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Pneumatic systems repeat the identical programmed sequence during their operation. The data was
collected when the pneumatic system worked perfectly and had some faults including empty magazine,
zero vacuum, inappropriate material, no pressure, closed manual pressure valve, missing drilling stroke,
poorly located material, not vacuuming the material and low air pressure. The signals of eight sensors
were collected during the entire sequence and the 24 most descriptive features of the data were
encoded to present to the ANNs. A synthetic data generation process was proposed to train and test
the ANNs better when signals are extremely repetitive from one sequence to other. Two artificial neural
networks (ANN) were used for interpretation of the encoded signals. The tested ANNs were Adaptive
Resonance Theory 2 (ART2), and Back propagation (Bp). ART2 correctly distinguished the perfect and
faulty operations at all the tested vigilance values. It classified 11 faulty and 1 normal modes in seven
or eight categories at the best vigilance values. Bp also distinguished perfect and faulty operations
without even the slightest uncertainty. In less than 10 cases, it had difficulty identifying the 11 types
of possible faults. The average estimation error of the Bp was better than 2.1% of the output range on
the test data which was created by deviating the encoded values. The ART2 and Bp performance was
found excellent with the proposed encoding and synthetic data generation procedures for extremely
repetitive sequential data.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Almost all manufacturers need to automate their facilities and
follow the technological changes to stay competitive in the world
market (Angeli & Smirni, 1999). If the speed of the moving objects
is not critical, pneumatic systems are a cheap, clean, and easy to
maintain alternative for the automation. These systems repeat a
programmed sequence many times. When the system encounters
a problem, generally the manufactured parts will be wasted and
the cost will increase (Demetgul, 2006). It is necessary to detect
the problems and their source as quickly and accurately as possible
to continue operating with minimum interruption. Sensors are in-
stalled at the critical locations and their signals are carefully en-
coded to obtain the smallest and best descriptive data set. ANNs
are a good choice for interpretation of the encoded sensory signals
for most pneumatic systems. The ANNs correlate the inputs with
the desired outputs which indicate the problems and their source.
In this study, the operation of a pneumatic system was monitored
by using eight sensors. Two ANNs (Adaptive Resonance Theory 2
(ART2) (Carpenter & Grossberg, 1987), and Back propagation (Bp)
ll rights reserved.
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(Rumelhart, Hilton, & Williams, 1986)) were used to interpret the
encoded data of the sensors.

Many researchers have developed diagnostic methods by using
ANNs to detect the problems of march-motors, electric motors
(Bayır & Bay, 2004), rotating machine parts (Rajakarunakaran, Ven-
kumar, Devaraj, & Rao, 2008), automobile engines, bearings,
hydraulic servo-valves, servomotors, check-valves (Seong et al.,
2005), wood sawing machines, metal cutting operations, gears,
gearboxes (Chen & Wang, 2000; Samanta, 2004; Wuxing, Tse, Gui-
cai, & Tielin, 2004), hydraulic systems (Demetgul, 2008; Sandt
et al., 1997), pumps (Karkoub, Gad, & Rabie, 1999), gas turbines,
Fisher Rosemount valves (Karpenko & Sepehri, 2002; Karpenko,
Sepehri & Scuse, 2003), and compressors. Some of the commonly
used ANN algorithms in fault diagnosis are Bp, ART2, Levenberg
Marquart, Neuro-fuzzy (Wang, Golnaraghi, & Ismail, 2004), (Self
Organization Feature Maps) SOFM (Jams a-Jounela, Vermasvuori,
Enden, & Haavisto, 2003), (Learning Vector Quantisation) LVQ,
and (Radial Basis Function) RBF algorithms (Parlos, Kim, & Bharad-
waj, 2004).

Shi and Sepehri used LVQ and Neuro-fuzzy algorithms to diag-
nose the failure of the cylinder and valves of pneumatic system.
They used only one pressure sensor to monitor the system (Shi &
Sepehri, 2005). In this study, a realistic manufacturing operation
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was simulated by using a modular production system (MPS). The
normal and faulty modes were detected by using the signals of
eight transducers including three pressure sensors, a linear poten-
tiometer and 4 P/E (pneumatic to electric) switches.

Depending on the training process, ANNs are classified as unsu-
pervised and supervised neural networks (Masters, 1995). One
unsupervised (ART2) and one supervised (Bp) ANNs were used in
this paper. Unsupervised neural networks such as ART2 may start
to monitor the considered operation without any training. It will
generate new categories when the characteristics of the data
changes. The vigilance of the ART2 has to be adjusted very carefully
in order to create the minimum number of categories and be able
to classify the perfect and defective cases correctly. Bp is a super-
vised ANN which requires a training process to allow the algorithm
to select the proper parameters. Bp is the most commonly used
ANN since it can be used for classification and mapping. It requires
extensive training data which covers all the possible combinations
to work properly. In this study, synthetic data was generated by
slightly deviating the encoded values and excellent results were
obtained. Bp has to be trained very carefully with artificially gener-
ated data to cover large number of possibilities if almost the iden-
tical values are received from the sensors during the normal
operation of the system.

In the following sections, the theoretical background, test sys-
tem, proposed monitoring system, results and conclusions are
presented.

2. Theoretical background of the tested ANNs

Two different ANNs were used in this study and evaluated on
their performance and convenience. The unsupervised neural net-
work was the easiest to use and calibrate. Use of Bp was a complete
challenge and needed to generate synthetic data from the experi-
mentally encoded parameters. Once the synthetic data was gener-
ated, we used the same data to evaluate the sensitivity of the ART2
and Bp.

ART2 network was introduced by Carpenter and Grossberg
(Tansel, Mekdeci, & McLaughlin, 1995). The network simulates
the learning of the biological systems. It generates a self-organized
stable pattern during the inspection of the data. It can be used in
real time for monitoring the diagnostic applications without any
previous training. When the input characteristics and the feedback
expectancies are matched within the allowable tolerance, adaptive
resonance occurs and the data is classified with one of the previ-
ously created categories. Otherwise, a new category is created.
The most important task is the selection of the vigilance of the neu-
ral network to create the minimum number of categories without
classifying normal and faulty cases in the same category (McGhee,
Henderson, & Baird, 1997; Yang & Han, 2004).

Bp (Karpenko, Sepehri, & Scuse, 2003) is the most widely used
neural network. It systematically optimizes large numbers of sim-
ple transfer functions located on different layers to represent the
relationship between the input and the output. Generally, training
takes a very long time since the neural network makes millions of
iterations to obtain the best fit for the transfer functions. After the
training, a complex and non-linear mapping is obtained between
the input and output variables (Venkatasubramanian, Rengaswam-
y, Kavuri, & Yin, 2003). The Bp estimates the output parameters
very quickly once the training is completed. Thus, given the in-
put/output pairs, the network can have its weights adjusted by
the Back propagation algorithm to capture the non-linear relation-
ship (Tansel, Wagiman, & Tziranis, 1991). It is necessary to be very
careful during the training of the Bp type of neural network. Since
it maps the input and the output variables it has no measure of the
distance between the known cases and a presented case. Simply
stated, if a user trains the neural network only a limited space of
the variables, the estimation of the Bp at the other vector spaces
are almost random.

3. Test system

In this study the operation of the didactic modular production
system (MPS) from the Festo Company was used to evaluate the
performance of a combination of eight sensors and ANN (Hussain
& Frey, 2005). The MPS stations are presented in Fig. 1 (Taskin,
2007).

The principal objective of the developed didactic prototype was
to examine the cylindrical work pieces for proper height and mate-
rial type. A hole was drilled on each workpiece and they were
sorted according to their material type. As the name implies, the
plant consist of different modules. The modules are again grouped
in five stations. A brief description of the five stations and their
operation are outlined in the following sections and presented
with a schematic in Fig. 2.

3.1. The stations of the Festo MPS didactic plant

3.1.1. Distribution station
This section of the plant consists of a pneumatic feeder and a

transfer module. The feeder module pushes one workpiece at a
time from the magazine and moves it the range of the transfer
module. The transfer module picks up the workpiece with a vac-
uum suction cap and moves to the next station after rotating it
180�.

3.1.2. Testing station
The testing station consists of a test spot, a lifting apparatus, a

linear potentiometer to measure the thickness of the workpieces
and a conveyor module. The test spot is equipped with three differ-
ent types of proximity sensors, namely, inductive, capacitive and
optical. The capacitive proximity sensor detects whether there is
a workpiece or not. The inductive proximity sensor detects
whether the workpiece is metallic or non-metallic and the optical
proximity sensor detects whether the workpiece is black or not.
The lifting module moves the workpiece up and brings it in front
of the linear potentiometer. After the thickness of the workpiece
is measured, a pneumatic cylinder mounted on the lifting module
pushes the workpiece either to the conveyor or to the slider and off
to the scrape area depending on whether or not it passes the thick-
ness test.

3.1.3. Processing station
A hole is drilled on the workpiece at this station. The station

consists of a rotary indexing table, a drilling module and an inspec-
tion module to confirm the drilled hole. The rotary indexing table
has four sections. These sections are 90� apart from each other. Po-
sition 1 is for receiving the workpiece from the conveyor belt. The
drilling operation takes place at the position 2. There is an inspec-
tion module for the drilled holes at position 3. Position 4 is for
delivering the workpiece to the next station.

3.1.4. Handling station
This station is used to transfer the materials to the last unit of

the MPS: the sorting station. It picks up the workpiece by using a
suction cap from position 4 of the rotary table. It rotates the work-
piece 180� and places it on the sorting conveyor belt.

3.1.5. Storing station
This station stores processed pieces in different magazines

according to their material type. The defective parts are guided
through a slider to the scrape area.



Fig. 1. Festo MPS didactic plant.
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3.2. Operation of the system and data collection

Flow diagram of the MPS system is presented in Fig. 3. The sys-
tem was controlled by LabVIEW. Matlab 7.0 was used to collect the
experimental data.

Data acquisition card collected the data from sensors which
were located at the different sections of the pneumatic system.
Users selected the operation values on the user interface of the
flow diagram. Eight sensors were used in the experiments to col-
lect the data. The sensors are listed in Table 1.

4. Proposed encoding and classification method

The sensors provided long data segments during the operation
of the system. To represent the characteristics of the system, the
sensory signals were encoded by selecting their most descriptive
features and presented to ANN.

Typically, the pressure of the system is constant. 6.5 V was sub-
tracted from all the sampled voltages of the pressure sensor de-
fined as S1. The absolute values were calculated and the 10th
highest value was selected. To increase the weight of the data,
the same value was presented to ANN three times.

The signals of the S2, S3, S4, S5, and S7 were encoded by iden-
tifying the time when the value went over 3 V, when it fell below
3 V and the average of the sampled values when the reading was
maximum.

Seven values were encoded for the pressure sensor indicated by
the S6: when the signal fell below the 3 V, when it went over 3 V,
the average of 400 sampled values, the average values when the
signal went below 3 V and increased over 3 V, and again the aver-
ages when the signal dropped below 3 V and increased over 3 V.

5. Results and discussion

In this section, we cover the signals of the sensors when the sys-
tem works at the perfect and faulty conditions. The performance of
the neural networks will be discussed in the following sections.

5.1. Characteristics of the signals of the sensors at different operating
conditions

In this study, the pneumatic system was operated at the normal
conditions and at 11 different faulty conditions. The imposed prob-
lems are listed in Table 2.

The signals of the linear potentiometer (Fig. 4), magazine optic
sensor (Fig. 5), vacuum analog pressure sensor (Fig. 6), material
holding P/E switch (Fig. 7), material handling arm pressure sensor
(Fig. 8), vacuum information P/E switch (Fig. 9), optic sensor
(Fig. 10), and pressure sensor of main system (Fig. 11) are pre-
sented at the listed figures. Most of the sensors had unique pat-
terns for the problems except the pressure sensor of the main
system and the optic sensor. The level of the signal of the main
pressure sensor was almost flat and around the 6.5 V except the
one fault: the pressure level of the main pneumatic system was
Table 1
Sensors used for the diagnostics of the considered MPS system.

Symbol Sensor

1 Pressure sensor of main system
2 Magazine optics sensor
3 Vacuum information P/E switch
4 Material handling P/E switch
5 Linear potentiometer
6 Material handling arm pressure sensor
7 Vacuum analog pressure sensor
8 Material in the stock optic sensor
low. Optical system only detected when the drilling did not work
and workpiece was removed from the magazine but separated.

The signals of the linear potentiometer (Fig. 4), vacuum analog
pressure sensor (Fig. 6), material holding P/E switch (Fig. 7), mate-
rial handling arm pressure sensor (Fig. 8), and vacuum information
P/E switch (Fig. 9) looked like irregularly located square waves
with different widths. The magazine optic sensor (Fig. 5) had spike
type output. Almost the signal of each one of these sensors was
informative enough to detect the defects. This characteristic of
the sensory signals simplified the interpretation of the signals by
the neural networks. When the experiments were repeated at the
same conditions, the signals were almost identical. Use of almost
identical cases was like using the duplicate data for training. Since
the sensory data was almost identical, the training and testing
cases were almost the same too. Under these circumstances, we
determined to use only one case at each condition.

5.2. Generation of synthetic data to determine the accuracy and
robustness of the ANN

The ideal training and test data of the ANNs are supposed to
cover the entire space of all the input variables. Generally, some
compromise is necessary when the experimental data is used.
When the data of the sensors or encoded parameters are identical
or extremely close to each other, using data from multiple tests
does not improve the quality of the training and may even be con-
sidered as presenting duplicate cases. The ANN is trained only at a
very small space of the input variables and the reliability of the
system suffers enormously.

In this study, to fill the input variable space better, synthetic
cases were generated by increasing and decreasing the encoded
parameters by 2%, 4%, 6%, and 8%. This process enabled us to work
with nine times more data than the original cases and to train the
ANNs within a larger band which covers the ±8% of the input var-
iable space.

5.3. Performance of the ART2 type ANN

Performance of the ART2 was studied first without considering
the generated synthetic cases. Later, synthetic cases were also con-
sidered to evaluate the robustness of the ANN when the encoded
parameters deviates ±8% from the experimental ones.

ART2 was used to classify one perfect and 11 faulty cases at the
different vigilance values ranging from 0.92 to 1. For all the vigi-
lance values, ART2 generated one category for the perfect opera-
tion case and put the other 11 faulty cases into the different
categories. It classified 11 faulty modes in six categories for the vig-
ilance of 0.92. For the vigilance of 1, it created different categories
for each one of the faulty cases. These results indicated that even
for the lowest vigilance value, the ART2 would not misidentify
any of the faulty modes with perfect operation and may be used
with confidence. At the vigilance of 0.9995, a different category
was created for all the faults except one. The relationship between
the vigilance and the number of the created categories for the 12
experimental cases are presented in Fig. 12.

The synthetic data was used to evaluate if ART2 would put these
artificial cases in the same category with the original one, classify
them in the same category with another original one, or create a
new category. Ideally, the artificial cases were supposed to be clas-
sified in the same category with the originals. Creation of a new
category for the derivative of an original one is not wanted but
acceptable. Classifying the derivative of one original in the same
category with another experimental one is not acceptable.

ART2 generated only seven categories for the vigilance values
between the 0.92 and 0.9365. It put the synthetic cases of the
Fault8 and Fault9 in the same category with the Fault11 of the ori-



Table 2
Faults in the system and output values of ANN algorithm.

Faults Symbol

Normal operation of the MPS a Normal
Magazine is empty b Fault1
Vacuum couldnot be started in order to take the material from Distribution Station of MPS c Fault2
The workpiece was moved with vacuum from the magazine but dropped d Fault3
The workpiece which was removed from the magazine was separated e e Fault4
No pressure at the valve which controls the forward motion of the handling arm f Fault5 f Fault5
Handling station manual pressure valve may be closed g Fault6 g Fault6
Drilling isnot working. So, the following moves of the MPS is waiting h Fault7 h Fault7
In the handling unit the workpiece was not located properly for vacuum I Fault8 i Fault8
In the handling unit the material couldnot be vacuumed k Fault9 k Fault9
The material is transported to the sorting unit of MPS, but it didnot pass to the stock l Fault10 l Fault10
The pressure of the MPS is low m Fault11 m Fault11

Fig. 4. Linear potentiometer.

Fig. 5. Magazine optics sensor.

Fig. 6. Vacuum analog pressure sensor.

Fig. 7. Material holding P/E switch.
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ginal cases. This error was repeated for all the data groups gener-
ated at different deviations from the experimental ones. ART2 gen-
erated eight categories for the vigilances between the 0.937 and
0.947. The reported confusion disappeared with the addition of
one more category. All the artificial cases were classified in the
same category with their originals. A total of nine categories were
generated for the original data when the vigilance values were be-
tween 0.9375 and 0.9865. All of the derivatives of the original data
were classified with the originals in the nine categories without
any confusion. ART2 generated 10 categories for the original cases
and continued to add new ones for each of the derivatives of Fault8
and Fault11 for the vigilance of 0.987. The total number of created



Fig. 10. Optics sensor.

Fig. 11. Pressure sensor of main system.
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Fig. 9. Vacuum information P/E switch.
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categories, obtained by inspecting all 108 cases, was 26. For the
perfect and the 11 faulty cases, different categories were generated
for the vigilance of 1. There were a total of 53 categories created for
the original and the artificial cases. The numbers of the created cat-
egories at the different vigilance values are presented in Fig. 13.

As observed from the results of this study, the best vigilance
values for the ART2 are between 0.9365 and 0.9865. The system
will be able to monitor the system without any interruption when
it works perfectly and indicate the fault as soon as it encounters
problems. Operators will need to inspect the system one more time
since it will classify 11 different faults either in seven or eight cat-
egories for these vigilance values.

5.4. Performance of the Bp type ANN

The generated synthetic data was essential for the training and
testing of the Bp type ANNs with our extremely repetitive data. The
Bp had 12 inputs and one output. The value of the output was
determined to be 1 for perfect case. For the faults the output was
selected as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1 for normal,
Fault1, Fault2, Fault3, Fault4, Fault5, Fault6, Fault7, Fault8, Fault9,
Fault10 and Fault11, respectively. This was chosen in a very prac-
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tical manner, considering the maximum accuracy which might be
tested from a Bp type neural network when the experimental data
is involved. 15 nodes were used at the hidden layer after several
tests to obtain a compact network with acceptable accuracy. Bp
was tested by using 60 cases after it was trained with 48 cases.
The encoded values of the original data and the artificial cases gen-
erated with +4%, �4% and �8% deviations were used for the train-
ing. The deviation of the test cases from the encoded values of the
original ones were +2%, +6%, 8%, �2% and �6%. At the final stages of
the training, the learning rate and momentum constant were se-
lected to be 0.3 and 0.5, respectively.

The estimations of the Bp type ANN is compared with the
experimental and synthetic values in Figs. 14 and 15 for the train-
ing and test cases, respectively. The estimation accuracy of the Bp
was excellent for the training cases. The perfect operating condi-
tion and every fault were accurately identified without any uncer-
tainty. The performance was also excellent when the Bp was tested
on the synthetic data with +2% deviations from the encoded exper-
imental data. For 8% and �6% deviations, the perfect and faulty
operation modes were always accurately identified. However, at
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Fig. 14. Bp training results.
these extreme values the Bp started to confuse some of the faults
with others.

6. Conclusion

A pneumatic manufacturing system was simulated with modu-
lar production system (MPS) and automated monitoring of the sys-
tem was considered. New procedures were proposed for encoding
the sensory signals and generating synthetic data for better train-
ing and testing of the data. Performance of the ART2 and BP type
ANNs were evaluated by using the experimental and synthetic en-
coded values.

The pneumatic systems repeat the identical sequence like many
other automated assembly systems. The experimental data of each
sequence was almost identical at the perfect operation. Similarly,
each fault had a unique sensor output which repeated itself. For
each one of the perfect operation and 11 faulty modes, sensory sig-
nals were encoded only once. The 25 most descriptive features of
the sensory signals were calculated and used for each case. To bet-
ter evaluate the performance of the ANNs, synthetic data was gen-
erated by increasing and decreasing the encoded values up to 8%
with 2% steps.

ART2 identified the perfect operation. The data of the faulty
operations were also detected; however, it could not correctly
identify all of the 11 faulty modes unless the vigilance was selected
as 1. The best vigilance value was between 0.9365 and 0.9865. The
11 faulty modes were classified by using seven or eight categories.

Bp is a very difficult ANN when the experimental data is con-
centrated in a very small segment of the input space. When the
data almost duplicates, Bp cannot be used. The proposed synthetic
data generation approach solved this problem and allowed training
and testing of the ANN. The performance of the ANN was excellent
with less than 1% average estimation error (respect to the range)
for the training cases. For the test data, the average estimation er-
ror increased to 2.1%. The perfect and faulty modes were distin-
guished without the slightest uncertainty for the training and
test sets. At the test cases, some of the 11 possible faults were mis-
identified in less than 10 cases. This is an excellent level of perfor-
mance for a Bp type ANN.

The results indicated that ART2 and BP type ANNs could be used
for the diagnostic of even extremely repetitive automation sys-
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tems. We recommend the number of the fault modes to be kept be-
low 5 to let the ANNs identify each one of them reliably.
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