The present article contributes to a theory of speech and
language perception which arose from an analysis of how
a language system self-organizes in real-time in response to
its complex input environment (Grossberg 1978a. 1982a).
This approach emphasizes the moment-by-moment dynamical
interactions that control language development, learning,
and memory. Within this theory, properties of language per-
formance emerge from an analysis of the system constraints
that govern stable language learning. This analysis has led
to the discovery of a small number of dynamical principles* Correspondence: Professor Stcphen Grossberg. addrcss above



2

scopic rules of neuronal development to macroscopic proper-
ties of cognitive coding, and across modalities such as vision
and audition.

and mechanisms which have been used to unify and predict
a large data base concerning speech and language. Data con-
cerning lexical decisions, recognition and recall of previous
occurrences, development of circular reactions, imitation and
unitization of novel sounds, matching phonetic to articulatory
requirements, serial and paired associate verbal learning,
free recall, categorical perception, temporal order informa-
tion in sport term memory, selective adaptation, auditory
contrast, and word superiority effects have been analysed
and predicted using this theoretical framework (Grossberg
1969, 1978a, 1978b, 1982a, 1984a, 1985; Grossberg and
Pepe 1971; Grossberg and Stone 1986a, 1986b). These
articles should be consulted for analyses of relevant data and
of alternative models.

We believe that the unifying power of the theory is due
to the fact that principles of self-organization -such as the
laws regulating development, learning, and unitization -are
fundamental in determining the design of behavioral mech-
anisms. This perspective suggests that the lack of alternative
unifying accounts of this data base is due to the use of
models that do not sufficiently tap the principles of self.
organization that govern behavioral designs.

Macrocircuit for the self-organization of recognition and
recall

The encoding, or chunking, process which is analysed herein
takes place within the macrocircuit depicted in Figure 1. This
macrocircuit governs self-organization of language recogni-
tion and recall processes via a combination of auditorily-
mediated language processes (the levels Ai)' visual recognition
processes (level V*), and motor control processes for lang-
uage production (the levels ~). These stages interact inter-
nally via conditionable pathways (black lines) and externally
via environmentally-mediated auditory feedback of self-
generated sounds (dotted lines).

All the stages Ai and ~ within the theory obey similar
general network laws. These laws describe cooperative and
competitive interactions among the cells, or nodes, that exist
at each level. Such cooperative-competitive interactions
endow the network levels with properties of cellular activa-
tion and short term memory (STM). Different levels exhibit
specialized properties of STM due to two types of factors:
differences in the interconnections and other parameters of
the cells at each level; and the very fact that the different
levels, by occurring within different locations of the total
network hierarchy, receive different types of inputs. One
task of the theory is to show how a wide variety of STM
properties can be generated from a small number of STM
laws by choosing specialized intercellular wiring diagrams.

All of the learning and long term memory (L TM) proces-
ses within the theory occur in its inter-level pathways. All
of these learning processes also obey similar dynamical laws.
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Developmental rules imply cognitive rules as emergent
properties of neural network interactions

The present article quantitatively analyses and further
develops a core process within this theory: the process
whereby internal language representations encode a speech
stream in a context-sensitive fashion. This process can be
stated in several equivalent ways: how temporal lists of
events are chunked into unitized representations; how
perceptual groupings of past item sublists are reorganized
due to information carried by newly occurring items; how
item information and temporal order information are bound
together to generate maximally predictive encodings of
temporally occurring lists. This article briefly reviews the
principles which Grossberg (1978a, 1 984a) proposed for this
process, outlines real-time networks which we have further
developed to instantiate the principles, and demonstrates the
competence of the networks using massive computer simula-
tions.

These networks can be interpreted as networks of neurons
whose interconnections arise through simple rules of neuron-
al growth and development. The context-sensitive language
representations within these networks are emergent proper-
ties due to intercellular interactions among large numbers
of nerve cells. These properties are not built into the in-
dividual cells. Nor are there any serial algorithms or cognitive
rule structures defined within the network. Instead, the net-
works illustrate how simple rules of neuronal development -
on the cellular level -can give rise to a system which acts
as if it obeys complex rules of context-sensitive encoding -
on the cognitive level.

This is not the only way in which the theory relates
different levels of behavioral organization. We also show how
organizational principles which are critical in visual proces-
sing can be specialized for use in language processing. In
other words, similar mechanisms can be used both for spatial
processing and for temporal processing. The theory hereby
illustrates how a small number of dynamical laws can unify
data on several levels of organization, ranging from micro-
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Fig. I. A macro circuit governing self-organization of recognition and
recall processes: the text explains how auuitorily mediated language
processes (the A i)' visual recognition processes (V *), and motor
control processes (the Mj) interact internally via conditionable path-
ways (black lines) and externally via environmental feedback (dotted
lines) to sclf-organize the various processes which occur at the dif-
ferent network stages
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They encode different types of information due to their
different parameter choices and their different locations
within the total network hierarchy.

can use such prewired processing biases to competitively in-
hibit, or to mask, the learned potency of its constituent
items. That is why the cooperative-competitive design of
A4 that solves the temporal chunking problem is called
a masking field.

One property of the masking field design is that longer
lists, up to some maximal length, can selectively activate cells
that have a prewired competitive advantage over shorter
sublists in the struggle for STM activation and storage. Such
a competitive advantage enables a masking field to exploit
the fact that longer sublists, other things being equal, are
better predictors of subsequent events than are shorter sub-
lists because they embody a more unique temporal context.
Thus a masking field is designed to generate STM representa-
tions which have the best a priori chance to correctly predict
the activation patterns across A 3, As an important side bene-
fit, the a priori advantage of longer, but unfamiliar, sublists
enables them to compete effectively for STM activity with
shorter, but familiar, sublists, thereby providing a solution
to the temporal chunking problem.

Masking fields

The present article focuses upon the design of level A4 in
this network hierarchy (Fig. 1). Level A 4, which is called
a masking field, generates a context-sensitive encoding of
the activation patterns that flicker across level A 3 through
time. The activation patterns across A3 influence A4 via the
conditionable pathways from A 3 to A 4. We will describe
how developmental rules for growth of connections from
A3 to A4 and for growth of connections within A4 enable
A4 to achieve a context-sensitive parsing of A 3'S activity
patterns. In order to understand this masking field design,
we review the design problems and principles which led to
its discovery .

The temporal chunking problem: seeking the most predictive
representation The word length effect

The postulate that longer sublists, up to some maximal
length, have a competitive STM advantage led to the predic-
tion of a word length effect in Grossberg (1978a, Section 41;
reprinted in Grossberg 1982a). A word length effect was re-
ported in the word superiority studies of Samuel et al. (1982,
1983). In these experiments, a letter was better recognized
when it was embedded in longer words of lengths from 1 to
4. As Samuel et al. (1983, p 322) have noted, other "lexical
theories had not previously included mechanisms that were
explicitly length dependent." We believe this is because other
lexical theories did not state, nor attempt to solve, the
temporal chunking problem. Further discussion of the word
length effect and related data is provided in Grossberg

(1984a, 1985).
In the light of the word length effect, the conclusion that

longer sublists have an a priori competitive advantage over
shorter sublists, up to some maximal length, may seem to be
self-contradictory. If prewired word biases can inhibit learn-
ed letter biases, then how is perception of letters facilitated
by a word context, which is the main result of word super-
iority studies? This paradox can also be resolved through an
analysis of how A 4 encodes activity patterns across A 3.

All letters are sublists: which computational units can self-

organize?

A resolution of this paradox can be derived by further con~
sidering what it means to say that every sublist of a list is also
a list. In order for sublists of a list to struggle for representa-
tional status, sets of individual items of the list need first to
be simultaneously represented at some level of processing,
which we identify with A 3. The theory shows how item rep-
resentations that are simultaneously active in STM across
A 3 can be grouped, or chunked, in to representations of
sublists at the next level of processing A4. The sublist rep-
resentations can then compete with each other for STM
activation within A4. Once the two levels A3 and A4 are

The core problem leading to masking field design is called
the temporal chunking problem (Grossberg 1978a, 1984a,
1985). Consider the problem of unitizing an internal rep-
resentation for an unfamiliar list of familiar items; e.g. a
novel word composed of familiar items, such as phonemes
or syllables. The most familiar groupings of the list are the
items themselves. In order to even know what the novel list
is, all of its individual items must first be presented. All of
these items are more familiar than the list itself. What mech-
anisms prevent item familiarity from forcing the list always
to be processed as a sequence of individual items, rather than
eventually as a whole? How does a not-yet-established word
representation overcome the salience of well-established
phoneme or syllable representations? How does unitization
of unfamiliar lists of familiar items even get started? If the
temporal chunking problem is not solved, then unitized
internal representations of lists with more than one item can
never be learned.

Another version of the temporal chunking problem be-
comes evident by noticing that every sublist of a list is a per-
fectly good list in its own right. Letters, syllables, and words
are special sublists that have achieved a privileged status due
to experience. In order to understand how this privileged
status emerges, we need to analyse the processing substrate
upon which all possible sublists are represented before
learning occurs. This processing substrate exists within the
theory at level A 3. Then we need to examine how prewired
network processes interact with network learning processes
to determine which of these sublists will succeed in activating
a unitized representation at level A4.

The subtlety of this unitization process is reflected by
even the trivial fact that novel words composed of familiar
items can be learned. This fact shows that not all sublists
have equal prewired weights in the competitive struggle to be
represented at A4. Such prewired weights include the number
of coding sites in a sublist representation and the strength
of the competitive intercellular signals that are emitted from
each sublist's representation. Somehow a word as a whole
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their physical correlates in the speech wave are appropriately
described in acoustic terms only," This problem can be dealt
with using a theory whose levels can learn to encode abstract
item and list representations within a substrate of previously
uncommitted nodes or cells.

Self-organization of auditory-motor features, items, and

synergies

clearly distinguished, it becomes obvious that individual list
items, being sublists, can be represented at A4 as well as at
A 3. In the special case of letters and words, this means that
letters are represented at the item level, as well as at the list
level. Prewired word biases can inhibit learned letter biases
at the level A4, but not at the level A3. Excitatory top-down
priming from A4 to A 3 and from A4 to V* can then support
the enhanced letter recognition that obtains during word
superiority experiments.

To clearly understand how the item representations at
A 3 differ from the sublist representations at A4, one must
study the theory's processes in some detail. Even without
such a study, one can conclude that "all letters are sublists."
Indeed, all events capable of being represented at A4 exist
on a equal dynamical footing. This conclusion clarifies how
changes in the context of a verbal item can significantly alter
the processing of that item, and why the problem of identify-
ing the functional units of language has proved to be so

perplexing (Darwin 1976; Studdert-Kennedy 1980; Young
1968). In A4, no simple verbal description of the functional
unit, such as phoneme, syllable, or word, has a privileged
status. Only the STM patterns that survive a context-sensitive
interaction between associative and competitive rules have
a concrete existence.

The conclusions that "all letters are sublists" implies the
use of different computational units than one finds in many
other models of language processing. In other models, levels
such as A 3 and A 4 often represent letters and words, re-
spectively.. In the present theory, levels A 3 and A4 represent
items (more precisely, patterns of temporal order and item
information in STM) and lists (more precisely, sublist pars-
ings in STM), respectively. Thus in our theory, all familiar
letters possess both item and list representations, not just
letters such as A and I that are also words.

This property helps to explain the data of Wheeler
(1970) showing that letters such as A and I, which are also
words, are not recognized more easily than letters such as
E and F, which are not also words (Grossberg 1984a, 1985).
In a model which postulates a letter level and a word level,
letters such as A and I are represented on both the letter level
and the word level, whereas letters such as E and F are rep-
resented only on the letter level. In such a model, letters
such as A and I might be expected to be better recognized
than letters such as E and F. Choosing letter and word
levels thus leads to serious data-related difficulties, includ.
ing the inability to explain the Wheeler (1970) data and the
Samuel et al. (1982, 1983) data without being forced into
further paradoxes.

More generally, any model whose nodes represent letters
and words, and only these units, faces the problem of de-
scribing what the model nodes represented before a particular
letter or word enters the subject's lexicon, or what happens
to these nodes when such a verbal unit is forgotten. This
issue hints at the core problem that such a model cannot self-
organize (Grossberg 1984a, 1985). The self-organization
process which controls language processing hides the mechan-
istic substrate upon which it is built. Concepts from lay
language, such as letters and words, provide a misleading tool
for articulating the computational units which are manipulat-
ed by a self.organizing language system. Repp (1981, P 1462)
has made the similar point "that linguistic categories are
abstract and have no physical properties, and that, therefore,

The conclusion that increasingly abstract computational
units are activated at higher levels of a self-organizing lang-
uage system does not deny the fact that more concete
entities, such as auditory features and phonemes, are
activated at earlier processing stages. Within our theory,
however, even these entities are emergent properties due to
intercellular interactions. Before describing A4 in detail we
briefly review properties of levels AI, A 2, and A 3 to clarify
the meaning of the activity patterns across A3 that A4 can
encode. The mechanisms which rigorously instantiate this
intuitive review are described in detail in Grossberg (1978a)
and reviewed in Grossberg and Stone (1986a).

At an early stage of development, the environmentally
activated auditory patterns at stage A 1 in Figure 1 start to
tune the long-term memory (LTM) traces within the path-
ways from A 1 to A 2, and thus to alter the patterning of
short-term memory (STM) auditory "feature detector" activ-
ation across A2. After this LTM tuning process begins, it can
be supplemented by a "babbling" phase during which end-
ogenous activations of the motor command stage M1 can
elicit simple verbalizations. These verbalizations generate
environmental feedback from M1 to A 1 which can also tune
the Al -+ A 2 pathways. The learning within the feedback
pathway M1 -+ A 2 -+ A 2 helps to tune auditory sensitivities
to articulatory requirements. This process clarifies aspects
of the motor theory of speech perception (Cooper 1979;
Liberman et al. 1967; Uberman and Studdert-Kennedy 1.978;
Mann and Repp 1981; Repp and Mann 1981; Studdert-
Kennedy et al. 1970).

Just as the auditory patterns across A 1 tune the Al -+
A2 LTM traces, the endogenously activated motor command
patterns across M1 tune the M1 -+ M2 LTM traces. The
activation patterns across M 2 encode the endogenously
activated motor commands across M1 into "motor features"
using the same mechanisms by which the activation patterns
across A2 encode the exogenously activated auditory pat-
terns across A 1 into "auditory features."

The flow of adaptive signalling is not just bottom-up
from A 1 to A 2 and from M 1 to M 2. Top-down condition-
able signals from A2 to A 1 and from M2 to M 1 are also
hypothesized to exist. These top-down signal patterns rep-
resent learned expectancies, or templates. Their most impor-
tant role is to stabilize the learning that goes on within the
adaptive pathways A 1 -+A2 andMl -+M2. In so doing, these
top-down signal patterns also constitute the read-out of
optimal templates in response to ambiguous or novel bot-
tom-up signals. These optimal templates predict the patterns
that the system expects to fmd at A 1 or M 1 based upon past
experience. The predicted and actual patterns merge at A 1 and
M 1 to form completed composite patterns which are a mix-
ture of actual and expected information.

Auditory and motor features are linked via an associative
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these feature patterns. Each such representation is called an
item representation. The item representations include the
representations of phonemes.

All new learning about item representations is encoded
within the LTM traces of the A2 -+ A3 adaptive pathway.
Although each item representation is expressed as a pattern
of activation across A 3, the learning of these item represen-
tations does not take place within A 3. This flexible relation-
ship between learning and activation is needed to understand
how temporal codes for lists can be learned and performed.
For example, as a sequence of sound patterns activates AI,
the patterns of "auditory feature" activation across A2 can
build up and rapidly decay, via a type of iconic memory
(Sperling 1960). These A2 activation patterns, in turn, lead
to activation of item representations across A 3. The item
representations are stored in STM, as a type of "working
memory" (Cermak and Craik 1979), due to the feedback
in teractions within A 3. As a succession of item representa-
tions across A 3 is stored in STM, the spatial pattern of STM
activity across A 3 represents temporal order infonnation
across the item representations of A 3.

Temporal order information across item representations: the
spatial recoding of temporal order

As more items are presented, the evolving spatial patterns of
activity across A3 include larger regions of the item field,
up to some maximal length. Thus the temporal processing
of items is converted into a succession of expanding spatial
patterns within A 3. This is the main reason why spatial
mechanisms that are used in visual processing can also be
used to design the masking field A4.

Each activity pattern across A 3 is a context-sensitive com-
putational unit in its own right. In such a representation,
changing anyone activity changes the coded meaning of the
entire list of items. The activity pattern "is" the code, and
no further labels or algorithms are needed to define it. In
order to understand how such a code works, it is necessary
to specify laws for the unitized encoding and recognition of
item sublists by A4, and laws for the rehearsal and recall of
items before and after they are unitized by A4.

The LTM lnvariance Principle

Before these tasks can be accomplished, it is first necessary
to characterize the laws whereby items can reliably represent
temporal order information via the spatial patterning of
activation across A 3, These laws can be derived from an
analysis of the self-organization process. In particular, an
incorrect choice of STM laws within A 3 could cause an un-
stable breakdown of LTM within the conditionable pathways
from A 3 toA4'

Grossberg (1978a, 1978b) introduced theLTM In variance
Principle in order to derive STM laws for A 3 that are com-
patible with stable LTM encoding. This principle shows how
to alter the STM activities of previous items in response to
the presentation of new items so that the repatteming of
STM activities that is caused by the new items does not in-
advertently obliterate the L TM codes for old item groupings.
For example, consider the word Myself from this perspective.

map from A 2 to M 2. When M 1 is endogenously activated, it
activates a motor representation at M 2 via the adaptive path-
way M 1 ~ M2' as well as an auditory representation at
A 2 via environmental feedback M 1 ~ A 1 and the adaptive
pathway A 1 ~ A2. Since A2 and M2 are then simultaneous-
ly active, the associative map A2 ~ M2 can be learned. This
map also links auditory and articulatory features.

.The associative map A2 ~ M2 enables the imitation of
novel sounds -in particular, of non self-generated sounds -
to get underway. It does so by analysing a novel sound via
the bottom-up auditory pathway A 1 ~ A2' mapping the
activation patterns of auditory feature detectors into activa-
tion patterns of motor feature detectors via the associative
map A2 ~ M2' and then synthesizing the motor feature
pattern into a net motor command at M1 via the top-down
motor template M2 ~ MI. The motor command, or synergy,
that is synthesized in this way generates a sound that is
closer to the novel sound than are any of the sounds current-
ly coded by the system. The properties whereby the learned
map A 1 ~ A 2 ~ M2 ~ M 1 enables imitation of novel sounds
to occur clarifies with the analysis-by-synthesis approach to
speech recognition (Halle and Stevens 1962; Stevens 1972;
Stevens and Halle 1964).

The environmental feedback from M 1 to A 1 followed by
the learned map A 1 ~ A 2 ~ M 2 ~ M 1 defines a closed feed-
back loop, or "circular reaction" (Piaget 1963). The theory's
explication of the developmental concept of circular reaction
helps to clarify the speech performance concepts of motor
theory and analysis-by-synthesis in the course of suggesting
how an individual can begin to imitate non-self-generated
speech sounds.

The stages A2 and M2 can each process just one spatial
pattern of auditory or motor features at a time. Thus A 2 can
process an auditory "feature code" that is derived from
a narrow time slice of a speech spectrogram, and M2 can
control a simple motor synergy of synchronously coordinat-
ed muscle contractions. These properties are consequences
of the fact that spatial patterns, or distributed patterns of
activity across a field of network nodes, are the computa-
tional units in these real-time networks. This computational
unit is a mathematical consequence of the associative learn-
ing laws that govern these networks (Grossberg 1982a). The
later stages Ai and Mi in Figure 1 are all devoted to building
up recognition and recall representations for temporal
groupings, or lists, of spatial pattern building blocks.

A spatial pattern of activation across A2 encodes the
relative importance of all the "feature detectors" of A2 which
represent the auditory pattern that is momentarily activating
AI, In order to encode temporal lists of auditory patterns,
one needs to simultaneously encode a sequence of spatial
patterns across A2 's auditory feature detectors. The follow-
ing way to accomplish this also addresses the fundamental
problem that individual speech sounds, and thus their spatial
patterns across A2' can be altered by the temporal context
of other speech sounds in which they are embedded.

In addition to activating the associative map from A2 to
M 2, each spatial pattern across A 2 also activates an adaptive
pathway from A 2 to A 3 .Although all the adaptive pathways
of the theory obey the same laws, each pathway learns dif-
ferent information depending on its location in the network.
Since the A 2 ~ A 3 pathway is activated by feature patterns
across A2, it builds up learned representations, or chunks, of
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We would not wish the LTM codes for My, Self, and Elf to
be obliterated just because we are learning the new word
Myself. On the other hand, the predictive importance of the
groupings My, Self, and Elf may be reduced by their tempor-
al embedding within the list Myself. We therefore assume
that A 3 is designed to satisfy the LTM lnvariance Principle:
The spatial patterns of temporal order information in STM
are generated by a sequentially presented list in such a way
as to leave the A 3 -+ A 4 L TM codes of past event groupings
invariant, even though the STM activations caused by these
past groupings may change markedly across A4 as new items
activate A 3 .

It turns out that a suitably designed cooperative-com-
petitive interaction across A 3 can mechanistically realize
this principle. This A 3 design has been used to analyse and
predict data about free recall, serial verbal learning, inten-
sity-time tradeoffs, backward coding effects, item grouping
effects, and influences of presentation rate on recall order
(Grossberg 1978a, 1978b, 1982b, 1985; Grossberg and
Stone 1986b). For present purposes, we simply note that
different STM activity patterns across the same set of item
representations within A3 can encode different temporal
orderings of these items.

The emergence of complex speech and language units

The concept of temporal order information across item rep-
resentations is necessary, but not sufficient, to explain how
novel lists of items can be learned and performed. In addi-
tion, one needs to consider how the bottom-up condition-
able pathway from M2 to M3 (Fig. 1) learns unitized rep-
resentations of motor items (synergies); how the top-down
conditionable pathway from M3 to M2 learns motor temp-
lates or expectancies that can read-out coarticulated per-
formance of these synergies; and how the conditionable
pathway from A3 to M3 learns an associative intermodality
map. Using these mechanisms, one can analyse how novel
item representations are formed. For example, suppose that
an analysis-by-synthesis of a novel sound has been accom-
plished by the composite map A 1 -+ A 2 -+ M 2 -+ M 1. Such
a map generates a novel pattern of auditory features across
A2 and a novel pattern of motor features acrossM2 (Section
"Self-organization of auditory-motor features, items, and
synergies"). These feature patterns can then trigger learning
of unitized item representations at A3 and M3. These uni-
tized representations can be learned even though the network
never endogenously activated these feature patterns during
its "babbling" phase. In this way, the network's learned
item codes can continue to evolve into ever more complex
configurations by a combination of imitation, self-generated
vocalization, STM regrouping, and L TM unitization. An
associative map A3 -+ M3 between new unitized item rep-
resentations also continues to be learned. Using this back-
ground, we can now summarize how a unitized representa-
tion of an entire list, such as a word, can be learned and
performed.

is also a list, the conditionable pathway from A 3 to A4 si-
multaneously "looks at", or filters, all the sublist groupings
to which it is sensitive as the speech stream is presented
through time. The masking field within A4 then detennines
which of these sublist groupings will represent the list by
being stored in STM at A4.

These sublist representations contribute to the recogni-
tion of words (Grossberg and Stone 1986a) but cannot, by
themselves, elicit recall. This raises the issue of how short
novel lists of familiar items can be recalled even before they
are unitized. The fact that a verbal unit can have both an
item representation and a list representation (Section "All
letters are sublists: which computational units can self-
organize?") plays an important role.

Recall of a short novel list of familiar items is triggered
by a nonspecific rehearsal wave to A3 (Grossberg 1978a,
1978b). Such a wave opens an output gate that enables out-
put signals of active items to be emitted from A 3 to M 3 ,
with the most active item representations being read-out be-
fore less active item representations. As each item is read-out,
it activates a negative feedback loop to itself that selectively
inhibits its item representation, thereby enabling the next
item representation to be read-out. Each item representation
is recalled via the leamed A3 -+ M3 -+ Mz -+ M1 sensory-
motor map.

This type of recall is immediate recall from STM, or
working memory, of a list of unitized item representations.
It is a type of "controlled" process, rather than being an
"automatic" unitized recall out of LTM. In order for a uni-
tized list chunk in A4 to learn how to read-out its list of
motor commands from L TM, the chunk must remain active
long enough during the learning process to sample pathways
to all of these motor commands. In the simplest realization
of how temporal order infonnation across item representa-
tions is encoded and read-out of LTM, the top-down temp-
late from A4 to A3 leams this infonnation while the con-
ditionable pathway from A3 to A4 is being tuned. Later
activation of a list chunk in A4 can read this LTM temporal
order infonnation into a pattern of STM temporal order
infonnation across the item representations of A 3, Activa-
tion of the rehearsal wave at this time enables the list to be
read-out of STM. Unitized recall can hereby occur via the
learnedA4 -+A3 -+M3 -+Mz -+M1 sensory-motor map.

The order of recall due to read-out of temporal order in-
fonnation from LTM is not always the order in which the
items have been presented. Thus although the network is de-
signed to stabilize learning and LTM insofar as possible, its
interactions occasionally force a breakdown of temporal
order infonnation in LTM; for example, as occurs during
serial verbal learning. See Grossberg (1982b, 1985) for
recent analyses of how such breakdowns in temporal order
infonnation in LTM can occur.

The design of a masking field: spatial frequency analysis of
item-order information

With this background, we can now turn to the quantitative
design of the masking field A 4. As a sequence of items is
temporally processed, the masking field updates its choice of
list representation, parsing the item sequence into a pre-
dictive grouping of unitized sublist choices based on a com-

List chunks, recognition, and recall

As the network processes a speech stream, it establishes an
evolving STM pattern of temporal order information across
the item representations of A 3, Since every sublist of a list
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bination of a priori parameter choices and past learning.
A spatial pattern of STM activity across the item representa-
tions of A 3 provides the inputs which are grouped by A4.
As more items are presented, new spatial patterns are regis-
tered that include larger regions of the A 3 item field, up to
some maximum list length. Thus the temporal processing of
items is converted by A 3 into a succession of expanding
spatial patterns.

Given this property, the temporal chunking problem can
be rephrased as follows. How do sublist chunks in A4 that
encode broader regions of the item field mask sublist chunks
that encode narrower regions of the item field? This insight
can be rephrased as a principle of masking field design

(Grossberg 1984a, 1985):

2. Masking parameters increase with sequence length.
Critical masking parameters of masking field nodes increase
with the length of the item sequences that activate them.
This rule holds until an optimal sequence length is reached.

3. Masking hierarchy. Nodes that are activated by a given
item sequence can mask nodes that are activated by sub-
sequences of this sequence.

4. Sequence selectivity. If a node's trigger sequence has
length n, it cannot be supraliminally activated by sequences
of length significantly less than n.

Properties 1 and 2 suggest that the A3 ~ A4 pathway
contains a profusion of connections that are scattered broad-
ly over the masking field. Property 3 suggests that closely
related sequences activate nearby cells in the masking field.
Postulate 4 says that, despite the profusion of connections,
the tuning of long-sequence cells prevents them from re-
sponding to short subsequences.

The main problem is to resolve the design tension be-
tween profuse connections and sequence selectivity. This
tension must be resolved both for short-sequence (e.g.,
letter) cells and long-sequence (e.g., word) cells: if connec-
tions are profuse, why are not short-sequence nodes un-
selective? In other words, what prevents many different
item representations in A3 from converging on every short-
sequence cell in A4 and thus being able to activate it? On the
other hand, if many item representations from A 3 do con-
verge on long-sequence cells in A4, then aren't these long-
sequence nodes activated by subsequences of the items?
Somehow the growth rules that generate positional gradients
in A3 ~ A4 pathways and the competitive interactions with-
in A4 are properly balanced to achieve all of these properties.

Grossberg (1985) suggested how a combination of ran-
dom growth rules in A3 ~ A4 and activity-contingent self-
similar growth rules within A4 could achieve such a balance.
These concepts led to several predictions concerning the
developmental events that may regulate growth of lateral
neural connections in response to afferent neural signals.
In the present work, we have further developed these ideas
to the point where the desired properties can be obtained
even if critical numerical parameters in some of our networks
are altered by a factor of 10. This numerical stability is all
the more remarkable when one considers that different
orderings of the same items, as well as the same orderings of
items in different lists, can be selectively coded by such
a masking field.

Sequence Masking Principle. Broader regions of the item field
A3 are fIltered by the A3 -+ A4 pathway in such a way that
they selectively excite nodes in A4 with stronger masking
parameters.

In other words,A4 is sensitive to the spatial frequency of
the input patterns that it receives from A3. We will show
how nodes in A4 which are selectively sensitive to a prescrib-
ed spatial frequency range define a masking subfield. Each
masking sub field is characterized by a different choice of
numerical parameters, which are determined by simple
growth rules. Sub fields whose cell populations have broader
spatial frequencies and/or more coding sites can competitive-
ly mask STM activities of subfields with narrower spatial
frequencies and fewer coding sites (Fig. 2).

This on-line list parsing capability must reconcile several
properties that could be in conflict in a poorly designed sys-
tem. For example, how does a short sublist activate one
representation, yet an updated list that includes the sublist
activate a different representation? Why does not the rep-
resentation of the shorter list always inhibit the representa-
tion of the longer list? Why does not the converse hold?
In short, how does the masking field automatically rescale
itself to selectively respond to all list lengths and orderings,
up to some maximal length?

Several properties are implicit in these design require-
ments; namely:

1. Sequence representation. All realizable item sequences,
up to a maximal sequence length, can initially generate some
differential reaction, however weak, in the masking field.

MASKING FIELD

Development of a masking field: random growth and self-
similar growth

The primary structure of a masking field can be understood
in terms of two interacting growth rules: random growth of
connections from A3 to A4, and self-similar growth of cells
and connections within A4. We now explain these concepts.

Suppose that each item node in A 3 sends out a large
number of randomly distributed pathways towards the list
nodes in A 4. Suppose that an item node randomly contacts
a sequence node with a small probability p. This probability
is small because there are many more list nodes than item
nodes. Let X be the mean number of such contacts across
all of the sequence nodes. Then the probability that exactly

ITEM FIELD
Fig. 2. Selective activation of a masking field. The nodes in a masking
field are organized so that longer item sequences, up to some optimal
length, activate nodes with more potent masking properies. Individual
items, as well as item sequences, are represented in the masking field.
The text describes how the desired relationship between item field,
masking field, and the intervening adaptive filter can be self-organized
using simple developmental rules
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k pathways contact a given sequence node is given by the
Poisson distribution

"\k -Ap... = '" e (1) 00
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AFTER

(b)
Fig. 3a and b. Volume-dependent membrane receptors. a A spectrum
of F2 cell sizes is generated such that the number of membrane synap-
tic sites covaries with cell size. b More F1 connections can arborize
on the larger cells

of membrane organelles that can migrate and differentiate
into mature membrane receptors in response to developing
input pathways (Patterson and Purves 1982). The number of
membrane organelles covaries with cell size to prevent the
internal level of cell excitation, say as measured by the
maximum ratio of free internal Na+ to K+ ions, from be-
coming too large (Fig. 3).

Activity-dependent self-similar cell growth. Pathways from
the item field grow to the list nodes via random growth
rules. Before these pathways reach their target cells, these
cells are of approximately the same size. As longer item lists..

~ k!

If K is chosen so that K < '" < K + 1, then P k is an increas-
ing function of k if 1 ~ k ~ K and a decreasing function of
k if k ;. K. If", is sufficiently small (approximately 4), then
Eq. (1) implies that sequences of length k ~ K will be re-
presented within the masking field, thereby satisfying prop-
erties 1 and 2. Related random growth rules, such as the
hypergeometric distribution, also have analogous properties.

Due to the broad and random distribution of pathways,
list nodes will tend to be clustered near nodes corresponding
to their sublists, thereby tending to satisfy property 3.
A further property is also needed to satisfy property 3. Since
a long-list node tends to mask all of its sublists, such a node
must be able to send inhibitory signals to all the nodes which
code these sublists. Thus the interaction range (viz., the
axons) of an A4 node should increase with the length of the
list to which it is maximally sensitive (Fig. 2). This is called
the Principle of Self-Similar Growth (Grossberg 1982a,

1985).
In order to realize property 4, an A4 node that receives

k pathways from A 3 somehow dilutes the input in each path-
ways so that (almost) all k pathways must be active to gener-
ate a supra threshold response. As k increases, the amount
of dilution also increases. This property suggests that long-
list cells may have larger cellular volumes, since a larger
volume can more effectively dilute a signal due to a single
output pathway. Larger volumes also permit more pathways
to reach the cell's surface, other things being equal. The con-
straint that long-list nodes are associated with larger para-
meters, such as number of sites and spatial frequencies, is
hereby extended to include larger surface areas. This con-
clusion reaffirms the importance of the self-similarity prin-
ciple in designing a masking field: a cell has longer inter-
actions (viz., axons) because it has a larger cell body to
support these interactions.

This discussion translates the formal properties 1-4 into
two growth rules: random A3 -+ A4 growth and self-similar
A4 -+ A4 growth. It remains to say how these two types of
rules are joined together, as is required by the Sequence
Masking Principle. In other words, how do larger cell surfaces
attract more pathways, whereas smaller cell surfaces attract
fewer pathways? Without further argument, a cell surface
that is densely encrusted with axon terminals might easily be
fired by a small subset of these axons. To avoid this possibili-
,ty, the number of allowable pathways must be tuned so that
the cell is never overloaded by excitation.

BEFORE

(a)

~..I

Activity-contingent self-similar cell growth

There exist two main ways to accomplish this property
which have not yet been experimentally tested. A combina-
tion of the two ways is also possible:

AFTER

(b)
Fig. 4a and b. Activity-dependent selt'-similar cell growth. a F~ cells
are initially all approximately the same size. b Variable numbers of
F, cell connections across F~ cells generate variable levels of average
F~ cell activation, which cause variable amounts of compensatory cell
growth until a target average level of intracellular excitation is attain-
ed within all F. cells

Volume-dependent membrane receptors. At an early stage
of development, a spectrum of cell sizes is endogenously
generated across the masking field by a developmental
program. Each cell of a given size contains a fixed number
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(a)

(b)
Fig. Sa and b. Two types of masking field sensitivity. a A masking
field A 4 can automatically rescale its sensitivity to differentially
react to activity patterns which activate variable numbers of A 3 cell~.
It hereby acts like a "multiple spatial frequency fIlter." b A masking
field can differentially react to different A3 activity patterns which
activate the same set of A 3 cells. By a and b, it acts like a spatial
pattern discriminator which can compensate for changes in overall
spatial scale without losing its sensitivity to pattern changes at the
finest spatial scale

begin to be processed by A3, these lists begin to activate
their respective list nodes. The A4 cells which receive many
A3 ~ A4 connections experience an abnormal internal cel-
lular milieu (e.g., abnormally high internal Na+ /K+ concent-
ration ratios) due to the convergence of many active path-
ways on the small cell volumes. These large internal signals
trigger self-similar cell growth that continues until the cell
and its processes grow large enough to reduce the maximal
internal signal to normal levels (Fig. 4).

The tuning of A4 cell volume to the number of pathways
from A 3 is thus predicted to be mediated by a self-similar
use-and-disuse growth rule. The fact that internal cellular
indices of membrane excitation trigger cell growth until
these indices equilibrate to normal levels immediately shows
why the mature cell needs simultaneous activation from
most of its pathways before it can fire. A self-similar use-
and-disuse growth rule has many appealing properties. Most
notably, only item sequences that occur in the speaker's
language during the critical growth period may be well-
represented by the chunks of the speaker's masking field.
This fact may be related to properties of second language

learning.
In summary, the design of masking field can be realized

by a simple developmental program: profuse random growth
along spatial gradients from A 3 to A4, which induces activity-
contingent self-similar growth within A4 that is constrained
by competition for synaptic sites.

Hypothesis fonnation, anticipation, evidence, and prediction

Sensitivity to multiple scales and intrascale variations

A masking field is sensitive to two different types of pattern
changes.

Expanding patterns: temporal updating. As a word like My-
self is processed, a subword such as My occurs before the
entire word Myself is experienced. Figure Sa schematizes this
type of informational change. As the word is presented,
earlier STM activations are modified and supplemented by
later STM activations. The STM pattern across A3 expands
as the word is presented. After Myself is fully presented,
parts such as My, Self, and Elf are still (at least partially) re-
presented within the whole. The masking field can nonethe-
less update its initial response to My as the remainder of
Myself is presented. In this way, the masking field can react
to the whole word rather than only its parts.

Internal pattern changes: temporal order information. The
second type of masking field sensitivity is illustrated by the
two words Left and Felt. This comparison is meant to be
illustrative, rather than attempting to characterize the many
subtle differences in context-sensitive alterations of sound
patterns or reading patterns. The words Left and Felt illus-
trate the issue that the same set of items may be activated by
different item orderings. To distinguish two such patterns,
sensitivity to different spatial scales is insufficient because
both lists may activate the same spatial scale. Instead, sen-
sitivity to different STM patterns which excite the same set
of items is required (Fig. 5b). The computer simulations
summarized by Figures 6-13 below illustrate both types of
masking field selectivity.

A third property of a masking field is of such importance
that it deserves special mention. We will describe a masking
field that is capable of simultaneously discriminating more
than one grouping within a list. For example, such a masking
field might respond to the A3 representation of the word
Myself by strongly activating an A4 population that is sen-
sitive to the whole word and weakly activating A4 popula-
tions that are sensitive to the word's most salient parts. In
such a representation, the total STM pattern across A4 re-
presents the A3 STM pattern. The relative sizes of A4's STM
activities weight the relative importance of the groupings
which are coded by the respective cell populations.

The suprathreshold STM activities across A4 are approx-
imately normalized, or conserved, due to its competitive
feedback interactions. The STM activities across A4 may
thus be interpreted as a type of real-time probabilistic logic,
or hypothesis-testing algorithm, or model of the evidence
whichA4 has about the pattern acrossA3.

Such a masking field also possesses a predictive, or anti-
cipatory, capability. In response to a single item across A 3,
the A4 population which is most vigorously activated may
code that item. In addition, less vigorous activations may
arise at those A4 populations which represent the most
salient larger groupings of which the item forms a part.
Such a masking field can anticipate, or predict, the larger
groupings that may occur of which the item forms a part.

As more items are stored in STM across A3, the set of
possible groupings encoded by A4 changes. In response to
additional items, different groupings are preferred within
A4. Moreover, as more items are stored by A3, A4's uncer-
tainty concerning the information represented at A3 may
decrease, much as the prediction of what follows ABC is
less ambiguous than the prediction of what follows C alone.
As A4's uncertainty decreases, the spatial distribution of
STM activity across A4 becomes more focussed, or spatially
localized. This type of spatial sharpening is not merely due
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ITEM RELD (F1)

TEMPORAL ORDER
OVER ITEMS IN STM

MASKING AELD (F2)
INPUT PATTERN

1&01

Fig. 6. List coding of a single item: network F, en-
codes in short term memory (STM) the pattern
of temporal order information over item represen-
tations. In this figure, the single item {O}is activat-
ed. Network F2 encodes in STM the pattern of
sublist chunks that are activated by F,. The first
three rows depict the inputs from F, to F2. They
are broadly distributed across F2. The List Code in
STM depicts the STM response to these inputs.
Only the {a} cells in F2 are stored in STM, despite
the broad distribution of inputs
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to contrast enhancement. Rather it measures the degree of
informational uncertainty within the A4 code. These pre-
dictive, multiple-grouping properties of a masking field are
illustrated by the computer simulations summarized in
Figures 14-16-

Computer simulations

Before translating these developmental rules into mathemat-
ical equations, we describe some of our computer simulations
of masking field properties. Figures 6-13 depict the simplest
example of masking field dynamics. In this example, each
distinct spatial pattern across A3 chooses a unique nodal
population within A4. The same numerical parameters were
used in all of these simulations. Only the input patterns
varied. In Figures 14-16, a fIXed but different set of para-
meters was chosen to illustrate how a masking field can
generate spatially distributed and anticipatory sublist repres-
entations of spatial patterns across A3. In these representa-
tions, the masking field is maximally sensitive to the entire
list across A3, but also generates partial activations to salient
sublists and suoerlists of this list.

These figures can be combined in several ways to provide
different insights into masking field properties. Consider
Figure 6 to start. In this Figure, a single item in A3 (which
is denoted by F1) is active. This item generates positive
inputs to a large number of nodes in A4 (which is denoted
by F2). The input sizes are depicted by the heights of the
bars in the three rows labelled Input Pattern. Each row lists
all F2 nodes which receive the same number of pathways
from Fl. The first row consists of F2 nodes which receive
one pathway, the second row consists of F2 nodes which
receive two pathways, and the third row consists of F2 nodes
which receive three pathways. In row 1, each F2 node in the
set labelled {i} receives a pathway from the F1 item node
labelled {i} , i = 0, I, 2, ..., 4. Note that four F2 nodes re-
ceive inputs from the {OJ F1 node. In row 2, all F2 nodes
labelled {O, I} receive pathways from the Fl nodes {O} and
{I} .In row 3, all F2 nodes labelled {O, I, 2} receive pathways
from the F1 nodes{O}, {I}, and {2}.

The input to all the F2 nodes which receive pathways
from the F1 node {OJ are positive. There are 44 such nodes
in Figure 6. Despite this fact, the only F2 nodes capable of
becoming active in STM are the nodes which receive path-
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Fig. 7. List coding of a single item: in response to
item {I} in FI' the masking field in F2 chooses
the {I} cells in response to a broad distribution
of inputs. Thus the level I of the List Code in
STM responds Selectively to individual items in
Fl. The same thing is true in the next figure

ways only from the active item node {o} .These are the
F2 nodes labelled {a} .The STM activities of the F2 nodes
are listed in three rows under the heading List Code in STM.
These are the activities which the nodes stor~ in STM after
the network equilibrates to the entire input pattern. Figure 6
illustrates how F2 can transform a widespread input pattern
into a focal, and appropriate, STM activation.

Figures 7 and 8 further illustrate this property. In each
Figure, a different item at FI is activated. Each item gener-
ates a widespread input pattern to F2. Each input pattern
is contrast-enhanced into a focal STM activation. This STM
activation is restricted to the F2 nodes which receive path-
ways from only the active item node.

A comparison of Figures 6, 7, and 9 discloses a different
property of masking field dynamics. Suppose that the
temporally ordered list of items {O}, {l} is received by Fl.
The list as a whole generates a different spatial pattern across
FI (Fig. 9) than does its first item (Fig. 6) or its second item
(Fig. 7) taken in isolation. The list as a whole also activates
even more nodes than does either item taken separately -
82 nodes in all. Despite this fact, only a single node become
active in STM. This node is, moreover, an appropriate node

because it is one of the F2 {O, I} nodes that receive pathways
only from the F 1 items {O} and {I} .This comparison between
Figures 6, 7, and 9 thus illustrates the following F2 proper-
ties: sequence selectivity, and the ability of F2 nodes which
are activated by larger numbers of Fl nodes to mask the
activity of F2 nodes which are activated by smaller subsets
of Fl nodes.

A comparison of Figures 9 and 10 reveals another impor-
tant F2 property. In both of these figures, the same set of
Fl items -{a} and {I} -is activated, but a different spatial
pattern of activity exists across the items. The spatial pattern
in Figure 9 may represent the temporally ordered list {a, I} ,
whereas the spatial pattern in Figure 10 may represent the
temporally ordered list {a, I} , whereas the spatial pattern
in Figure 11 may represent the temporally ordered list {I, O}.
The simulations show that F2 is sensitive to the item pattern
as a whole, because F2 can generate different STM responses
to these patterns even though they activate the same un-
ordered set of Fl nodes. In particular, in Figures 9 and 10,
different F2 nodes become active within the set of F2 nodes
which receives pathways only from items {O} and {I} .

This comparison between Figures 9 and 10 clarifies what
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Fig. 8. See legend to Figure 7

we mean by the assertions that the spatial pattern across
Fl is the computational unit of the network, and that the
differential STM responses of F2 to these computational
units embodies a context-sensitive list chunking process.

A comparison of Figures 6, 7, 8, 9, and 11 illustrates
a more demanding variant of these F2 properties. As a tem-
porally ordered list of items {O}, {I} , {2} is processed by
F1, all the items become individually active at Fl as the
spatial patterns in Figures 6, 9, and 11 evolve through time.
The final STM response in Figure 11 is, however, restricted
to a single F2 node, which is one of the nodes receiving path-
ways only from items {O}, {I} , and {2} .

A comparison of Figures 11-13 makes the same point
as the comparison of Figures 9-10, but in a more demanding
variation. In each of the Figures 11-13, all the same un-
ordered set of items -{O} , {I} , and {2}- is active across Fl.
The different spatial patterns across Fl represent different
temporal orderings of these items: {a, I, 2} ,{I, 2, o} , and
{2, I, O} , respectively. In each Figure, a differentF2 node is
activated. The active F2 node is, moreover, one of the nodes
that receives pathways only from the item nodes {O}, {I} ,
and {2} .

Figures 14-16 illustrate howpresentationofa list through
time can update the sublist chunks in an F2 field that is
capable of simultaneously storing several sublist groupings in
STM. In Figure 14, item {O} most strongly activates the
{O} nodes of F2, but also weakly activates other F2 nodes
in an appropriate fashion. The F2 nodes which receive an
item pathway only from {O} have a maximal activity of
0.163. The F2 nodes which receive two item pathways, in-
cluding a pathway from {o} , have a maximal activity of
0.07. The F2 nodes which receive three item pathways, in-
cluding a pathway from {O} , have a maximal activity of
0.007. These activity weights characterize the degree of
"evidence" which the masking field possesses that each
grouping is reflected in the input pattern.

In Figure 15, the {O, I} spatial pattern across Fl most
strongly activates a node within the {O, I} subfield of F2,
but also weakly activates other nodes of F2 which receive in-
puts from {O} .The activity levels are 0.246 and 0.04, re-
spectively. In Figure 16, the (0, 1, 2} spatial pattern across
Fl most strongly activates a node within the {O, 1, 2} subfield
of F2 (with activity 0.184) but also weakly activates the {01
subfield of F2 (with activity 0.004). Note that the STM
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Fig. 9. List coding of an STM primacy gradient
across two items: a primacy gradient in STM
across two items of F, generates an even broader
input pattern to F2. The List Code in STM no
longer responds at either the {a} cells or the {1} cells.
Instead, a choice occurs among the set of possible
{O. 1} cells. Comparison with Figure 6 shows that
F2 can update its internal representation in a con-
text-sensitive way

activity pattern across Fz becomes more focussed from
Figure 14 to 16, as increasing information reduces predictive
uncertainty .

These simulations illustrate how simple growth rules can
generate a masking field with context-sensitive list parsing
properties. The results do not show how such an initial en-
coding can be refined and corrected by learning and memory
search processes. Such simulations would need to develop
other mechanisms of the adaptive resonance theory (Carpen-
ter and Grossberg 1985; Grossberg 1978a, 1980a, 1982a,
1984a) of which the masking field forms a part.

We now provide a mathematical description of a mask-
ing field.

Shunting on-center off-surround networks

In Eq. (2), VCr) is a variable voltage; C is a constant capacit-
ance; the constants Y+, V-, and YP are excitatory, inm"bito-
ry, and passive saturation points, respectively; and the tenns
g+, g-, and gP are conductances which can vary through
time as a function of input signals. Due to the multiplicative
relationship between conductances and voltages in Eq. (2),
a membrane equation is also said to describe a shunting inter-
action.

In a masking field, the cells are linked together via recur-
rent, or feedback, on-center off-surround interactions. The
properties of a masking field are thus part of the general
theory of shunting recurrent on-center off-surround net-
works (Fig. 17). Grossberg (1981, 1983) reviews the most
important functional properties of this class of networks.
Masking field properties may be viewed as an evolutionary
specialization of these general functional properties.

To emphasize the essential simplicity of the masking field
equations, we will build them up in stages. We first rewrite
Eq. (2) for the potential Xj(t) in the fonn

d-x. = -Ax. + (B -x. )p. - (x. +C )Q .
dt 1 1 1 1 1 I' (3)

The cell populations Vi of a masking field have potentials
Xi(t), or STM activities, which obey the membrane equations
of neurophysiology; namely,

C ~ = (y+ -Y)g+ + (Y-- Y)g-+ (YP -Y)gP. (2)
nt
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Fig. 10. List coding of an STM recency gradient
across two items: a recency gradient in STM occurs
across the same two items of F, rather than
a primacy gradient. Again, the {O} cells and the
{I ~ cells are suppressed. A different choice among
the {O, I} cells occurs than in response to the prim-
acy gradient of the preceding figure. Thus Fz can
distinguish different temporal orderings of the
same items

The inhibitory input Qj in Eq. (3) is a sum of feedback
signalsg(xm) fromotherpopulationsvm in the masking field.
Thus Qj can be written in the form

(5)Qi = L g (Xm ) Emi
mE!

Mass action interaction rules

In Eq. (4), tenD 1 is the output from the item node j ,
Pii is the connection strength of the pathway from vi in F1 to
vi in F2, and zii is the L TM trace within this pathway. Each
LTM trace was set equal to 1 in our simulations, since we did
not investigate the effects of learning. The terms Zjj will thus
be ignored in the subsequent discussion. Term Df(Xi) de-
scribes the positive feedback signal from vi to itself. Such
a feedback signal is needed so that vi can store activities in
STM after the inputs 1 terminate.

We now refine the notation in Eq. (3-5) to express the fact
that the cells in different subfields of a masking field possess
different parameters as a result of random growth and activi-
ty-dependent self.similar growth. A notation is needed to ex.
press the fact that an F2 population receives Fl pathways
only from a prescribed (unordered) set J of items. Let x~J)
denote the STM activity of an F2 population vfJ) which 'reo
ceives input pathways only from the set J of F 1 items.
There may, in principle, be any number of different popula-
tions vfJ) in F2 corresponding to each fixed set J of F 1 items.
Eq. (3) is then replaced by the equation

!!.- Xt(J) = -AxfJ) + (B -xfJry PfJ) -(xfJ) + C) QfJ) , (6)
dt

where 0 is the passive equilibrium point, B (> 0) is the ex-
citatory saturation point, and -C (" 0) is the inhibitory
saturation point. Term Pi is the total excitatory input and
term Qi is the total inhibitory input to vi. Potential Xi(t) can
vary between B and -C in Eq. (3) as the inputS Pi and Qi
fluctuate through time.

In a masking field, the excitatory input Pi is a sum of
two components: the total input from the item field plus
a positive feedback signal from vi to itself (Fig. 17). Thus
Pi can be written in the form
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ITEM RELD (F1)

Fig. II. List coding of an STM primacy gradient
across three items: in this figure, a primacy gradient
in STM occurs across three items of F, .The input
pattern to F2 is even broader than before. How-
ever, the STM response of F2 retains its selectivitr.
NetworkF2 suppressesall{O}, {I}, {2},{0,1},
{O, 2 ,...} cells and chooses for STM storage
a population from among the{O, I, 2}cells

In particular, E KJ can be written in a fonn which expresses
the randomness of the self-similar growth process:

Mass action interactions

which holds for all unordered sets J of Fl items that can
selectively send pathways to nodes in F2 .

Eq. (4) for the excitatory input Pj is then replaced by

PfJ) = jJ:, ~pJ{) + D IJI!(Xj(J»). (7)

The only notable change in Eq. (7) is in term DIJI. Nota-
tion IJI denotes the size of set J. Thus D I J I depends upon
the size of set J, but not upon the items in set J. This ex-
citatory feedback coefficient is one of the self-similar par-
meters that is sensitive to the spatial scale of the population
Y(J)j .

Eq. (5) for the inhibitory input Qj can be refined in
several stages. First we note that Qj(J) obeys an equation of
the form

EKJ =FIJIGIK IHIKnJI. (9)

By Eq. (9), EKJ is a product of three factors. Each factor
depends only upon the size of an unordered set of items.
These unordered sets are set K, set J, and their intersection
KN. E~ (9) says that the inhibitory interaction strength
from v~ to Vj(J) is the result of a random process. The net
strength E KJ is due to a statistically independent interaction
between growth factors that depends on the sizes of K, J,
and their overlap. By putting together all of these contraints,
we find the following

(8)

Eq. (8) can be interpreted as follows. Coefficient E KJ deter-
mines the strength of the inhibitory feedback pathway from
v~) to Vj(J). This path strength depends only u~on the un-
ordered sets K and J of items to which v~) and VjJ) respond.

(10)

Masking field equations

~ x(J) = -Ax(J) + (B -x(J» ) [ ~ L p(:') + D I f (x(J»)]dt i i i jEJ ] 1/ J I i

-(.'"fJ) +C) ~ g(x<':;~)FIJIGIKIHIKnJI'
m.K
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Fig. 12. List codings of different temporal order-
ings across three items: in this and the next figure,
different temporal orderings of the same three
items generate selective STM responses among
the {O, 1, 2} cells. Thus as future items activate
an updated'STM item code across F" the STM
list coding within Fz is also updated in a context-
sensitive way

All of the "intelligence" of a masking field is embodied in
the parallel interactions defined by such a network of equa-
tions. It remains to define how the coefficiepts D 1 J \, F I J \,
G I K I' and HI K n J I depend upon the unordered sets K and
J; how the positive and negative feedback functions [(w) and
g(w) depend upon their activities w; how the path strengths
pf) from Fl to F2 express a random growth rule; and how
numerical parameters were chosen.

sponge to high levels of Fl input, it also produces more
excitatory synaptic sites for its own axon collaterals.

Conservation of synaptic sites

Self-similar growth within list nodes

The coefficient D I J I detennines how the positive feedback
from a node to itself varies with the node's self-similar scale.
We assume that D I J I increases with scale, thereby enabling
nodes corresponding to longer sublists to gain a competitive
advantage in STM, other things being equal. The simplest
choice is made in our simulations, namely

DIJI =DIJI, (11)

The dependence of the intennodal connection strengths
pff), F 1 J I' G 1 K I' and HI K nJ 1 on the sets K and J will now
be described. The total connection strength to each popula-
tion Vj(J) from all cells in Fl and the total inhibitory connec-
tion strength to each population Vj(J) from all cells in F2 are
both chosen to be independent of K and J. This property
is compatible with the interpretation that the size of each
cell (population) is scaled to the total strength of its input
pathways. If more pathways input to such a cell, then each
input's effect is diluted more due to the larger size of the cell.
This constraint may, in principle, be achieved by either of
the mechanisms depicted in Figures 3 and 4. We call the net
effect of matching cell (population) volume to its total
number of afferents conservation of synaptic sites.

Conservation of synaptic sites enables the network to
overcome the following possible problem. Due to the random-

where D is a positive constant. This rule is consistent with
the possibility that, as an F2 cell (population) grows in re-



17

ITEM FIELD (F1)

TEMPORAL ORDER

OVER ITEMS IN STM

MASKING FIELD (F2)
INPUT PATTERN

LIST CODE IN STM

0&0-'

t 1[J==I~~~] =
I

111 ! II I

0000

Fig. 13. See legend to Figure 12

ness of the growth rules, there may exist different numbers
of cells in each of F2's masking subfields. For example,
103 F2 cells may receive inputs only from the Fl node {O},
104 cells may receive inputs only from the Fl node {I},
106 cells may receive inputs only from the Fl nodes{O}and
{I} , and so on. As these F2 cells compete for STM activity,
the competitive balance could be seriously biased by accidents
of random growth. Some mechanism is needed to compen-
sate for the possible uncontrolled proliferation of random
connections. Conservation of synaptic sites is one effective
mechanism. The present results suggest a new functional role
for such a growth rule. Thus we impose the following con-
straints:

Random growth from item nodes to list nodes

The connections Pj~ from Fl to F2 are chosen to satisfy the
conservation law LEq. (12)] as well as a random growth law.
We therefore impose the following constraint:

(12)

Synaptic conservation role

Let
}:; p~!) = constant = 1

jEJ /'

Random nonnalized growth role

Let

p~:') = J.- (1 -P I J I ) + ~
/P P I J I .(15)

II ill

The fluctuation coefficient PI J I in Eq. (15) detennines how
random the growth is from Fl to F2. If PI J I = 0, thenjfrowth

is detenninistic (but spatially distributed) because pt =-J:tT.

and

~ FI
m,K

(13)JIGIKIHIKnJI = constant.
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Fig. 14. Distributed sublist encodings ~f one, two,
and three items: this and the subsequent two
figures illustrate the STM responses of F. when
numerical parameters are chosen outside of the
STM choice range. Note that distributed STM
reactions occur in every case, and that these
STM reactions favor the populations that were
chosen in the STM choice simulations
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(14), this quantity is chosen to keep the number of synaptic
sites constant across all the cells. Small random variations
could also be allowed, but we have absorbed all of the
effects of randomness into the coefficients Pjf> in Eq. (15)
for simplicity.

Coefficient G I K I in Eq. (10) measures the total number
of inhibitory connections, or axons, emitted by each popula-
tion v<;> to all other F2 populations. Due to self-similar
growth, G I K I increases with IK I. In our simulations, we
make the simplest choice.

In this limiting case, all connection strengths from item
nodes in Fi to a [zxed list node in F2 are equal, and vary
inversely with the number IJI of item nodes that contact the
list node. If 0 < P I J I c; l, then the coefficients 1> in Eq. (15)
influence the connection strengths pf>. '[he numbers
{r1> : j EJ} are chosen pseudo-randomly: they are uniformly
distributed between 0 and 1 such that

~ r(j> = 1 (16)jEJ JI

(see Appendix). Eq. (15) and (16) together imply the con-
servation rule Eq. (12).

It remains to say how the fluctuation coefficients p I J I
depend upon the set size IJI. We choose these coefficients to
keep the statistical variability of the connection strengths
independent of IJI. In other words, we choose PI J I so that
the standard deviation of {rjr> : j EJ} divided by the mean of
{rf> :jEJ}is independent of IJI (see Appendix).

Self-similar axon generation

Let

GIKI = IKI. (17)

Inparticular,G1KI=Oif IKI =0.
Coefficient H l K nJ I in Eq. fi 0) describes how well grow-

ing axons from a population Vm > can compete for synaptic

sites at a population vf>. In particular, coeffici~nt G I K I de-
scribes the number of emitted axons. Coefficient HI K nJ I

Self-similar competitive growth between list nodes

Coefficient FIJI in Eq. (10) describes the total number of
inhibitory synaptic sites within a population Vj(J). By Eq.
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measures the fraction of these axons that can reach v~J) and
compete for synaptic space there. Due to self-similar growth,
HI K nJ I increases with IKnJ I. Consequently, if either set K
or J increases, then HI K nJ I also increases, other things be-
ing equal. Given fixed sizes of K and J, then HI K nJ I in-
creases as the overlap, or intersection, of the sets increases.
This last property reflects the fact that list nodes become list
nodes due to random growth of connections fr<?m item
nodes. Two list nodes therefore tend to be closer in F2 if
they receive more input pathways from the same item nodes
in Fl .If a pair of list nodes in F2 is closer, then their axons
can-more easily contact each other, other things being equal.
In our simulations, we choose HI K nJ I as follows. Let

receive inputs from the same Fl nodes. In all, Eq. (14), (i 7),
and (18) imply that

(19)

HIKnJI = 1 + IK()JI (18)

By Eq. (18), HI K nJ I increases linearly with IKnJ I. We also
assume, however, that HI K nJ I is always positive. When
HI K nJ I multiplies G I K I in Eq. (10), this implies that every
population v(K) can send weak long-range inhibitory path-
ways across fue whole of F2, but that these pathways tend
to arborize with greater density at populations vfJ) which

Contrast enhancement by sigmoid signal functions

The fositive and negative feedback signals f(Xi(J) and
g(x~ ) in Eq. (10) enable the network to contrast enhance
its input patterns before storing them in STM. The math-
ematical theory of how to design shunting on-center off-
surround feedback networks with this property was intro-
duced in Grossberg (1973), further developed in Ellias and
Grossberg (1975) and Grossberg and Levine (1975), and led
to a rather general mathematical theory in Grossberg (1978c,
1978d, 1980b) and Cohen and Grossberg (1983). Salient
properties of these networks are reviewed in Grossb.erg

(1983).
Based on this analysis, we choose both f(w) andg(w) to

be sigmoid, or S-shaped, functions of the activity.level w. ][n
particular, we let
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+ 2
([w]"')~[(w) = [0 + ([w]+y (20)

and
g(w) = --([W]+)2 -

go + ([W]+)2
(21)

The notation [w]+ in Eq. (20) and (21) stands formax(w, 0).
Thus f(w) and g(w) do not generate feedback signals if w is
smaller than the signal threshold zero. As w increases above
zero, both f(w) and g(w) grow quadratically with w until
they begin to saturate at their maximum value 1. Sigmoid
signal functions have been described in sensory neural pro-
cessing regions (Freeman 1979, 1981).

Concluding remarks: Grouping and recognition without algo-
rithms or search

field are sensitive to different temporal orderings of the
same list items as well as to the same temporal orderings
of different item sublists. Our results have focused upon two
different levels of language processing, both of which are
context-sensitive, but in different ways. The spatial pattern-
ing of activity across an item field defmes computational
units which blend item information and temporal order in-
formation in a context-sensitive, but non-unitized, code.
Such item representations can be recalled even before unitiza-
tion can take place, The STM activations of a masking field
perceptually group different portions of a spatial pattern
across an item field into unitized sublist representations.

We have illustrated how such properties of perceptual
grouping, unitization, and recognition can be analy~d as
emergent properties of intefactions within a large nonlinear
network of recurrently- interacting neurons, These networks
do not incorporate any serial programs or cognitive rule
structures. Moreover, the appropriate sublist representations
are directly accessed without any prior se'arch.

We have furthermore shown how neural networks with
these emergent properties can arise from simple develop-
mental programs goveming the manner in which the neurons

This article shows how to design a masking field capable of
encoding temporally occurring lists of items in a context-
sensitive fashion. The STM activations within such a masking
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F2

,
F1

Fig. 17. Connections grow randomly from F1 to F2 along positionally
defined gradients. Cells within F2 interact via a shunting on-center
off-surround feedback network

of increasing size to produce a new vector w' = (w;, w;,..., w~)
such that w; ..w; w~. The map w ...w' from In into itself
is determined by a permutation (J of the indices {I, 2, ..., n} such
that wi = w(J(i). Each'permutation (J can transform a different subset
of In into vectors with increasing entries. Thus In can be decomposed
into sets D (J such that a single permutation (J can map all wED a into
w' EIn' Hence the map w ...w' transforms uniformly distributed
vectors in In onto uniformly distributed vectors in In with elements
in increasing order,

We next map vectors w' in In with elements in increasing order
onto vectors y in Sn+l via the one-to-one linear transformation
Y -, Y - W' , Y -' , d - 1.,-w" 2- 2-W"..., n-wn-wn-l,an Yn+l- -wn'
Since this linear transformation maps equal volumes onto equal sur..
face areas, the vectors Y are uniformly distributed on the simple>:

Sn+l. ())
The coefficient of variation of{Pii : i El}is made independent

of III (> 1) as follows. By the above construction, the marginal

distribution 'is}) in Eq. (14) is distributed with density function
(IJI -1) (1 -x) IJI- 2. The mean of this distribution is ~, and it!;

standard deviation is ~ 1Jr;['if. Thus the mean of PJ~}) is also

6i and its standard deviation is

1- /llI:=} , (A2)P IJI III V ~

The coefficient of variation of PiS}) is its standard deviation divided
by its mean, which we set equal to a constant P independent of IJI.
Thus we chose

~JI+l PIli =p .(A3)
IJI -1

I . Ia .1n our slmu tlons, P = i"O:v3 .

grow and interconnect. In our present simulations, we have
made one choice of these developmental rules. This choice
suggests that F2 cells obey different synaptic rules for
recognizing F2 excitatory signals, F2 inhibitory signals, and
Fl excitatory signals. However, the principles of network
design -such as the principle of activity dependent self-
similar growth -are much more general than this choice.
This combination of general principles and rigourous ex-
amples provides a firm foundation for testing the theory
experimentally.

In the present work, we have shown how a prewired
developmental program can generate a network with the
desired functional properties. These results place harsher
demands upon the network than are, we believe, required
in vivo. In the full Adaptive Resonance Theory of cognitive
self-organization to which our results contribute, it is not
necessary for the initial list encodings to be accurate. One
only needs a sufficiently good processing substrate for top-
down learned template-matching signals (from A4 to A3 in
Fig. 1) to drive an automatic memory search that can provide
the occasion for learning a better encoding (Carpenter and
Grossberg 1985; Grossberg 1980a, 1984b). With a quan-
titative understanding of how prior development can set the
stage for later matching, memory search, and code learning
events, we can now frontally attack the full problem of list
code self-organization.

Interaction constants:

The following parameter choices were made: A = 1, B = 1, D = 4,
10 = 1, and go = 0.16. In the total choice runs (Figs. 6-13), we let
C = 1 and F = 1088. In the partial choice runs (Figs. 14-16), we let
C = 0.125 and F = 8704. Note that C F = 1088 in both cases. The be-
havior of a masking field has also been characterized over a wide rangt~
of other parameter choices.
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Appendix

This section describes some technical details of out simulations. First
we list the input values that are used in the simulations. The inputs
are listed by Figure number. Only positive inputs are listed. All other
inputs equal zero. References

Inputs:
Fig. 6 (10 = 1.5); Fig. 6 (I, = 1.5); Fig. 8(4 = 1.5); Fig. 9 (10 = 1.0,
I, = 0.5); Fig. 10 (10 = 0.5, I, = 1.0); Fig. 11 (10 = 0.68, I, = 0.48,
4 = 0.34); Fig. 12(10 =0.34,1, =0.68,1. = 0.48); Fig. 13(10 =0.34,
I, = 0.48, I. = 0.68); Figures 14-16 are the same as Figures 6, 9, and

11, respectively.

Connections from F, to F2:
To produce a pseudorandom sequence of numbers {rj~J) : j EJ}dis-
tributed uniformly over the simplex

n+l
Sn={(Y"y,'...'Yn+l):Yj>O, .~ YJ =I}, (AI)

J=1

we proceed as follows. By a standard algorithm (Knuth 1981), we ob-
tain a vector of numbers w = (W" W2'...' wn) uniformly distributed
over the n-cube In = X/=1 [0,1]. Rearrange the numbers in W in order
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