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a b s t r a c t

Domains such as force protection require an effective decision maker to maintain a high level of situation
awareness. A system that combines humans with neural networks is a desirable approach. Furthermore,
it is advantageous for the calculation engine to operate in three learning modes: supervised for initial
training and known updating, reinforcement for online operational improvement, and unsupervised
in the absence of all external signaling. An Adaptive Resonance Theory based architecture capable of
seamlessly switching among the three types of learning is discussed that can be used to help optimize
the decision making of a human operator in such a scenario. This is followed by a situation assessment
module.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Modern information sources to support decisions in domains
such as force protection are diverse. Ground, air, and space
based sensors are continuing to increase in capability. Information
fusion algorithms can help integrate a variety of sensor data
into meaningful forms (Hall & Llinas, 1997). Applications with
a complex assortment of data continue to challenge machine
learning approaches to information fusion, which normally utilize
a single type of learning algorithm and therefore limit the use
of all available data (Brannon,Conrad,Draelos,Seiffert & Wunsch,
2007). Our approach coordinates multiple learning mechanisms
to accommodate environments where ground-truth and feedback
may not be consistently available and it uses Adaptive Resonance
Theory (ART) based networks which are based on understanding
cognition. This ties the work into other such computational
architectures seeking not only the solution of engineering
problems but also understand the function of the brain and mind
(Werbos, 2009; Perlovsky, 2009).

1.1. Machine learning

Machine learning involves programming computers to opti-
mize a performance criterion using example data or past expe-
rience (Alpaydin, 2004). Artificial neural networks are commonly
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used inmachine learning and utilize supervised, unsupervised, and
reinforcement learning approaches to achieve predictive proper-
ties based on example (training) data. Unsupervised learning (clus-
tering) can be effective when ground-truth is not available with
a dataset. Supervised learning (learning with a teacher) provides
a means to use experience (examples with ground-truth) to cor-
rectly classify yet unseen situations. Reinforcement learning offers
promise formachine learning in difficult learning environments by
taking advantage of feedback about the performance of a system.
The challenge addressed by the current work is to coordinate all of
these learning mechanisms and utilize the appropriate one based
only on available information, not human intervention.
Neural nets offer an excellent assortment of high-performance,

low-cost, distributed processing options. In particular, they can be
embedded into appropriate sensors for operation at the lowest
levels of information fusion with effective, but low-complexity
designs. At the highest levels of information fusion and situation
assessment, reinforcement learning can be used with a human in
the loop to provide operational feedback. Dealing with multiple
sensor modalities and extracting meaningful information from
massive datasets is a natural fit for these adaptive methods.
Although neural networks have been applied to sensor fusion, their
use in situation awareness has been limited, possibly because of
the lack of rich training data for this problem.
Automated (computational) information fusion continues to

suffer from very specific, ad hoc solutions (i.e., there appears to be
very little general-purpose technology to apply to this problem)
(Kokar, Tomasik, & Weyman, 2004). For many applications, there
is also a dearth of data to use for training a computational
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engine. This reveals a challenge for the application of machine
learning techniques, which are data-driven and require training—
via supervised, unsupervised, or reinforcement learning. On the
other hand, because they are data-driven, the advantage of
machine learning techniques is that they can learn solutions to
problems that are difficult for humans to codify with explicit rules
or models. In other words, they can represent rules/decisions that
are implicit in the training data.

1.2. Information fusion

The fusion of information has been likened to the ability of
animals to utilize multiple senses to derive a better understanding
of a situation (Hall & Llinas, 1997). For example, one may hear
a noise and, based on the sound pressure discrepancy between
each ear, localize the area of the sound source. Vision can then
be used to further define and understand the source of the sound.
The analogy is helpful because fusion, andmore generally situation
assessment, is a process rather than simply a discrete event. The
process leads one from raw data to understanding and actionable
knowledge. Fusion can occur over various information (sensor)
modalities, over geographic space, and over time.
The sources of information potentially available to decision

makers continue to expand in depth and breadth. Sensor
capabilities in particular are maturing rapidly, but a valid concern
is that the pace of sensor development has not necessarily
been consistent with advances in human effectiveness which the
sensors must ultimately support (Paul, 2001). Fusion algorithms
will better support human-in-the-loop system effectiveness when
the decision maker is a central and balanced design element.

2. Approach

2.1. System architecture

The design of the computational engine for information
fusion and situation awareness takes advantage of the diverse
utility of neural networks and integrates elements of supervised,
unsupervised, and reinforcement learning. The design not only
advances machine learning research, it addresses the need of
situation awareness and human-in-the-loop decision support as
well.
Key design attributes of our system include accepting vari-

ous inputs such as binary, categorical, and real-valued data. With
respect to situation assessment outputs, attributes include confi-
dence levels as well as evidence in support or against the assess-
ment. In the context ofmissing or noisy inputs, the system exhibits
graceful performance degradation.
In order to address the desired design attributes of our

situation awareness system, neural networks are employed for
information fusion, followed by a situation assessment module.
ARTMAP is based on Adaptive Resonance Theory (ART), a widely
implemented approach to modeling the learning capabilities of
the brain (Carpenter & Grossberg, 1988). Architectures based on
ART have been used successfully in a variety of areas requiring
a self-organizing pattern recognition neural network. The basic
ART element supports unsupervised learning and binary inputs.
Fuzzy ART is an extension to accommodate categorical and real-
valued inputs. ARTMAP supports supervised learning and can
accommodate real-valued inputs using fuzzy logic (Carpenter,
Grossberg, Markuzon, Reynolds, & Rosen, 1992). ARTMAP can
also support reinforcement learning, for example, by adding
a mechanism to implement actor–critic methods. Coordinated
ARTMAP (CARTMAP) is the name given to the current approach
and involves the integration of all three learning mechanisms in
the same architecture.
The situation assessment module receives state information

from the information fusion module and possibly other sources
and outputs a threat assessment or action to be taken.
2.2. Information fusion engine

Intelligent creatures exhibit an ability to switch seamlessly
among unsupervised, supervised, and reinforcement learning
as the needs arise. However, machine learning architectures,
including artificial neural networks, have not yet achieved this
goal. The current research contends that it is advantageous to
develop this capability in a computational framework and that the
ART architecture is an excellent choice for such an implementation.
In the following text, we motivate, design, and give examples of
this capability.
A well-designed sensor fusion algorithm, like an intelligent

creature, can make informed use of all three types of learning
on the dataset given. Certain information fusion paths may
be pretrained prior to deployment, thus granting the human
operators license to verify that the most obvious sensor patterns
will be classified successfully. During operation, a reinforcement
signal provided either by the environment or by the human
operator acting off of the fusion algorithm’s recommendations can
adjust the current adaptive weight profile to curtail or retrain a
faulty clustering (negative reinforcement) or to promote successful
clustering (positive reinforcement) in the ART algorithm. Finally,
in the absence of any external signal, the algorithmwill learn in an
unsupervisedmanner, comparing current inputs towhat it already
knows.
Our core algorithm—ARTMAP—already handles both unsuper-

vised and supervised learning problems. To augment this, we need
to optimize

J(s) = r(s)+ γ
∑
s′
P(s′, a)J(s′, a). (1)

This is the discounted expected reward optimality criterion,
a form of the Bellman equation of dynamic programming. In
this equation, s represents the current state of the system, r(s)
represents the current reward, a the action to be taken, J(s)
represents the current value of a given state, s′ signifies the next
states, P(s′, a) is the transition probability matrix for the system’s
evolution, and a discount factor, γ , is applied to future rewards.
This equation is to be maximized over all actions.
The Bellman equation (1) states that the current value of a

state is equal to the immediate reward of taking an action plus
the discounted future reward that accrues from that state. Other
optimality criteria are possible to account for infinite horizon or
non-discounted models. The task at hand is to solve this equation
given an appropriate reinforcement signal.
Sutton and Barto (1998) discuss a wide variety of solution

methods for these problems. Our algorithm combines ART with
Q-learning. The Q-learning algorithm iteratively updates the
value of each state–action pair. The appropriate modification
is calculated based on the difference between the current and
realized valuations,whenmaximized over all possible next actions.
This is a key concept that establishes the foundation for the more
advanced techniques discussed in the following paragraphs.
The Q-learning algorithm utilizes a lookup table to store the

Q-values for each state–action pair. As the scale of the simulation
grows, the amount of memory required to catalogue these values
can grow at a burdensome rate. A more computationally intensive
but less memory-demanding version, called Heuristic Dynamic
Programming, uses function approximators in place of the table
(Werbos, 1990). However, for our purposes in this architecture, the
Q-learning approach will suffice.
With the ARTMAP unit taking the place of the Actor in the

actor–critic implementation, the CoordinatedARTMAP (CARTMAP)
algorithm behaves according to the following steps:
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1. Upon receipt of an unsupervised signal, the system uses its
exemplar classification scheme (the ART unit) to output an
action choice, as usual. No updating of the lookup table will be
necessary.

2. When presented with a supervised signal, the internal adaptive
weights updates as per our normal ARTMAP rules, and the
output action is set equal to the supervised training signal.
Furthermore, the values in the lookup table for actions not
associated with the supervisory signal are zeroed out.

3. When a reinforcement learning input signal is received, it
will be interpreted according to the Q-learning algorithm. The
appropriate entry in the lookup table is augmented with the
new reinforcement value, and the action selected is the one
with the most values accumulated in its column of the table. In
our simulations, the values of the parameters delta and gamma
are 0 and 1, respectively (Puterman, 1994).

In summary, the information fusion engine accepts raw
data from sensors and other information sources and pro-
cesses/transforms/fuses them into inputs appropriate for the Sit-
uation Awareness Assessment engine.
The information fusion system utilizes appropriate elements

of its architecture based on the data presented to it. The three
ART networks are linked together by an inter-ART module
(Associative Memory). One ART unit handles the inputs, another
ART unit processes the supervisory (or target) signal, and the
other processes the reinforcement signal as an adaptive critic.
This architecture is capable of online learning without degrading
previous input–target relationships.
There are times when unsupervised learning is satisfactory,

such as in the presentation of new input vectors to a pretrained
network. Supervised learning is appropriate and desired for initial
training on fixed data. However, these two types of learning do
not cover every possible complication. There are times when the
human operator does not know the correct classification, yet some
feedback on the decision can be provided. These situations fall into
the reinforcement learning category. One aspect of developing this
information fusion engine, therefore, is adding the reinforcement
learning capability to the ARTMAP neural network.

3. Application

We designed our situation awareness system to operate in an
environment involving distributed sensors and a central collection
site for protection of a facility. Information sources in such an envi-
ronment can include seismic, magnetic, acoustic, passive infrared
(PIR), and imaging sensors as well as weather, time/day informa-
tion, various intelligence information, local/regional/federal threat
levels or law enforcement bulletins, and any other information that
might be relevant to the security of a particular facility, such as cur-
rent traffic situations or health issues.
Conditions of interest to force protection decision makers

include: no activity, severe weather, unauthorized people or
vehicles in certain locations, and certain types of unauthorized
vehicles or humans with weapons in any areas. Actions include:
doing nothing, identifying the type and location of a moving
object (vehicle or human), commands to turn sensors on or off,
dispatching forces, and/or notification of higher authorities. The
information sources can include binary data, such as motion
detection, categorical data, such as the type of day (weekend,
holiday, etc.), and real-valued time-series data, such as seismic,
acoustic, and magnetic energy levels.
Before being deployed, the system must be pretrained with

information the human operator knows about the system. For
example, if the data signature of a thunderstorm is easy to
demonstrate (due to specific acoustic, magnetic, etc. levels), then
that information can be included in the supervised training portion
of the system. The information fusion engine will adaptively
learn many more data-observation relationships during online
operation, but having basic readings pretrained will aid in initial
operation.
When an intruder, be it an unauthorized vehicle or a human

with a weapon, breaches the sensor range of a protected facility,
the triggered sensor data stream into the information fusion
engine. The CARTMAP network then maps these data into
observations, such as a vehicle heading north at high speed. These
pairings represent novel data readings that were not anticipated,
which are then categorized via the CARTMAP algorithm in relation
to the pretrained data.
The observation is then sent to the situation assessment engine,

which follows the partially observable Markov decision process
(POMDP) formulation to calculate a probability distribution over
the state space. This information represents a confidence level
that the system is in any given state. The state with the highest
confidence from this calculation represents the system’s choice for
the current state. All this probability information is then passed
to the human operator, who uses this evidence in making a final
decision about how to respond to the situation.
Adapting online is an important element of the system and

is accomplished through reinforcement signals that can be sent
through the system in two ways. First, if the probabilities of each
state are too low, so that the human operator would not be able
to distinguish the state from simple background noise, then the
situation assessment engine may issue a command to gather more
information from additional sensors. Second, the human operator
may disagree with the system’s assessment of the current state. A
reinforcement signal is then sent to the information fusion engine
and the data-observationmappingswill adapt online. Both of these
reinforcement signal loops are noted functionally in the block
diagram in Fig. 1. This feature of the system allows it to maintain
relevance in a changing environment.
The operation of Fig. 1 is as follows. Unsupervised learning

occurs using a single ART unit. The cluster that forms is the one
which maximizes the signal strength of the input with respect
to a match criterion. Many forms of both the signal and the
match criterion are in use in various implementations of an ART
architecture. Amis and Carpenter (2007) provide default values
which work in general scenarios. Supervised learning occurs when
the clusters formed by the unsupervised learning unit are given
labels through interactionwith supervisory inputs. This interaction
is mediated by an associative learning field as explained in Amis
and Carpenter (2007). This process forces a reset in the input
cluster if the label does not match the supervisory signal closely
enough. Finally, Reinforcement learning is handled in a similar
manner. The RL signal can update the associate weights following
the Q-learning explained in Section 2.2.
The CARTMAP algorithm was implemented in Matlab and

applied to information fusion in a vehicle tracking scenario
that is described in more detail below. ART is at the core
of the fusion engine. During offline training, an input pattern
is presented to the CARTMAP network and, depending on its
similarity to existing category templates, it is either assigned
to a current winning category or a new category is created for
it. Categories may exist indefinitely without an assigned class.
However, if a supervisory signal accompanies the input, the
target class is immediately associated with the category. During
offline reinforcement learning, an input pattern is presented to
the CARTMAP network and a winning category is determined. A
reinforcement signal is computed based on the class of thewinning
category and the ground-truth class. For example, if the category’s
class matches the ground-truth class, the reinforcement signal is
assigned a positive reward; if not, then a penalty is assigned. A
range of reinforcement values are assigned based on the quality
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Fig. 1. CARTMAP input and system activity associated with unsupervised learning, supervised learning, reinforcement learning, and standard operational use. Available
inputs to the system shown in green are the active elements involved in learning. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
of the match. A reinforcement lookup table (RLUT) is used to track
input pattern’s relationship with possible classes. The RLUT stores
input patterns and an accumulated reinforcement signal for each
possible class. CARTMAP weights are updated according to the
following criteria.

1. If no category encodes the input pattern, then a new category is
created without a class assignment.

2. If the winning category has an unassigned class, then the RLUT
is searched for the input pattern. If the pattern is found in the
RLUT, then the reinforcement signal is applied to the class of the
winning category and the class with the highest reinforcement
is used as the target in supervised learning. If the pattern is
not found in the RLUT, then nothing is done to the CARTMAP
weights.

3. If thewinning category has an assigned class, then this class and
reinforcement signal are used by a critic function to determine
how to update CARTMAP weights. The RLUT is searched for the
input pattern. If the pattern is not found, unsupervised learning
is performed and the pattern is added to the RLUT along with
the reinforcement signal. If the pattern is found in the RLUT,
then the reinforcement signal is applied to the RLUT for the
class of the winning category and the class with the highest
reinforcement is used as the target in supervised learning.

The decision support graphical user interface (GUI) consists of
three screens. The center screen is primarily imagery (i.e., from
cameras, photography augmented with graphics, and/or fully
synthetic renderings) (see Fig. 2). The second screen displays a
log of temporal track data (see Fig. 3). The log reflects temporal
features, such as how long ago an unauthorized vehicle breached
a sensor field and how soon another track might reach a key
threshold (e.g., a fence or different sensor field). The third andmost
detailed screen provides track detail and assessment bases (see
Fig. 4).
The log screen and track detail screen utilize features found

in the Tactical Decision Making Under Stress (TADMUS) system
(Morrison, Kelly, Moore, & Hutchins, 1997). The TADMUS system
had similar motivations to the current research in that more
content need to be devoted to supporting an understanding of
Fig. 2. Vehicle tracking scenario map. The dots represent seismic/acoustic sensor
nodes. The speed, heading, location, and vehicle type are estimated by independent
CARTMAP networks using binary data from all sensor nodes as input.

a given context. In both TADMUS and our situation awareness
approach, less emphasis is placed upon evaluating possible courses
of action.
The track detail GUI provides typical track parameters such

as an object’s course and speed, but significant detail is provided
with respect to the basis for assessment. Evidence in support and
evidence against a given assessment is displayed. The machine
learning algorithms share the evidence used to derive assessments
with the operator. Such an approach provides greater transparency
and allows the operator to interrogate assessments.
For the example scenario of an unauthorized vehicle, the

assessment could be a ‘‘threat’’. Evidence in support of such an
assessment includes sensor data such as explosives detected, but
also local law enforcement data that the license plate returns as
a stolen vehicle. Evidence against the assessment could include a
relatively slow speed and the use of the vehicle for construction
when there has been ongoing construction activity. Alternative
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Fig. 3. Force protection experiment using UW vehicle data. Multiple time steps of binary sensor data are used as input to the CARTMAP Information Fusion module. Vehicle
information from the Fusion module and other additional data are used as input to the Situation Assessment module, which outputs an actionable information to the user.
assessments are shown along with their respective evidence in
support or against.
The operator can investigate various assessments along with

corresponding courses of action. For example, a patrol vehicle is
in the vicinity of the unauthorized vehicle and could be directed
closer to the possible threat. Further, other types of sensors can
be activated to generate additional points of reference and work
towards higher levels of assessments such as possible intent.

3.1. Vehicle tracking

The situation awareness technology was applied to tracking
vehicles in the vicinity of a facility under force protection. A
dataset suitable for testing and demonstrating our technology was
collected during a DARPA SensIT program in November, 2001 at
Twenty-Nine Palms, CA and exists at the University of Wisconsin
(UW) (Duarte & Hu, 2004). The dataset consists of raw time-series
(acoustic and seismic) and binary detection decisions from 23
sensor nodes distributed along three intersecting roads as one of
two vehicles travels along a road. Fig. 2 includes a map illustrating
the force protection scenario,with a fence line and an Entry Control
Point (ECP) providing protection for a facility on the North Road.
The two vehicles used in the scenario are a light armored vehicle
(AAV) and a heavier, tracked transport vehicle (DW). A scenario
was developed whereby a facility under protection is assumed to
exist along one of the roads, and binary sensor data processed by
our fusion and situation assessment algorithms are used to inform
a human decision maker.

3.2. Analysis

3.2.1. Force protection experiments
In order to demonstrate the capabilities of the situation aware-

ness system, neural networks were trained to perform sensor fu-
sion, a situation assessment formula was constructed/calculated,
and a GUI was developed, all to increase the awareness of a human
decisionmaker of the situation around that facility under their pro-
tection. The scenario consists of a virtual checkpoint partway up
the north road on the way to a sensitive facility with 23 sensor
nodes scattered along three intersecting roads. Each sensor node
outputs a binary detection decision at fixed time intervals (0.75 s
in the original test set). The sensor detections derive from seismic,
acoustic, and passive infrared energy levels. The (AAV and DW) ve-
hicles move from one end of a road, through the intersection to
the end of another road. The total number of runs is 40, which
includes 20 original datasets from the SensIT experiment. An ad-
ditional twenty runs were created by artificially reversing the di-
rection of the vehicle. This is possible by simply presenting the data
in reverse. In otherwords, the sensor record from the last time step
would be presented to the information fusion system first and the
first time step would be presented last and so on for all the time
steps in the run. It is plausible that the information is accurately
represented in these runs since the data is binary decisions and
the ground is relatively flat so that the engine speed and noise is
presumably similar in both directions.
The primary piece of information that a decision maker wants

to know is the current threat level around his facility. The threat
level is a function of the location, speed, heading, and type of
vehicle detected by the sensor array and other variables that are
independent of the sensor array, such as: Department of Homeland
Security (DHS) advisory level, wind speed, average batter level of
the sensors, time of day, and day of week.
The system used to produce the threat level is illustrated in

Fig. 3. The system consists of three modules: (1) Information
Fusion, (2) Situation Assessment, and (3) a Graphical User Interface
(GUI) focused on human decision makers in force protection
applications. Multiple time steps of binary sensor data serve as
input to the Information Fusion module, which implements the
CARTMAP algorithm. This introduces an element of relative time,
which is a necessary component in estimating speed and heading.
The output from the Fusionmodule consists of vehicle type, speed,
location, and heading, each with a corresponding confidence level,
and will serve as input to the Situation Assessment module. This
module consists of rules that represent the conditions underwhich
a Threat is defined. The output of the assessment module will feed
the graphical user interface (GUI)with a threat level (low,medium,
high), an associated confidence level, a suggested response, and
evidence in support of or against its output. The GUI will also
have access to the output from the fusionmodule, maps, and other
available data, such as time, date, and environmental data. All the
elements of the situation awareness system were implemented in
Matlab and testedwith the vehicle tracking data fromUWin a force
protection scenario just described.

3.2.2. Results of training the fusion module
The fusion module consists of four different CARTMAP net-

works, one for each fusion output (location, heading, speed, and
vehicle type). The output of a network will be of a categorical
type or class except for the confidence levels, which will be a real
number. Table 1 presents the classes for each information fusion
network. Note that for each network, if the input is all zeros, the
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Table 1
Information fusion output classes for the four CARTMAP networks (Vehicle type,
location, heading, and speed).

Vehicle type classes Location classes Heading classes Speed classes

0: zero input 0: zero input 0: zero input 0: zero input
1: AAV 1: West road 11: N 1:<10 km/hr
2: DW 2: North road 14: NE 2: 10–20 km/hr

3: East road 13: E 3: 20–30 km/hr
4: Intersection 8: SE 4: 30–40 km/hr

4: S 5: 40–50 km/hr
1: SW 6: 50–60 km/hr
2: W 7: 60–70 km/hr
7: NW 8: 70–80 km/hr

9: 80–90 km/hr
10:>90 km/hr

Table 2
Distribution of vehicle runs used to experiment with different learning modes.
Experiments 1/2/3 and 4/5/6 used the same data, but uses learning modes in a
different order.

Experiment
#

# Supervised
runs

# Unsupervised
runs

# Reinforcement
runs

# Test runs

1 & 4 2 26 0 12
2 & 5 2 13 13 12
3 & 6 2 0 26 12

output will be zero by virtue of a simple fixed rule (i.e., no learning
is involved).
Out of the 40 total runs available for the force protection

experiments, 70% were used for training and the remainder
for testing. Table 2 shows the number of runs used in the
six experiments. In real-world applications, it is expected that
the amount of supervised training data is limited. In the force
protection experiments, only 2 of the 28 training runs are used for
supervised learning.
Experiments 1–3 use the same runs as Experiments 4–6, but

the order of training is reversed. In Experiments 1–3, supervised
learning is conducted first, followed by reinforcement learning,
and finally unsupervised learning. Experiments 4–6 use the
opposite order of learning, using the data with the least amount
of information first and finishing with supervised learning, which
utilizes training data with the most amount of information. In
this case, one expects the richer datasets and training modes to
correct errors and refine the classification performance of previous
learning modes.
For each force protection experiment conducted, the same test

set was used, consisting of 12 runs with 1755 input/output pairs.
The performance (% correct classification) was computed based on
this test set. For some sensor modes, such as speed and heading, a
classification errormay not necessarily indicate poor performance.
For example, if the ground-truth heading of a vehicle is North and
the fusion module output is Northeast, it would be counted as a
classification error even though the output is quite satisfactory.
Experiments 1–6 were conducted using various combinations of
learning modes for each of the information fusion networks. The
best results for each network are presented in Table 3.
In the Classified Correct (%) column of the tables, there are three

numbers separated by colons (e.g., 1:2:3). The numbers in position
one represent the percentage of test samples that have a target
value that exactly matches the output value from a CARTMAP
network.
The numbers in the second position represent the percentage

of test samples that have a target value that exactly or partially
matches the output value from a CARTMAP network. An exact
match increments the total number of correct classifications by
1, whereas a partial match increases the number by 0.5. Partial
matches are possible only with the Heading and Speed networks,
where the class adjacent to the target class is considered a partial
match. For example if the target class isN , then a network output of
NW or NEwould result in a partial match. Note that for the Vehicle
Type and Location networks, there are no partial matches so the
first and second numbers in the Classified Correct column should
be the same.
The numbers in the third position represent correct classifica-

tion percentages of networks that have had two passes through
the training set. During the first pass, the reinforcement lookup
table is updated during reinforcement learning. The updated table
may be an advantage for second pass unsupervised and reinforce-
ment learning. Correct classification percentages are computed
using partial matches. Each network was trained using vigilance
parameters that resulted in a reasonable number of categories.
In the next section, a weighted rule for determining the threat

level of the situation awareness system is discussed. The rule
combines the outputs of the fusion module and environment
conditions and its output is categorized into High, Moderate
or Low threat based on human judgment. Ground-truth exists
for the threat level, so performance of trained fusion networks
with specified environmental conditions can be measured. Two
environmental conditions are specified: (1) Benign – each
environmental condition is set to its lowest value, and (2) Severe
– each environmental condition is set to its highest value. For
each of the learning modes, the correct classification percentage
is measured against ground-truth. The results are given in Table 4.
In practice, if unlabeled data is all that is available, then

machine learning is typically not used at all. Machine learning
is most often used when some labeled data are available and
supervised learning is then used to its maximum extent, while
other learning techniques are not employed. The advantage of
a using a variety of machine learning techniques is evident in
Tables 3 and 4 above, but a single set of networks (possibly a
different network for each sensor mode) must be chosen since one
cannot generally anticipate the environmental conditions. Table 5
summarizes the performance results of using the best combination
Table 3
The best fusion test results of the four CARTMAP networks. Reinforcement learning followed by supervised learning worked best for estimating vehicle type and location,
while supervised learning followed by unsupervised learning, then reinforcement learning worked best for vehicle heading and speed. In the Classified Correct (%) column
of the table, there are three numbers separated by colons (e.g., 1:2:3). The numbers in position one represent the percentage of test samples that have a target value that
exactly matches the output value from a CARTMAP network.

Sensor mode Experiment # Learning mode Vigilance # Categories Classified correct (%)

Vehicle type 6 Reinforcement 0.7 36 : 108 92.6 : 92.6 : 91.7
Supervised 0.65 44 : 112 92.7 : 92.7 : 91.7

Vehicle location 6 Reinforcement 0.7 22 : 58 96.8 : 96.8 : 98.0
Supervised 0.65 31 : 61 96.9 : 96.9 : 98.0

Vehicle heading 2 Supervised 0.9 39 68.4 : 69.6 : 69.6
Reinforcement 0.7 45 : 59 66.6 : 79.9 : 80.3
Unsupervised 0.7 45 : 59 62.7 : 75.8 : 81.7

Vehicle speed 2 Supervised 0.9 46 72.4 : 79.9 : 79.9
Reinforcement 0.7 53 : 77 74.3 : 82.1 : 82.0
Unsupervised 0.7 53 : 77 73.4 : 81.3 : 81.8



322 N.G. Brannon et al. / Neural Networks 22 (2009) 316–325
Table 4
Best test results of situation assessment threat level performance using a combination of learning modes under benign and severe environmental conditions. Different
learning modes for different CARTMAP fusion networks are necessary to produce the best situation assessment results.

Environment condition Vehicle exp # Location exp # Heading exp # Speed exp # Reinforcement iterations Classified correct (%)

Benign 1 2 3 3 1 88.9
Benign 1 3 2 3 2 89.5
Severe 1 2 2 6 1 86.8
Severe 3 2 5 3 2 87.7
Table 5
CARTMAP fusion performance results of using multiple machine learning modes in comparison to supervised learning alone.

Learning approach Vehicle % Location % Heading % Speed % Avg. Threat %

SL 81.8 95.6 69.6 79.9 78.5
SL with UL and/or RL 92.7 98.0 81.7 81.9 87.6
of supervised (SL), unsupervised (UL), and reinforcement learning
(RL) in comparison to the more common uses of supervised
learning alone. Table 6 lists the machine learning approaches
used by each CARTMAP network to produce the best situation
assessment threat level performance averaged over benign and
severe environmental conditions.
An important conclusion drawn from the experimental results

is the utilization of multiple training approaches that can take
advantage of additional and different data, and produces superior
results for situation awareness compared to supervised training
alone. The reason performance goes down with UL after SL is that
with SL alone, all test patterns get encoded by a labeled category
whereas after UL, there are now unlabeled categories that may
encode test patterns producing classification errors. Even though
these unlabeled categories sometimes lowered the performance,
they may eventually add value after subsequent labeling during SL
or RL. Unsupervised input patterns that get encoded by existing
categories with a class label can contribute to the quality of the
category in representing the class in feature space. In addition,
since the CARTMAP has access to a reinforcement lookup table
(RLUT), if an unlabeled pattern matches a pattern in the RLUT,
the corresponding class label from the RLUT can be assigned to
the unlabeled pattern. This feature is used during unsupervised
learning. Originally, the RLUT is generated from the supervised
training data. It expandswhennewunlabeled patterns are encoded
by categories with class labels and the pattern and its label are
added to the RLUT.
Results for Experiment 3 (SL followed by RL) reveal a strong

relationship between the hints that RL provides and partial
matching in scoring the classification performance. When exact
classificationmatches are required, hints may not be good enough.
However, if a ‘‘close enough’’ match is sufficient, then improved
performance results from RL hints. Even thoughmultiple vigilance
valueswere used in the force protection experiments, it is expected
that performance will improve when the vigilance is optimized for
the type of fusion mode and the type of learning. It is important in
RL to have data representing all classes that a network is designed
to classify. If a class is not represented in the data, RL will not be
able to establish a label for this class.
Vehicle location is the easiest piece of information to learnwith

binary sensor data. Location is inherent in the sensors themselves
because their position is fixed.
Since 54.4% of the input patters are all zeros, if a correct

classification percentage of greater than 54.4% is achieved after
UL only, then the reinforcement lookup table is being used to
correctly label some patterns. During reinforcement learning, an
input pattern is submitted to a network and a reinforcement signal
is generated. This signal offers negative or positive feedback on the
output of the network. The following steps are taken at this point of
reinforcement learning. When a reinforcement signal is received,
the RLUT is updated, and SL is performed if the input pattern is
Table 6
The combination of learning approaches that produced the best threat level
performance. Three different combinations were used for the four different fusion
modules (vehicle type, location, heading, and speed).

Vehicle Location Heading Speed

Learning approach SL, UL SL, RL SL, UL, RL SL, RL
Reinforcement iterations 1 2 2 2

found in the RLUT (the action associated with the input pattern
with the highest value is used as the target). Unsupervised learning
is performed if the input pattern is not found in the RLUT and the
reinforcement signal is positive.
In general, SL should be used to create as many categories as

possible within reason, while subsequent non-supervised training
should take advantage of these existing categories and enrich
themwithout corrupting them. The coordination of three machine
learning modes therefore offers potential benefit from every
sample of data available in an application.

3.2.3. Situation assessment module
The situation assessment module takes as input information

from the information fusion module and any other information
relevant to the evaluation of the situation in the current
environment. The following are inputs used in our vehicle tracking
scenario:

• Vehicle type, location, heading, and speed
• Wind speed
• Department of Homeland Security (DHS) advisory level
• Average battery life of sensor modules
• Day of week
• Time of day.

The situation assessment module provides the highest level
information about the situation to the human decision maker as
well as meta-information about its assessment. Its outputs include
the following information:

• Threat Level (low, moderate, or low)
• Evidence in support of the threat level
• Evidence against the threat level
• Confidence in the threat level
• Suggested response(s) to the threat level.

A situation assessmentmodule is performed by aweighted rule
and a Bayesian filter.
The weighted rule approach to situation assessment first

transforms each input into a category according to Table 7.
The next step is to compute the assessed threat level from

a linear combination of all of the input categories, weighted
according to their relative importance.

Threat = 5L+ 4S + 3H + 2V +W + B+ D+ T + DW. (2)
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Table 7
Weighted rule approach to situation assessment using Threat = 5L+ 4S + 3H + 2V +W + B+ D+ T + DW.

Input Range Category Numeric value

Vehicle location (L)
North road High 2
Intersection Moderate 1
East/West road Low 0

Vehicle speed (S)
>40 km/hr High 2
20–40 km/hr Moderate 1
<20 km/hr Low 0

Vehicle heading (H)
NW, N, NE High 2
W, E Moderate 1
SW, S, SE Low 0

Vehicle type (V )
Tracked High 2
Light Moderate 1
Anomaly Low 0

Wind speed (W ) >40 km/hr Moderate 1
≤25 km/hr Low 0

Battery capacity (B) ≤50% Moderate 1
>50% Low 0

DHS advisory level (D)
High, Severe High 2
Elevated, Guarded Moderate 1
Low Low 0

Time of day (T ) Off hours Moderate 1
Normal hours Low 0

Day of week (DW) Weekend, Holiday, Special day Moderate 1
Normal weekday Low 0
The Threat Index is then converted to a threat category, to be
presented to the decision maker.

Threat Index > 22 : High Threat
11 ≤ Threat Index ≥ 22 : Moderate Threat
Threat Index < 11 : Low Threat.

The second approach to situation assessment designed for use
in the force protection scenario involved a Bayesian filter.
We generate reasonable estimates of the conditional probabili-

ties, given expectations about the environment and interactions.
For example, quantities such as the probability that a vehicle is
a threat, given that it is moving at a certain speed is set a priori.
Our method runs the above calculation for each of the four ‘‘state’’
calculations and then selects the maximum of that set. Further re-
search may upgrade the efficacy of the a priori estimates while the
system runs online. The weighted rule formula used in the previ-
ous section can be used to establish initial conditional probabilities
for the Bayesian Filter.

3.2.4. Graphical user interface module
The GUI designed to provide decision support for a force

protection decisionmaker includes three screens – the TrackDetail
screen, the Log screen, and the Map screen.
The Track Detail screen (Fig. 4) consists of four general sections

of information. The upper-most left section provides basic track
parameters that are largely generated by the fusion module.
Beneath this section (titled, ‘‘Basis for Assessment’’) are fields
of information that convey how the assessments were derived.
Further, there are details that show how the assessment may
be invalid (‘‘Against Evidence’’). Such an approach offers some
transparency that facilitates objective situation assessments. The
lowest section that spans the width of the screen is a list of all
tracks, including friendly forces that have most recently arrived in
the track cue and are available to be specified in greater detail in
the screen sections above. The section on the right is generally the
course of action information. A list of possible operational activities
by the threat is listed alongside howdefense forces should respond.
A basis for the corresponding defense operations is provided that
conveys practical capabilities in the current context and possible
constraints.
The Log screen (Fig. 5) affords the decision maker temporal

information. A critical element in situation awareness is time-
oriented information (Endsley, 1995). Pace of events and time
available to decide and act facilitate situation awareness and more
effective decision making. The vertical bar in Fig. 5 indicates the
current time (i.e., ‘‘now’’). The numbers across the top are time
increments and move right to left in the application. The boxes
represent events or tracks and are organized verticallywith respect
to priority, so the green box at the top is the most important event
involving a track that may be approaching the gate. The green
coloring corresponds to a low level threat. The box turns yellow for
a moderate threat and red for a high threat. The threat assessment
is driven by the same data used to drive threat assessments in
the track detail screen. If the track moves towards the gate, the
box moves right to left, and the estimated time to reach the gate
decreases. In this case, the decision maker knows that there are at
least 28.2 min until the track reaches the gate. If the vehicle were
to pass the gate, then the box would have passed the vertical bar,
and the box would indicate how long ago the vehicle passed the
gate. The log screen shows general event data, such as computer
network activity/announcements, and events that are significant
for perimeter security, such as sunset times and high winds that
may affect sensor reliability.

4. Future work

Arguably the most immediate area of future work is in
establishing principles and practices for employing the three
learning modes. There are different ways of combining three
modes of machine learning and many options for how and when
to employ each mode. The current research offers a preliminary
perspective on leveraging each learning mode for highest system
performance. It stands to reason that a CARTMAP network can be
tailored for each information fusion mode (vehicle type, speed,
heading, and location). The vigilance parameter may be different
for each mode. The vigilance may also require adjustment based
on the type and ordering of the learning modes.
The core of our machine learning approach is an ART neural

network. Other algorithms and architectures should be explored
with the same goal in mind, that of integrating multiple learning
modes. Reinforcement learning is a general area of research worth
pursuing in the area of situation awarenesswhere there is often not
a clear win or lose outcome from which to measure success. There
are also many ways of performing reinforcement learning, some
closer to supervised learning, with stronger hints, and others that
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Fig. 4. Track detail interface presenting to a user the threat level, response suggestions, vehicle and environment data, and evidence for and against the system’s outputs.
TIME IN PROGRESS  (relatlive interval)
75 80 85 90 95 100 105 110 115 120

T6 Patrol 1A North 2H 29M5H 31M

T3 Patrol 4B East 1H 46M6H 31M

6H 51M

1H 49M   Sunset

2H 9M

Net Z Down

Fig. 5. Decision support log screen showing relative timing of critical events.
provide rare, but consistent hints about the system’s performance.
How many iterations to use in reinforcement learning on this
problem is a legitimate research question, as is how best to
acquire feedback from human decision makers or the overall force
protection system, either directly or indirectly.
Another avenue of future machine learning research is to

explore the use of ensembles or bagging for supervised learning
(Dietterich, 2000). The use of ensembles employs multiple
‘‘experts’’ that train the same network using a different sampling
with replacement from the original supervised training set.
The combination of the experts’ solutions results in higher
performance than the use of a single network trained on the
original dataset.
5. Conclusion

The coordination of the three major machine learning ap-
proaches in a single architecture, using ARTMAP at its core, is an
innovation that should prove valuable in addressing real-world
problems. Many domains offer a limited amount of information
with ground-truth that can be used with supervised learning
algorithms. More available is data with hints from the envi-
ronment that can be used with reinforcement learning. Almost
always, data is available without labels that can be used with un-
supervised learning. Allowing these three modes of learning to be
used in the same framework is an important contribution. Interest-
ing advantages emerge when these three approaches leverage one
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another. For example, reinforcement learning can utilize super-
vised learning when enough information about class labels is
available from the environment. Unsupervised learning can take
advantage of stored reinforcement learning information to go be-
yond mere clustering. There is potential for interplay between the
learning modes that does not exist with a single mode.
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