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Abstract

The transformation of spatial patterns and their storage in
short term memory by shunting neural networks are studied
herein. Various mechanisms are described for real-time regulation
of the amount of contrast with which a pattern will be stored.
Parametric studies are described for the amount of contrast in the
network responses to patterns presented at variable background
or overall activity levels. Mechanisms for removing spurious peak
splits and other disinhibitory responses are described. Furman’s
(1965) results on processing of patterns by shunting networks are
generalized and reanalysed. Periodic responses (stable and unstable)
corresponding to the time scale of slow cortical waves can be
generated if a tonic input is set between two threshold activity
levels. Their frequency as a function of tonic input size is unimodal.
Order-preserving limit cycles are never found in STM; hence
sustained slow oscillations as a mechanism for storing a pattern in
STM are ruled out in favor of steady states (i.e., fast oscillations)
with spatially graded activity levels. Such slow oscillations can,
nonetheless, continuously retune the network’s responsiveness to
the patterns that perturb it.

1. Introduction

This paper studies the global dynamics of neurons,
or neuron populations, in a recurrent on-center
off-surround anatomy undergoing nonlinear shunting
interactions. In such an anatomy, a given population
excites itself (and possibly nearby populations) and
inhibits populations that are further away (and pos-
sibly itself and nearby populations also). Such an
anatomical design is found in many neural structures.
For example, in hippocampus (Anderson et al., 1969;
Dichter and Spencer, 1969; Kandel, Spencer, and
Brinley, 1961; Lebovitz, Dichter, and Spencer, 1971)
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the main cell type, the pyramidal cell, emits axon
collaterals to interneurons. Some of these collaterals or
interneurons feed back excitatory signals to nearby
pyramidal cells. Other interneurons generate in-
hibitory feedback signals over a broad area. Varia-
tions on this anatomical theme are found in other brain
areas, such as neocortex (Eccles, 1965; Phillips, 1959;
Stefanis, 1969). Grossberg (1973) introduced a class
of recurrent on-center off-surround networks which
were shown capable of contrast enhancing significant
input information; sustaining this information in
short term memory; producing multistable equilibrium
points that normalize, or adapt, the field’s total
activity; suppressing noise; and preventing saturation
of population response even to input patterns whose
intensities are high. These formal results were then
applied to a variety of situations, including aspects of
motor control, pattern discrimination, and drive-
reinforcer interactions (Grossberg, 1973), as well as
problems in attention and discrimination learning,
such as overshadowing and reinforcement contrast
effects (Grossberg, 1975).

That paper described mathematical results for the
subclass of on-center off-surround networks where
there are no structural biases in favor of ome cell
population over others. Grossberg and Levine (1975)
extended those results to networks where a particular
kind of bias exists; namely, where the number of
excitable sites in different populations could differ.
It was shown that this bias introduced a new form of
contrast enhancement into the network, that could be
interpreted as resulting from shifts in attention, or
from developmental differences in the size of popula-
tions that code for a given sensory feature in a field
of feature detectors, or even from statistical im-
perfections in the network’s construction. Levine and
Grossberg (1975) also studied cases in which the
strength of excitatory and inhibitory interactions
both decrease monotonically with distance, for-ex-
ample at Gaussian rate. Using such a network, they
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simulated various sensory phenomena, such as the
hysteresis effect that is seen when two binocularly
superimposed lines are slowly separated until they
are distinct and then slowly brought back together
(Julesz, 1971). They also simulated sensory phenomena
in networks where the interaction strengths decrease
with distance. and the saturation levels, or equiv-
alently the tuning curves, of different populations can
differ; for example, the Gibson-Radner tilt aftereffect
(Gibson and Radner, 1937) and the Blakemore angle-
expansion effect (Blakemore, Carpenter, and George-
son, 1970; Blakemore and Cooper, 1970).

These studies illustrate the remarkable richness of
properties to be found in reverberating on-center off-
surround networks undergoing shunting interactions.
They do not, however, exhaust these properties, and
they all make an assumption which is not always true
in vivo, and which certainly must be investigated to
achieve conceptual clarity. The assumption is that
the networks are lumpable; in other words, that the
inhibitory potentials of the network follow their
excitatory inputs so quickly that they can be expressed
in terms of these inputs at all times. In nonrecurrent,
or feedforward, networks, this is not always true; for
example, it has been shown in the mudpuppy retina
(Werblin, 1971) that the horizontal cells mediate light
adaptational effects, whose time course is often slow
compared to the excitatory response rate to fluctuating
visual signals. In recurrent networks, such as hip-
pocampus (Eccles, 1965), inhibitory influences on the
pyramidal cells can have a short latency and fast
rise time, but can also have a duration (200600 msec)
that is far longer than that of simultaneously occurring
excitatory influences (10-20 msec). Thus two main
tasks of this work are to further delineate the cap-
abilities of lumped shunting networks and to explore
how unlumped networks differ from lumped networks.
In particular, under what circumstances does an
unlumped network become asymptotically lumped
(i.e., act as if it is lumped as t—oc)? What capabilities
for data processing does an unlumped network have
that a lumped network does not have?

2. Review of Lumped Network Properties

In order to motivate our studies, we review the
derivation of the networks below, using Grossberg
and Levine (1975) as a basic reference. The networks
describe the properties of interacting populations of
cell sites. The populations can be interpreted as
populations of small membrane patches on individual
cells, or else as populations of whole cells. Cell sites

in a population are distributed randomly with respect
to interactions within each population and between
population pairs. The network can therefore be
described by mass action laws governing the average
potentials of its populations. The interactions between
populations will be chosen multiplicative, or of
shunting type, as occurs (say) in passive membranes
(Hodgkin, 1964; Sperling, 1970; Sperling and Sondhi,
1968), in models of dendritic branches (MacGregor,
1968: Rall and Rinzel, 1973) and in experiments on
cat motoneurons (Kuno and Miyahara, 1969).

The network discussed in Grossberg (1973) have
the following form. Denote the average activity
(e.g., potential) at time ¢ of the i population v; by
x;(t), i=1,2,...,n Let each population excite itself
and inhibit other populations via the system of
equations

X;=—Ax;+(B—x) f(x)—x; Z fxd+1, (1)

k*i

where i =1,2,...,n, B is the “weight”, i.e, maximum
possible activity, of the " population v;, and
x;(0£ x;< B) is the mean activity of v;, interpretable
either as a voltage or a number of active sites. Four
effects determine the behavior of the i population
v;: (1) exponential decay, via the term —Ax; (2)
self-excitation, via the term (B — x;) f(x,); (3) shunting
inhibition from other populations, via the term
—x; ¥ f(xy); and (4) externally applied inputs, via

k=i
the term I. The function f{(w) describes the mean
output signal of a population as a function of its
mean activity w.

What do the inhibitory surround and the reverbera-
tion accomplish? To motivate these interactions,
consider what goes wrong in a system without inter-
actions whose responses x;(f) to nonnegative inputs
I,(2) have the following natural properties: (1) linearity;
(2) boundedness, say by B; (3) decay to equilibrium
point, say 0, after inputs cease. Then

x;=—Ax;+(B—-x) L(1), (2

with 0= x;(0) £ B. Suppose that the relative sizes of
the responses x;(¢) code the relative importance of the
information contained in the inputs (t). For example,
if different populations v; are excited by different
features in a visual scene (e.g., colors, lines, edges,
disparities), then the relative intensities @, = L(Z, )™
of the inputs measure how much of that feature is in the
scene. However, the equilibrium values of the responses
x;(1), defined by x; =0, satisfy

BO,I
X

.=mi-1—, 3)



where [ = Z,I,. Thus x;— B as I becomes large, and
the measure of relative importance is lost due to
saturation. If also this system contains noise, then the
responses will not accurately measure relative im-
portance when I is small. Hence the system is in-
adequate both at low and high total input intensities.
Grossberg (1973) noted that an off-surround prevents
this problem, since if

xi=—Ax;+(B~x)k-x Y k. (4)

k*i

then the equilibrium value of x; is

BI
x= 60— ©)
which is proportional to ©; no matter how large I is
chosen. The off-surround hereby introduces a type of
adaptation to overall levels of input activity.

In system (4), the constant B is the number of ex-
citable sites in each population v;. Since x; is the
mean number of active sites, B—X; is the mean
number of inactive sites. Thus term (B— x;) I; says
that inactive sites are activated at a rate proportional
to the number of inactive sites times the excitatory

input intensity. Term —Xx; Y I, says that active sites
k*i
are inactivated at a rate proportional to the number

of active sites times the total inhibitory input intensity.
This is the meaning of “mass action” in this context.

The above example uses a nonrecurrent, or feed-
forward, anatomy. A recurrent, or reverberating,
anatomy is introduced when a network capable of
short term memory (STM) is needed. Such a network
can reverberate a pattern of activity distributed over
cell populations for an indefinite interval of time.
This reverberation can also be switched off rapidly
by inhibitory inputs if a new pattern is delivered by
external sources; the decay rates of individual cells
can be large after the excitatory reverberating loop
is broken by inhibition, even if the reverberation
through an active excitatory loop is long lived. The
use of reverberation as a mechanism of STM is, for
example, suggested by operant conditioning experi-
ments: here one is led to seek reverberatory processes
that can maintain in short term storage internal
representations of sequences of external events until
later rewards or punishments occur and transfer the
memory of these sequences to long term storage
(Grossberg, 1971).

Two main themes emerge in the discussion of
reverberating networks. The first is: how does the
reverberation change the distribution of activity
across populations through time? In particular, how

n

does the network suppress noise, or behaviorally
irrelevant inputs, yet store behaviorally significant
data in STM? This theme focusses on ways in which
the relative sizes of population activities are trans-
formed. The second theme is concerned with fluctua-
tions in total network activity through time. In
particular, when does the total activity converge
rapidly to zero, so that no stable reverberation gets
established? A deeper issue is illustrated by Egs. (1)
and (2). In Eq. (1), the maximum of the total activity
n

x(t)= Z x,(t) when m populations are active is mB,
k=1
since each active population has a maximum activity
of B. In Eq. (2), the maximum of the total activity is B,
since x(t) = BI
A+’
Thus the maximum total activity is independent of
the number of active populations. This result from
nonrecurrent networks has an analog in recurrent
networks. Grossberg (1973) has shown that if a
persistent reverberation is established, then x(r) will
converge to a unique positive limit point as t— oo, for
suitable choices of the signal function f(w). It is also
possible to find signal functions for which x(z) con-
verges to any one of a discrete set of limit points
(“multi-stable equilibrium”), or even to a continuum
of limit points. The situation in which one, or at
most a few, limit points of total activity exist is typical.
In all these cases, there is an upper bound on possible
values of x(cc) that is independent of n. This property
is called normalization. . ..

Animportant theme about total activity normaliza-
tion is the following: if the network can reverberate
patterns in STM that are imposed by behaviorally
relevant inputs, then what prevents the network
from reverberating behaviorally irrelevant activity
levels, such as noise? Grossberg (1973) shows that a
proper choice of the signal function f(w) overcomes
this dilemma. This is seen by classifying the properties
of various choices of f(w). This classification is
summarized below.

Case 1. Linear Signal Function: f(w)= Cw. Every
initial pattern is preserved perfectly by this reverbera-
tion: that is, the relative activity functions X(t)

=x,~(t)[§":

k=1

which converges to B as I—x.

-1
xk(t)] are constant. Moreover the total

n

activity x(f)= ¥ x,(¢t) is normalized: the limit x(cc)
k=1

= lim x(f) exists, and equals zero or a unique positive

t—x
constant E. Unfortunately, x(cc) has the same value
independent of the initial data. For example, if the
system does not reverberate noise [ie., x(0)=0 and
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Fig. 1. Total activity normalization with muitiple equilibrium points

x(o0)=0], then the system does not reverberate
important inputs [i.e., x(0)> 0 and x(c0) = 0]; or if the
system does reverberate important inputs [i.e., x(0)> 0
and x(20) = E], then it also amplifies and reverberates
noise [ie, x(0)=0 and x{(co)=E]. Such a system
cannot distinguish between unimportant and im-
portant inputs to be stored in STM.

This choice therefore has a good property and a
bad property. The good property is that it can store
any pattern without distortion. The bad property is
that it amplifies noise. Case III below begins to show
how to eliminate the bad property using a nonlinear
signal function.

Case 11. Slower-than-Linear Signal Function; ie.,
f(w)=wF(w), with F(w) decreasing. The reverbera-
tion either dies out or is normalized. If it is normalized,
the limiting distribution of pattern weights is uniform;

ie., X;(0)= L i=1,2,...,n Thus a population that
n

is subjected to noise will ultimately have the same
weight as a population that receives a large signal.
This situation is even more pathological than the
linear case, since there, in the presence of signals,
populations which receive only noise will maintain a
small relative weight.

Case I11. Faster-than-Linear Signal Function; i.e.,
f (w) = wF(w), with F (w) increasing. The main problem
posed by the previous two cases is to suppress noise,
or at least to prevent noise amplification. This occurs
in the present case.

Consider Fig. 1. If x(0)< E,, then x{00)=0; the
value E, defines the level below which (total) initial
activity is treated as noise and therefore suppressed.
All initial values x(0)> E, lead to storage in STM.
The values E,, E,, ..., E,,,, etc. are stable equilibrium
points of total activity. There can be any number of

fw) = wF(w)
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Fig. 2. Contrast enhancement and storage in STM of suprathreshold
activities

these points if F(w) is suitably defined. In particular,
if F (w) is convex, say because f (w) is a sigmoid function
of w, then there is a unique positive equilibrium
point.

The property of noise suppression implies that the
pattern weights are not preserved. Indeed, only those
populations whose initial activities are maximal are
reverberated in STM, the activities of all other
populations are suppressed. In particular, if one
population initially is more active than any other
population, then the reverberation “chooses” this
population for storage in STM. The faster-than-
linear case suppresses too much of a pattern in order
to suppress noise. We seek a way to preserve the
property of noise suppression without suppressing
also all but the maxima of an input pattern. Cases I
and III suggest a way.

Case IV. Faster-than-Linear Levelling off to Linear.
All populations whose initial activity falls below a
prescribed threshold level will be quenched by the
reverberation. The pattern of activity of all initially
suprathreshold populations will be contrast enhanced
and stored in STM (Fig. 2).

Speaking heuristically, the reason for this phe-
nomenon is as follows. Suppose that an initial pattern
of activity falls within the faster-than-linear region of
f(w). By CaseIll, contrast enhancement will begin.
Were there no other region of f(w), only the pattern
maxima would survive. However, normalization of
the total activity x(¢) also takes place, and can carry
the pattern activities into the linear range. By Case [,
any pattern in the linear range will be preserved by the
reverberation; in particular, the partially contrast-
enhanced pattern will be preserved. Thus the linear
range terminates the contrast enhancement pro-
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cedure which, if uninterrupted, would annihilate all
but the pattern maxima.

Case V. Sigmoid Signal Function. In vivo, signal
functions always have finite maxima at large activities.
By levelling off the signal function of Case IV, one
finds a sigmoid f(w) (Fig. 3).

By Casell, we know that at activities corre-
sponding to the slower-than-linear range of f(w), the
pattern will be uniformized. This unfortunate property
can be eliminated by a suitable choices of parameters
even if the maximal activity level B falls within the
slower-than-linear range of f{w).

In summary, the linear [i.e., F(w)=constant] range
of a signal function f(w) determines the network’s
ability to store partially contrast-enhanced patterns
in STM. Insofar as F(w) deviates only slightly from
constancy in a given range, the corresponding f(w)
will tend to slowlv contrast enhance or uniformize the
pattern weights that it influences in this range.

Grossberg and Levine (1975) studied the system

X =—Ax+(B;—x) f(x)—x; Z flx)+1 (6)

k*i

or equivalently

Xi=—Ax;+B—x) f(Cx)—x ¥ f(Cxd+ L. (T)

k*i

In (6), different features coded by the populations v;
can have different saturation weights B;. In (7), both
the excitatory and inhibitory interactions of each
population can be shunted by a different scaling
factor C;. The asymmetries in B; and C; can be at-
tributed to developmental preferences or to shifts
in attentional bias due to a shunt either of a popula-
tion’s maximal excitability or all of its interactions,
both excitatory and inhibitory, by a suitable arousal
signal. These authors show that such asymmetries
introduce a new form of contrast enhancement
into the system. For example, suppose that B
<B,<---£B,in(6). If f(w)= Cw, then all x;(¢)=0
if B;<B,, and x;(oc)= Kx;(0) if B;=B,. In other
words, all states with nonmaximal B, are quenched,
and all other traces are stored faithfully in STM. No
states are quenched if all B,=B. If f(w) is chosen as
in Fig. 2. then there is a competition between relative
sizes of the B; and the x;(0). Only the traces corre-
sponding to one B; can be stored in STM, but i need
not equal n if the initial data of populations v; such
that B;= B, exceeds the initial data of populations v;
such that B;= B, (Fig. 4).

The pattern that is stored is also contrast-enhanced.
Thus attentional shunts or developmental asymmetries
can bias the network in favor of one class of features
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Fig. 3. Sigmoid signal function
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Fig. 4. Competition between number of sites B; and initial data

(namely those with B;= B,), but if a different class of
features is present with sufficient strength at a given
time, it can overshadow the preferred class in STM.
The reverse statement is also true. If infrequently
experienced features have small B;, then the reverbera-
tion can totally quench activity in these features. In
other words, the infrequent-feature detectors are
there because they might be needed, but they need not
be a source of noise..or ‘other interference when
different features are processed.

3. Relative Excitatory-to-Inhibitory Gain
Controls Contrast

System (6) enjoys two different contrast-enhancing
mechanisms:
A. The nonlinear signal function f(w).
B. Nonuniform choice of B; or C;.
A third mechanism of contrast exists in systems of
the form
== AX+ (B —x) f(x)—x; 2 glxd+ L, (8)
k=*i
where the excitatory signal function f(w) and the in-
hibitory signal function g(w) differ. For example, set
f{w)=Cw and g(w)= Dw, where C=+D. If C=D and
all B,=B, then this system preserves patterns. If
however all B;=B but C =+ D, then this property is
dramatically changed. Thus we consider

%= —Ax;+(B=x)Cx;—Dx; ¥ X, (9)

kFi
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Fig.5. Recurrent anatomy with nonspecific shunting input to
inhibitory interneurons

i=1,2,....,n when C=D. How do the probabilities

n -1
behave as t—o0?. The following definitions will be
used to discuss this situation.
Definition . The reverberation is persistent if x(1)
does not approach zero as t— .
Definition 2. The limiting distribution  X;(c)

and the total activity x= Y X
k=1

— lim X,(¢) is uniform if all X,(>c) = %

t—x

Definitions 3. The limiting distribution is 0—1 if
X,(c) =1 for some i.

Definition 4. The limiting distribution is locally

uniform if X;(c0)=0 or % for all i, and t<m<n.

Definition 5. The reverberation is normalized if the
possible limit points of x(oc) have an upper bound
that is independent of n.

In all results below, the initial data satisfies
0< x,(0)< B. The following theorem describes the
effect of varying the sign of C — D. All proofs are given
in Appendix 1.

Theorem {. Let the initial data of (9) satisfy
0< x;(0)<B. Then all limits x;(o0) exist. Suppose
moreover that the reverberation is persistent, which
occurs if and only if BC>A. If D<C, then the
limiting distribution is uniform, and x(cc)=n(BC — A)
[(n=1)D+C] ' <(BC~A4) D' If D>C, then the
limiting distribution is O0—1 or locally uniform
depending on whether or not the number m of popula-
tions that satisfy X;(0) = max, X, (0)ism=1orm>1.
In this case, x(x)=m(BC—A)[(m—-1)D+C]"}
<B- AC™!, so that the reverberation is normalized.
In other words, if inhibition is weaker than
excitation, then the distribution becomes uniform
and all information about initial relative importance
is lost. If inhibition is stronger than excitation, then

the system chooses the maximal initial data for
storage in STM and suppresses all other data. If
D=+ C but D is close to C, then these tendencies to
uniformize or contrast enhance initial data set in
slowly. For example if D> C and |D — C|=0, then ina
finite time interval, only partial contrast enhancement
can oCcCur.

Are these good properties or bad ones? They say
that by varying the relative gain of excitation to
inhibition, one can control the amount of contrast
enhancement in the system. This is interesting.
However, unless there is 2 mechanism for rebalancing
the excitatory and inhibitory strengths, then the
enhancement process cannot be terminated. A pro-
vocative mechanism is the following. Suppose that
when the system is not active, then D < C; ie., inhibi-
tion is weak. All asymmetries in system response,
such as noise effects, will tend to be uniformized so
that the system can respond without bias when inputs
do arrive. Suppose that when an input arrives, it also
activates a nonspecific arousal mechanism that
strengthens the relative inhibitory-to-excitatory inter-
action strength in the field. This can be done, for
example, by excitatory shunting (i.e, multiplying) of
the responses in all the inhibitory interneurons,
thereby magnifying their strength, or by inhibitory
shunting of the responses in all the excitatory inter-
neurons, thereby weakening their strength—but not
both with equal strength, in counterdistinction to the
attentional shunt described by Grossberg and Levine
(1975) (Fig. 5). o

If the shunt is strong enough to make D> C, then
the field will tend to enhance asymmetries created by
the input, and to suppress noise, even if the signal
function is linear. After the shunting arousal is shut off,
the field will actively suppress these asymmetries to
prepare itself to receive new inputs without bias. It is
also readily proved that if f(w) grows faster-than-
linearly and D> C, then the system will try to make
a choice. This also occurs for such an f(w) if D=C.
The condition D> C strengthens the tendency
towards contrast enhancement.

4. Possible Anatomical Correlates of Contrast Control

The above example shows that microscopic studies
of nonspecific afferents to neocortical and other
sensory processing areas must carefully analyse
whether these afferents reach excitatory, inhibitory,
or both kinds of interneurons. In the former two cases,
a variable contrast mechanism for all populations is
suggested. In the last case, an attentional mechanism
is anticipated.



Definition 6. The system (8) with f =g is said to
have matched interactions.

The case of matched interactions has beautiful
mathematical properties, but can it be realized
in vivo? Is the system (9) with C =D too singular to be
realistic? Two remarks are relevant:

A. A signal function is a statistical property of a
population. To say that f =g means that the popula-
tions of excitatory and inhibitory interneurons in
the network have the same statistical parameters,
such as spiking threshold distributions. This will
occur automatically if both types of interneurons are
sampled from a common cell type. When does this
occur in vivo?

B. Let n=2. Then the off-surround consists only
of one population. There exist n= 2 situations in vivo
where a continuum of patterns can be stored in STM;
for example, the continuum of possible postural
positions stored in the neural controls of an antago-
nistic pair of muscles; cf., Grossberg (1973). Such a
system cannot be allowed to become 0—1 or uniform
whenever STM storage occurs. How strong an
argument is this for the existence of matched inter-
actions when n=2 and the anatomy is recurrent on-
center off-surround? By way of comparison, see
Theorem 5 below. Certainly a statistical study of the
signal functions controlling postural regulation will
shed valuable light on this case. Another matched
n =2 case is described in Grossberg (1972a. b: 1975) for
the regulation of net incentive motivation in pairs of
positive and negative drive centers.

5. Inhibitory Lag Can Enhance or Uniformize
Even in Matched Systems

Does control of contrast by varying the relative
excitatory-to-inhibitory gain also hold in unlumped
systems? The simplest unlumped generalization of (9) is

X =—Ax;+(B—-x)Cx;—Dx; Y » (10)
k*i
and

yi=E(;—w), (11)
where x; is the average potential of the ™ excitatory
population v;, and y; 20 is the average potential of
the i** inhibitory population v; . Systems (10) and (11)
allows the inhibitory interneuronal response to lag
behind the more rapid excitatory interneuronal re-
sponse (Fig. 6).

Equation (11) could also be written as

Vi=—Eyi+Fx
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Fig. 6. Unlumped on-center off-surround anatomy

without added generality, since the substitutions
Fx,—x;, Ey;—y; and an appropriate redefinition
of constants in (10) reduce the system to (10) and (11)
once again. In the unlumped systems (10) and (11),

-1
we will study the probabilities X; = xi(z xk> and
k=1

n -1
Yi=_\’i(z yk) as t—co. In this system, a new
k=1

possibility arises because the inhibitory population
responses to inputs can lag behind the excitatory
responses, especially if E is small. To illustrate this
possibility, we first discuss the matched case D=C.
In the lumped system with D=C, the probabilities
X;(t) are always constant. Also, x{(w)=B—-AC™!
and Y, = X; trivially. These tendencies are also present

in the unlumped system.
Proposition 1. If D= C, then the critical points of
(10) and (11) are characterized by the equations
x=B—AC™! (12)

and
Yi=X. (13)

These critical points are asymptotically stable if n=2.

Remarks: If (12) and (13) hold at ¢=0, then the
probabilities X(t) are constant, x(c0)=B-—AC"~ L
and ¥ = X,. Also, (12) can clearly hold for an arbitrary
distribution X;. Thus there exist initial data that
preserve pattern weights. as in the lumped system.
Unlike the lumped system, however, there also exist
unitial data that contrast enhance or uniformize
pattern weights. These and some related concepts are
defined below in terms of the functions M,(f)
= max; X,(t), M, (t) = max, Y, (¢), m,(t) = min, X, (¢),
m,(f) = min, Y (t), x;;{(t) = x;(8) = x;(t), and yij(t)
= y;(t)— y;(0).

Definition 3. The excitatory (inhibitory) pattern 1s
contrast enhanced if M_(c0) > M, (0) and m(0) < m(0)
-[M, () > M, (0) and m(x) < m,(0)].
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Definition 4. The excitatory (inhibitory) pattern is
uniformized if M, (o) < M,(0) and m,(c0)>m(0)
- [M,(0) < M,(0) and m,(c0) > m,(0)].

Definition 5. Iso-order in the pair (i, j) exists at time
tif x;5(8) yi;() 2 0.

Definition 6. Anti-order in the pair (i, j) exists at time
tif x;;(0) y;;() <.

Definition 7. Iso-pattern exists at time t if X;(t)
= Y(¢) for all i.

The following theorem illustrates the uniformizing
and contrast-enhancing tendencies that are due to the
slower inhibitory interneurons. [t assumes that limits
exist, which has always occurred in our computer runs.
It uses the fact that the functions

S;;=logx;xj' +DE (31— ¥)) (14)
are constants of the motion if D=C.

Theorem 2. Let D= C and BC > A. The following
cases occur if all limits exist:

A. If the intitial Y;(0) pattern is uniform, then the
pattern X; is uniformized. The amount of uniformation
decreases monotonically as a function of E.

B. Let anti-order exist in all pairs at t=0, and
choose x;;(0)> 0 for definiteness. If S;;(0)> 0, then y;;
changes sign once, and the X; pattern is uniformized.
If 5;;(0)=0. then both patterns X;(=) and Y(cc) are
uniform, If §;;(0) <0, then x;; changes sign once.

C. Let n=2, suppose that intial iso-order exists,
and define

S=v(0)—(B-AC™ ). (15)
If $>0, contrast enhancement occurs. If §<0,
uniformization occurs.

Remarks: Case (A) shows that the size of y(0) does
not influence the amount of asymptotic uniformiza-
tion if the Y;(0)’s are uniformly distributed. By contrast,
in Case (B), making y(0) larger given a fixed inhibitory
pattern Y;(0) can determine whether or not x;; or y;;
reverses its order. Case (C) dramatizes the effect of
y(0) in the case of initial iso-pattern. Then if y(0)
> B— AC™!, contrast enhancement occurs, whereas
if y(0)<B— AC™! uniformization occurs. Given
general initial Y;(0), case (C) says that there is a
competition between total initial inhibitory activity
y(0) and a critical, actually asymptotic, value B— AC~ !
of total inhibitory activity in determining uniformiza-
tion or contrast enhancement. Similar effects occur in
our computer runs given initial iso-pattern even if n > 2.
Thus different choices of inhibitory pattern can
dramatically change how total inhibitory activity
transforms a fixed excitatory pattern.

6. Possible Physiological Correlates of Slow
Inhibition

A. Amount of Contrast Depends on E

How does the system respond to an input pattern
L(t) in a time interval 0St<T if [SL- <1
Start with zero initial data for definiteness in the
system

= —AX,+(B—x)(Cx;,+[)=Cx; Y v, (16)

k*i

and (11). Clearly iso-order exists in all pairs for t 2 0.
Compare what happens for t = T with E small or large.
If E is sufficiently small, then by (11) 0= y(T)<B
— AC™!, so that by Remarks (A)and (C) in Section 3.
uniformization of the X;(T) pattern will occur for
1= T. If E is sufficiently large, then x{t) can be driven
above B— AC™! by the inputs, and y{t) can follow
rapidly behind. If y(T)>B—AC™', then contrast
enhancement of the X,(T) pattern can occur for
t2 T, by Remark (C). Thus the rate with which the
off-surround responds can influence whether the
reverberation enhances the pattern that is created by
the inputs. A similar effect occurs while the input is on.
If the off-surround can respond quickly, it can, at
least partially, overcome the saturation that would
occur in response to intense inputs in its absence.

B. Whether a Pattern is Stored Depends
on Its Duration

The anti-order case of Theorem 2 illustrates an
interesting effect when E is small and the ordering of
inputs reverses in time. Let a given sign of y;; be
established by earlier inputs, and suppose that a
reversed input produces an opposite sign in X;;.
but is shut off before y;; changes its sign to that of x;;.
This is the anti-order case. If E is sufficiently small.
than §;; can have the sign of y;;. Hence x;; will reverse
its sign to that of y;;. In other words, if the reversed
input is too brief, the order stored in STM will be that
of the previous input. Only inputs of sufficient dura-
tion will have a reliable effect on STM, and this
duration must increase with E, other things equal.

7. Contrast Control in Unlumped Systems

If D % C, contrast control occurs in the unlumped
systems (10) and (11). Theorem 1 shows that, if D>C
in the lumped system, then the system strives to
reach a 0— 1 or locally uniform limiting distribution.
If D> C in the unlumped system. the same tendency
occurs, but if initial anti-order exists in a pair (i, )).
then the inhibitory order in y;; can compete with



the excitatory order in x;;. This competition creates a
tendency towards uniformization in the D>C un-
lumped system that is not found in the corresponding
lumped system. Again the iso-order condition should
be thought of as a consequence of an input pattern
with fixed order ; £, £--- £1, that is turned on
with sufficient intensity and duration before the
reverberation is studied.

Theorem 3. The reverberation is persistent if and
only if BC>A. If BC>A and D+C, the limits
X.(0) and Y(oc) exist, are equal, and are 0-1,
locally uniform, or uniform. If D<C, the limiting
distribution is uniform. Suppose D> C. If initial
‘iso-order exists in all pairs, x,(0)< x, = - £x,(0),
and x,;(0)+ y,,(0)>0, then the limiting distribution
is 0— 1 unless x,,;(0) + y,;(0) =0 for some i + n. If some
pairs exhibit initial anti-order, then the limiting
distribution can be locally uniform even if x,,(0)
+ ,;(0)>0 for all i & n.

8. Contrast Control with Nonlinear Signal Functions

The tendency for relative excitatory-to-inhibitory
gain to control contrast can be proved for substantially
more general systems than (10) and (11). Consider the

The following theorem holds.
Theorem 4. Let the nonnegative signal functions
f(2), g(2), and h(z) have positive first derivatives with

h(0)=0. Consider the functions

U(z)=(Bz ' =1) f(z)+ Kh(2) (19)
and

V(z)=g{z)— KEz. (20)

Suppose that there exists a K such that, for 0z < B,
U(z) and V(z) have bounded derivatives of the same
sign with at least one derivative never vanishing.
Then all limits X;(c0) and Y;(o0) exist, are equal, and
are 0— 1, locally uniform, or uniform. If U and V
are decreasing, then the limiting distribution is
uniform. If U and V are increasing, initial iso-order
exists in all pairs, x;(0)<x,(0)<---=x,(0), and
%,1{0) + ¥,, (0)>0, then the limiting distribution is
0— 1 unless x,;(0)+ y,;(0)=0 for some i< n. If some
pairs exhibit initial anti-order, then the limiting
distribution can be locally uniform even if x,;(0)
+ v (>0 foralli£n.

Corollary 1. In the case of linear signal functions,
U and V are increasing if D= KE=C with D>C,

systems
o= A (B-x) f(x)—x Y gy (1),
k=+i
yi=—Ey;+hix). (18)
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whereas U and V are decreasing if DS KE £ C with
D<C. Simply choose K=DE™!, as in (14), to get

Theorem 3. .
gixy= Y gzt
k=1

Corollary 2. Let f(z)= Y fiz*
= ) hz* with all coefficients nonnegative,

k=1
and h(z
k=1

and with radius of convergence = B. If for all k21,
g E"' = fihe! with at least one term g, E™' — fihy!
positive, then the 0— 1 tendency exists.

In Eq. (17), iso-order arises naturally when the
initial data is uniform and inputs f(z) with a fixed
order I, £L g --- £, perturb the system for 0=t £ 7.
Iso-order holds throughout this interval, and through-
out the reverberation in t= T. This latter fact is a
very robust property that is true in any system of the
form

X = A(X], Xg, ooy X Vi V2o o5 ¥a) Blx) + Clx3) (21)
D(x;) E{y}),
)}i =‘%F:(x17 x2’ RS n’yl’ VZ, . '9yn) G(}'l)+H(YI) (22)
+1{x) J (¥}
Proposition 2 ( Preservation of Order). Let the

functions 4, B,C,... be continuous with D and J
nonnegative, and E and I monotone increasing. Then
the functions x;; and y,; change sign at most once and

“never for t > T1f xi;{(T) yi(T) Z 0.

Equation (17) is put in this form by writing

Y g =

k+i

ty or order preservation can proﬁtably be thought
of as a guiding principle for designing pattern proces-
sors for the pupose of STM storage. We do not require
that the network duplicate the pattern of inputs, but
only that, once the input is transformed by the net-
work, the order of the transformed pattern should be
preserved in STM to provide a record of relative
(albeit not necessarily absolute) importance of the
features or commands that are coded in the different
populations.

The above results analyse situations wherein
partial contrast is eliminated if the signal functions are
unmatched. In the next few sections, we consider
several physically plausible mechanisms whereby
partial contrast can be restored in the presence of
unmatched interactions.

L—g(y;), where L = Z g(y,). The proper-

9. Partial Contrast Due to Saturating Inhibition

In systems (10) and (11), the off-surround produces
the tendency for contrast enhancement to occur.
Indeed, if no inhibitory terms existed in (10), then the
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limiting distribution would be uniform. If D>C,
the contrast enhancing tendency is so great that
partial contrast is eliminated and the system tries to
make a choice. Does this property depend on the exact
form of (11)?

In (11), the excitatory signal Ex; acts additively
rather then via a shunt, as it does in (10). Were a
shunt to act instead, (11) would be replaced by

Vi=—Ey+(F—y)Cx;.
Note that for y; small,
yx—Ey,+FCx;,

(23)

which is again an approximately additive interaction.
A small excitatory signal Cx; to (23) can produce
this additive approximation. A large excitatory signal
in (23) will tend to saturate the y, response at the level F.
Intuition suggests that the tendency to produce a
0—1 distribution when D> C can be offset by the
shunt in (23). This is because the enhancement process
will be at least partially balanced by the uniformiza-
tion that is produced as the saturating level F is
approached. The next theorem shows that this can
indeed happen if n= 2, but cannot happen if n> 2.
Theorem 5.Letn=2.Define H=DF—E-BC+ A4
and z,, =Dy, — Cx;,. Suppose H=0. If z;,(0)=0,
then all X,(r) are constant. If x;,(0)z),(0)=0 with
either x,,(0) or z,,(0) nonzero, then the excitatory
pattern is partially contrast enhanced if x;,(0)2 0 and
uninformized if x,,(0)<0. If x,,(0)z,,(0)<0, the
excitatory pattern is uniformized.
Let n>2. Then if limits x;(oc) and y;(o0) exist,
the x;(oc) can assume at most one nonzero value.
Remarks: The above theorem can be extended when
n=2 to analyse cases where H+0. The H=0 case
illustrates the main phenomena, however. For ex-
ample, if FC = E, then (23) reduces to (11) at small y;
values. In this situation H=0 1is the same as
EC'(D-C)=BC—A. In systems (10) and (11),
condition BC— A4>0 maintains the reverberation
and D — C>0 makes a choice. Here D can exceed C
without preventing partial contrast from occurring.
Why does partial contrast fail if n>2? Speaking
heuristically, it is because the inhibitory Eq. (23)
does not have its own off-surround. In other words.
the uniformizing tendency in (23), is either too strong
or too weak if it is not balanced by an off-surround.
For example, if (23) is replaced by §; = —Ax; +(B—y)
-Cx;—Dy; Z .., and (10) also holds, then it is readily

k=*i
proved that the differences x;—); converge ex-
ponentially to zero, so that the system lumps itself,
no matter how the positive coefficients A. B, C, and D
are chosen.

10. Partial Contrast in Unmatched Fields
with Distant-Dependent Interactions

The above results show that in networks whose
excitatory and inhibitory signal functions are un-
matched, there exists a strong tendency to approach
0—1 or uniform limits in STM. These networks are
special because the strength of inhibitory connec-
tions between all populations v; and vy, i ¥k, is the
same. If n=2, this causes no loss of generality; hence
the importance of postural control of an agonist-
antagonist muscle pair in this case, or of net incentive
motivational regulation by a pair of drive centers, or
indeed of any dipole of antagonistic populations
(Wise, Berger, and Stein, 1973). For n>2, however,
there are many examples of inhibitory interactions
whose coefficients depend on i and k, for example
as a function of |i — k| (Bishop et al., 1971 Colonnier,
1965; Scheibel and Scheibel, 1970; Szentagothai, 1967).

The distribution of the on-center and off-surround
interactions determines the generalization gradients
that join together various sensory cues, motor com-
mands, and so on. Below we will show that partial
contrast can occur given unmatched signal functions
if the on-center and off-surround interaction coef-
ficients are suitable functions of distance. Before
analysing these phenomena in the recurrent case, we
study properties of shunting fields that are non-
recurrent, or feedforward. Different properties of
analogous recurrent fields can then be unambigously
ascribed to the reverberation.

11. Input Broadening and Curvature Detection

Consider the lumped nonrecurrent system

.{Ci=—AX,'+(B—xi) Z

k=1

L Ci— X Z L Dy; (24)
k=1
with inputs I, excitatory coefficients Cy;, and in-

hibitory coefficients D,;. The equilibrium values
(x; = 0) of (24) are

(25)

where E,;= Cy;+ Dy;. Furman (1965) considers a
special case of (25) such that

L
_ (26)
1+ Y LE;

k=1

X; =



Fig. 7a-c. Normalized input and responses from Furman (1965)

He analyses the responses to three types of inputs;
namely, a Gaussian input, a triangle, and a unit step
function. His results are schematized in Fig. 7.

The solid line plots M, = [;/max, I, and the dotted
line plots N,= x;/max, x,. The network broadens the
Gaussian input (Fig. 7a), broadens the triangle except
at its vertex (Fig. 7b), and contrast enhances the step
(Fig. 7c). Furman concludes (p.268) that “shunting
inhibition acts as a specialized discontinuity detector
whereas subtractive inhibition acts more generally
as a change-of-slope (i.e., curvature) detector”. Below
we will analyse why the shunt sometimes broadens
patterns, and will also show contrary to Furman’s
results, that it can act as a curvature detector. In
addition, various parametric studies given prescribed
inputs or anatomies will be summarized. To simplify
computations, we often replace the sums in (25) by
integrals, namely

B ]9 I(w) C(w, 2)dw
—= . 27
A+ | IW)E(w,z)dw

-

x(z)=
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To discuss input broadening, we use the following
definition, that is adapted from Furman.

Definition 8. Let M (w) = I(w)/I and N(w) = x(w)/X,
where T is the input size at the center of a symmetric
input and ¥ is the network response at the corre-
sponding population. The input I(w) is broadened by
the network if N& M and N(w)= M(w) for all wz0.
In Furman’s model, input I; excites only population v;.
This motivates the following result, where 3(&) is the
familiar delta function.

Proposition 3 (Input Broadening). Let C(w,z)
= Cé(w— z)and D{w, z) = D, (w — z) = D, (z — w), where
D, (¢) is monotone decreasing. The network broadens
any differentiable input I (w) = I (— w) that is monotone
decreasing for w=0.

In other words, the network broadens any dif-
ferentiable unimodal input pattern if each population
excites only itself. This result confirms and generalizes
Furman’s observations. It is not, however, true for all
differentiable unimodal inputs if the condition C(w, z)
= Cd(w—z) is relaxed, although it remains true for
certain important inputs, such as Gaussianly dis-
tributed inputs.

Proposition4. Let C(w,z)=Cy(w—2)=C,(z—w)
and D(w,z)=D;(w—2z)=D,(z—w), where E(J)
= C, (&) + D, (¢)is monotone decreasing. Any Gaussian
input I(w) = I exp(—J w?) is broadened.

On the other hand, inputs that decay quadratically
with distance are not broadened. even though e™*’
=~ { —w? in first approximation for small values of w.

Proposition 5. Let C(w,z)=C,(w—2)=C,(z—w)
where C,(6)=0 for |&|>W. Let I(w) be any dif-
ferentiable, decreasing, even function such that I(w)
= U~ Vw? for |w|< W, with U and V positive. Then
if A is chosen sufficiently large, there exists a w; in
[w] < W such that N(wg)< M (w,).

Thus unless C(w, z)= Cd(w—z), as in Furman’s
paper, it is possible for a shunting network not to
broaden unimodal inputs. The conclusion that a hunt
is insensitive to curvature information is also not
generally true, even if C(w, z) = Cd(w— 2).

Proposition6 (Negative Contrast). Let C(w, z)
= C8(w- z) and choose D(w, z) = D;(w—z)= D (z—w)
continuous, nonnegative, and such that D,;(0)>0.
In response to any differentiable input such that
I'(0)=0 and I'(w)>0 if w0, x'(0)<0 (Fig. 8).

Propositions 4—6 illustrate that care must be taken
in choosing the anatomy to achieve desired input
transformation properties. The next result shows
that even a unimodal response to a unimodal input
cannot be taken for granted.

Proposition 7 (Peak Splitting). Let

Cw,z)=Cexp[—pu ' (w—2)7]



80

~
[{w}

Fig. 8. Negative contrast: An example of curvature detection

and D(w,z)=Dexp[—v ' (w—2)?]. If I(w)=1d(w),
the function x(w) is unimodal if

D(1—uv H+A4171 20, (28)

and is bimodal otherwise.

Condition (28) holds for all I>0 only if v>u;
that is, only if the excitatory coefficients fall off with
distance faster than the inhibitory coefficients. This
condition will therefore always be imposed below
unless otherwise stated.

12. Variable Contrast at Variable Background
Activity Levels

Consider the step input depicted in Fig. 9a.
Superimposed on a baseline activity level H, is a
step of height H, — H, . The response shapes in Fig. 9b
and ¢ are typical if C(w, z) and D(w, z) are Gaussianly
distributed. Two types of parametric studies are of
particular interest: '

A. Difference Scale. Let H,— H, = H = constant
and increase H; from O.

B. Ratio Scale. Let H,/H, =R =constant and
increase H, from O.

Two measures of the response are convenient.

Definition 9. The upper contrast Cy is the ratio
[max, x(v)/x(cc)—1].

Definition 10. The lower contrast C, is the ratio
[1 = min, x{v)/x(—c)].

Parametric studies of the response to a step input
were carried out under the following assumptions:
C(w, z) and D(w, z) are Gaussianly distributed with

T Cw,z)dz= gf Dw,2)dz=1. (29)
We write o o
Ciw,2)=[no?] texp[—cZlw—2"1  (30)
and
D(w,2)=[ra3] *exp[—aZlw—=1. (31

Whenever o,<o0y, (29) implies that C(w,z) and
D(w, =) have the graphs shown in Fig. 10.

Ha— H,

C(w,2) =D(w,z)

X (- ®)

——-— max, x{v)

X {®)

X{-o)

ming x (v} ——— —
{c)

Fig. 9. Step input and steady state responses in a non-recurrent net

Clw,z)

|
|
)
|
|
w z

Fig. 10. Excitatory and inhibitory connection strength dependence
on distance

That is, C{w,w)> D(w,w) and D(w,z) decreases
more slowly than C{w, z) as jw— z| increases. In all
of our computer runs, the values ¢,=0.25 and o,=4
were imposed.

The studies with H, H, ! =constant have the
following interpretation, among others. Suppose that
the network represents an idealized retina being
exposed to a picture of two uniformly shaded con-
tiguous regions. How does the perceived contrast
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Fig. 11. Upper and lower contrast as total intensity of input is
increased

between the two shaded regions change as the intensity
of white light illuminating the entire picture is varied?
This interpretation holds because a fixed fraction of
light is reflected by points in the two regions, inde-
pendent of the total intensity (Cornsweet, 1970).
The studies with H, — H, = constant have a different
interpretation; namely, how easily perceived is a step
of fixed size on a background of variable intensity?

The two types of study yield opposite results. The
function controlling the network response is readily
derived from (27) and (29). It is

B(H, - H))U(z)+ H,
0= g omvarH
where
)]
U(z)= j Clz,w)dw
and -

0
Viz)= [ E(zwdw.

Given H, H[!=1+ @ = constant, we chose four
input contrast levels @ =3, 1,2, and 4, and varied H,
from 0.05 to 2000. For fixed ®, the upper contrast Cy,
and lower contrast C, are monotone increasing
functions of H, which are 0 when H; =0 and which
saturate as H, —oc. For fixed H,, C, and C, are
increasing functions of & (Fig. 11).

In other words, increasing the background il-
lumination can only increase the relative contrast in
response to a step input. Saturation effects at large
background values H, are overcome by the off-
surround. Indeed, letting H, — o0 in (28), we find x{(z)
=[@BU(z)+1]1[@ V(2)+ 117", which is not a uni-
form distribution. Saturation is not entirely in-
operative, however, because for any fixed @, Cy(H,)
< C.(H,) at all positive H, values.
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Fig. 12. Upper and lower contrast as background intensity is
increased

Given H,— H, = ¢ = constant, we chose ¢ be-
tween 0.005 and 5000 and varied H; from 0.05 to
2000. In this situation, for fixed ¢, Cy and C, are both
decreasing functions of H, , except for a small increase
in C, before it decreases rapidly. Hence saturation is
an important effect when a fixed step is placed on
backgrounds of variable intensity. Given fixed ¢,
Cy(H,)< Cp(H,), for all H, >0, which is a secondary
effect of saturation. Also the critical value of H, above
which C, and C, begin to quickly decrease is a
monotone increasing function of ¢, which shows that
a step of greater height is almost equally discriminable
over a broader range than a step of smaller height
(Fig. 12).

13. Variable Contrast and Nonrecurrent Peak
Splitting
Proposition 7 shows that, in a nonrecurrent net-

work, peak splitting can occur in the response to a
spike input if the input intensity is chosen sufficiently
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large. Here we show that a similar phenomenon can
occur in the response to the boundary of a rectangle.
This effect is important as a prelude to studies of
recurrent networks, because peak splitting in a non-
recurrent network is clearly not due to recurrent
disinhibition, but it shares some formal properties
of a disinhibitory mechanism.

Proposition8. Let C{w,z)=C (w—2)=Ci(z~ w)
and D(w, z)= D, (w—z)=D,(z—w), where C,({)> 0
only if |€| < W,, D, (§)>0 only if |¢] < W,, and W< W,.
Let I{(w) be a rectangular input of intensity I. width
IW centered at w=0, and choose W>W,. Then
x(w)=x(0) for Wy— WSwsW—W,, and x{(w)>x(0)
for both W,— W<w<W,—Wand W-W,<w<W
— W.. Moreover, x(W)< x(0) and

sign [—di (W)}

dw

leC(z)dz A + 2_F,D(z)dz
= sign| -2 ! 0 (33)
= SN T 0) D©) '

(Fig. 13). If %(W)>O’ then there are at least two

bumps in the network response at each boundary of
the rectangle. Thus making 41~ small makes double
boundary bumps more likely. Condition (33) strik-
ingly resembles condition (28) for peak splitting in
response to an input spike. Indeed, suppose that
C,(w) and D, (w) vary in an approximately Gaussian
fashion with distance, say C,(w)=Cexp(—u 'w?)
and D, (w)= D exp(— v~ *w?). Then if v > g, (33) readily

d>
shows that d—;(W)<0; the extra bump at the rec-
tangle boundary is hereby eliminated, just as in

condition (28).

14. Recurrent Peak Splitting, Disinhibition,
and Graded STM

The above results show that matched signal
functions are an important means for achieving

0

W-Wp W -W¢ W

Fig. 13. Possible response to rectangular input in a nonrecurrent network

graded patterns in STM whenever n>2. The n>2
case is, of course, typical when the network populations
model feature detectors in a sensory cortical field;
here billions or greater numbers of units are present.
Below we show that distance-dependent interactions
are capable of graded STM even in the unmatched
case when n> 2. The general setting for our studies is
characterized by unlumped recurrent networks of the
form

X = ~Ax;+(B-x) [i fx) Cki+Iij\
) = (34)
- X z g(,\"k) Dy;
k=1
and

yi=—Evi+ ) %K. (3%5)
k=1
In (35), we have generalized the additive interaction
used in (11) to include excitatory signals from popula-
tions other than v;. We have not included an excitatory
shunting term, as in (23), for two main reasons:
firstly, Theorem 5 illustrates its main effect, which is
to partially uniformize a contrast-enhanced pattern;
secondly, we wish to prove that such a term is not
necessary to achieve graded STM given distance-
dependent interactions. Since a shunt becomes ap-
proximately additive at low input intensities, we infer
that graded STM can be achieved both at low and at
high input intensities when the full shunting inter-
action replaces (35). On the other hand, a sum of

n
signals such as Y x.F; is sometimes needed to
k=1
produce a physically plausible transformation of an
input pattern into a pattern of activity in STM. We
have not included an inhibitory term such as

n
—: Y 3Gy in (35) for two main reasons: firstly,
k=1
such a term often tends merely to lump the network,
as we noted at the end of Section 9; secondly, this
term describes a disinhibition effect (i.e., inhibition of
the inhibitory interneurons), amd we wish to prove
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Fig. 14. Recurrent ring anatomy: eleven excitatory cells and eleven
inhibitory cells

that disinhibitory effects can be produced, and can be
eliminated, in the absence of such a term. Moreover,
the fact that our model produces graded STM without
such explicitly disinhibitory terms contrasts with the
reported phenomena in the model of Wilson and
Cowan (1972, 1973).

The signal functions f(w) and g(w) in (34) are
chosen below to have the form

f(w)=g(w)=max(w—H,0), (36)

where H >0. This signal function approximates a
faster-than-linear-approaching-linear signal function
using a threshold cut-off at w= H. The coefficients Cy;,
D,;, and F,; are chosen to decrease at a Gaussian rate
with distance; i.e.,

Cpi=Cexp(—o; 2 k—i?), 37

Dy = Dexp(—o72k—i?), (38)
and .

F,=F exp(-a}zlk— i?). (39)

We also permit 6, =0 or 6,=0. When 6.=0, C;;=0
unless i =j. This is the limiting case of a very narrow
on-center. When ¢,=0, F;;=0 unless i=j. In this
case, an inhibitory population v; can be excited only
by a recurrent excitatory signal from populations
within the on-center of v, or by an excitatory input to
v} itself. The anatomy is chosen to form a ring (Fig. 14).
This anatomy eliminates boundary effects that are
due merely to the finite width of a uniformly distributed
background input.

83

INPUT PARAMETERS

W (WIDTH) = 7
HA{HEIGHT) =15

Fig. 15a—c. Effect of stimulus width and amplitude on steady state
activity pattern

The results describe network responses to one or
more input spikes (>0 at only one v;) of variable
separation and height, to rectangles of variable width
and height, and to triangles. These suggest important
constraints on network design that are needed to
process more complex patterns. We study the
asymptotic pattern of activity when the input pattern
is left on indefinitely, and when the uniform back-
ground activity level is set at various values. We then
shut off the input pattern to study what the asymptotic
pattern of activity is in STM. All the computer studies
reported in Sections 14 and 15 set A=B=E=1 and

hold the parameters C= Y C,;, D= ) D,;, and
k=1

k=1
n
F= ) F, constant whenever o, 0a,, and o, are
k=1

varied. First we describe important aspects of the

results when the input patterns are left on.
Suppose g,=0and 6,=0,>0, but 6, is relatively
small; e.g., Fy, F{3' =0.02. In response to a sustained
rectangular input, one often finds a steady state pattern
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INPUT

Fig. 16. Recurrent disinhibition in network response to step input

that exhibits spurious interior lumps (Fig. 15a). The
number of bumps depends on the width W (Fig. 15b)
and height H (Fig. 15¢) of the rectangle. These bumps
are due to disinhibition. They can be explained as
follows. Populations within the width of the rec-
tangular input receive equal inputs. Populations near
the rectangle boundary v; are less inhibited initially
by signals from other populations than populations
v} near the center. Thus the populations ¢7 inhibit
their neighbors v] more than conversely. When
v} is inhibited, it cannot excite its inhibitory popula-
tion v;. Thus adjacent populations vi towards the
center are inhibited less. They strongly excite their
respective inhibitory populations v, and so on
(Fig. 16).

The extra bumps occur because v; is inactivated
whenever v} is inhibited. One way to correct this is to
let nearby populations v] activate a given t; more
strongly by increasing o,. Then, in response to a
rectangle, the populations v; near the boundary can
excite populations vj closer to the center. Even if vy
is strongly inhibited by v]’, populations r; that are
still closer to the center can receive strong inhibition
from v . The effect of increasing o, and o, corre-
spondingly, is illustrated in Fig.17. The spurious
bumps are indeed removed.

Two questions arise from this example: (1) Does the
effect depend crucially on setting o, =0? (2) Does the
effect occur whenever the ratio o-co—}1 is reduced,
other things equal? The next results answer question
(1) negatively, and show that “yes” is often the answer
to question (2).

In Fig. 18a, the input is a spike, ¢.>0, and the
response to a sustained input has a center peak and
two very large and wide spurious peaks. As o, is
increased, the spurious peaks vanish and the width
of the network pattern contracts. In Fig. 18b, the

INPUT \c=| D=1 F=i 06.=0 ogy=!5
W=6
H=1L5
Xi(m)
o}:O 187
1 1 i 1
!
C=t D=1 F=i o, =0
W=7 9q * ¢
H=15
X (o)
o =10 197
i - 1 1 1
! 7
oy =L5 19
] | 1 L Il
1 7
oy =20 .19

Fig. 17. Increasing &, can eliminate spurious bumps

input is again a spike and o, is increased from 0 while
o is kept constant. When ¢, =0, the network response
is the obvious spike, which broadens as o, increases
and then splits into a trimodal response. Finally,
no asymptotic limits exist. Instead, travelling waves
propagate outward from the spike in opposite direc-
tions. Thus the disinhibition which produces a peak
split in response to the spike can also unstabilize the
network. Compare the remarks on peak splitting and
the puv~! ratio in Proposition 7.

How are rectangles stored in STM? Fig. 19a
shows that, even if the network response to a sustained
rectangle contains spurious bumps, nonetheless, when
the rectangle is shut off, only the peak activities near
its boundary might be stored in STM. Interior peaks
can, however, be stored in STM if they are sufficiently
intense. In Fig. 19b, a centered spike input is super-
imposed on a rectangle. The response in STM records
where the rectangle boundary was, as well as where
the spike was. STM does not necessarily delete the
interior of the rectangle when it is not supplemented
by a spike. That happens in Fig. 19a because 6, =0;
there is no tendency to smooth the excitatory response
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Fig. 18a and b. Increasing ¢, can produce spurious bumps
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Fig. 19a and b. Storage of interior bumps depends on their height

across the rectangle using recurrent excitatory inter-
actions. Figure 20a depicts a case in which ¢,>0,
such that the edges of the rectangle are still enhanced
in STM, but the interior of the rectangle is also stored.
Figure 20b shows, however, that the interior of the
rectangle can be deleted from STM if the intensity of
the rectangle is increased. In other words, increasing
the relative contrast of input to background has
decreased the relative net inhibition received by the
boundary populations as compared with the center

populations. Contrast the nonrecurrent response in
Fig. 13. A similar enhancement can occur when a spike
is increased in intensity, as in Fig.21. As the spike
height increases, the unimodal STM response bi-
furcates to form a bimodal STM response.

In other words, by increasing the relative contrast
of input to background, the trend towards disinhibi-
tion is strengthened, sometimes showing itself as a
suppression of nonmaximal responses, and sometimes
as a peak split. This interpretation is supported by
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Fig. 20a and b. Effect of input intensity on STM of rectangles
Are the extra disinhibitory bumps that are pro-
C= D=1 F=.85 0. =.865 og4=0;=15 . . . .
duced by increasing rectangle intensity always stored
in STM? Figure 22 shows that they are not. This is
analogous to the effect in Fig. 18a.
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Fig. 21. Increasing spike intensity can induce peak splitting

Fig. 22, in which a peak splitting tendency in response
to a rectangle of increasing height is illustrated.
Propositions 7 and 8 showed that peak splitting can
occur even in a nonrecurrent network. Here we see
a peak split due to a recurrent interaction. As in the
nonrecurrent case, the tendency towards a peak
split can be eliminated by increasing the relative
rate with which excitatory interaction strength di-
minishes with distance; cf. decreasing uv™! in (28)
and decreasing 6.07" herein. The recurrent case can
also produce suppression of certain activities in STM,
although this does not occur in the nonrecurrent case.

Increasing the uniform background activity level
can uniformize the response to a rectangle that is
superimposed on it; compare the results in Section 12
on the monotone decrease of Cy, and C; as H, increases
and H, — H, is kept fixed (Fig. 23a). On the other hand,
increasing the tonic input can also produce spurious
bumps when the rectangle is on (Fig. 23b) by activating
populations outside the rectangle and thereby creating
new sources of disinhibition. These spurious bumps
can also be erased when the pattern is stored in STM
(Fig. 23c¢).

Given suitable parameters, the disinhibitory bumps
can be so large that they are stored in STM, whereas
the original pattern is not. This is illustrated in the
response to a spike (Fig. 24a), to a spike superimposed
on a uniform background (Fig. 24b), and to a triangle
(Fig. 24¢). These disinhibitory bumps do not help
to store the input pattern in STM, but they are inter-
esting in themselves as a kind of complementary
afterimage, in which the highest peaks of the input
pattern are suppressed, and the lowest troughs are
enhanced.

15. Conjoint Discrimination by Synergism in STM

Suppose that an animal is confronted by a problem
in which two cues 4 and B together predict a food
reward for pressing a lever, but the cues separately
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Fig. 23a—. Effects of tonic background level

predict a shock for pressing the lever. How does the
animal make the discrimination? Herein we do not
presume to attack this problem frontally, but merely
note an interesting formal analog. Suppose that a
spike input to population v,{vy) corresponds to the
occurrence of cue A(B). Suppose that storage of

activity in STM is necessary for the network to learn
a response to the cue. See Grossberg (19723, b, 1974,
1975) for a relevant theory of reinforcement and
discrimination learning. Let the populations excited
by A or B alone be conditioned to negatively re-
inforcing sites. Can the joint occurrence of 4 and B
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Fig. 25a and b. Synergisms in STM due to subthreshold and suprathreshold spikes

together bring new populations into STM which
can be conditioned to positively reinforcing sites?
The answer is “yes” (Fig. 25a). In Fig. 25a. an input
spike to v, generates in STM the depicted
generalization gradient. The weaker input spike
to vy generates no response in STM. The two
spikes simultaneously produce a gradient whose
peak is between v, and vg. In Fig. 25b, an input spike
to v, or vy separately generates a STM generalization
gradient centered at the respective population. The
gradient produced by both spikes simultaneously
has a maximum between v, and tg, and the location

of the peak response of the synergistic gradient is
not at either v, or vg. Grossberg (1975) develops a
theory of attention in which the incentive motivational
feedback generated by a coupling between the recur-
rent network described herein and formal rein-
forcement mechanisms will tend to enhance the peak
response of the synergistic gradient and to suppress,
or overshadow, submaximal responses. Thus popula-
tions which are activated by v, and vy together, but
not separately, can control network performance to
make the necessary discrimination between approach
and avoidance.



16. The Existence of Stable and Unstable Limit
Cycles in Unlumped Networks

In all of the above results, the unlumped network
lumps itself as t—o0; i.e., limits of network variables
exist globally as t—oc. This is not necessarily true;
periodic solutions can exist, as well as solutions that
approximate periodic solutions as t— +oC or t— — %
(limit cycles). We study these solutions to see whether
they possess useful STM capabilities that differ from

the asymptotically lumped ones. First we examine
system

X; = —Axi+(B_xi)[Zn: f(xk)cki‘*‘li}
k=1

) (40)
- X Z S Dy
and =
yi=—Ey+ ki Xy Fyi (41)
=1

given uniform initial data x;(0)=x>0, y;(0)=y>0,
and uniform inputs =1, subject to the natural

constraints C = Z Cyi» D= Z D,;, and E = Z F;

foralli= 1,2, ...,n Then the solutlon is umform for

all t=0, and (40) and (41) reduces to the two-di-

mensional system
X=-—Ax+(B

-9 [Cf)+I1]-Dxf(y) (42)

and
y=E(x-y).

Equation (43) can be generalized to

(43)

y=—Ey+Fx;

n
ie.to F= Y F, foralli, without altering the discus-
k=1
sion below in any essential way. Thus we study first
the effect of a uniform background intensity I on the
production of periodic phenomena in a uniform
field. The mathematical results below prave the ex-
istence of stable and unstable limit cycles using two
different methods. Then a series of computer studies
in uniform and nonuniform fields will be summarized
and interpreted.

A. Unique Unstable Critical Point

We will first prove that, given suitable parameters,
there exists a unique critical point of systems (42) and
(43), and that this critical point is unstable. Because
the system is 2-dimensional and bounded, this implies
that a limit cycle exists which is stable from within
(Hahn, 1967, p.66). Such a limit cycle is illustrated
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in Fig.27c. Our first result is stated in terms of the
functions

_ BI_(A+Dw
PUwW = e Dyw_BC 4
B B(DI—-AC)
ow=zm— |Et crpwpe) P
and
_A+I+(C+D) f(w)
R{I w)= BC—(C+Dyw (40)

Theorem 6. Let f{(w) be nondecreasing and dif-
ferentiable for 0 £ w £ B. Suppose that there exists an
I>0and an x, 0 £ x < B, such that

A. (Existence).

f(x)=P(,x), (47)
B. (Instability).
f(x)>Q(, %), (48)
and
C. (Uniqueness). Either
I>ACD™! (49)
or
f'(x)<R{,x) for 0<x<BC(C+D)*'. (50)

Then there is a unique critical point P* of system
(42) and (43) for 0L x<B and 0<y=<B, which is
either an unstable node or spiral point. Hence a limit
cycle exists around P* that is stable from within.

Theorem 6 can be used to construct signal functions
that produce limit cycles given prescribed background
activity levels. This procedure is illustrated with the
help of Fig.26. =~ .

In Fig. 26a, values of [ such that 0<I<ACD‘
are considered. For fixed I in this range, P(l,x) is
graphed. It is positive only for BI(A+1)7!
<BC(C + D)™!. Fix an x in this range, and begin the
construction of f by requiring that (47) hold. Given
this choice of I and x, we wish to define f”(x) such that
(48) and (50) hold simultaneously. This can be done if
and only if

R(I,x)>0Q(,x), (51)

where f(x) in R(/, x) satisfies (47). A routine com-
putation shows that (48) and (50) can hold if and
only if

BDx(AC~-DN>E[BC—(C+D)x]*. (52

For any x that satisfies (52), an f{x) defined by (47)
and an f'(x) defined by (48) and (50) will produce a
limit cycle. For fixed I, there exist x values that
satisfy (52) because when x=BC(C+D)™' the in-
equality holds. If inequality (49) holds, then Fig. 26¢
and d show the range in which f(w) and f'(x) can be
chosen to satisfy (47) and (48).
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Fig. 26a—d. Some functions that determine stable limit cycle in
uniformly distributed unlumped network

B. Hopf Bifurcation Theorem

In 1942, Eberhard Hopf wrote a remarkable paper
concerning the existence and stability of periodic
solutions that depend on a system parameter. In
our case, this parameter will be the size of the uniform
background intensity level. Below we briefly describe
the general setting for the Hopf theorem in two
dimensions, and then apply it to our special case,
where it proves the existence of an unstable limit
cycle, as in Fig. 28e.

Let

b=F(v, ) (33)

be a two-dimensional system where F is analytic in
the 2-vector v and the parameter u, v varies in a
domain @ and |yl < C. Thus F (v, p) can be expanded as

F(o,))=L,0)+Q,(v,0)+C,(v,v,0)+ -, (54)

where the successive terms are multilinear forms in v of
successively higher degree. Suppose that for u=0,
there exists a stationary solution v*(0) of system
(53). If moreover, none of the eigenvalues 4(y) of the
linearized system

L,(a)=‘a (53)

equals 0 when p=0, then there exists a unique sta-
tionary solution v*(u) in a suitable neighborhood of
v*(0) for all sufficiently small y, and v*(y) is analytic
in u at p=0. Hopf also assumes that for u=0, A(0) is
pure imaginary (i.e., the system has a center), but that

the continuous extension A(y) of this eigenvalue
satisfies

di
Re|——(0)| #0.

e [ i ( )] + (56)
Under this condition, he proves the existence of a
family of real nonconstant periodic solutions v = v(t, &),
for all sufficiently small ¢ by writing v =¢w in (54) to
find

% = L, (w)+£0,(w, W)+ 6> C,(w, w, W) + -

and also expanding u = p(¢) and 1 =t (€) in power series
with variable e. Hopf also presents a method for
testing the stability of these periodic solutions.
Theorem 7. Given system (42) and (43) with initial
data 0<x(0)<B and 0Zy(0), suppose that there
exists an x and an intensity I such that
A. (Critical Point).

fx)=P(,x), (47)
B. (Zero Trace).

f'x=0,x), (57)
C. (Positive Determinant).

xf(x)>ED™! (58)

and (56) hold. Theh' the conclusions of the Hopf
theorem are true.

Corollary 3. Consider the system
x=—=x+{1 =x)[20 max(x —04,0)+I]

(59)
—33.3x max(y—04,0)

and

y=x-y. (60)

For I* = 2.43 and x* = y* =0.5032, all the conditions
of Theorem 7 hold. Therefore there exists a family of
periodic solutions for I near I*. Moreover these
solutions are unstable.

17. Oscillation Thresholds, Hysteresis, and Frequency
Dependence on Background Intensity

Parametric studies of network response to a
uniform background input intensity have been carried
out, and illustrate both Theorems 6 and 7. A typical
result is described below for the system (59) and (60).
A similar series of network responses occurred as [
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Fig. 27a—¢. An observed sequence of phase portraits as tonic input [
is increased

was parametrically increased given various other
choices of network parameters. This series is sum-
marized in Fig. 27.

When I =0, the system is globally asymptotically
stable; ie., x(o0)=y(ec)=0 for all initial data
(Fig. 27a). As I increases, the unique stable critical
point migrate from the origin into the first quadrant
(Fig. 27b). At a critical value of I=1,, a stable limit
cycle emerges, surrounding an unstable critical point
(Fig. 27¢c). As I increases further, the stable limit
cycle migrated upward and contracts, always enclosing
an unstable critical point (Fig. 27d). Ata second critical
value of I=1,, an unstable limit cycle emerges
within the stable limit cycle, and the unstable critical
point becomes stable (Fig. 27e). As I increases further,
finally at a third critical value of I =I5, the stable and
unstable limit cycles “collide” and vanish, leaving
only a unique stable limit point. Thus at both low
and high input intensities, no periodic phenomena
exist; at intermediate intensities, either the motion
always approaches a periodic solution, or it can be
asymptotically stable or periodic, depending on the
initial data. Thus the two values I, and I3 are lower
and upper thresholds for generating a periodic
response. Between these critical values, the frequency
of oscillation of the stable limit cycle varies unimodally
with I, increasing for I < I, and decreasing for I >1I,.

The frequency of oscillation also varies with the
choice of numerical parameters. Figure 28 describes
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Fig. 28a—e. Dependence of limit cycle period on decay parameters

a series in which varying the decay rate of x(t) and/or
of y(t) by a factor ~ 3 also varies the period of response
by a factor ~3. It is possible to generate periods
which are even 20 times as large as the excitatory
decay rate. The oscillations can therefore be thought
of as “slow” compared to the time scale of the recurrent
on-center off-surround interaction.

Hysteresis is possible in this system because of the
existence of the unstable limit cycle. For example, if
I, <I<I, and the system starts on the stable limit
cycle #(1), then as [ is slowly increased, it remains
close to Z(I), even after the unstable limit cycle is
produced. Finally, for I > I;, the system is attracted
to the unique stable critical point. It it starts at this
point and I is slowly decreased, then it cannot escape
from the region bounded by the unstable limit cycle
until the cycle vanishes when I <I,. Hysteresis has
also been found in a system of this type when two
nonzero stable critical points exist, even though no
limit cycles were observed for any input value in this
case. A phenomenon similar to this latter case was
reported by Wilson and Cowan (1972) in their model.

18. Nonexistence of Order-Preserving Limit
Cycles in STM

We studied systems (40) and (41) with nonuniform
initial data, Gaussian distribution of coefficients, and
f{w)=max(w—G,0), G>0, to test whether limit
cycles can encode patterned activity in STM. We were
especially interested in order-preserving periodic phe-
nomena, namely oscillations which preserve an ac-
tivity index of the relative importance of each popula-
tion through time (Fig. 29).
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Extensive parameter searches failed to reveal a
single example of this phenomenon. A summary of
what was found is given below.

It was possible to find a periodic response that is
order-preserving if the input pattern (e.g., spike or
rectangle) is left on, but whenever this happened, the
reverberation decayed to zero when the pattern was
turned off. The parameters that produced this response
were close to parameters that produced an order-
preserving asymptotic steady state, as in Fig.20a.

Either a decrease in o, keeping Y C=C fixed.
k=1

n
an increase in o, keeping Y D,;=D fixed, or an
k=1
n
increase in o, keeping Y. F;=F fixed, could change
k=1

the limit cycle into an asymptotic steady state. This
confirms the idea that a decrease in c.o;' stabilizes
the network. Periodic phenomena also exist while the
input pattern is left on, such that the order reverses
itself at various phases of the period. Here too the
reverberation died when the input was shut off.
Finally, there exist persistent reverberations in STM
which are not order preserving. In these cases, a
uniform background activity level was left on, but
the initial data was chosen nonuniformly. Persistent
travelling waves were generated, and their form
depended on the initial data. Waves travel in one
direction in response to a right triangle of initial data.
Waves travel outward in both directions in response
to an isoceles triangle of initial data. These reverbera-
tions indeed “remember” their initial data, in the
sense that they generate different wave structures.
But it is hard to see how they could possibly retrieve
the initial pattern during performance. It is also
hard to see how they could sustain any clear index of
initial pattern if the pattern were chosen in a more
complicated way. In no case could we generate a

persistent STM reverberation unless background
activity level was positive.

19. A Spatial STM Code

The above results for lumped and unlumped
networks show that a spatial code for STM rever-
beration has remarkable richness and flexibility,
especially when nonspecific inputs (e.g., “arousal”)
can modify such processes as contrast control and
attention using shunting interactions. The results
also argue against using slow periodic phenomena,
such as the limit cycle behavior in Theorems 6 and 7,
or the computer runs of Section 18, for STM storage, as
opposed to the fast reverberations which define our
spatial code. Slow periodic phenomena are mot,
however, atypical in the nervous system, for example
the various waves, such as the alpha wave and thalamo-
cortical reverberations (Anderson and Eccles, 1962),
and these waves are usually most evident when the
system is not being driven by external inputs. The
present results argue against these slow periodic
waves as mechanisms for the actual carrying of
patterns that are being stored in STM, even though
slow periodic waves can carry a pattern in response
to sustained inputs. The results do not, however,
prevent slow periodic phenomena from acting as
shunts that continually retune the structures that
are capable of STM storage. For, if recurrent networks
can maintain a STM response in the absence of
inputs, then there must exist mechanisms capable of
terminating the reverberation quickly when new
input data arrives. Once again we must make the
distinction between the specific cues that are being
processed and the nonspecific mechanisms that sustain,
transform, or suppress them.

Appendix 1
Proof of Mathematical Results

Theorem I. First note that BC £ A implies x(x)=0 because
(9) implies x; < — C x?. Hence assume BC > A4 below. Rewrite (9) as

:'c,-=x,{BC-A-—Dx+(D—C)x,-]. (A1)

By (A1), there exists a fixed ordering of x;’s for all t 2 0. which can
be written as

(A.2)

without loss of generality. Also the functions R,v]=logx,-xj“
satisfy

Ry=(D-C)x,;. (A3)

where x;; = x;— x;. Since the sign of x;; is constant by (A2). R;; is
monotonic, and therefore limits R;;(=x), possibly infinite, exist.



The case D= C was treated in Grossberg (1973). Suppose D = C.
If |R;;(=c) < =0, then since R;; is bounded, R;(0)=0. By (A3),
x;;{0)=0.

Let D> C and x,(0) > x;(0). [1f all x;(0) = x,,(0), then the limiting
distribution is uniform.] Then by (A 3), R,,; is positive and monotone
increasing. Suppose that R, ()< . A contradiction is derived
as foliows. Write R,;(xc) = log(l +r) with 0 <r; < x. Rewrite

lim {x,x; ' —expR;;(xc)]1=0

as

lim Jni ri.

—x Xj
The limit x,;(%¢)=0 because |R,;(x)| < . Consequently x;(0)=0
as well. Again use the equation x,;(c0)=0 to conclude that x,(=c)
= 0, and thus that x{oc) = 0. The equation x,,;(20)=0 holds for any i
such that x,(0)> x;(0). For any i such that x,(0)=x;(0), x,=x;.
Consequently (A1) can be rewritten with i=n as

X, = x,[U—-V,x,+0(1)], (A4)

where U=BC ~ 4 and V,=C +(n—1) D. Proceeding in the usual
way, let z=x; ! and obtain the linear equation

I+ Wz=V,, (A5)

where W= U +0(1). Integrate this equation and show that z(z¢)
= U V! Consequently x,(xc)=V,U™! >0, which contradicts x(x)
=0. In other words. BC > 4 and D> C implies that R,;(c)==C
whenever x,(0)> x;(0). But then x;(xc)=0 for any such index i.
Supposing that there are m indices i such that x,(0)=x;(0), | Sm <n.
this shows that {A4) holds with n replaced by m. The limiting
distribution is therefore 0—{ or locally uniform depending on
whetherm=torl<m<n

Let D < C and x;(0) > x;(0). By (A3), R;; decreases to R; () 2 0.
In particular. |R;;(>c)| <20 and thus x;;(c)=0. Indeed x;;(c)=0
for all i and j. Again (A4) holds. and shows that x,(sxc)=V,U™".
Since all x,,(c)=0, the limiting distribution is uniform.

Proposition 1. Setting §;=0 in (11) shows that y;=x;. Setting
% =0 in (10), substituting y,=x;, and rearranging terms yields
x,[BC —4—x]=0. Unless all x;=0, x=BC — A. This proves (12)
and (13).

We now prove local asymptotic stability of the critical points
when n=2. First climinate y, by using the fact (see Theorem 2)
that

logx, x;' + CE™'(y; — y,) = §;, = constant .

Let (xF. x¥, y¥, y¥) be a critical point with a fixed value of §,,.
Define the variables 1, =logx, (x¥)™}, 1, =logx,(x3)”!, and 1,
=y, —1¥. Steady state is characterized by 7, =1, =13=0. In-
troduce the notation U=BC — A4, and find that the variables t;
satisfy the equations

t,=U—Cx¥er—Clty + %)
t,=U—-Cx}e?—Cl1;+y3)

— E[S;;+ 1y —1 +logx3(x1)7']
and
ty=E(x} e —1,—y3%).

Use the identities
U-Cxf-Cy3=0,
U-Cx3-Cyf=0,

x3-y1=0,
and
logx¥(x¥)"' + CE ' (x} —x3) =5,
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to rewrite these equations as
t, =Cxf(l —e)-C,,
t,=Cx{(1 —e)-C,,— Eltr, —1y)
and
ty=E[x¥(e?~1)—1,].

To study the behavior of this system near 7, =1,=1;=0, we
compute its Jacobian matrix and find

—Cxt 0 -C
E —Cx*-E -CJ.
0 Ext —E

The characteristic polynomial corresponding to this matrix is
Poid+ il +patpy=0,

where py =1,

p = C(xF+x3)+2E,

Py = CAIxtxt +2CE(xt +x%)+ E2,
and

py=2C Extxt+ CE (x}+x3).
To show that all eigenvalues have negative real parts, we check
whether the Routh Hurwitz criteria (Gantmacher, 1959, p. 226) are
satisfied. These conditions are py >0, p, p, > p5, and p; > 0. Only
the second inequality requires checking, and it reduces to the
obvious inequality

2CE(x¥+ x5+ C2x¥xf+ E2>0.

Theorem 2. We first show that the functions

S;;=logx;xj'+DE ' y;; (A6)
obey the equations .
S;;=(D—-C)x;;. (AT)
Write (10) as
X;=x;[BC—A-Dy+Dy;~Cx] (A8)
using the notation y = Z,y,. From (A8) follows
Ri}=—cxij+D)’ajv (A9)
where again we define R;;=logx;xj'. By (11),
Vij=Ex;;—Ey;j. (A10)

Equations (A 9) and (A (0) together yield (A 7). These equations also
show that if inequality

x;5(t) y; ()20

holds for some t = T, then it holds forall t 2 T.

If D= C, (A7) says that S;; is constant. If limits exist, then the
boundedness of J; shows j;(oc)=0, and thus by (11) that ¥(x)
= X,{=). Similarly, the boundedness of X; shows X;(cc}=0, and
thus by (A8) that y(c0) = x(20)=B—-AC™".

Rewrite (A 6) in the form

(A11)

S;;=log X, X;* +DE ' y(Y,~Y). (A12)

Since §;;(0) = S;;(cc),

log X; X' (0)+ DE™! y(0) [¥;(0) - Y;(0)] A13)

= log X,»Xj“(oc>)+(B—AC")DE‘1 [X;(c0)— X;(0)] .
Always suppose that X;(0) > X;(0) for definiteness.

If the initial y, pattern is uniform, then
log X; X;*(0
og X; X' (0) (A1d)

= log X; X;}(o0) + (B— AC™Y) DE™' [X,(0) — X;(0)].
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Since x;;(0) y;; (0= 0, X;(20) = X;(o0). Thus
log X; X; ! (0)> log XX Hx),

which shows that uniformization has occurred. The amount of
uniformization varies inversely with E.

Let initial anti-order occur with §;;>0 and x;{0)>0. Since
V()= Xi().

logXin_‘(0)>IogX,-Xj“(ac)
+(B—AC“)DE“[Xi(ec)—Xj(:c)]>0
and thus log Xin“‘(O)>logX,4Xj“(3:)>04 Hence the y,;; order

reverses itself and the excitatory pattern is uniformized. If initial
anti-order occurs with S;;<0 and x;;(0}>0, the same argument
shows that the x;; order reverses itself. If S;;(0)=0. the equations
Yi(=) = X;(¢) along with (A 12) shows that the limiting pattern is
uniform.

Let n = 2 and suppose that initial iso-pattern exists. By (A 12)and

the constancy of Sy,

log X,(0) [1 — X, (0] + 2D E™' y(0) [X,(O) -1 (A15)
= log X; () [1 — X ()] +2(B- ACY)DE ' [X(:c)— 3]
Equation (A 15) can be rewritten as

IDE[S(X,(0)— 3 +(B—ACTHX0) = X, ()]

o {xl(ocm —xl(on}
MCATITEE AT,

(A 16)

Thus contrast enhancement occurs if $>0 and uninformization
oceurs if S <0. as arguing by contradiction shows.

Theorem 3. Again it is easily seen that BC < A implies x()=0
because (10) implies ;S — Cx2. If BC> A, then the origin in
In-dimensional (X, Xz, ---5 Xp V12 Y25 o000 y,) space is a saddle point.
since the linearization of (10) and (11) has the form w = L, where

- _ ((BC— Al 0 ) .
M) ,andL—-( El _EI with
I the n x n identity matrix. Thus the eigenvalues are BC — 4 (n times)
and — E (n times). The system cannot approach zero just so long as
x(0)>0. Assume BC > A below.

Equations (A7), (A9), and (A10) still hold. They imply again
that if inequality (A11) is true at r= T, then it is also true for all
¢ = T. In particular x;; changes sign at most once, and an ordering
EX, S S, is established for all large t. Inequality (A 11) also
shows that either of two cases hold:

A. x;;y;;<0for all large t, or

B. x;;¥:;;20 for all large t.

Since we are interested only in limiting distributions. we will
below consider our system only after either case (A)or (B)is entered.
Since the system is autonomous, we can assume without loss of
generality that x; ;20 forall t20.

Suppose D+ C and let case (A) hold. For definiteness. let
x; 202y for all t = 0. By (A9) and (A10), Ri,§0§yij forallt20.
Consequently limits R;;(x) and y;;(=c) exist such that

W=(élyézw--~§m Nis M2 et

yij(())éyij(x)éoéRij(:o)ékij(O)' (A17)
Since j;; is bounded, y;;(0)=0. Equation (A10) is a sum of two
nonnegative terms. Thus x;;{00)= yij(ec)=0. ‘

Suppose D+ C and note by (A7) that S;; is monotonic for all
large t, SO "Sij(oo) exists but is possibly .inﬁnite. If 1S;;(c0)f <.
then since S;; is bounded, it follows that §; j(0)=0. By (A7), also
x;;(0)=0, and then (A 10) shows that _v,-,-(ac)=0.

In particular, suppose that D<C and let case (B) hold. 1If
x;;20 for ail large ¢, then (A7) shows that S;; decreases 10 a limit

5;(0)z0. In particular, 1S; (e <%, s0 that xi,-(w)=y,-,-(ff,)=0.
Pasting together the results for cases (A) and (B), it follows that
whenever D <C, all xij(oo)=y,.j(oo)=0 no matter how the initial

data is chosen. Can we conclude that X;{cc)= Y(-(cc)=l7 from

this information? Suppose S;;(0)>0 and x;;Z 0. Then (A7) shows
that S;; decreases to S;j(). From x;; >0 and y;;{o0)= 0 follows that
logx;xj* decreases to Sitx)z0. If Si(0)>0, write §;;(x)
=log(l +r;)withO<r; <, and conclude that lim x;;xj ' =r;;>0.
Since xi}-(ac)=0,x~(x)=0. B

But all x,”»(oc)=0. hence all x,(cc)=0, which contradicts
the persistence of the reverberation. Consequently logX; X
decreases to S;;(xc)=0, and thus XX o)=L If S;;(0)<0 and
x;;20, then again S;;()Z0 because ¥;;(20)=0. Consequently.
fD<C, X Xj‘1 (ec) =1 for all i and j. The limiting distribution is
consequently uniform.

Suppose D> C. If initial iso-order exists in the pair (i) with
5;;(0)>0, then §;; increases to S;j(w)s=. If S;;{ec) <20, then as
above we can show that x;;(c)= y;;{c0)=0. But then

log x;x; }(20) = S;(¢) >0, (A 18)

which along with x;;(0)=0 shows that x;(oc)=x;{oc)=0. Thus
if the reverberation is persistent and initial iso-order exists in all
pairs, then S,,;(0) = whenever S,,;(0)> 0. The equation §,;(¢)= %
implies that x,x; ' (o0)=c0. In summary, either x, = X; 0T X,x; ' ()

= w. The ratio X, = 1+ ¥ %" -1 therefore converges to m™ ",

i*n
where m is the number of i such timt x; = x,.

Suppose again that D> C. but that anti-order exists in the pair
{i. j) at large times with x;; 2 0.1f S;;> 0 at such times. then the above
argument can be repeated to show that either x,-xj“(f,)=:f. or
that x;(20)=x;(xc}=0. If §;;<0, then S;; increases 0 Sl %,
If S;;(xc)=00, then as above. we can show that x;xj'{x)=%.
If S;;(w)<x, then again x,»j(oo)=_v,~j(oo)=0, so that inequality
x;20 implies S; (x)20. If o> Sij(oo)>0, we can argue as above
to conclude that x; ()= xj(m)=0. The case S,-j(w)=0 remains,
and here x;xj'(x)=1 and xi,-(ao)=yi,-(oc)=0 despite the pos-
sibility that x;;{0)> 1.

Theorem 4. The method is a direct generalization of the method
used to prove Theorem 3. The equations that generalize (A7), (A9
and (A 10) use the old definitions R;; = log xixj"‘, Vii=Yi— Vi and
the modified definition

S;i=Rij+ Ky (A 19)

Note that Theorem 4 reduces to Theorem 3 in the linear signal
function case if K=DE™". These functions obey the equations

(A 20)
RU=(Bx:‘—1)fu»-4Bx;‘-1>fup+g(n»-gu»,(Azn

$;=U) = UG+ V)=V,

and

j'ij=—Ey',-j+lt(xi)—h(xj). (A22)

From (A21) and (A22), it is clear that if (A11) holds at some time
t = T, then it holds for all t = T. Again cases (A)and (B) in the proof
of Theorem 3 are exhaustive. The remainder of the proof imitates
the proof of Theorem 3, using such facts as x; ;U= Ux)lz0
and y,»j[V(y,-)—V(yj)]gO, In Case (A), y;; is again monotonic,
hence y;;(o0) exists, and since it and y;; are bounded, J; j(30)=0,
from which it follows that yij{0) = 0 and that h(x;)—h(x)—0 as
t— 0. Since h(w) is strictly monotonic, X; J-(oo)=0. Now we can
complete the arguments for this case as in proof of Theorem 3.

In case (B), (A22) shows that S;; is monotqnic at large times,
and hence S;;(=) exists. If 1S; (o)l <0, then Sij(oo)=0 as usual,
and
lim [U(x)— Ux)] = lim [V (y)— V{y)]=0.

—~x



If U(w) is strictly monotonic, then x;;(cc) =0, which by integration
of (A22) shows that y;;(cc)=0. If V(w) is strictly monotonic, then
vi;{00)=0. Again integration of (A22) shows that x;;(0)=0. To
see this, write (A22) as

[ hij(v) €5 dv
0

yl’j“)=)’i,‘(0)€_m+"‘——e£,—‘_»

(A23)

with f;;=h(x;)—h(x;. Suppose x;;+0 as t—=. Then h;;+0
as t—c0. Given that case (B) holds, we can let x;;=0, and thus

h;; 20, without loss of generality. By (17), x;; is bounded. Thus

there exist positive 8 and ¢ such that b ()2 eifte [ [t — 6, t+9]
k=1

for suitable 1, <t, < --- <, —o0. Consequently | h;;(v) &** dv= 0.

o
0

Analysis of (A13) as t-»cc therefore requires L'Hospital’s rule,
from which we find that h;;(o0)=y;;(0c)=0, or that x;;(e0)=0.
The remainder of the proof requires that we separately analyse the
cases |{S;;(o0)/ = and |S;;{c0)} < 0. This can be done just as in
Theorem 3.

Proposition 2. Compute equations for %;; and j;;. Show that
if x;;(t)=0 then x;;(1) y;;(£) =0, and that if y;;(6)=0 then y;;(t) x;;()
=0.

Theorem 5. A routine computation shows that if n=2,

Ri,=12, (A24)
and
== (E4+Cx)z, +CHxq,. (A25)

where x=x, + x,. If H=0. (A24) can be integrated to yield

zlz(t)=212(0)exp(—-Et—ijxdv). (A26)
0

Equations (A 24) and (A 26) show that R, , is monotonic. If z,,(0) = 0,
they show that R,, =0, or that X; and X, are constant. If x,,(0)
+2,,(0)20 with z,,(0)>0, they show that X, X;' is strictly in-
creasing. However by (A 26),

Ru(t)ézu(o)e_m’ (A27)
so that R,,(c0)<20, and the contrast enhancement is partial.
If x,5(0) 2, (0) 2 0 with z;,(0) <0, then (A24) and (A 26) show that
R, ;< 0, so that the pattern is uniformized. It is also uniformized if
x,2(0) 2, (0) <0, since then x,,(t) Ry,(¢)<0 forall t20.

If n> 2, then at equilibrium, F (x;(c0)) = F(x;(c0)) for all i and j
such that x;(c0)x;(c0)>0, where Fw)y=w[1-DF(E+ Cwy 1]
is a strictly increasing function.

Proposition 3. Using C(w, z) = Cd(w — z), we find that

(W)= BCI{w)

= (A28)

A+ CI{w)+ f H{z) Dy (z—w)dz
Since the input is even, X = x(0). Defining P(w)= N(w) M “1T(w),
we note that

A+CIO+ | 1@ D) d:
Pw)= —=
A+CIwy+ | Iw=—2)Dy(z)dz

=

(A29)
Since D, (z) and I(z) are even functions, it suffices to show that
Pw)z 1 if I'(w) £0 for w= 0. Define

ow = | D) {I(2)—I(w—2)]dz. (A30)
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Since 1(0)2 I(w), (A29) shows that if suffices to prove that Q{w)20.
Obviously Q{0)=0. The proof will be completed by showing that
z=0is a global minimum of Q(z). We therefore compute

Qw=~ [ D I'(w=-2)dz

o

= | D(w—2)r(z)dz,

-m

where r(w)= — I'(w). Since I(w) is even, r(w) = —r(—w), and thus

Qw = [ Sw2)r(z)dz, (A31)
0
where S(w,z)=D,(w—2)— D;(w+2z). By the evenness of D, (&),
Q'(0)=0. Furthermore, since D,{¢) is monotone decreasing,
S(w,2)20 if w=0. Likewise S(w,2)<0 if w<0. (A31) therefore
shows that w=0 is a global minimum of Q, and hence P21 for
all w.
Proposition 4. In this case, we define P= NM ™!, a=AI",

F(w)= C(w)exp(—Jw?), (A32)
x+ T E,(z)exp(~Jz*)dz
P(w)= —= , (A3
a+ E (z)exp[—J(w—2z)*]d:
and *
[ F(2)exp(2Jwz)dz
Py(w) = —=— (A34)
{ F(2)d:z
so that we can write ?
P(w) = P, (w) Py(w). “(A35)

We will prove that P21 by separately proving that P, 21 and
Pzt
First we study the function

pi(w) =sign[P (w}— 1],

where
1 if &€>0
sign(§)=4 0 if £=0
-1 if ¢<0.
Clearly
pi(w) =signr, (W),
where

@©

nw= | E (e~ dz.
Noting that r,(0)=0, it suffices to show that r;(w) has a global
minimum at w=0 to prove that P, = 0. Compute

riwy=2J § Ey(z9)(w—2) e dtw=2R 4o

-

Changing variables and using the evenness of the Gaussian, we
define )

T(w,2)=E(w—2)~E(w+2)

to conveniently write
riw)=2J | zT(w,2)e" ¥ dz. (A36)
[}

An argument similar to the one used on (A 31) proves our assertion.
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To study P,, we define

py(w) = sign [P, () 1].
Clearly
py(w)=signr;(w).
where

rywy= [ F(2) (e’ —1)dz.

Again r,(0y=0, and to show that r,(w) has an absolute minimum
at w=0 we compute

rywy=2J | zF(2) (e2I%F— e 2wz,
0

from which the proof is readily completed.
Proposition 5. In this case, we define

A+ ]? I(z)E (z)dz

Pi(w)= — (A37)
A+ | Iw=2E\(2)dz
and xw
171 (w) | Iw=2)Cl2)dz
Py(w) = e (A38)

1710 | 1(2)Cl2)dz
in order to write
P(w) = P, (w) P,(w).

It is possible to prove that P, Z 1 in the manner of Proposition 3.
We will show, however, that P, <1 for I{w) chosen as stated in the
Proposition. By choosing parameter A sufficiently large, we can
therefore force P, (w,) so close to 1 that P{w,) <1 for some value wq
of w.

First we expand I(z) in Taylor's series about =0 and z=w
in (A38). Since I(z) and C, () are even, all odd derivatives of I(z)

W

vanish in this expansion. Letting C = [ C(z)dz, what remains is
-w

€L I(Zk)(w) W

C+I1"Yw | $#*C(2)d:
0 I i 4,7

L I(Zk)(w)

C+1"'0) ¥
k=1

Py(w)=

(A39)

w
2k -
T

w
Assume I(w)=U—Vw? for jwj<W. Letting M = { 2 C2)dz,
we find -W
C—-VMU- Vw?)!

Pw) =~y <

Fixing a w=w, with [wol < W, we can therefore increase parameter
A in (A38) until P(wg) <1.
Proposition 6. Computing x'(w) from (A 28) we find that

sign x'(w) = signr{w),
where

rim=rw) |4+ | Iiw+2)D(2)d:

— I(w) }c I'(w+z)D(2)dz.

-0

Let w=0. Using I'(0)=0, I'(z)>0 for z40, and D;{0)>0, we
conclude that

r0)=—100) | I'(2)D(0dz<0

and finally that X' () <0.

Proposition 7. From (27) with I(w) = 13(w), we find

BC(w)

x(w) = o+ C(w)+ D(w)

where 2 = AI"!. Consequently
sign v’ (w) = sign {C"(w)[x + D ()]~ C(w) D' (w)} .
Given Gaussian coefficients. x'(0)=0 and
signx"(w) =sign[D(w)(pv™' =) —AI"'].

Consequently x"(0)<0 if and oaly if (28) holds: otherwise there must
be at least two peaks in the graph of x(w) because lim x(w)=0.

w1t x

There are no more than two peaks because the function D(w)
(v —1)— AI7" is strictly monotone decreasing for w2 0. and
thus at most one critical point w such that x'(w)=0 can exist for
w=0.

Proposition 8. From (27) follows that

w+ W

B j C(2ydz

w—

w+W N
1+ | Ej(2d:

w— W

x(w) =

(A 40)

where x = 417!, Define y(w) = x(w) x™ ' (0).

w
v+ | E(2)dz
-
T wsw
x+ | E(9d:

w—W

¥ lw) = (Ad1)

and
w‘-‘W

§ Cy(2)dz
(A42)

in order to be able to write

y(wy =y (W) y2(w). (A43)

For W,— W< w< W~ W, both y,(w) and y,(w) equal 1, since no

boundary effects appear in any of the integrals. Hence x{w)=x(0)

in this region. For either W,— W<w<W,-W or W~ W, <w

< W — W, y,(w)=1 for the same reason, whereas y, (w) > 0 because

the shifted integral in the denominator of (A41) does not include

part of the inhibitory interactions. Thus x(w)> x{0) in this region.
To evaluate y(W) = y, (W) y, (W), note that

w
2+2§ E{(2)dz
0

(W)= IW — <2,

2+ | E(z)d:z
0
and

w
{ G2 dz

yalw) = —— =1.
j’ C,(z)dz
-W

Thus x(W) < x(0). To evaluate x'(W), define

w+ W

Ux)= | C2dz,
woWw

and
w+ W

Viwy= [ D(a)d:.
w—W



Then by (A 40),
sign X' (w) = sign {U" (W) [z + V()] = U(w) V' (W)},
where whenever w20,

Uw)=Ciw+W)=Ciiw—W)=~C{w-W)
and
V'(wy=D;(w+ W)=Dy(w—W)=— D, (w—-W).

Thus setting w= ¥,
sign x'(w) = sign {D, (0) V' (W) — C (O [« + V(W)]},

from which (33) readily follows.

Theorem 6. The existence of a critical point is an obvious con-
sequence of (47). Uniqueness is established as follows. Either f(w)
has a positive threshold F or not. If it does, and a critical point
x =y < F exists, then by (42) it is clearly unique since f(x)=0.If a
critical point satisfies x =y > F, or there is no threshold, then we
can define ®(x) = x and

d)(x):f_l{—Ax%—(B—x)[Cf(x)+I]}

Dx

and study the values of x for which @ (x) = ¢(x). To prove uniqueness,
it suffices to show that

d¢

F(x)<1 whenever O(x) = ¢(x). (A44)
That this proves uniqueness is seen by defining g(x) = ¢(x)— O (x),
and supposing that there exist two consecutive critical points x,
and x, that satisfy (A44). Then g(x,)=g(x,) =0 whereas g'(x;) <0,
i=1,2. This contradicts the continuity of g(x) for x, £x<x,. To
prove (A 44), we note that

sign

49 (x)—1

X

=sign{[BC—(C+D)x] f(x)=[A+I+(C+D) f(x)]}

whenever @(x)= ¢(x). Condition (50) therefore implies (A44).
If (49) holds, then also all critical points satisfy x> BC(C + Dy L,
and again (A 44) is proved.

To study the stability of the unique critical point. we first rule
out the possibility of a saddle point. This can be done by noting that
the direction field of the system (42) and (43) on the Jordan curve
defined by

{x=0,08y<B}u{y=0,0sx<Blu{x=B,0=y< B}
u{y=B0=xs 8B}
always points inward. The Index Theorem states that in this case,
the index of the curve is — 1, but the index of a saddle point is + 1
(Coddington and Levinson, 1955). Hence the critical point is 2 node

or a spiral point. It therefore suffices to show that the trace G— E
of the linearized system

=G _e)G) s

of (42) and (43) is positive, wherev
G=B-x)Cf(x)—(C+D) f(x)—A-1I. (A46)
H=-Dxf'(x), (A47)

and (x, x)7 is the unique critical point. But G > E follows immediately
from (48) with f(x) defined by (47).

Theorem 7. The proof of Theorem 6 shows that conditions
(47), (37). and (58) have the meaning indicated in (A). (B). and (C)
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alongside their statement, where the trace and determinant corre-
spond to the linearized system (A 45).

In particular, (57) and (58) guarantee the existence of a pair
of conjugate imaginary eigenvalues for the linearized system (A 45).
This information. along with (36) in the 2-dimensional case, implies
that the Hopf theorem holds.

Corollary 3. The values of I* and x* satisfy (47), (57), and (58).
To show that (56) holds, we compute that near I*,

Re /(1) =39.3328 — 73.332x—1
where

X=

25,208 — 6251 — ]/390. 6251% +51,821,2501 — 31,206, 736
66. 665 ’

From this it can be shown that

di
Re — (I*}<0.
¢ dI ™y

Instability is proved using a procedure described by Hopf. This
procedure is summarized below.
Let a be an eigenvector of ~(0) in (55). Define a vector e that
satisfies i
o= ————=——. A48
AT 1o (A49)
Solve the linearized system derived from (53) and (54), namely
Up=Lo(Up). Upg0)-e=0, Uy(0)-e=1. (A 49)
Solve the linear inhomogeneous system

Up=Lo(U)+ Qo(Up. Up),  Uy(0)-e= Ul (0)-e=0. (A50)

Solve the adjoint system
X . To. . oL To
Vo==I%5(V), | Up-Vodr=0. [ U, -Vodr=1, (A51)
0 [

where T, =2r|~(0)|”". Given this information. we compute the
value

To
R= |V, [_2Q0(U0, Uy + Colug, Uy, Up)] dt. (A52)
o - Rl E

If R>0 the periodic solution is unstable, whereas if R<0 the
periodic solution is stable. Moreover, the equation

p2 Re(#(0) = — R (AS3)

holds, where u, is defined by the expansion u(e)= Y pe*. If
k=0

1, >0(<0), then the periodic solutions exist only if u>0(<0).
In the present case, the following equations show that R>0
and thus that g, >0:

x* =0.5032.
A=Ay =1)/3x* f1(x¥)— 1= 39720,

Uy = (cosit+ 4" tsinit, A7  sinig)”,

U, =—-0.741 — 2.636sinit —0.9834 cos it — 1.198 sin 24t
+1.725¢c0824t —0.741 — 0.390 sin it + 0.5656 cos At
+0.195sin241+0.1754 cos24t,

and

(A A A\
Vo = |=—cosit, — [Asinit—cosit]]| .
2n 2n
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Then to compute R. we need the equations
Qolm. n)=(=20(m n, +2(m, ny +mym P.0),

for any vectors m={(m,.m,) and n={n;, n,). and C, = 0. Therefore.
letting Q¢ =(Qq,. Q). we find
Qo (L. U))=1(A, cosst+ 4,y sinzt + A5 sinircosit

+ A, costir+ 4 cositsin2it+ 4, cositcosdit

+ d-sin? 04+ Agcositsin2it+ Agsinsrcos2it.
where the 4, k= 1.2.... 8. are constants: e.g..

4, = 2964. A, =—26958. and
By (A52),

Ay = 1204,

[ . N Ay .,
R=—— | {4 cos’t+ d,cos’rcos2r + ——sin’2t|dt
2n 5 2

from which the equality R >0 is immediate.
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