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Parallel Auditory Filtering by Sustained
and Transient Channels Separates
Coarticulated Vowels and Consonants

Michael A. Cohen, Associate Member, IEEE, and Stephen Grossberg, Member, IEEE

Abstract—A neural model of peripheral auditory processing is
described and used to separate features of coarticulated vowels
and consonants. After preprocessing of speech via a filterbank,
the model splits into two parallel channels, a sustained channel
and a transient channel. The sustained channel is sensitive to rel-
atively stable parts of the speech waveform, notably synchronous
properties of the vocalic portion of the stimulus. It extends the
dynamic range of eighth nerve filters using coincidence detectors
that combine operations of raising to a power, rectification, delay,
multiplication, time averaging, and preemphasis. The transient
channel is sensitive to critical features at the onsets and offsets of
speech segments. It is built up from fast excitatory neurons that
are modulated by slow inhibitory interneurons. These units are
combined over high-frequency and low-frequency ranges using
operations of rectification, normalization, multiplicative gating,
and opponent processing. Detectors sensitive to frication and to
onset or offset of stop consonants and vowels are described.
Model properties are characterized by mathematical analysis
and computer simulations. Neural analogs of model cells in
the cochlear nucleus and inferior collicalus are noted, as are
psychophysical data about perception of CV syllables that may
be explained by the sustained-transient channel hypothesis. The
proposed sustained and transient processing seems to be an
auditory analog of the sustained and transient processing that
is known to occur in vision.

1. INTRODUCTION: EARLY AUDITORY
FILTERING AND COARTICULATED SPEECH

APID spoken language is effortlessly produced and un-

derstood by normal humans despite the extraordinary
demands that it makes upon motor, sensory, and cognitive
mechanisms. Although some of the musculature of the human
vocal apparatus moves quite rapidly compared with usual
skeleto-muscular rates, the muscles for many tasks cannot keep
up with the transmission rate of spoken speech. Hence, the
. phenomena of coarticulation during which significant overlap
of articulator motions occur for adjacent speech segments. In
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particular, motion of the tongue and larynx for vowels fre-
quently overlaps the motion for consonants. Often, segments
are nasalized both before and after an utterance {16]. In order
to model speech recognition in a biologically plausible fashion,
it is necessary to account for the recognition of coarticulated -
speech productions. We here investigate a peripheral speech
processing mechanism that partially disambiguates coarticu-
lated vowels and consonants.

One conceivable method to do this is to operate on the short
time output spectrogram of the speech waveform. Standard
speech spectrographs are, however, not reliable transducers of
phonetic information in natural speech environments; see [43]
for a review. For example, the spectral pattern in standard
speech spectrograms degrades markedly for female speakers,
young children, and all speakers in noise. This lack of robust-
ness is in contrast to human behavior: The speech of adult
females and children is about as intelligible as adult male
speech. Speech is often completely intelligible in the presence
of noise whose power is the same as the speech signal.

Other standard preprocessors of speech input, such as ho-
momorphic filtering (cepstral analysis) and linear predictive
coding techniques, suffer similar degradation under natural
conditions [25]. Since most speech recognition systems use
such preprocessed data without feedback, they are inherently
unstable and therefore unreliable under normal uncontrolied
speaking conditions.

An alternative approach to early auditory processing takes
its inspiration from data about speech perception that articu-
late major differences between vowel and consonant sounds
[28]). The Fourier spectrum of a typical vowel consists of a
series of sinusoidal components whose frequencies are integral
multiples of a fundamental frequency and whose amplitudes
depend upon the resonant formant patterns of the vocal tract
configurations. In contrast, for nonvocalic sounds, such as stop
consonants and fricatives, the waveforms lack a clear periodic
quality, and have. spectra that change more quickly and over
briefer durations than vocalic segments. These differences
raise the question of what types of mechanisms are¢ used by
the brain to efficiently process such different types of signals.

Data about how the eighth nerve works provide a starting
point for our analysis [62]. It has long been known that eighth
nerve cells, as recorded in a sedated animal, have a dynamic
range of only 30 dB or three orders of magnitude. However,
from psychophysical studies, it is also known that auditory
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perception has a dynamic range of 90 dB of Weber Law
sensitivity. How can we explain this discrepancy? The classical
view for speech as well as for noise is that this sensitivity is
effected by a (usually unspecified) mechanism of recruitment
or by gain control [51]. A series of experiments initiated by
Young and Sachs [67] and Sachs and Young {63], and followed
up in a detailed fashion by [20]-[24], suggests a significant
modification of the classical view. ,

First Sachs and Young [63] and Young and Sachs [67]
replicated classical work of Kiang et al. [42] using steady
state synthetic vowels. Sachs and Young [63] plotted the
average response rate of the eighth nerve fibers as a function
of characteristic frequency (frequency of best response to a
sinusoidal stimulus). They also studied the spectrum of the
response of these celis to these sinusoidal stimuli. They found
a roughly 30 dB of dynamic range before the response of the
ensemble of eighth nerve fibers saturate to the steady state
vowel stimulus. However, Young and Sachs [67], Sachs and
Young [63], and Delgutte and Kiang [20]-{24] constructed
a series of response measures, called average localized syn-
chrony measures (ALSM) that extend the selectivity of eighth
nerve fibefs to a dynamic range of 60-90 dB in response to
vowel-like sounds and enable recovery of critical features of
‘the vowel spectra through a frequency range of 4 kHz. This
enables recovery of the formant structure of a vowel at least
through the second formant.

The response measures of Sachs and Young are constructed
for each frequency w as follows. The Fourier transform of
the period histogram of the response of an eighth nerve
cell is computed. This Fourier spectrum is multiplied by a
narrow window whose frequency response is centered at the
characteristic frequency w of the fiber, and the product is
integrated. This output is normalized by an appropriate statistic
of the discharge rate of the fiber. Generally, the average rate
or the root mean square rate is used. Finally, this response is
averaged over different fibers whose characteristic frequencies
lie within a critical band of w.

Even though the overall response rate of individual fibers

saturates in a 30 dB intensity range, ALSM measures maintain

selectivity up to about 80 dB. Furthermore ALSM’s are
relatively insensitive to background noise, whereas rate codes
are highly sensitive to noise. On the other hand, these ALSM
measures are less effective in producing a reliable signature
for either fricatives or stops. In the case of stop consonants
in an environment of vowels, such as in the syllable /ida/, the
ALSM measures are hardly changed by the presence of the
consonant {20}-{24]. Thus the strengths of ALSM are balanced
by important weaknesses.

From the perspective of engineering system design, the
ALSM is computationally complex and requires large amounts
of numerical precision, and is therefore hard to compute in real
time. Operations based upon the short-time Fourier transform
of the input waveform are also problematical from a biological
standpoint. There is no evidence that any mammalian auditory
system computes an analog of a Fourier transform. The
problem of time frequency resolution of signals has been
approached in the signal processing literature by the use of
wavelet or Wigner—Wille transforms [39], [61]. Continuous

short-time Fourier transforms use a time-frequency represen-
tation; continuous wavelet transforms use a time-scale space
representation. Time-variant filters can be constructed with
specific localization using the short-time Fourier transform or
the wavelet transform. The construction proceeds by applying
either of these two transforms followed by a multiplicative
operation in the time-frequency or time-scale space repre-
séntation, followed by an inverse transform. However, there
is no clear guidance as to which member of the families
of transforms to use for the problem of speech recognition.
Furthermore, there is no evidence that the linear processing
inherent in these schemes has favorable noise suppression
properties, whereas the synchronous averaging carried out by
the auditory system does [24], [25]. This paper constructs a
filter that achieves a related time—frequency analysis, and that
is motivated by auditory psychoacoustics and neurophysiolog-
ical criteria. These detectors appear to have more favorable
noise suppression qualities than many based on the short-time
Fourier transforms or wavelet transforms referred to above,
and also help to model the synchronous processing carried out
by the auditory system.

The new model forms part of the front end of a self-
organizing neural network architecture for real-time auditory
and speech processing (see Fig. 1) from the periphery to
the word recognition level that our group has been devel-
oping [3]-{6], [11}-{14], [27], [31], [32], [34]), [36]. It is
suggested that processing of the speech waveform splits into
two' channels, a sustained channel and a transient channel.
The sustained channel processes slowly varying envelopes that
reflect synchronous properties in the vocalic portion of the
stimulus. The transient channel responds to critical features
at onsets and offsets of speech segments. The model hereby
helps to disambiguate coarticulated speech segments.

The present article illustrates how such a front end works
by showing how it can separate transient and sustained sig-
nals for several key speech sounds, such as stop and vowel
onsets and offsets, and frications. Further development of
this front end will require that it be integrated into a larger
architecture for auditory and speech processing that is now
being assembled. This architecture includes a new model of
pitch perception [14], of auditory scene analysis and source
localization [27], and of variable-rate speech categorization
[4], [36]). The sustained-transient filter described herein does
not, in itself, accomplish speech recognition. Its role in the
architecture can be clarified by the following examples.

Boardman, Grossberg, and Cohen [4] have proposed how to
explain why the perception of CV syllables exhibits context
effects whereby voice onset time (VOT) of a consonant
and duration of a subsequent vowel interact. Percepts of
/ba/ and /wa/ can, for example, depend on the durations
of the consonant and vowel segments, with an increase in
the duration of the subsequent vowel switching the percept
of the preceding consonant from /w/ to /b/ [50}, [55]. In
their model, C and V inputs are hypothesized to be filtered
by parallel auditory streams that, as in the present work,
respond. preferentially to transient and sustained properties
of the acoustic signal. These streams are represented by
working memories that adjust their processing rates to cope
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Fig. 1.
the penphery to the word recognition level includes the present filter as an
early processing stage.

with variable acoustic input rates. More rapid transient inputs
can cause greater activation of the transient stream which,
in turn, can automatically gain control the processing rate
in the sustained stream. An invariant percept obtains when
the relative activations of C and V representations in the two
streams remain approximately unchanged. The context effect
may be simulated as a result of how different experimental
manipulations affect this ratio. The role of the sustained-
transient filter in this example is thus to enable parallel
working memories to respond more selectively to sustained
and transient properties, respectively, of acoustic waveforms,
and to thereby enable these different types of signals to
modulate each other’s processing.

Mann and Soli [48] have provided additional expenmental
support for the hypothesis that consonants gain-control vowels.
As in the Miller and Liberman [50] study, they showed that
the succeeding vowel in a consonant/vowel (CV) pair can
influence categorization of the initial consonant. In addition,
they showed that, if consonant and vowel order is reversed,
then the vowel has little effect on consonant classification
in vowel/consonant (VC) pairs. Mann and Soli ruled out
articulatory cues by constructing artificial CV and VC pairs
in which the C and V sounds were reversed. They concluded
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that “current auditory processing models, such as backward
recognition masking, preperceptual auditory storage, or models
based on linguistic factors, do not account for the observed
asymmetries” (p. 399). The present hypothesis that parailel
sustained and transient channels exist and appropriately inter-
act can thus help to explain a variety of basic speech data that
previous models cannot handle.

The gain-controlled working memories do not, however,
generate temporally distinct or recognized events on their own.
Several additional problems need to be analyzed to understand
how these context effects lead to speech recognition. How are
consonant and vowel features temporarily stored in a working
memory in such a way that a subsequent event, such as a
change in vowel duration, can alter the percept of a preceding
consonant before it reaches conscious awareness? Why does
the conscious percept take so long to emerge that the duration
of a subsequent vowel can influence the percept of a preceding
consonant? Why is the consonant not already consciously
perceived before the vowel is fully presented? Finally, how
are these several processes designed to ensure that language
can be understood even if it is spoken at different rates?

Grossberg, Boardman, and Cohen [36] suggested partial
answers to these questions by modeling how VC-CV sylia-
bles are categorized when they are presented with variable
silence intervals between the two consonants. Repp [57]
showed that the categorical curve representing the probability
of perceiving /ib/~/ba/ instead of /iba/, as a function of
silence interval, was shifted by a silence interval of 150
ms from the curve representing the probability of perceiving
fibi-/gal instead of liga/ as a function of silence interval.
Why is this shift so large? We propose that it is large for
the same reason that the duration of a subsequent vowel can
influence the percept of a prior consonant; namely, conscious
speech perception is not the result of a bottom-up filtering
process alone. Rather, it emerges as a result of a nonlinear
resonance that develops more slowly between bottom-up and
top-down signals. Thus, a bottom-up filter like the sustained-
transient filter is not designed to compute phonemic boundaries
on its own. The difference between fusion and temporal
separation, as in the /ib/~/ba/ to /iba/ and /ib/~/gal to ligal
distinctions, depends also upon the intervention of top-down
processes.

In particular, after preprocessors such as the sustained-
transient filter operate upon individual acoustic segments,
acoustic events in the model are represented as spatial pat-
terns of activation across one or more working memories.
These working memories can temporarily store a series of
preprocessed sounds. Their temporally evolving patterns are
categorized by a competitive learning or self-organizing fea-
ture map metwork [30], [31], [44], [47]. In this network,
the working memory activation pattern at any time generates
output signals that are processed by an adaptive filter. The filter
generates inputs to a second level of nodes, or cell populations,
that categorize the patterns that are active in working memory.
Category nodes are chosen by lateral inhibitory, or competi-
tive, interactions. Only the node, or nodes, that receive the
largest input—or close to largest inputs—from the adaptive
filter win the competition. Adaptive weights, or long-term
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memory traces, in the filter pathways undergo learning only if
they input to a winning node. Learning is designed to encode
the ratio of activations across the working memory nodes. This
is how category nodes in the model become sensitive to the
sustained/transient ratio in the /ba/ or /wa/ percept.

Why does this classification process take so long that the
duration of a vowel can influence the percept of the preceding
consonant? Why is not the consonant already classified before
the vowel is fully presented? Grossberg [31], [34] proposed
that the perceptual event is not bottom-up activation of a
category node per se. Rather, when a category node is ac-
tivated, it releases learned top-down signals to the working
memory. These top-down signals represent the prototype of
the chosen category. The prototype is matched against the
working memory pattern, and can hereby reorganize it by
generating a focus of attention that selects the feature pattern
that is expected by the prototype from the total activation
pattern.

As this matching process takes hold, it reactivates consistent
category nodes via the bottom-up filter. The amplified category
nodes, in turn, reinforce their top-down prototype signals.
This bottom-up and top-down exchange of amplified matching
signals generates a resonant state within the system. The
resonant state evolves on a slower time scale than bottom-up
activation. The resonant state, rather than bottom-up activation
per se, is assumed to subserve the conscious speech percept.
The resonant state is also assumed to trigger any new learning
of categories in the bottom-up filter and of prototypes in the
top-down expectation. Hence, this resonant event has been
called an adaptive resonance, and the larger theory of which
it is a part has been called adaptive resonance theory (ART)
91, 33}, 135}

Within ART, the brain’s sensitivity to the sustained/transient

ratio is ascribed to the fact that the resonance takes hold

slowly enough that the duration of the vowel has a chance to
influence the final CV percept. Carpenter and Grossberg [10],
Cohen, Grossberg, and Stork [13], Grossberg [34], Grossberg,
Boardman, and Cohen [36], and Grossberg and Stone [37]
have used ART mechanisms to explain a variety of other data
about speech and language perception and production.

In summary, the sustained-transient filter described herein is
proposed to help set up some key working memory distinctions
and to gain-control working memory representations so that
resonances with these working memories can extract invariant
acoustic and speech properties.

II. FILTERS, SYNCHRONY, AND TRANSIENTS

We model the response of the basilar membrane by a
filterbank of linear filters with the filter shape of a bank
of cochlear neurons. The output of this filterbank is passed
through a simple rectifying nonlinearity. Remarkably, the
response properties of eighth nerve cells in broadband stimuli
can to first order be modeled by such a filterbank with
considerable success [8], [17]. However, the data cited above
of Sachs and Young {63] and of Delgutte and Kiang [20]-{24]
suggest that further processing is necessary at higher levels
to account for the stability of vowel recognition at signal

levels from 60-90 dB above threshold and in noise. Their
work indicates that some sort of synchronous nonlinear short-
time averaging is used to provide stable recognition of vocalic
stimuli. :

Each sustained channel is modeled by a coincidence detector
that computes the following operations: i) the output of each
cochlear filterbank is passed through a power function and
rectified; ii) the rectified output is passed through two parallel
channels, one with a delay, and the output of both channels
are multiplied; iii) the product is exponentially time averaged;
iv) the average is scaled by the frequency of the input. This
latter operation, which is known as preemphasis, compensates
for the known increasing sensitivity to high frequencies in the
mechanical spectrum of the outer and inner ears [54], and
produces more phonetically reliable spectrograms. This output
is plotted as a cochlear spectrogram of the sustained channels.
Outputs across the sustained channels can also be pooled
to obtain a measure that is sensitive to the gross sustained
characteristics of the input.

In order to detect phonemic boundaries, and to distinguish .
between different types of consonant segments, rapid onsets
and offsets need to be detected in the speech waveform.
The transient channel accentuates onset and offset information
in different frequency bands in the speech waveform. In
order to detect transient information in a specified frequency
range, a transient detector is applied to the output of a set
of cochlear filters in this range. For example, pooling low-
frequency offset information enables detection of rapid offsets
of vowels, indicating the start of a consonantal segment.
Pooling outputs of offset detectors in a higher frequency
region enables detection of the offset of a consonantal burst,
as shown below in Section V. Pooling low-frequency onset
information enables detection both of the onset of a vowel
and the offset of the an immediately preceding burst. The
high-frequency transient detectors in the model are sensitive
to fricative stimuli. The sustained detectors and all the other
transient detectors have no such sensitivity.

In summary, the transient channel is in many ways computa-
tionally complementary to the sustained channel. The transient
channel is sensitive to rapid changes in auditory signals at
a cost in frequency selectivity. The sustained mechanism
is much more sensitive to frequency information at a cost
in temporal resolution. The transient channel thus excels in
detecting aperiodic auditory sigmals, whereas the sustained
channel] focuses upon periodic or synchronous signals. These
complementary sensitivities are processed within parallel, but
distinct, representations that help to spatially and temporally
disambiguate coarticulated consonants and vowels.

The complementary properties of these parallel channels
clarify a sense in which spectrograms, in themselves, do not
provide a natural or complete representation of the informa-
tion contained within naturally occurring auditory or speech
signals. It is therefore quite difficult for even trained human
subjects to actively retrieve phonetic representations from
spectrograms. The model presented in this article suggests
that combinations of separately filtered sustained and tran-
sient information are used by listeners to achieve phonetic
discrimination and recognition.
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Fig. 2. Sustained detector. The acoustic speech waveform is passed through
an A/D converter sampled at 20 kHz to maintain frequency resolution. The
signal is then stepped down to a variety of rates, and passed through a filter-
bank of “cochlear filters” of length 512 for each selected frequency. The output
rate of the filters was stepped up to 20 kHz to ensure equivalent processing
across channels. The output of each filterbank channel is preemphasized and
halfwave rectified. It is then delayed by a period equal to the reciprocal of
the center frequency of the filter. An autocorrelation with the given delay is

performed.

III. A MoDEL COCHLEAR FILTERBANK

We construct the simplest filterbank that models the pe-
ripheral auditory transduction that is needed to provide inputs
to the sustained and transient channels. A schematic of this
filterbank is shown in Fig. 2. The acoustic waveform was
recorded by an analog to digital converter sampling at 20
kHz. The output of the converter was transformed to a slower
sampling rate by low pass filtering and undersampling, thereby
maintaining resolution in the filterbank, as in Crochiere and
Rabiner [15]. The smoothed and filtered data were then stepped
back up to 20 kHz, so that the output of each channel
was at the same frequency and so is directly comparable.
This interpolation was accomplished by lowpass filtering a
sequence consisting of the scaled input data intersperséd
between substrings of zeros of a fixed length. A bank of
filters of length 512 whose attenuation was the same as the
measured frequency response of the cat basilar membrane was
constructed [45].

This amplitude response does not, however, specify the
response of the filter uniquely [52]. The phase shift at each
frequency also needs to be represented. There is a unique filter
that has the shortest phase delay at any given frequency for
a fixed amplitude response. Such a filter is called a minimal
Phase filter. Our filters were constructed to be minimal phase
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Fig. 3. Plot of dB of intensity attenuation of the cochlear filters. (a) This
“cochlear filter” has a center frequency of 834 hz with reconstruction data in
the range from 160 to 1700 Hz. Notice the relatively symmetric falloff. This
filter has broader high frequency falloff than low frequency cutoff. This is
only characteristic of the symmetric responses. (b) Midrange cochiear filter
with a frequency response that is characteristic of a typical cochlear filter. Its
center frequency is 2350 Hz with reconstruction data in the range from 170
Hz to 3 kHz. Note the sharp high frequency falloff, which is considerably
sharper than the low frequency data. This is typical of most of the amplitude
response on the basilar membrane. (c) Filter with center frequency of 8444
Hz with reconstruction data ranging from 300 Hz to 1.1 kHz. Notice again
the broad low-frequency tails and the sharp high-frequency falloff.

using the Durbin algorithm [40]. It is known that the basilar
membrane response in the linear range exhibits minimal phase
behavior [65], [68]. The output of these filterbanks form the
time-varying input to the sustained and transient channels.
Representative filtershapes are shown in the following figures.
These filtershapes are characteristic of cochlear response and
can be seen in psychophysical studies as well [66]. Note
the relatively symmetric lowpass and highpass responses in
Fig. 3(a). The high frequency falloff on the skirts in Fig. 3(b)
and (c) is much sharper in accord with physiological data.
Spectrograms were constructed from the filterbank using
a digital spectrographic package constructed by the Speech
Recognition Group, Carnegie Mellon University (CMU) [1].
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These spectrograms are compared with the sustained and
transient channel outputs below.

IV. THE SUSTAINED CHANNEL

Fig. 2 is a schematic of the filtered output of one sustained
detector. The input of this system is the output of the cochlear
filters constructed above. Let F;(t) be the output of the :th
filter at time ¢. This input is preemphasized and halfwave or
fullwave rectified. The signal function used to carry out these
operations is of the form

fla)=(@")* o f(z)=(z")" M
where z+ = max (z — T, 0) and z* = |z|. Whether halfwave
rectification (z*) or fullwave rectification (z*) is chosen will
be made clear by context. Parameter ¢« is chosen so that
0 < a < 1; a = 0.5 in the simulations.

Each signal function output f[F;(¢)] is delayed and auto-
correlated. The delay 7; is chosen to be the reciprocal of the
center frequency of the filter. The output of the filterbank S;
thus has the form

Si= o / D e Rt R @)
i _

which .is approximated as

plt/p) :

Si=w? Y e PR H{Fi(ip + [r/plp)} FFi(ip)] 3

=1

where [2] denotes the largest integer less than z, p is the
sampling period, and f(z) is defined as in (1). Spectrograms
were constructed that represent the output of the sustained
channel filterbank, so as to be able to compare with the control
CMU spectrogram.

The sustained channel spectrogram is constructed as fol-
lows. For each sustained channel filter, a band is created
starting at the average of the center frequency of the prior
and current filter and ending at the average of the center
frequency of the current and following filter, using a halfwave
rectified signal function. Since the center frequencies of the
filters are monotone increasing, and have roughly the same
shape, this band is approximately the response area of each
individual filter. The output of this filterbank is displayed
as follows. The response magnitude of the entire stimulus
is scaled to the maximal response of all the channels. The
output of each filterbank is compared to this maximum and
the amplitude of response of the filterbank is quantized in 100
steps. Since the printer output at each point is black or white
only, multiple levels are simulated by making the probability
of blackening a point proportional to the quantized output level
of the channel. Some representative outputs of the sustained
channel are summarized in the following figures.

Fig. 4(a) exhibits the response of the CMU spectrogram
to the vowel /ae/. The waveform is plotted above and the

_ spectrum is plotted below the waveform. The higher frequency

formants at about 3 and 4 kHz are present in this spectrograph
largely because of the use of a compressive nonlinearity
{1+ 1/5 log [I(w, t)/T]}3, where I(w, t) is the short time
spectral energy at the frequency w computed from a Hamming-
windowed fast Fourier transform (FFT), and 7 is the maximal
intensity of the output of the frequency response within a
small window centered around the coordinate .on the CMU
spectrogram. .

Fig. 4(b) plots the response of the sustained detector for
the vowel /ae/. The sustained spectrogram that is constructed
preserves the formant structure of the vowel at least up to
about 3 or 4 kHz. Energy at higher frequencies is present but
the higher frequency formants are poorly localized in time.

Fig. 5(a) plots the response of the CMU spectrogram to
laepael. Notice the onset burst of the voiceless stop p. It con-
tains considerable energy and has large amounts of broadband
energy. Fig. 5(b) shows how the sustained channel attenuates
markedly this broadband energy. Thus, the sustained channel
is sensitive to the shape and formant structure of vowels while
it attenuates transients such as stop consonants.

To better gauge the global properties of the sustained
channel, we pool across channels so as to be able to observe
the total detector output of the entire bank of detectors across
the entire spectrum; that is, we let

S =Y Si(1). @)

We compare the response to /stop/ of the pooled output (4) of
the sustained channel, the output (3) of the individual sustained
channels, and the output of the CMU control spectrogram. In
the CMU control spectrogram for /stop/ plotted in Fig. 6(a),
the large burst of frication energy for the first 0.1 s corresponds
to /s/ starting the syllable. The silent gap of about 0.1 s
indicates a stop fricative cluster /st/, which is followed by the
energy in vowel /A/. The burst of broadband energy at about
0.6 s indicates the final stop /p/. Fig. 6(b) shows the response
of the individual sustained detectors to the word /stop/. Notice
that the formant structure is broadly preserved but that the
shape of the third and fourth formants, appearing between 34
kHz, are blurred. Notice as with /aepae/ that the response
to the bilabial plosive /p/ is almost completely obliterated.
Thus, the sustained detector can obliterate the consonantal
burst of /p/ independent of the vocalic environment. The
/p/ burst is attenuated in both the environment between /ae/
and the environment following the vowel /o/ (phonetic /a/).
Fig. 7 plots the output of the pooled sustained detectors to
Istop/. Notice the large attenuation of the frication and burst.
To maximize synchronous response, we let S; in (3) take
fullwave rectified input from the filters F;. Since we are always
pooling a positive signal, there is no direct cancellation of the
noise. However, the output of a given sustained detector S; is
correlated with energy at multiples of the best frequency of the
given channel S;. This correlation effectively attenuates inco-
herent energy in the signal relative to the coherent response,
which is always passed through the detector maximally. Since
a coherent signal may equally well be obtained by temporal
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The parameters chosen are 3 = 0.001, T = 2000, a = 0.5, and v = 1.

coincidence during the negative going as well as the positive
going part of the acoustic wave, full wave rectification takes
advantage of this fact. This reflects the biological fact that the
phase locking of the inner hair cells need not all take place
during the same phase of a given spectral component of the
signal.

V. THE TRANSIENT CHANNEL

A simple neural circuit that produces a transient output
signal utilizing a feedforward inhibitory interneuron was intro-

duced in Grossberg [29]. The simplest equations that realize
key properties of such-a circuit are

dz '
E:-—&x+l—ey %)
dy

= =6~y +1) (6)

where I is an input, z is the activity of an output cell, and y
is the activity of a slow feedforward interneuron that inhibits
the output cell. In more general detectors of this type, the
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Fig. 5. (a) CMU spectrograph response to the phoneme

inhibitory threshold is higher than the excitatory threshold,
but the inhibitory gain is larger than the excitatory gain [29].

This equation is analyzed by Laplace transforms in the
Appendix for both the discrete and continuous variants that
were simulated. In this analysis, the impulse response of this
linear time-invariant system is constructed and parameterized
in terms of the step response g of the system, the energy
G2, and two decay rates § and €. The Fourier transforms of
the discrete system used in simulations and of the idealized
continuous system are also constructed. This analysis shows
that these systems act as “bandpass differentiators.” By this

sequence /aepael. (b). Sustained channel response to /aepae/.

we mean that they take the derivative (or the first difference)
of the input over a range of temporal frequencies that always
includes zero. The range of frequencies in which this occurs is
controlled by the parameters ¢ and ~y. However, this range is
lowpass, as shown by (A12) and (A24) in the Appendix. Such
a system acts as a reliable change detector in a broad frequency
range. However, it is important in processing speech stimuli
to be able to respond to changes in response as rapidly as
possible in a relatively narrow band portion of the frequency
range, while remaining insensitive to changes in energy at
other frequency regions of the short time spectrum.
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For example, it is well known that an important cue to
place of articulation of stop consonants are formant transitions
within relatively narrow frequency regions [18], [46]. Rapid
onsets or offsets of energy in high-frequency regions are im-
portant features in the speech waveform in distinguishing the
affricate /1ch/ from the fricative /sh/ [19], [22], [38]. We wish
to have a measure that changes relatively slowly compared
with the rate of change of individual spectral components,

but which responds to rapid energy changes in a particular
frequency region. The simplest transient detector, because it
is linear and because its DC gain g = 0, responds equally well
to positive and negative going waves in the speech waveform.
If we simply average the changes over these frequency bands,
then the transients may appear to cancel out even though there
are significant energy changes in the frequency regions of
interest. Furthermore, it is well known that onsets and offsets
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of the speech waveform signal different phonetic events [46].
We thus wish to have distinct detectors that are sensitive to
onsets and to offsets. In addition, the speech waveform varies
over a large dynamic range, so it is useful to compress the
output of the individual filterbanks so as to maintain sensitivity
to the entire stimulus range.

This suggests the following refinement, which produces
a set of transient detectors sensitive to differing frequency
ranges. To restrict sensitivity to a relatively small range of
frequency bands, sum the output of the transient detectors
linked to a small bank of cochlear filters. To obtain sensitivity
to directional changes in the signal, halfwave rectify the
positive or negative going signal. To obtain a detector that is
simultaneously sensitive to both positive and negative going
changes in the speech waveform, fullwave rectify the output.
To obtain a change detector active in a small frequency
range but insensitive to the direction of change, fullwave
rectify the output of a small range of frequency channels.
Wherever multiple detectors contribute to the filter, its output
is normalized by the number of filters. Equations (A10), (A11),
and (A18)—(A23) in the Appendix show that the slow rate
constant { in (6) can be chosen sufficiently small so that
averaging of transients takes place over a considerable interval
of time. No additional averaging of the transient channels is
needed to smooth the short time gains.

The operations used in the transient detector are schematized
in Fig. 8 and described mathematically in the Appendix.
The discrete variant of the detector, averaged over frequency
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channels i to 7, is

J
Ty=@G—-4)"Y T ™

k=i

where the transient detector for frequency channel < is given by

k
:rz[kp] ———F[n, K.]H z (]_ - e—n)e—n(k_j)ﬂ+(jp)
=0
—(1 - e ENE (5p) . ®
Expression
T[n, 6] = V(A +e (1 + e )1 — e=(rt5)] o

V2 (e —e7%)

Equation (9) is determined from (A20) with G* = 1, g = 0,
Fr is the output of the ith cochlear filterbank, p is the
sampling period, and H takes one of the following three
forms. If H(z) = max(x, 0), then T;; is called a positive
transient detector. If H(z) = max (—z, 0), then T;; is called
a negative transient detector. Finally, if H(z) = |z|, then
T;; is called a composite detector. By (8), T; is a rectified
discrete convolution s * F;' of the halfwave rectified output
of the ith cochlear filter F;* with a discrete representation,
s, of the transient circuit defined by (5) and (6). The discrete
representation, s, of the transient detector used in (8) is defined
in the Appendix and displayed there in (A18).

Properties of the transient detectors as applied to represen-
tative data are summarized in Figs. 9-13. Fig. 9(a) illustrates
a composite transient detector. Fig. 10 plots the output of
the composite transient fullwave detector when the entire
frequency range is pooled. This detector peaks at the onsets
and offsets of consonant bursts for the utterance /stop/ and thus
can be used as a generalized change detector, when followed
by a simple threshold.

Although this detector responds to onsets and offsets of
consonants, and therefore serves as an important general cue, -
it pools over too large a frequency range to distinguish between
the onsets and offsets of differing segments. Because the de-
tector is fullwave rectified, it also cannot distinguish between
onsets and offsets of the stimulus. To detect changes between
onsets and offsets and to selectively detect changes in differing
frequency regions that are known to be useful in detecting
different stop consonants [46], adjacent input channels are
pooled and passed through the transient detectors, as in (7),
and the output is summed and normalized. When pooling
is done using high-frequency cochlear input, the detector is
a high-frequency transient detector. When pooling is done
using low-frequency cochlear channels, the detector is a low-
frequency transient detector. The outputs of adjacent high-
and low-frequency negative transient detectors are displayed
in response to the syllable /stop/ in Fig. 11.

Fig. 9(b) shows how the negative transient detector might
be used to distinguish between stop and vowel offset, when
pooling over distinct frequency ranges. Fig. 11(a) plots the
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output of the negative transient detector to input from the low-
frequency cochlear filters. Note that a relatively large response
at the offset of the vowel and to the release burst of /#/. Because
the passive decay of the transient offset is slower than the
onset these peaks are relatively broad. Note that the response
to the vowel offset is much larger than the offset of the /t/
burst at the beginning of /stop/. Fig. 11(b) plots the pooled
output of this detector to higher frequency cochlear filterbank
inputs. Comparison of Fig. 11(a) and (b) show that a major
difference between the response of the two detectors is the
large offset burst of the stop /#/ in the segment /stop/ by the
negative transient detector of high-frequency channels, and
conversely, the relatively large response to the vowel offset
by the low-frequency channels. Thus, as shown in Fig. 9(b),
a detector that halfwave rectifies the difference of the output
of the scaled low-frequency negative transient channels from
the high-frequency channels will be sensitive to stop offset.
Conversely, a detector that halfwave rectifies the difference of
the output of the high-frequency transient channels from the
low-frequency ones will be sensitive to vowel offset. Together,
these detectors define an opponent processor.

The responses and some possible uses of the positive
transient detectors are now considered. Fig. 12 illustrates a
number of the uses of these detectors. Fig. 13(a) plots: the
output of the positively rectified transient detectors using the
low-frequency cochlear input to the segment /stop/. Note the
sharp response to the onset of the vowel. Thus, the offset of
a burst and the onset of the immediately following vowel can
be distinguished by the difference in response of the positive
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Fig. 9. (a) Composite transient detector. This detector is sensitive to vowel
onsets and offsets and consonantal bursts. (b) Opponent interactions between
high- and low-frequency detectors are sensitive to stop and vowel offsets.

and negative frequency transient detectors. The positive low-
frequency transient detector responds to the onset of the vowel,
while the negative high-frequency transient detector responds
to the offset burst. Fig. 13(b) plots the response of the positive
transient detector to the output of high-frequency channels.

Fig. 13(a) and (b) show that the response of both positive
high- and low-frequency transient detectors are relatively large
only during the stop burst /p/. Observe the relatively large
output at 0.6 s in both the low- and high-frequency transient
detectors to the stop burst /p/. Thus, the multiplicative detector
illustrated in Fig. 12(a) can detect the onset of /p/, whlch
occurs at the time 0.6 s in Fig. 13(a) and (b).

During the fricative stimuli at times 0-0.15 s, the positive
high-frequency transient detector shows a large sustained
response, as illustrated in Fig. 13(b). However, Fig. 13(a)
shows that the response of the positive low-frequency transient
detector is attenuated in the same region. Thus, the halfwave
rectified difference in the output of these two detectors can be
used as a cue for fricative consonants. Such a mechanism is
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sketched in Fig. 12(b). In contrast, the positive low-frequency
transient detector has a large response at the outset of the
vowel /o/ at times 0.19-0.21 s in Fig. 13(a). At these times,
the response of the positive high-frequency transient detector
is much attenuated. Thus, the halfwave rectified difference
between the low-frequency transient detector and the high-
frequency transient detector can be used as a cue to vowel
onset, as illustrated in Fig. 12(b). Together, these differenced
high- and low-frequency channels comprise an opponent
processing module for the computation of frications and vowel
onsets.

V1. CONCLUDING REMARKS

This paper describes a neural model of how peripheral
auditory detectors can facilitate automatic separation of coar-
ticulated consonants and vowels during normal speech. Based
on data about eighth nerve dynamics, a sustained detector
channel is described that can discriminate synchronous vocalic
quality, while suppressing transient information in the speech
waveform. The sustained channel operates in parallel with a
transient detector channel that can discriminate the onsets and
offsets of fricatives and stop consonants, as well as detect
vowel onsets and offsets.

The response properties of model transient detectors sensi-
tive to high-frequency pooled cochlear input are quite similar
to those of onset L cells, named by Pfeiffer {S3]. These cells
are found mainly in the posterior ventral cochlear nucleus, but

they have also been found in the anterior. ventral cochlear
nucleus and the dorsal cochlear nucleus. The poststimulus
time histogram of these cells shows a large response at onset
followed by a much smaller but discernible response at later
instants of time, when stimulated by tone bursts near the
best frequency of the cell. A similar response at the onset
of the vowel is anticipated for onset L cells selective for the
formant frequency of a presented vowel. The poststimuius
time histogram of the cells as reported by [59] to a short
tone burst is similar in shape to the response of the on
transient detector. Thorough investigation of the response
properties of these cells, using synthetic or real speech, does
not appear to be have been undertaken. Moreover, [7] have
found that onset L cells often respond more vigorously to
upward than downward linear FM ramps, or vice versa.
Reference [60] reports replicating these results but found less
directional selectivity than reported by [7]. Formant transitions
are an important cue to consonant identity, and cells which
detect unidirectional FM sweeps should be important for
discriminating differing consonants. Further refinements of
the parallel sustained and transient model detectors, such as
introducing selectivity to FM ramps, may be used to -achieve
efficient segmental identification.

There does not appear to be much physiological evidence
of cells that are synchronized to short time periodicities as
posited by (2) and (3). However, Schriener and Langner
[64] have found cells in which such periodicity detection



COHEN AND GROSSBERG: PARALLEL AUDITORY FILTERING 313

1.00
0.95 |
0.90
0.85
0.80
0.75
0.70
0.65
0.60
- 055
0.50
045
0.40 * '
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.00

~ 280.00

260.00

p———

240.00

220.00

180.00

160.00

140.00

120.00 —

80.00
” i

20.00 i}

0.00

0.00 020 0.40 0.60 0.80 1.00
®)

Fig. 11. (a) Response of 2 negative transient detector to low frequency output. Parameters are o = 0.01, 5 = 0.001. and 3 = 0.4. Frequency channels
whose starting filter is number i = 9 and ending filter is number j = 18 are pooled in (7). This corresponds to a center frequency range from 400 to 850
Hz. (b) Response of a negative transient detector to high frequency output. Parameters are as in (a). Frequency channels whose starting filter is number 45
and ending filter is number 59 are pooled. This corresponds to a center frequency range from 4100-8800 Hz.



314

Stop
Onset
Detector

Frication
Detector

Positive High Positive Low
Frequency Frequency
Transient Transient
Detector Detector

@)

Positive High Positive Low
Frequency Frequency
Trapsient Transient

Detector Detector

Vowel Onset
Detector

)

Fig. 12. (a) A product of the positive high and low frequency transient
detectors can detect stop onsets. (b) Opponent processing between outputs of

the positive high and low. frequency transient detectors can detect frications -

and the vowel onsets.

occurs in the inferior colliculus of the cat. The measured
best modulation frequencies of these cells are less than 1
kHz. It is conceivable that such cells could form the basis of
the coincidence detection scheme modeled here by detecting
periodicities at multiples of the period of an individual filter.

The interaction of these detectors with higher level cogni-
tive attentional factors is yet to be addressed. Attentionally
modulated feedback influences the neural response to an
auditory stimulus as early as the receptor level [54], and
influences processing of the speech waveform. Delgutte and
Kiang [20]-{24] have shown that adaptation at the eighth nerve
itself influences the short time response to speech stimuli in an
anesthetized cat. Higher level effects also must be taken into
account, but are not modeled by such peripheral mechanisms.
For example, Assmann, Nearey, and Hogan [2] have shown
effects of preceding and following consonants and speaking
rate on the shape and perception of the intervening vowel.
Miller [49] has shown significant effect of speaking rate on
the perception of both stops and consonants, Repp [56], [58]
has shown that detecting doubled stop consonants (/raged/,
/ragged/), and consonant clusters [(/stop/), (/sop/)] depends
upon the prior adaptive state. Several of these higher types of
processes have been analyzed as part of the larger auditory
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processing architecture in Fig. 2 of which the present filter is
a part.

APPENDIX
_A LAPLACE TRANSFORM ANALYSIS
OF TRANSIENT DETECTOR PROPERTIES

In this appendix, we analyze the simplest version of the
Grossberg [29] transient detector in (5) and (6). This system
is analyzable via Laplace transforms. For any real w, we let
W = [;7 e~*tw(t) dt. For systems with zero initial output in
both z and y. We can write the Laplace transforms of (5) and
(6) as ‘

(s+8)i=I—-ej (A1)
(s+ Qg =¢l. (A2)
It follows that
-f 1 e
i = - . A3
8 I(8+6)<1 s+c) A3)
The impulse response of this system can be written
h(t) = ae™® + be ¢ (A4)
where
€¢
a=1~ &
pe (AS)
¢(—96
a+b=1.

The step response g is f0°° h(t) dt to a positive step input. The
energy G is [~ h%(t)dt. By (A4)

g=§+§‘ (A6)
G2=§+-§%+%. (A7)

Solving for a, and b in terms of g and G, we obtain
0= 5 [VEPGTO-70-9¢] (a9
b= % [V + -G - g8 (a9

This choice of parameters allows us to fix the step response
and the energy gain to have desired values for an appropriate
choice of rate constants. In simulations, we chose ¢ = 0 and
G = 1 to guarantee a transient response and to normalize the
energy. Without loss of generality we can also assume ¢ > 4.
Then

h(t) = _26(6—:—0 (Ce~St—6e8).  (A10)
The frequency response of the system is
h(w) = V2(6 + ()iw ALl

T B+ w)(C + iw)
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0.00 —

and the modulus of the response is Thus, at low frequencies, the system acts like a differentia-
R 26+ 0) tor. At high frequencies, the system acts like a simple lowpass

JR(w)] = |w| \/ )@ ol (A12) filter with an attenuation of 3 dB per octave, since the falloff is

w|?) . asymptotically linear with frequency. This enables the detector
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to be sensitive to transients in a prescribed lowpass frequency
range. The frequency of the peak response is wmax = v/8C.

Our simulations use a discrete impulse invariant represen-
tation. Specifically

s[n] = 6™ + fC" (A13)
for suitable parameters e, f, 6 < 1, (. This is a discrete
version of h(t) as defined in (A4). As in the continuous case,
we let g be the step response and G2 be the energy of the
system. Expressing G2, and g in terms of e, f, §, { we obtain

g=e(1-8)""+ f(1-¢)! (A14)
and
G2 =€2(1 - 62)-—1 + f2(1 — (2)——1
+2ef(1—-6¢)"1. (A15)

Letu = (1 —8)/(1+8), v=(1—-¢)/(1+ ). Solving for e
and f in terms of g, G2, §, ( yields

e=(1-8) VG2 (u + v) — g2uv — gv (A16)
u-—-v
and A
f=a —C)[‘/Gz(u +:)_—ugzuv_g” (A17)

Letting G = 1 and g = 0, one obtains

o) = LEEIL =B f1 e - - e

_ (A18)

if ¢ < §. This expression can also be written in the form

sin] =T(n, K)[(1—e " )e™™ = (1—eMe™™] (A19)
where
VA +e (1 +e )1 = e(rt]
F(nv K’)"“‘ \/-2_(6—'7 _ e"‘) (AZO)
n=-log(¢ (A21)
and ‘
K = —log é. (A22)

The expression I'(7, «) in (A20) is used in (8) above.
The discrete Fourier transform of this impulse response can
be written

8(w)

_ V(A +8HI+A - 81 - e™)
V2(1 = femw)(1 — Ce~iw)
Note the similarity in form of the discrete and continuous im-

pulse responses, as shown by (A23) and (A11). The amplitude
of this impulse response can be written

il =fin ()
- 2(1+8)(1+¢)(1 -~ 6¢)
[1+4 62~ 26 cos (w)][1 + ¢2 — 2¢ cos (W)] [°
(A24)

(A23)

As before, for frequencies near zero the system acts as a
differentiator. Also, the system can be set up to attenuate
the frequency response at higher frequencies. Equation (A23)
shows that the system can be written as a convolution of a first
difference followed by two first-order lowpass filters. There-
fore, the system has more flexibility than the first difference
which forms part of this system. In the discrete case

Wax =
cosTH1 — 1/2[6~1/2 — /2], if [6~V/% - §1/2]
[¢1/2 - 7, [¢71/2 - (/7] < 4
T otherwise
(A25)

where wpayx is the frequency of maximal response.

This frequency analysis shows that the transient detector is
globally “bandpass” in character: The gain of the filter ramps
up at low frequencies and falls as the frequency increases.
In a scalable lowpass frequency range, the system acts as a
differentiator by responding to the differential of intensity. It is
sensitive to a relatively narrow band portion of the frequency
range, while remaining insensitive to changes in emergy at
other regions of the short time spectrum.
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