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Michael jl.,. Cohen and Stephen Grossberg

A massively parallel neural network architecture, called a masking field, is characterized through systematic
computer simulations. A masking field is a multiple-scale self-similar automatically gain-controlled cooper-
ative-competitive feedback networkF2. NetworkF2 receives input patterns from an adaptive filter Fl --00 F2
that is activated by a prior processing level Fl, Such a network F2 behaves like a content-addressable
memory. It activates compressed recognition codes that are predictive with respect to the activation patterns
flickering across the feature detectors ofF 1 and competitively inhibits, or masks, codes which are unpredictive
with respect to the F 1 patterns. In particular, a masking field can simultaneously detect multiple groupings
within its input patterns and assign activation weights to the codes for these groupings which are predictive
with respect to the contextual information embedded within the patterns and the prior learning of the system.
A masking field automatically rescales its sensitivity as the overall size of an input pattern changes, yet also re-
mains sensitive to the microstructure within each input pattern. In this way, a masking field can more
strongly activate a code for the whole F 1 pattern than for its salient parts, yet amplifies the code for a pattern
part when it becomes a pattern whole in a new input context. A masking field can also be primed by inputs
fromFl: it can activate codes which represent predictions ofhowtheFl pattern may evolve in the subsequent
time interval. Network F2 can also exhibit an adaptive sharpening property: repetition of a familiar Fl
pattern can tune the adaptive filter to elicit a more focal spatial activation of its F 2 recognition code than does
an unfamiliar input pattern. The F2 recognition code also becomes less distributed when an input pattern
contains more contextual information on which to base an unambiguous prediction of which the F 1 pattern is
being processed. Thus a masking field suggests a solution of the credit assignment problem by embodying a
real-time code for the predictive evidence contained within its input patterns. Such capabilities are useful in
speech recognition, visual object recognition, and cognitive information processing. An absolutely stable
design for a masking field is disclosed through an analysis of the computer simulations. This design suggests
how associative mechanisms, cooperative-competitive interactions, and modUlatory gating signals can be
joined together to regulate the learning of compressed recognition codes. Data about the neural substrates of
learning and memory are compared to these mechanisms.

I. Introduc:tion: Context-Sensitive Grouping In
Recognitioln Processes

One fundamental problem area in perception, cogni-
tion, and artificial intelligence concerns the character-
ization of the functional units into which perceptual
and cognitive mechanisms group the patterned infor-
mation that they process. A core issue concerns the
context-sensitivity of these functional units or the
manner in which a grouping into functional unitsc can
depend on the spatiotemporal patterning of all the

si~als being processed. Another core issue concerns
the adaptive tuning of reco~ition mechanisms and
the manner in which such tuning can alter the group-
ings which emerge within a context containing familiar
elements. Adaptive tuning of recognition processes is
one of the mechanisms whereby representations be-
come compressed, chunked, or unitized into coherent
reco~ition codes through experience.

The present paper describes the further develop-
ment of a real-time neural network. model, called a
masking field, which was introduced in Grossberg.! A
masking field is a multiple-scale self-similar automati-
cally gain-controlled cooperative-'Competitive feed-
back network. This type of network acts like a con-
tent-addressable memory whose properties are useful
for understanding how a large class of compressed
recognition code is established during real-time speech
reco~ition, visual object recognition, and cognitive
information processing. The analyses of cooperative-
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ble of robustly solving the following type of adaptive
coding problem.

competitive content-addressable memories which led
to the masking field concept are found in Grossberg2
and Grossberg and Levine.3 Since its introduction in
1978, the masking field model has played an important
role in development of the adaptive resonance theory
which was introduced in Grossberg4,5 and which has
since undergone extensive development and applica-
tion.6-21

A related family of cooperative-competitive con-
tent-addressable networks, which also grew out of the
Grossberg2 analysis, was identified through the discov-
ery of a global Liapunov function in Cohen and Gross-
berg.22 The Liapunov function described in Hop-
field23 is a special case of the Cohen-Grossberg
function, a case that was explicitly noted in Cohen and
Grossberg (p. 819).22 The Cohen-Grossberg Liapunov
function requires symmetry of connections between
pairs of network nodes. Symmetry of connections is
strongly violated in a masking field. This symmetry
violation is a consequence of the network's self-similar
design. In particular, the masking fields analyzed
herein obey the differential equations

II. Detecting and Encoding Multiple Groupinj9S in Short-
Term Memory Using a Masking Field

A masking field is capable of simultaneously detect-
ing multiple groupings within its input patterns and
automatically assigning activation weights to the codes
for these groupings which are predictive with respect
to the context of the patterns and the prior learning of
the system.

For example, a word such as Myself is used by a
fluent speaker as a unitized verbal chunk. In different
verbal contexts, however, the components My, Self,
and Elf of Myself are all words in their own right.
Moreover, although an utterance which ended at My
generates one grouping of the speech flow, an utter-
ance which goes on to include the entire word Myself
supplants this encoding with one appropriate to the
longer word. Thus to understand how context-sensi-
tive content-addressable language units are perceived
by a fluent speaker, one must analyze how all possible
groupings of the speech flow are analyzed through time
and how certain groupings can be chosen in one con-
text without preventing other groupings from being
chosen in a different context.

The same considerations hold when words such as
Myself are presented visually rather than auditorily.
Then the problem becomes one of visual object recog-
nition and of figure-ground segmentation. The prob-
lem exists also on a finer level of visual or auditory
processing, since letters such as E contain as parts
letters such as L and F. The masking field design is
capable of sensing multiple-pattern groupings, which
subtend multiple spatial scales, and assigns each of
these groupings a proper activation weight in its STM
representation of these groupings.

-Jtx!J) = -AxJJ) + (B -xJJ»{~ I j ["!.7r (1 -PiJI)

+ rJ'fJpiJI }J'fI + DIJI!(x!J» }

(J) 2:m,K g(x<!!)IK!(l + IK n JI)
-F(x, + C) 2:m,K IKI(l + IK n JI) , (1)

(2)

where the v~iables x~J) are activations, or short-term
memory (STM) traces, of F2 nodes, and the variables
Z)1'> are adaptive weights, or long-term memory (L TM)
traces, of the pathways within the F1 --F2 adaptive
{'liter. These equations are derived in the Appendix.
The competitive interaction coefficients in Eq. (1)
from an F2 node v<:> to an F2 node v~J), namely,

III. Developmental Rules Imply Cognitive Rules as
Emergent Properties of Neural Network Inter,actions

It has been shown how a masking field network F2
can arise through simple rules of neuronal
growthl,11,13.15 for the connections from its input
source F 1 and among its own cellS or nodes. These
rules include a random growth of connections along
spatial gradients from Fl to F2, activity-dependent
self-similar cell growth within F2, and intercellular
interactions among F2 cells which compete for con-
served synaptic sites [Fig. l(a)]. Although these
growth rules are of interest at the present time primar-
ily in applications of masking fields to cognitive psy-
chology and developmental neurobiology, they may at
a future time suggest procedures for realizing a mask-
ing field in hardware. In addition, these growth pro-
cesses illustrate how simple rules of neuronal develop-
ment can give rise to a system whose parallel
interactions act as if it obeys complex rules of context-
sensitive cognitive coding. Because these growth
rules can be obeyed by any number of network levelS,
masking fields can be linked into a coding hierarchy F 1

\KI(l + IK () JI)2:m,LlLl(l + 1£ () JI) , (8)

are asymmetric functions of K and J.
Despite the asymmetry of the coefficients in (3), the

masking field Eq. (1) can be written in Cohen-Gross-
-berg form using a simple change of variables. This
fact clarifies why the networks considered herein al-
ways approach an equilibrium point. Grossberg24 de-
scribes how Eq. (1) as well as a number of other well-
studied content-addressable network memory models
can be written in this form. To achieve a parametric
understanding of masking fields, we have developed
these networks through the use of sys~matic comput-
er simulations. The present paper reports computer
simulations carried out to design masking fields capa-
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DIFFERENT ACTIVATION PATTERNS
ACROSS THE SAME SET
OF F1 NODES

(b)
Fig. 1. Masking field interactions: (a) cells from an item field Fl
grow randomly to a masking field F2 along positionally sensitive
gradients. The nodes in the masking field grow so that larger item
groupings, up to some optimal size, can activate nodes with broader
and stronger inhibitory interactions. Thus the F 1 -+ F 2 connections
and the F2 -F2 interactions exhibit properties of self-similarity.
(b) The interactions within a masking field F2 include positive
feedback from a node to itself and negative feedback from a node to
itS neighbors. Long-term memory traces at the ends of Fl -+ F2
pathways (designated by hemidisks) adaptively tune the Cuter de-
fined by these pathways to amplify the F 2 reaction to item groupings
which have previously succeeded in activating their target F 2 nodes.

ing field network to accomplish these properties.
Instead, the model nodes, or neurons, obey membrane
equations undergoing shunting (mass action) on-cen-
ter off-surround (cooperative-competitive) recurrent
(feedback) interactions [Fig. l(b)]. The STM activa-
tion code of a masking field is an automatic emergent
property of these interactions.

IV. Sensitiv"y to Mu"iple Pattern Scales and to
Intrascale Microstructure

The multiple-scale analysis that is performed by a
masking field is sensitive to two different types of
pattern change.

A. Sensitivity to Multiple Pattern Scales
As a word like Myself is processed, a subword such as

My occurs before the entire word Myself is experi-
enced. Figure 2(a) schematizes this type of informa-
tional change. As the word is presented, it activates an
increasing number of F 1 nodes, or feature detectors,
through time. As increasing numbers of F 1 nodes are
activated, earlier STM activations within F 1 may be
modified as they are supplemented by later STM acti-
vations. After Myself is fully stored within F 1, parts
such as My, Self, and Elf are still present within the
whole. Iiowever, the masking field F2 can automati-
cally rescale its initial response to My as the remainder
of Myself is presented. In this way, the masking field
can favor the whole word Myself rather than its parts,
such as My, Self, or Elf, even though My may have
been favored before Self also occurred.

-+- F2 -+- Fs -+-. ..F n whose successive levels are able to
detect and manipulate ever more abstract recognition
codes and hypotheses about the input patterns re-
ceived by Fl,

A masking field network F2 selects its compressed
representations by performing a new type of multiple
scale analysis of the activity patterns which reach it
from its input level Fl, This analysis enhances correct
groupings and competitively inhibits, or masks, inap-
propriate groupings in STM. Otherwise expressed,
the masking field network does not confuse wholes
with their parts, yet-despite this fact-it enables fa-
miliar parts to emerge as wholes in their own right in an
appropriate input context, just as the words My and
Self may be processed as wholes if they are presented
separately or as parts within Myself when presented
together (Sec. II).

The spatial pattern of enhanced STM activities
across F2 embodies a hypothesis, or compressed con-
tent-addressable code, which represents the input
stream. As will be described in greater detail, this
code can predict, or anticipate, sub~quent events by
assigning activities to groupings which have not yet
fully occurred based on the ~vailable evidence. Thus
the network acts like a real-time prediction, or evi-
dence gathering, machine. No serial programs, cogni-
tive rule structures, or teachers exist within the mask-
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EXPANDING ACTIVATION

PATTERNS ACROSS F1

ITEM FIELD

(b)
Fig. 2. Two types of masking field sensitivity: (a) A masking field
F2 can automatically rescale its sensitivity to differentially react as
the FI activitY pattern expands through time to activate more FI
cells. It hereby acts like a multiple spatial frequency filter. (b) A
~asking field can differentially react to different FI activity pat-
terns which activate the same set of FI cells. By (a) and (b),F2 acts
like a spatial pattern discriminator which can compensate for
changes in overall spatial scale without losing its sensitivity to pat-

tern changes at the finest spatial scale.



A masking field's ability to favor a representation of
a whole word rather than its parts derives from its
sensitivity to the overall scale of each of the groupings
which it can detect. The subtlety of this automatic
scaling property is revealed through the following is-
sue. If a masking field favors a whole pattern rather
than its parts, why does nc;>t the field continue to favor
the same whole pattern code when only part of the
pattern is presented? How does the field sensitively
respond to the part as a new content-addressable
whole in its own right? Otherwise expressed, if larger
pattern codes are favored when the larger patterns
actually occur, how can smaller pattern codes be fa-
vored when smaller patterns occur?

B. Sensitivi'ty to Internal Pattern Microstructure
The second type of masking field sensitivity is illus-

trated by the two words Left and Felt. This compari-
son is merely illustrative. It does not attempt to char-
acterize the many subtle context-sensitive alterations
that occur in evolving sound patterns or visually de-
tected reading patterns. The words Left and Felt
illustrate the issue that the same set of item represen-
tations within F I may be activated by different item
orderings. To distinguish two such activity patterns
across F 10 sensitivity within F 2 to different spatial
scales of FI is insufficient because both lists may acti-
vate the same spatial scale of F 1- Instead, sensitivity
to different STM patterns which excite the same set of
items is req,rlred [Fig. 2(b)].

The automatic rescaling and microstructure detec-
tion properties follow from the manner in which non-
linear feedback interactions among F 2 nodes automati-
cally reorganize the sizes of the inputs received at F 2 by
F 1- This type of nonlinear feedback is absent from
many alternative grouping algorithms, such as the
Hough transform.25,26 In recent contributions to de-
veloping the Hough transform, a central problem is to
discover how to use negative votes to cancel off-peak
positive votes in parameter space.27 A related type of
problem is solved by a masking field. However, a
masking field replaces algorithms for positive and neg-
ative voting with a real-time network undergoing posi-
tive and negative feedback interactions. The key in-
sights of the present paper concern how to combine the
design of nonlinear feedback within F 2 with the proper
type of nonlinear learning in the FI -F2 adaptive
fIlter to generate stable learning of unitized 'groupings
with environmentally predictive properties.

V. Hypothesis Formation, Anticipation, Evidence, and
Prediction

The dynamics of a masking field express in an ab-
stract language a number of important properties of
cognitive information processing, no less than of per-
ceptual grouping. Consider for defmiteness a ~Q"~-
ing field F 2 that is capable of simultaneously discrimi-
nating more than one grouping within a list of events
that activates Fl, For example, a masking field F2
might respond to the F I representation of the word
Myself by strongly activating an F2 population that is
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sensitive to the whole word and weakly activating F2
populations that are sensitive to the word's most sa-
lient parts. More generally, it might react to a pair of
events A and B by representing the events singly and as
a unitized configuration. In such a representation,
the total STM pattern across F2 represents the FI
STM pattern. The relative sizes of the F2's STM
activities weight the relative importance of the unit-
ized groupings which are coded by the respective F2
cell populations.

The suprathreshold STM activities across F2 are
approximately normalized, or conserved, due to the
fact that its feedback interactions obey a type of shunt-
ing cooperative-competitive law which is capable of
automatic gain control [Fig. l(b)]. The STM activi-
ties across F2 thus function like a type of real-time
probabilistic logic, or hypothesis-testing algorithm, or
model of the evidence which F2 has about the pattern
across Fl, The self-normalizing properties of such
cooperative-competitive feedback networks also in-
vite comparisons with the classical formalisms of sta-
tistical mechanics and quantum mechanics.I,13

A masking field also possesses a predictive, anticipa-
tory, or priming capability. In response to a single
item across FI, the F2 population which is most vigor-
ously activated may code that item. In addition, less
vigorous activations may arise at those F2 populations
which represent the most salient larger groupings of,
which the item forms a part. Such a masking field can
predictively prime the masking field to anticipate the
larger groupings of which the item may form a part
during the next time interval. As more items are
stored by FI through time, F2's uncertainty concerning
the information represented atFI may decrease due to
the emergence of a more predictive overall F I pattern.
As F2's uncertainty decreases, the spatial distribution
of STM activity across F2 becomes more focused, or
spatially localized, and includes fewer predictive
groupings. This type of spatial sharpening measures
the degree of informational uncertainty within the F 2
code about the activation pattern at Fl.

VI. Computer Simulations of Global Choiceis and
Multiple Groupings without Learning

The masking field design is described mathemati-
cally in the Appendix. This description is self-con-
taineG'and may be read at any point during the subse-
quent exposition. The grouping properties of a
masking field are illustrated in Secs. VI-X through
computer simulations. These simulations are then
used to motivate a refinement of masking field design
in Secs. XI-XIV. This refined design leads to a num-
ber of predictions about mechanisms of neural learn-
ing.

Figures 3-5 depict the simplest type of grouping by a
~asking field. In this example, each distinct STM

activity pattern across F I activates a unique node, or
population, for STM storage within F2. In other
words, such a masking field globally groups an activity
pattern across FI into an STM choice within F2. Dis-
tinct choices are made in response to F I ~atterns which
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Fig. 3. List coding of a single item: Network F 1 encodes in short-term memory a spatial pattern of activation over item representations. In
this figure, the single item 10} is activated. NetworkF2 encodes in STM the pattern of sub list chunks that are activated by Fl. Thefust three
rows depict the inputs from F 1 to F 2. They are broadly distributed across F 2. The list co.de in STM depicts the STM response to these inputs.

Only the (O} cells in F 2 are stored in STM despite the broad distribution of inputs.

vary in overall scale as well as in their microstructure,
thereby demonstrating the properties summarized in
Sec. IV. The same numerical parameters were used in
all these simulations to demonstrate that a single
masking field can generate all the properties being
claimed. Sensitivity analyses were also carried out to
determine the robustness of the design, but these will
not be reported here. In this series of simulations, no
learning was allowed to occur within the long-term
memory (LTM) traces, or adaptive weights, that mul-
tiply the signals in the F1- F2 pathways (see Appen-
dix).

In Figs. 6 and 7, a fixed but different set of parame-
ters was used to illustrate how a masking field can
generate STM representations which encode multiple
groupings, including predictive groupings, of activity
patterns across F 1- In these STM representations, the
masking field is maximally sensitive to the total STM
pattern across Fl' but it also generates partial activa-
tions to salient subpatterns (parts) and superpatterns
(predictions) of this pattern. As in Figs. 3-5, the simu-
lations described in Figs. 6 and 7 do not allow the L TM
traces in theFl-F2 pathways to change due to learn-
ing. The computer simulation results in Figs. 3-7
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Fig. 4. (a) List coding of a single item: In response to item (11 in F 1, the masking field inF2 chooses the !ll cells in response to a broad distribu-
tion of inputs. Thus the list code in STM responds selectively to individual items in Fl, The same thing is true in the next figure. (b) Here
item 12} chooses the subset of list nodes {21 for storage in STM. (c) List coding of an STM primacy gradient across two items: A primacy gradi-
ent in STM across two items of F 1 generates a broader input pattern to F2. The list code in STM no longer responds at either the tol or !l} cells.
Instead a choice occurs among the set of possible to,l} cells. Comparison with Fig. 3 shows that F2 can update its internal representation in a
context-sensitive way. (d) List coding of an STM recency gradient across two items: A recency gradient in STM occurs across the same two
items of F2 rather than a primacy gradient. Again the to! and (11 cells are suppressed. A different choice among the 10,11 cells occurs from that

in response to the primacy gradient of the preceding fIgUre. Thus F 2 can distinguish different temporal orderings of the same items.
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Fig. 5. (a) List coding of an STM primacy gradient across three items: In this figure, a primacy gradient in STM occurs across three items of
Fl- The input pattern to F2 is even broader than before. However, the STM response of F2 retains its selectivity. NetworkF2 suppresses all
to), 111, (2), {0,1) {0,2},. .., cells and chooses for STM storage a population from among the jO,1,2} cells. (b) List codings of different temporal or-
derings across three items: In this and the next figure, different temporal orderings of the same three i~ms generate selective STM responses
among the {0,1,2} cells. Thus, as future items activate an updated STM item code across F 1. the STM list coding within F 2 is also updated in a

context-sensitive way. (c) See legend for (b).
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Fig. 6. (a) The correct list code (01 is preferred in STM, but predictive list codes which include (O} as a part are also activated with lesser STM
weights. The prediction gets less activation if 101 forms a smaller part of it. (b) The correct list code 111 is preferred in STM, but the predictive
list codes which include {II asa part are also activated with lesser STM weights. (c) The list code in response to item 111 also generates an appro-
priate reaction. (d) A list code of type 10,l} is maximally activated, but part codes 101 and predictive codes which include 10,l} as a part are also

activated with lesser STM weights.
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Fig. 7. (a) Different list code of type (0,11 is maximally activated. but part codes Ill. are also activated withlesserSTMweight. Due to the ran-
dom growth of F 1 -0. F2 pathways, no predictive list codes are activated (to three significant digits). (b )-( d) When the STM pattern across F 1
includes three items. the list code in STM strongly activates an appropriate list code. Part groupings are suppressed due to the high level of
predictiveness of this list code. Comparison of Fig. 6(a), 6(d), and 7(b) shows that as the item code across Fi becomes more constraining, the

list code representation becomes less distributed across F2.
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provide the foundation for analyzing how learning receive pathways from only the active item node.
within FI -F2 pathways interacts with the coopera- A comparison of Figs. 3, 4(a), and 4(c) illustrates the

tive-:c°mpeti~ive inte~actions withi~ F2. Before pro- self-scaling property of masking field dynamics. Sup-ceeding u) this .analYSIS, we. s.um~ar1Ze ~he r~sults due pose that the list of items {OJ, {I} is successively received
to the cooper8;tlve-competltlve Interactions m the ab- by F 1. The list as a whole generates a different spatial
sence of learn mg. pattern across F1 [Fig. 4(c)] than does its first item

I:n thesE~ simulations, the level F 1 is called the item (Fig. 3) or its second item [Fig. 4(a)] taken in isolation.
level, and the level F2 is called the list level. These The list as a whole also activates even more nodes than
a.bstract terms are consistent with the dynamic proper- does either item taken separately, eighty-two nodes in
tIes of the two levels F1 and F2 and avoid pitfalls of all. Despite this fact, only asingleF2node's activity is
alternative nomenclatures-such as letter level and stored in STM. This F2 node is, moreover, an appro-
word leve]l-which do not adequately deal with the priate node because it is one of the {O,l} nodes that
context-sensitivity of code r~prganizations that occur receive pathways only from the FI items {O} and {I}.
during peJrceptual and cognitive processing. These This comparison thUs illUstrates the ability of F2 nodes
nomenclature issues are discUssed more fully in Gross- which are activated by larger numbers of F I nodes to
berg20.28.29 and Grossberg and Stone.20.21 mask the activity of F2 nodes which are activated by

In Fig. 3, a single item in F 1 is active. This item smaller subsets of F 1 nodes. This is a key property in
broadcasts positive inputs to a large number of nodes the F 2'S functioning as a content-addressable memory.
in F2. The input sizes over the target F2 nodes are A comparison of Figs. 4(c) and (d) illustrates the

depicted by the heights of the bars in the three rows ability of'F 2 to distinguish item patterns with different
labeled Input Pattern. Each row lists all F2 nodes microstructures. In both of these figures, the same set
which receive the same number of pathways from F 1. of F 1 items-{O} and Ill-is activated, but a different
The fIrSt row consists of F 2 nodes which receive one spatial pattern of activity exists across the items. The
pathway, the second row consists of F2 nodes which spatial pattern in Fig. 4(c) may represent the list of
receive two pathways, and the third row consists of F 2 items {O, I}, whereas the spatial pattern in Fig. 4( d) may
nodes which receive three pathways. In row 1, eachF2 represent the list of items {O,I}. The simulations show
node in the set labeled Ii} receives a pathway from the that F2 is sensitive to the item pattern as a whole,
F 1 item node labeled Ii}, i = 0, 1, 2. ..,4. Note that four because F 2 can generate different STM responses to
F 2 nodes rec~eive inputs from the {O} F I node. In row 2, these patterns even though they activate the same
all F2 nodes labeled {O,I} receive pathways from the F1 unordered set of F1 nodes. In particular, in Figs. 4(c)
nodes {O} and {I}. In row 3, all F2 nodes labeled {0,I,2} and (d), different F2 nodes become active within the
receive pathways from the FI nodes {OJ, {I}, and {2}. set of F2 nodes which receives pathways only from
The mathematical rules whereby these connections items {O} and {I}.
and input sizes are established are described in the A comparison of Figs. 3, 4, and 5(a) illUstrates a more
Appendix. demanding variant of these F2 properties. As an or-

The inputs to all the F2 nodes which receive path- deredlistofitems{0},{I},{2}issuccessivelystoredbyFb
ways from the F I node {O} are positive. There are all the items become active at F 1 as the spatial patterns
forty-four such nodes in Fig. 3. Despite this fact, the in Figs. 3, 4(c), and 5(a) evolve through time. The
only F2 nodes eapable of becoming persistently active stored STM pattern in Fig. 5(a) is, however, restricted
in STM are the nodes which receive pathways only to a single F 2 node, which is one of the nodes receiving
from the active item node {OJ. These are the F2 nodes pathways only from items {OJ, {I}, and {2}. ThUs F2
labeled {OJ. The STM activities of all other F2 nodes selects a content-addressable representation of the
are quickly inhibited by the competitive feedback in- whole pattern at F1 rather than of its constituent
teractions within F2 [Fig. I(b)], despite the fact that items.
many of these F2 nodes also receive large excitatory A comparison of Figs. 5(a)-(c) makes the same point
inputsfromF1. The equilibrium STMactivities of the as the comparison of Figs. 4(c) and (d) but in a more
F 2 nodes are listed in three rows under the heading List demanding variation. In each of the panels in Fig. 5,
Code in STM. These are the activities w4ich the the same unordered set of items-{O}, {I}, and {2}-is
nodes store in STM after the network equilibrates to' active across F 1. The different spatial patterns across
the entire input pattern. Figure 3 thus illustrates how F 1 represent different orderings of these items: {0,I,2},
F2 can transform a widespread input pattern into a {I,2,0}, and {2,I,O}, respectively. In each figure, a dif-
focal, and appropriate, STM activation. ferent F2 node is activated. The active F2 node is,

Figures 4 and 5 further illustrate this property. moreover, one of the nodes that receives pathways only
Each panel in these figures represents the network from the item nodes {OJ, {I}, and {2}. Thus the content-
response toa different input pattern. The panels are addressable F2 code is sensitive to the microstructure
reduced relative to the scale of Fig. 3 to present a larger of the F 1 activity patterns.
number of simulations. In Fig. 4(a) and (b), a differ- Figures 6 and 7 describe the reactions of a masking
ent item at F 1 is activated. Each item generates a field whose parameters are chosen to e~able multiple
widespread input pattern to F 2. Each input pattern is groupings of F 1 patterns to be coded In STM at F 2.
contrast-enhanced into a focal STM activation. This Multiple groupings can emerge when the competitive
STM activation is restricted to the F2 nodes which interactions across F2 are uniformly weakened. The
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same Input patterns were used as in Figs. 3-5. Com-
parison of Figs. 6(a), 6(d), and 7(b) shows how the
automatic scaling property enables F 2 to update its
STM representations based on all the groupings which
it can detect as the F 1 activity pattern expands. In
Fig. 6(a), item {OJ most strongly activates the {OJ nodes
of F 2 but also weakly activates predictive F 2 nodes that
represent groupings which include {OJ. The F2 nodes
which receive an item pathway only from {OJ have a
maximal activity of 0.163. The F 2 nodes which receive
two item pathways, including a pathway from {OJ, have
a maximal activity of 0.07. The F 2 nodes which receive
three item pathways, including a pathway from {OJ,
have a maximal activity of 0.007. These activity
weights characterize the degree of predictive evidence
which the masking field possesses that each grouping is
reflected in the input pattern.

In Fig. 6(d), the {0,11 spatial pattern across Fl most
strongly activates a node within the {0,11 subfield of F2
but also weakly activates other nodes of F2 which re-
ceive inputs from {OJ. The activity levels are 0.246 and
0.04, respectively. Thus the multiple-scale self-simi-
lar interactions cause a reversal in activation strength
when item {11 follows item {OJ at Fl: whereas the F2
code for {Ol is strong and for {0,11 is weak in response to
item {OJ atFl, the F2 code for {OJ is weak and for {0,11 is
strong in response to the list {OJ, {11 of items at Fl. In
Fig. 7(b), the {0,1,21 spatial pattern across Fl most
strongly activates a node within the {0,1,2} subfield of
F 2 (with activity 0.184) but also weakly activates the {OJ
subfield of F2 (with activity 0.004). The STM activity
pattern across F 2 becomes more focused from Fig. 6(a)
to 6(d) to 7(b) as increasing contextual information
across Fl reduces F2's predictive uncertainty.

The adaptive sharpening property is not trivially
satisfied by all the associative learning laws that one
might reasonably wish to consider. This is because F 2
automatically reorganizes its STM reactions based on
the global patterning of the inputs received by all its
nodes (Sec. IV). A single LTM law, used in all the Fl
-F2 pathways, must be able to react to all possible
combinations of activity patterns across F 1 and F 2 with
adaptive sharpening and not a destruction of the glob-
al balance between F1- F2 inputs andF2 -F2 interac-
tions.

Mter such a L TM law is characterized, the adaptive
sharpening property which it guarantees provides a
foundation for studying how segmentation of an Fl
pattern into multiple groupings can be influenced by
learning. For example, if a prescribed pattern across
F 1 is repeatedly presented, this pattern becomes famil-
iar by tuning the adaptive filter to code preferentially
its most salient groupings in STM at F 2. If a novel
superset pattern at F 1 is then presented, that is, a
pattern which includes the familiar pattern as a sub-
pattern, the subset pattern groupings of the familiar
pattern can coherently break away from the comple-
mentary superset groupings. The superset pattern
can consequently be represented by an STM pattern of
resonant parts, or structural groupings, across F2. In
other words, prior adaptive tuning can enable a novel
F 1 pattern to generate a directly accessed STM reac-
tion across F2 which segments the Fl pattern into a
distributed code of familiar groupings.

A related implication of the adaptive sharpening
property is that a repeated presentation of a superset
grouping may gradually mask otherwise possible sub-
set groupings, unless the subset patterns are also fre-
quently presented in their own right to F 1- In intuitive
terminology, a coherent set of familiar parts may come
to represent the whole, or a more global segmentation
may come to represent the whole, depending on the
statistics of the input time series. Interactions be-
tween an adaptive filter and a masking field can hereby
dynamically organize incoming input patterns into
structural relationships which are learned from the
statistics of a unique input environment, rather than
trying to outguess the environment using prewired
segmentation rules that are bound to fail in most envi-
ronments.

VII. Adaptive Discovery of Segmentation Rules: The

Adaptive Sh;~rpening Property

VIII. Functional Unit of Associative Learni~lls a Spatial
Pattern: A Nonlinear Non-Hebbian Leaming Law

In our computer simulations, we demand a strict
version of the adaptive sharpening property to direct
our investigation of STM and L TM interactions. Giv-
en all the STM groupings in Figs. 3-7, we demanded
that adaptive sharpening transform these groupings
into STM choices atF2 in response to repeated presen-
tation of individual activation patterns at Fl, In par-
ticular, we demanded that adaptive sharpening choose
thatF2 population which was maximally favored by F2
in response to that F 1 pattern before learning began.

As in Eq. (2), an LTM law which satisfies this prop-
erty has the form

The following criterion was applied to test the ade-
quacy of associative learning laws for adaptive tuning
of STM groupings across F2:

Adaptive sharpening property: Suppose that an
arbitrary unfAmiliAr input pattern to Fl generates an
STM representation across F2. The LTM law for the
adaptive weights within the Fl -F2 pathways must
learn from this F 1 -F 2 pairing so that, after learning
occurs, the same input pattern to Fl generates a spa-
tially sharpened, or contrast-enhanced, STM pattern
across F2.

In particular, if F 2 makes a choice in STM, as in Figs.
3-5, learning which satisfies the adaptive sharpening
property acts to conflrm this choice. More generally,
the adaptive sharpening property prevents learning in
the pathways which adaptively filter signals between
Fl and F2 from destroying the good prewired proper-
ties of the masking field. Learning can accentuate the
initial decisions due to interactions of the adaptive
filter with the masking field but cannot upset this
balance due merely to repeated presentations of the
same F 1 pattern.
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Fig. 8. Sampling functions: (a) a faster-than-linear increase of
{(xU with Xi over a large domain of Xi activities or (b) a threshold-
linear increase of {(xU over a large domain of Xi activities illustrates

two possible types of sampling function.

ically or in a threshold linear fashion (Fig. 8), as Xi
increases above zero. In Eq. (4), the sampling signal
{(Xi) multiplies the constant E to determine a state-
dependent learning rate E{(Xi). Due to the faster-
than-linear growth of {(Xi) with Xi, small values of Xi
determine a much slower learning rate in Zji than do
large values of Xi. Consequently, F2 cells which ac-
quire an initial STM advantage can greatly amplify
that advantage by speeding up the learning of their
contiguous LTM traces. In contrast, F2 cells whose
activities remain below zero cannot trigger any learn-
ing in their contiguous L TM traces because {(Xi) = 0 if
Xi :S O. This property justifies calling {(Xi) a samplingsignal. .

Speaking intuitively, the state-dependent learning
rate Ef(Xi) in Eq. (4) says that learning can occur only at
LTM traces Zji whose target activities Xi are chosen by
the cooperati ve-competitive decision-making machin-
ery of F2. All LTM traces Zji whose Fl items receive
positive inputs I j can influenceF2's decision making by
multiplying these inputs on their way to F2. In con-
trast, a much smaller number of L TM traces can learn
from the decision-making process due to the property
that F 2 chooses a compressed recognition code which is
much less distributed than the input patterns which it
receives. In this sense, L TM readout through the
adaptiveF1-. F2 filter and LTM readin by the associa-
tive law (4) are at least partly dissociated due to inter-
vention of the cooperative-competitive interactions
within F 2. Such dissociation of signaling and learning
by code compression mechanisms is not easily accom-
plished using an autoassociator. It was, in part, to
avoid the attendant limitations, notably the instabil-
ities, of learning by an autoassociator that hierarchical
neural networks with multiple network levels began to
be designed in the late 1960s. These developments
included the introduction of hierarchies of nonlinear

d-z.. = Ef( x.)[ -z.. + LI. ] (4)dt ]I ']I J .

In Eq. (4), Zji is the LTM trace in the pathway from the
jth node Vj in Fl to the ith node Vi in F2' Ij is the input
from Vj, Xi is the STM activity of Vi, f(xu is a nonlinear
sampling signal that is activated by sufficiently large
values of Xi, and E and L are constants. Such a law was
introduced into the associative learning literature in
GrossbergSO,Sl and has since been used in many mod-
els.S2-36 In particular, it was the associative law that
was chosen to introduce the adaptive resonance the-
ory,4,5 and it has played an important role in the com-
plete numerical and mathematical characterization of
an adaptive resonance circuit. 7 Recent neurophysio-
logiCal expe:riments about cortical and hippocampal
processing have, moreover, supported this associative
rule both qualitatively and quantitatively.37-4l

One reaso:n such a law cannot be taken for granted is
that it violates the Hebbian associative postulate42
that is the basis for many current learning models. On
p. 64 of his classic book, Hebb proposed his famous
Hebb postulate: "When the axon of cell A is near
enough to excite a cell B and repeatedly or persistently
takes part ml firing it, some growth process takes place
in one or both cells such that A's efficiency, as one of
the cells tIring B is increased." The development of
neural network models of conditioning since Hebb's
work is discllSsed in detail by Levine.43 The learning
rule in Eq. (4) is called an associative rule, whereby
L TM efficac:y changes as a function of a time average of
correlated presynaptic cell activities. Associative
rules are often called Hebbian rules to honor the pio-
neering work of Hebb.42 This convention has, we be-
lieve, caused a great deal of confusion in the condition-
ing literature because different associative rules can
support qualitatively different types of learning prop-
erty.

The Hebb postulate seems plausible if one assumes
that the unit of associative learning is a single cell's
activity whose correlation with another cell's activity
can increase the L TM strength of a pathway between
the cells. A different associative rule is needed, how-
ever, if one agrees that the unit of associative learning
is a spatial pattern of activity across a network of cells,
as is required by Figs. 3-7. Then the correlation of a
spatial pattern across Fl with a cell's activity in F2
enables the LTM traces in the set ()fpathways from Fl
to the active F 2 cell to encode the entire spatial pattern
of activity into L TM. In this situation, an associative
rule is needed which can encode both increases and
decreases of L TM strength as a function of the pairing
of cell activities, because an inactive cell Vj atFl should
cause Z ji to approach zero when correlated with an
active cell Vi at F 2. Thus a change in the functional
unit of learning from a single cell to a spatial pattern
across a network of cells necessitates an associative
rule that violates the Hebb postulate.

Another nonclassical property of the learning law (1)
is that the sampling signal f(Xi) is a nonlinear function
of Xj; in particular, f(Xi) is a non-negative function
which grows faster than linearly, for example, quadrat-
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avalanche-type circuits for spatiotemporal pattern
learning, of pre wired and adaptive pattern recognition
circuits, including competitive learning and adaptive
resonance circuits, and of circuits for the active regula-
tion of information processing by reinforcement and
homeostatic mechanisms to attentively direct infor-
mation processing toward the realization of desired
goals. Several of these early contributions are de-
scribed in Grossberg.13 More recent contributions
built on this foundation are brought together in Gross-
berg.14.15
IX. Complrter Simulations: Adaptive Sharpening of
MuRiple Grolupings

In this seiction, we illustrate the adaptive sharpening
property by showing how the multiple groupings de-
picted in Figs. 6 and 7 are adaptively transformed into
STM choices when the learning law (1) is used in the F 1
-F2 adaptive fliter. We have demonstrated in addi-
tion that the learning law (1) confirms all the STM
choices described in Figs. 3-5. These simulations are
not, however, displayed herein.

All the figures in this section describe the equilibri-
um STM choice that is generated by F 2 when the
learning process approaches a limit in response to sus-
tained presentation of each input pattern. The fact
that the system always approaches equilibrium STM
and L TM values is in itself a fundamental property,
since feedback interactions between STM (fast) and
L TM (slow) processes can easily lead to sustained
oscillations, such as traveling waves, bursts, or even
chaotic oscillations.44-48 In some physical systems,
complex oscillations are functionally desirable. In the
present applications, they are not. Theorems which
guarantee a global approach to equilibrium in related
cooperative-competitive feedback networks are found
in Cohen and Grossberg,22 Ellias and Grossberg,49
Grossberg and Levine,3 and Grossberg.2.13

To supplement the global theorem about masking
fields,24 we have studied the approach within F 2 to
STM and L TM limits using a variety of techniques.
The simplest technique uses a singular approximation
to the full dynamic system. In the full dynamic sys-
tem, STM reacts to an input pattern more quickly than
does the slower L TM learning process. In a singular
approximation, it is assumed that LTM does not
change at all until the STM activities have almost
reached an equilibrium value. Then the LTM learn-
ing process is switched on, and both STM and L TM
interact until they conjointly approach equilibrium.
Using such a singular approximation, a much faster
LTMlearningrate [namely, a larger finEq. (4)] can be
used without significantly changing the equilibrium
STM and L TM patterns that are found using the full
system. A computer simulation of a singular system
can thus be done much more quickly than a simulation
in which the full system is integrated with a small f
until it reaches equilibrium. Carpenter44.5o,51 and
Fenichel52 have proved theorems which describe con-
ditions in which solutions of a nonlinear dynamic sys-
tem with fast and slow processes lie close to solutions of
a singular approximation to the full dynamic system.

Once we confirmed the adaptive sharpening proper-
ty using a singular approximation, we did simulations
with the full system using several different choices of
the learning rate parameter E in Eq. (4). Our goal was
to understand how fast the learning rate could be
before it might disrupt the adaptive sharpening pro-
cess, More generally, we wanted to understand
whether L TM changes must necessarily occur more
slowly than STM changes to achieve basic functional
properties such as adaptive sharpening.

Figures 9 and 10 describe the equilibrium patterns
in a singular system, all of whose parameters, except
the learning rate E, are the same as in the simulations of
Figs. 6 and 7. In Figs. 6 and 7, the learning rate E = O.
In Figs. 9 and 10, E was set equal to zero until the STM
traces across F2 were close to equilibrium. Then we
switched E to equal 1 to allow the full system to ap-
proach equilibrium.

Comparison of Figs. 9 and 10 with Fig. 6 and 7 shows
that the adaptive sharpening property is obtained.
Comparison of the input patterns to F2 nodes without
learning and after learning shows how L TM changes in
the Fl -+ F2 pathways alter the total inputs to the F2
nodes and thereby bias the competitive feedback pro-
cess within F2 to make global choices in STM.

Having achieved the adaptive sharpening property
in a singular system, we demonstrated the property,
without a change of parameters other than E, in the full
system. In one successful series of full system simula-
tions, the choice E = 0.01 was made. In all these
simulations, the decay rate of STM activities across F 2,
in the absence of internal feedback signals, was chosen
equal to 1. Thus the adaptive sharpening property
was confirmed in the full system using plausible rela-
tive rates of STM and L TM change. Figure 11 depicts
a computer simulation of how the L TM values in a
subset of F 1 -+ F 2 pathways changed through time due
to learning. The simulations show that the present
masking field and associative learning laws are suffi.
cient to generate all the properties that we have
claimed.

Despite these successful results, a finer study of the
transient behavior of the full system, before equili-
brum was reached, raised a number of issues which
have led us to propose a refinement of masking field
design which promises to generate even stronger prop-
erties.

X. Transient STM Surge Precedes CompE!titive Contrast
Enhancement

Two major phases in F2's reaction to an input pat-
tern at Fl can be identified. In Phase 1, the input
pattern starts to deliver signals to F2 nodes via the Fl
-+ F2 pathways, and many F2 nodes thereby start to
become activated. As these nodes become activated,
they begin to generate feedback signals, notably com-
petitive signals, to other F2 nodes [Fig. l(b)]. The
balance between excitatory and inhibitory signals to
each node quickly contrast enhances the input pattern
from F 1 and generates the more focal STM reactions at
F2 which are depicted in Figs. 3-7. In the absence of
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Fig. 9. Adaptive sharpening in response to the input patterns of Fig. 6. Comparison of input'patterns here with those in Fig. 6 shows how
learning biases the adaptive filter Fi F2 to choose the preferred list code at F2.
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Fig. 10. Adaptive sharpening in response to the input patterns of Fig. 7.

additional learning, reset, or habituative mechanisms,
these focal STM reactions are stored by the balance of
inputs and feedback signals within F2. Phase 2 con-
sists in the contrast enhancement and storage of these

STM patterns. In the language of the Hough trans-
form, the positive and negative votes cast by the mask-
ing field cancel both off-peaks and false peaks caused
by the adaptive filter.
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Fig. 11. Changes in LTM strength through time due to learning.
Lengths of the spokes are proportional to the sizes of the correspond-
ing LTM traces. LTM traces at increasing times are plotted down
column 1 and then column 2. The numbers under each figure

designate the size of the maximal L TM trace in that figure.

thereby tune their L TM traces, because f(xi) = 0 at all
other F2 nodes.

In summary, if the learning rate is fast relative to the
duration of Phase 1, learning is not controlled by the
masking field's grouping process. Moreover, such
spurious learning can interfere with the masking
field's ability to select a prcedictive grouping during
Phase 2.

Figure 13 describes computer simulations which il-
lustrate how a change in the learning parameter E can
alter the eql;1ilibrium grouping that is finally learned.
Choosing E too large can also cause violations of the
adaptive sharpening property. Figure 13(a) repeats
Fig. 4(c) to facilitate comparison of the no-learning
case with several learned groupings. In Fig. 13(b )-( d),
E was chosen equal to 1, 0.1, and 0.01, respectively.
When E = 1, F2 chose the {Ol nodes. When E = 0.1, F2
selected both {Ol and (0,11 nodes. When E = 0.01, F2
chose the correct to, 11 node. In all cases, the learned F 2
grouping exhibited a form of adaptive sharpening. In
Fig. 13(b), however, the chosen F2 nodes do not code
information about item {11 at all.

The reason for this bias toward {Ol nodes at fast
learning rates can be traced to properties of the Phase
1 surge. In Fig. 11, an initial advantage of {Ol nodes
above {0,11 nodes can be seen before the self-scaling
feedback interactions within F2 reverse this advan-
tage.

These results illustrate that, in the masking hereto-
fore described, there exists a trade-off between the rate
of cooperative-competitive decision making by F2 and
the rate of learning by the Fl -F2 adaptive filter.
Learning must be sufficiently slow relative to the deci-
sion -making process to avoid spurious learning of tran-
sient decisions~ The results also show, however, that a
proper scaling of rates, with L TM ""'100 times slower
than STM, can avoid this sampling problem. On the
other hand, these simulations also call attention to the
following design problem, should one wish to be freed
from concerns about the proper scaling of slow L TM
rates against fast STM rates.

XII. Structurally Stabilized Learning
The design problem that is raised by the simulations

in Figs. 12 and 13 can be stated as follows:
Structurally stabilized masking field: Does there

exist a modification of masking field design which
overcomes the Phase 1 surge (Fig. 12) and the fast
learning (Fig. 13) problems, given essentially any
choice ofSTMand LTM rate parameters?

We now suggest a modification of a masking field's
internal connections which can substantially reduce
the Phase 1 surge. We also suggest a modification of a
masking field's internal connections which enables it
to learn in a way that is insensitive to whatever residual
surge may still occur. We hereby overcome a problem
that may arise due to improperly chosen rates by modi-
fying the system's interactive structure to work well
given a more careless choice of rates. Otherwise ex-
pressed, a structurally stabilized masking field is more
fault-tolerant of a poor choice of processing rates.

Figure 12 summarizes a computer simUlation of the
transition from Phase 1 to Phase 2. The parameters
are the same as those in Fig. 4(c). Each successive
picture depicts the STM activities of F 2 nodes at a later
time after the onset of the input pattern to F 1-

In summary, after an input pattern activates F 1,
there is a massive but transient activity burst across F 2
which is quickly sculpted by F2's feedback interac-
tions. The key question is: How quickly, relative to
the learning rate?

XI. Spurious Learning of the Transient Surge
The following problem can arise if the learning rate

is too fast. Suppose that f in Eq. (4) is chosen so large
that significant learning can occur during Phase 1.
Then many F2 nodes Vj can sample the F1 activity
pattern because their learning rates ff(xJ are large
during Phase 1. In contrast, if f is small, insignificant
learning occurs during Phase 1 because the duration of
Phase 1 is not long enough to integrate a large L TM
change at rate ff(xJ. During Phase 2, only those F2
nodes which are selected by the internal feedback in-
teractions within F 2 can sample the input pattern and
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ance the excitatory signals with inhibitory signals (Fig.
14). Inhibitory signals will, therefore, be registered at
the same moment th!it excitatory signals are regis-
tered. There does not exist a time interval during
which excitatory inputs can activate a Phase 1 burst
that is not controlled by inhibitory signals.

XIII.. Feeldforwan:l and Feedback Sharing of Internal
Feedback Pathways

The Phase 1 surge is due to the fact that all Fl -F2
inputs are excitatory. We propose that, before these
inputs can influence their target cells in F2, they acti-
vate internal feedback pathways within F2 which bal-
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hibitory control. Successive list codes in columns 1 and 2 are evaluated at logarithmically increasing times.
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Fig. 13. Comparison of the list code stored in STM atF2 in a no-learning case (a) with the list code that is stored after learning with (b) E = I,
(c) E = 0.1, and (d) E = 0.01. The learning rates E = 1 and E = 0.1 are both too fast to achieve the adaptive sharpening property because the LTM

-traces can learn significantly during the Phase 1 burst.
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I F1
Fig. 14. Phase 1 burst can be partially eliminated by causing each
FI -F2 input to activate both excitatory and inhibitory pathways

leading to target F2 nodes.

1 cells receive only excitatory signals. Moreover, the
Fl -F2 pathways abut the Stage 1 cells. What pre-
vents the L TM traces within the endings of these
pathways from being activated by sampling signals
from the Stage 1 cells?

We hypothesize that the sampling signal which acti-
vates an L TM trace is not derived from a Stage 1 cell.
Rather, the sampling signal is activated by feedback
from a Stage 3 cell (Fig. 15). Many Stage 3 cells will be
immediately inhibited by Stage 2 interneurons when
an idput pattern turns on. Use of Stage 3 cells as a
source of sampling signals enables masking field inter-
actions to restrict learning from its very fIrst moments
of interaction, because many Stage 1 cells which are
initially activated by F 1 inputs correspond to Stage 3
cells which are never activated during the ensuing
grouping process. To instantiate this constraint, we
simply replace Eq. (4) by equation

d
-z.. = £f (X!3» (-Z" + Ll. ) (5)ar" , J' J'

where xf3} is the activity of the ith cell population in
Stage 3 of the masking field.

The concept that internal feedback signals generate
L TM sampling signals was introduced in Grossberg.53
We now believe that it may be a design principle which
is widely used in the brain, whether the feedback signal
is intercellularly generated, as in Fig. 15, or intracellu-
larly generated by a network of biochemical feedback
interactions. Computer simulations which illustrate
how such a feedback signal regulates learning are de-
scribed in a related type of circuit for combining coop-
erative-competitive and associative mechanisms in
Grossberg and Schmajuk.19 Some of the properties

How should these excitatory and inhibitory signals
be chosen? In particular, how can they be chosen so
that they do not upset the feedback interactions that
are the basis of a masking field's grouping properties?
A simple answer is available: Let the feedforward
inputs from the adaptive filter use the same interneu-
rons, or internal feedback cells, that are used to de[me
the masking field (Fig. 15). Such a design was first
described by Grossberg.5 Then the uncontrolled
Phase 1 burst is prevented by a structural mechanism
which immediately begins the grouping process when
it receives an input burst.

As Fig. 15 shows, the masking field is now broken
into three internal stages. Stage 1 receives the excit"
atory inputs from F 1- Stage 2 contains the internal
pathways which distribute excitatory and inhibitory
signals across the masking field. Stage 3 contains the
target cells of these internal pathways. These target
cells always receive a mixture of excitatory and inhibi-
tory signals. They are never exposed to an uncon-
trolled Phase 1 burst. The Stage 3 cells give rise to
topographic positive feedback pathways to their Stage
1 source cells. These positive feedback pathways close
the feedback loops within the masking field. Using
these stages, the internal feedback interactions of the
masking field remain unchanged, yet the F 1 inputs
engage these interactions before they influence Stage 3
cells.

The architecture in Fig. 15 prevents a totally uncon-
trolled Phase 1 burst from occurring. On the other
hand, the internal feedback within the masking field
does not instantaneously select an equilibrium group-
ing. Rapidly cycling feedback signals within the
masking field select such a grouping. It remains to say
how the L TM traces within the F 1 -F2 pathways can
be buffered against learning activity patterns that are
far from equilibrium.

XIV. Intemal Feedback as a Sampling Signal
The main problem to be overcome is clearly illus-

trated in Fig. 15. Although the Stage 3 cells receive a
mixture of excitatory and inhibitory signals, the Stage
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which can be used to experimentally test for this de-
sign are now summarized.

STAGE 3

FEEDBACK
XV. Dissociation of L 1M Readin and Readout:
Feedback as a Neural Modulator

/-

::J --l
~

-~~c: ;:J",
/5 ~~GE 1

~~:~.:1~.f::::' ~

~...~
F1 INPUTS

Fig. 16. Stage 1 cells receive inputs from Fi on branches, or den-
drites, whose local activations summate to generate the total output
signal to Stage 2 cells. Stage 3 feedback signals cause a massive
global activation of Stage 1 cells which triggers the biophysical
events that enable L TM traces (hemidisks) in active Fi pathways to

learn.

Readout of LTM occurs when an LTM trace multi-
plicatively gates a signal on its way from Fl to F2
(Appendix). In the masking fields which we have
simulated, LTM is read out into the same F2 cells
which enable the L TM traces to sample, or read in, new
LTM values [Fig. l(b)]. The design in Fig. 15 struc-
turally dissoc:iates the processes of L TM readout and
L TM readin by enabling some Stage 1 cells to become
activated without triggering any learning, no matter
how fast the learning rate is chosen.

The feedback signals from Stage 3 to Stage 1 do not,
however, act only as sampling signals. They must also
activate their target Stage 1 cells to close the internal
nonlinear feedback loops which enable the masking
field to select its compressed recognition code for stor-
age in STM. lithe feedback signals can activate Stage
1 cells, how can the L TM traces which abut Stage 1
cells tell the difference between the activation of Stage
1 cells by inputs from F 1 and activation of Stage 1 cells
by feedback signals from Stage 3? If such a distinc-
tion cannot be made, a functional dissociation of L TM
readout and L TM readin cannot be achieved.

There exist two types of solution to the dissociation
problem: a dynamical solution and a structural solu-
tion, which can be instantiated either chemically or
electrically. In the dynamical solution, the LTM
traces continue to use Stage 1 cells as sampling signals,
but the thre,shold for activating the sampling signal
f(x) is chosen high. It is assumed that Stage 1 cells
can only be activated enough to exceed the sampling
threshold when their direct activation by inputs from
F 1 is supplemented by large positive feedback signals
from Stage 3 cells. Although such a mechanism may
be adequate to solve simple learning problems, it is
inadequate in a complex learning system. For exam-
ple, in a masking field, if the sampling threshold is
chosen too small, the Phase 1 surge can be learned. If
the sampling threshold is chosen too large, many
groupings which should induce adaptive tuning will
fail to do so. We have performed many ,computer
simulations which support our contention that such a
design is not robust.

In contrast, a structural solution to the problem is
manifestly robust. In one such structural solution, the
feedback signal is delivered via a different chemical
transmitter than the chemical transmitter which gates
signals from F 1 to F 2 and regulates learned L TM
changes in F1- F2 pathways. Termf(x}3» in Eq. (5)
can then be realized by a modulatory action of the
feedback transmitter on the feedforward transmitter.
A modulatory action of catecholaminergic transmit-
ters on learning by cholinergic transmitters has been
reported in neural data (e.g., Friedhoff54.55) and has
also been postulated in neural models of classical andinstrumental conditioning.1S.14 '

The use of two transmitters enables both transmit-
ter systems to electrically activate Stage 1 cells, yet
also enables L TM traces abutting Stage 1 cells to dis-
tinguish between feedback signals from Stage 3 and
their aggregate effects on Stage 1 cells. In one micro-
scopic realization of such a dual-transmitter system,
either transmitter can cause macromolecular changes
in the cell membranes of Stage 1 cells which enable
electrical activation to occur, but only their conjoint
action can cause those macromolecular changes which
enable the learning process to unfold. Data concern-
ing associative learning in invertebrates implicate a
Ca2+ -dependent membrane current which is activated
only when pairs of critical events occur together.56-58
A catecholaminergic transmitter may, moreover, par-
ticipate in the activation of this Ca2+ current. 57 The
feedback signal from Stage 3 to Stage 1 plays an analo-
gous formal role in the circuit depicted in Fig. 15. The
suggestion that associative learning may depend on a
Ca2+ current was made in Grossberg,30.59 based on the
fragmentary biochemical evidence then available, to
explain how a learning equation such as Eq. (4) could
be physically realized.

Another structural solution of the problem can also
be envisaged. In this solution, each F 1 -F 2 pathway
causes a local change in its target cell membranes at
Stage 1 (Fig. 16). These local membrane channels
cause local changes in potential which are summated
by the Stage 1 cells before these cells activate Stage 2
cells. Feedback signals from Stage 3 cells cause global
action potentials throughout the Stage 1 cells. These
global action potentials activate membrane channels
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Fig. 17. Adaptive resonance theory architecture: Two successive
stages F 1 and F 2 of the code learning, or attentional, subsystem are
depicted. In addition to a bottom-up adaptive filter Fl- F2' a top-
down adaptive filter F2 -Fllearns templates, or critical feature
patterns, which are matched against input patterns at Fl, This
matching process protects already learned codes against unstable
recoding by activating the orienting subsystem A. A reset wave
from A quickly resets the list code at F 2 before it can be erroneously
associated with the current activity pattern atFl and initiates a self-
adjusting search for a better list code. The gain control channels
enableFl to distinguish between bottom-up input patterns and top-
down templates during the matching process and enable stored

STM activity to decay when gain control is shut off.

many arbitrarily chosen binary input patterns.7 Us-

ing masking fields capable of coding multiple group-

ings, the design of masking field hierarchies F 1 F 2 F n becomes possible. Such hierarchies show

promise of being able to self-organize highly abstract

grouping, hypothesis testing, and logical operations.

The design of masking field hierarchies can now be

pursued by combining the results of Carpenter and

Grossberg with the results described herein.
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Appendix: Mathematical Description of a ~nasking Field

A. Shunting On-Center Off-Surround Networks

The cell populations Vi of a masking field have po-

tentials Xi(t), or STM activities, which obey the mem-

brane equations of neurophysiology, namely,

c~ = (vt -V)g+ + (V- -V)g- + (vP -V)gP, (AI)
at

In Eq. (AI), Y(t) is a variable voltage, C is a constant
capacitance, the constants Y+, V-, ~d Yp are excitato-
ry, inhibitory, and passive saturation points, respec-
tively; and the terms g+, g-, and gP are conductances
which can vary through time as a function of input
signals. Due to the multiplicative relationship be-
tween conductances and voltages in Eq. (AI), a mem-
brane equation is also said to describe a shunting inter-
action.

In a masking field, the cells are linked together via
recurrent, or feedback, on-center off-surround interac-
tions [Fig. 1 (b)]. The properties of a masking field are
thus part of the general theory of shunting recurrent
on-center off-surround networks. Grossberg-I5,eo re-
views general properties of this class of network.

The masking field equations are most simply built
up in stages. Rewrite Eq. (AI) for the potentialxJt) in
the form

which cannot be activated merely by local signals from
F 1. These membrane channels enable learning to oc-
cur within the abutting LTM traces. This possibility
was used in Grossberg53 to discuss classical condition-
ing within the hippocampus and in Grossberg1 to dis-
cuss possible sites of neocortical conditioning. It is a
structural rather than a dynamic scheme because all
feedback I;ignals are assumed to trigger the global
change which enables learning to occur, not only feed-
back signals which can summate sufficiently with feed-
forward signals. Such a structural scheme could also
be used to trigger a Ca2+ -dependent current when the
cell is globally activated. This type of structural
scheme is used to interpret the systems simulated by
Grossberg and Schmajuk.19

XVI. Conc:luding Remarks: Self-Stabilization of
Learning W'lthin ART Circuits

Subsequent work on masking fields will proceed in
several directions. In addition to quantitative ana-
lyses of the structurally stabilized masking field archi-
tecture summarized in Fig. 15, each masking field de-
sign will be embedded within the total architecture
which defines an adaptive resonance theory (ART)
module (Fig. 17). Such an ART architecture is capa-
ble of self-organizing and self-stabilizing its recogni-
tion codes in response to arbitrary orderings of arbi-
trarily many and arbitrarily complex input patterns.
Carpenter and Grossberg7-10 have numerically and
mathematically characterized ART architectures
which use a masking field F2 that always makes a
global choice. In this special case, they have rigorous-
ly proved that the learned recognition code self-stabi-
lizes in response to arbitrary orderings of arbitrarily

d-x. = -Ax. + (B -x. )p. - (x. + C)Q . (A2)dt I I I I I I'

where 0 is the passive equilibrium point, B(> 0) is the
excitatory saturation point, and -C(:$ 0) is the inhibi-
tory saturation point. Term Pi is the total excitatory
input, and term Qi is the total inhibitory input to Vi.
Potential Xi(t) can vary between Band -0 in Eq. (A2)
as the inputs Pi and Q; fluctuate through time. The
multiplication of Pi and Qi by terms which include Xi
endow the circuit with properties of automatic gain
control.
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The excitatory input Pi is a sum of two components:
the total input from the item field plus a positive
feedback signal from Vi to itself [Fig. l(b)]. Thus Pi
can be written in the form

P;=IIjPjiZj;+Df(x;). (A3)
jf"J

In Eq. (A3), term I j is the output from the item node vI,
Pji is the connection strength of the pathway from Vj in
FI to Vi in F2' and Zji is the LTM trace, or adaptive
weight, within this pathway. Term Df(Xi) describes
the positive feedback signal from Vi to itself. This
feedback signal enables Vi to store activities in STM
after the inputs I j terminate.

The inhibitory input Qi in Eq. (A2) is a sum of
feedback signals g(xm) from other populations Vm in
the masking field. Thus Qi can be written as

EKJ = F\J1GIKJHIKnJlo (AS)

By Eq. (AS), EKJ is a product of three factors. Each
factor depends only on the size of an unordered set of
items. These unordered sets are setK, setJ, and their
intersection K n J. Equation (AS) can be explained
by assuming that the inhibitory interaction strength
from v<,:> to v~J) is the result of an interaction of three
independent random factors. The net strength EKJ
can thus arise from a statistically independent interac-
tion between growth factors that depend on the sizes of
K, J, and their overlap. By putting together all these
contraints, we find the following:

Masking field equations:

!!:.-x(J) = -Ax!J) + (B -x!J) ['" I ~D(o!)Z(o!) + D. "/(X!J) ]dt ' , I ~ P-JI JI wv I
J6J

-(xlJ> + C) Lg(x!:f"J)FiJ\GlKJHlKnJl' (A9)
m,K

We now define how the coefficients DIJI. FIJI. GiKI.
and HIKnJl depend on the unordered sets K and Ji how
the positive and negative feedback functions f(w) and
g(w) depend on their activities Wi how the path
strengths p)r> from Fi to F2 express a random growth
rulei and how numerical parameters were chosen.

Qi = L8(Xm)Emi'

mE!
(A4)

B. Mass Action Interaction Rules

The notation in Eqs. (A2)-(A4) is now refined to
express the fact that the cells in different subfields of a
masking field possess different parameters. To ex-
press the fact that an F2 population receives Fl path-
ways only from a prescribed (unordered) set J of item~
letx}J) denote the STM activity of anF2 population v}
which receives input pathways only from the set J ofF 1
items, Any number of different populations v}J) in F2
may correspond to each fixed set J of F 1 items, Equa-
tion (A2) is replaced by the equation

d-xlJ) = -Ax(J) + (B -x(J) PiJ) - (xlJ) + C)Q(J) (A5 )dt ' , '" , ,

which holds for all unordered sets J of Fl items that
can selectively send pathways to nodes in F2'

Equation (A3) for the excitatory input Pi is replaced
by

C. Self-Similar Growth Within List Nodes

The coefficient DIJ! determines how the positive
feedback from a node to itself varies with the node's
self-similar scale. We assume that DIJ! increases with
scale, thereby enabling nodes corresponding to longer
sublists to gain a competitive advantage in STM, other
things being equal. The simplest choice is made in our
simulations, namely,

P';J) = L1jP}'fIz}'fI + DiJ!f(xjJ). (A6)
jEJ

In term DIJi, notation IJJ denotes the size of set J.
Thus DIJ1 depends on the size of set J but not on the
items' in set J. Thus the excitatory feedback coeffi-
cient DIJI is sensitive to the spatial scale of the popula-t " (J)'
Ion Vi "

Equation (A4) for the inhibitory input Qi is rermed
in several stages. Function Q~J) obeys an equation of
the form

Q!J) = }::g(xl:»EKJ' (A7)

m,K

where coefficient EKJ determines the stren~h of the
inhibitory feedback pathway from v~ to v~J). This
path strength depends ong on the unordered sets K
and J of items to which v~ and v~J) respond. Coeffi-
cient E KJ expresses the randomness of the self-similar
growth process between populations in F2 (Ref. 11) as
follows:

Mass action interactions:

DiJI = DIJ!. (AIO)

where D is a positive constant. This rule is consistent
with the possibility that, as an F2 cell (population)
grows in response to high levels of Fl input, it also
produces more excitatory synaptic sites for its own
axon collaterals.

D. Conservation of Synaptic Sites

The dependence of the intermodal connection
strengths p}f, FIJI, GIKI, and HiKnJl on the sets K and J
is now described. The total connection strength to
each population vfJ> from all cells in Fl and the total
inhibitory connection strength to each population vfJ>
from all cells in F 2 are both chosen to be independent of
K and J. This property is compatible with the inter-
pretation that the size of each cell (population) is
scaled to the total strength of its input pathways. If
more pathways input to such a cell, each input's effect
is diluted more due to the larger size of the cell. The
property of matching cell (population) volume to the
total number of input pathways is called conservation
of synaptic sites.

Conservation of synaptic sites enables the network
to overcome the following problem. Due to the ran-
domness of the growth rules, there may exist different
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numbers of cells in each of the F2 masking subfields.
As these F2 cells compete for STM activity, the com-
petitive balance could be biased by accidents of ran-
dom growth. A mechanism is needed to control the
proliferation of random connections. Conservation of
synaptic sites is one effective mechanism. A masking
field embodies a new functional role for such a growth
rule. Thus we impose the following constraints:

Synaptic conservation rule:
Let

n+1
Sn = !<YloY2"" oY..+J:Yj ~ O.2:Yj = I), (AI6)

j-1

2p}f = constant = 1
jEJ

(All)

I FIJ1GiKtHlKnJ! = constant = F.
m,K

(A12)

By Eq. (A12)

1pJ;,> = TJf(l -PiJI) + rJ;,>piJI. (A14)
llrJr=rTJT " "j;Jf"":j:""i" .

v

Thus the mean of pjr> is also 1/1J!, and its standard
deviation is

The fluctuation coefficient PIJ1 in Eq. (AI4) determines
how random the growth is from FI to F2. If PIJ1 = 0,
growth is deterministic (but spatially distributed) be-
cause p(f = 1/1J!. In this limiting case, all connection
strengths from item nodes in F I to a fixed list node in
F 2 are equal and vary inversely with the number IJ! of
item nodes that contact the list node. If 0 < PkI1 :$ 1, the
coefficien~ r}f in Eq. (A14) influence the connection
strengths pit>. The numbers Ir}f :je- J} are chosen pseu-
do-randomly. They are unifoimly distributed between
0 and 1 so that

IrJf = 1.
jEJ

(A15)

1[rJr=T
PkTf]Jf'J TJr+1 .(A17)

The coefficient of variation of pJi> is its standard devi-
ation divided by its mean, which we set equal to a
constant p independent of 1J1. Thus we chose

ITJr+TPk/1 = P'J T;iT=l' (A18)

In the simulations reported herein, p = l/lOJii,.

F. Self-Similar Competitive Growth Between Ust Nodes
Coefficient FIJI in Eq. (A9) describes the total num-

ber of inhibitory synaptic sites within a population v~J).
By Eq. (A13), this quantity is chosen to keep the num-
ber of synaptic sites constant across all the cells.
Small random variations could also be allowed, but we
have absorbed all the effects of randomness into the
coefficients pJi> in Eq. (A14) for simplicity.

Coefficient GiKI in Eq. (A9) measures the total num-
ber of inhibitory connections, or axons, emitted by
each population v~ to all other F2 populations. Due
to self-similar growth, GIKI increases with IKI. In our
simulations, we make the simplest choice.

Equations (AI4) and (AI5) together imply the conser-
vation rule (11).

It remains to say how the fluctuation coefficients PIJ1
depend on the set size IJI. We choose these coeffi-
cients to keep the statistical variability of the connec-
tion strengths independent of IJI. In other words, we
choose PIJ1 so that the standard deviation of {pjr>:j E J}
divided by the mean of {Pjr>:j E J} is independent of
IJI. This is accomplished as follows.

To produce a pseudo-random sequence of numbers
{rjr>:j E J} distributed uniformly over the simplex

1888 APPLIED OPTICS I Vol. 26, No. 10 I 15 May 1987

we proceed as follows. By a standard algorithm61 we
obtain a vector of numbers w = (WhW2,... ,wn) uni-
formlydistributed over the n-cubeln = Xj81[O,1]. Re-
arrange the numbers in w in order of increasing size to
produce a new vector w' = (w~,w;,. ..,w~) so that w~ :5
w; :5. ..:5 w~. The map w -w' from In into itself is
determined by a permutation 0' of the indices
{1,2,.. .,n} so that w; = wq(i). Each permutation O'can
transform a different subset of In into vectors with
increasing entries. Thus In can be decomposed into
sets Dq so that a single permutation u can map all w E"
Dq into w' E" In. Hence the map w -w' transforms
uniformly distributed vectors in In onto uniformly dis-
tributed vectors in In with elements in increasing or-
der.

We next map vectors w' in In with elements in in-
creasing order onto vectors y in Sn+l via the one-to-one
linear transformation Yl = w~, Y2 = W;, -W~,. ..,Yn =
W~ -W~-l' and Yn+l = 1 -wn. Since this linear
transformation maps equal volumes onto equal surface
areas, the vectors Y are uniformly distributed on the
simplex Sn+l.

The coefficient of variation of {P(f:j E" J} is made
independent oflJ! (>1) as follows. By the above con-
struction, the marginal distribution r(f in Eq. (A14)
is distributed with density function OJ( -1) (1 -x )1.11-2.
The mean of this distribution is 1/1.71, and its standard
deviation is



Self-similar axon generation:
Let

G[K1 = IKI. (A19)

Thus GIKI = 0 if IKI = O.
Coefficient HIKnJ1 in Eq. (A9) describes how well

growing axons from a populationv<:>-can compete for
synaptic sites at a population v~J). In particular, coef-
ficient GIKI cLescribes the number of emitted axons,
whereas coefficient HIKnJ1 measures the fraction of
these axons that can reach v~J) and compete for synap-
tic space there. Due to self-similar growth, 11 HIKnJ1
increases with IK n JI. Consequently, if either setK
or J increases, HIKnJ1 also increases, other things being
equal. Given fixed sizes of K and J, HIKnJ1 increases as
the overlap, or intersection, of the sets increases. In
other words, list nodes become list nodes due to the
random growth of connections from item nodes. Two
list nodes, therefore, tend to be closer in F2 if they
receive more input pathways from the same item nodes
in F 1- If a pair of list nodes in F 2 is closer, their axons
can more easily contact each other, other things being
equal. In the simulations, we choose HiKnJ1 as follows.
Let

HlKnJ! = 1 + IK n JI. (A20)

By Eq. (A20), HiK n JI increases linearly with IK n JI.
Because HIK(iJi is always positive, when HIKnJl multi-
plies GiK1 in Eq. (A9), every population v~ can send weak
long-range inhibitory pathways across the whole of F2,
but these pathways tend to arborize with greater densi-
ty at populations v~J), which receive inputs from the
same FI nodes. Equations (A13), (A19), and (A20)
imply that

d
-z(.f) = Ef( x!J»(-z(.f) + Ll. ) (A24)dt I' I I' I .

In Eq. (24), the sampling signal f(x~J)) is assumed to
equal the positive feedback signal in Eq. (A9~ and is
thus a sigmoid function (A22) of activity x~ .The
parameter E determines the learning rate, and the pa-
rameter L is a constant that multiplies the input I j
from node v j in F 1-

The learning law contains term I j rather than term
IjpJ'{> as in Eq. (A9) due to the following interpretation.
Term z('{> in Eq. (A9) ,is the LTM density, or LTM
strengt~ per unit cross-sectional area, in the pathways
from Vj in FI to Vi in F2. Term pJ'{> describes the total
cross-sectional area of these pathways. The input
term I j is broadcast along all these pathways, where it
influences the LTM densities as in Eq. (A24). The
total signal that is read out from these pathways into Vi
equals the readout of all the L TM densities zJ'{> by I j,
summed across all the pathways. This sum equalsI .(-1) (-1) . E (A9)jPp..zp , as m q. .

All the above constraints can be summarized in the
following system of equations.

Adaptively filtered masking field

~x!J) = -Ax!J) + (B -x!J» L~ li[N (1- PIoII)

+ r}fJploII] z}fJ + nIJlf(x!J» }

!J) };m,K g(x~)IKI(1 + iK u J1) (A25)
-F(x, + C) };m,K IKI(l + iK n JI)

and

FFkI1 = 2:m,xlKI (1 + IK n JI) . (A21)

where f and g are sigmoid signal functions. All the
intelligence of a masking field is embodied in the emer-
gent properties which arise from the parallel interac-
tions defined by these equations.

G. Contrast I:nhancement by Sigmoid Signal Functions
The positive and negative feedback signals f(x~J» and

g(x~) in Eq. (A9) enable the network to contrast
enhance its input patterns before storing them in
STM. To achieve this property, we choose both f(w)
and g(w) to be sigmoid, or S-shaped, functions of the
activity level. w.2.13 In particular, we let

f(w) = ([w]+)2 , (A22)

fo + ([W]+)2

g(w) = ([W]+)2 .(A23)

go + «(W]+)2

The notation [w]+ in Eqs. (A22) and (A23) stands for
max(w,O). Thus f(w) and g(w) do not generate feed-
back signals if w is smaller than the signal threshold
zero. As w increases above zero, both f(w) and g(w)
grow quadratical.ly with w until they begin to saturate
at their maximum value 1.

I. Parameters
The following parameter choices were made: A = 1,

B = 1, D = 4, L = 10, to = 1, go = 16. In all runs CF =
1088. Additional parameters are listed by figure.
Unless otherwise noted, the system has run to near
equilibrium value.

Figure 3: E = 0, C = 1, F = 1088, Io = 1.5.
Figure 4(a): same as Fig. 3 except II = 1.5; Fig. 4(b):

I2 = 1.5; Fig. 4(c): Io = I,ll = 0.5; Fig. 4(d): 10 = 0.5,11
= 1.

Figure 5(a): 10 = 0.68, II = 0.48,12 = 0.34; Fig. 5(b):
I'O = 0.34, II = 0.68,12 = 0.48; Fig. 5(c): Io = 0.34, II =
0.48, I2 = 0.68.

Figure 6: E = 0, C = 0.125, F = 8704.
Figure 6(a): Io = 1.5; Fig. 6(b): II = 1.5, Fig. 6(c):

12 = 1.5, Fig. 6(d): 10 = 1.0, II = 0.5.
Figure 7(a): 10 = 0.5,11 = 1.0; Fig. 7(b): Io = 0.68,13

= 0.48, I2 = 0.34; Fig. 7(c): 10 = 0.34, I3 = 0.68,12 =
0.48; Fig. 7(d): 10 = 0.34, II = 0.48,12 = 0.68.

H. Associative Learning
The assoc:iative law that we have used is that de-

scribed in Eq. (2).
Associatitle learning law:
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27. C. M. Brown, "Inherent Bias and Noise in the Hough Trans-
form," IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5, 493
(1983).

28. S. Grossberg, "Unitization, Automaticity, Temporal Order, and
Word Recognition," Cognition Brain Theory, 7,263 (1984).

29. S. Grossberg, "The Adaptive Self-organization of Serial Order in
Behavior: Speech, Language, and Motor Control," in Pattern
Recognition by Humans and Machines, Vol. I: SpeechProduc-
tion, E. C. Schwab and H. C. Nusbaum, Eds. (Academic, New
York, 1986).

30. S. Grossberg, "Some Physiological and Biochemical Conse-
quences of Psychological Postulates," Proc. Natl. Acad. Sci.
USA 60, 758 (1968).

31. S. Grossberg, "On Learning and Energy-Entropy Dependence in
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32. S. Amari, "Competitive and Cooperative Aspects in Dynamics of
Neural Excitation and Self-Organization," in Competition and
Cooperation in Neural Networks, S. Amari and M. Arbib, Eds.
(Springer-Verlag, New York, 1982).

Figure 9: Simulation is run at E = 0 until no single
step or the size of any component of the derivative is
> 1.0 X 10-4. E is then set equal to 1, and simulation
proceeds to equilibrium parameters; C = 0.125, F =

8704.
Figure 9(a): 10 = 1.5; Fig. 9(b): 11 = 1.5; Fig. 9(c):

12 = 1.5; Fig. 9(d): 10 = 1.0,11 = 0.5.
Figure 10: Same parameters and conditions as in

Fig. 9 except where noted.
Figure 10(a): 10 = 0.5,11 = 1.0; Fig.10(b): 10 = 0.68,

11 = 0.48,12 = 0.34; Fig.10(c): 10 = 0.34,11 = 0.68,12 =
0.48; Fig. 10(d): 10 = 0.34,11 = 0.48,12 = 0.68.

Figure 11: E = 0.1, C =0.125, F = 8704. Figures are
outputof{O,l} long-term memory traces at times 1, 2, 4,
8, 16, 32, 64, 96.

Figure 12: E = 0, C = 1, F = 1088, t = 0.1, t = 0.2, t =
0.4, t = 0.8, t = 1.6.

Figure 13(a): E = 0, C = 0.125, F = 8704,10 = 1,11 =
0.5; Fig. 13(b): E = 1; Fig. 13(c): E = 0.1; Fig. 13(d): E
= 0.01.
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