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Abstract. In previous work with a neural-network model of boundary segmentation and reset,
the percept of persistence was linked to the duration of a boundary segmentation after stimulus
offset. In particular, the model simulated the decrease of persistence duration with an increase
in stimulus duration and luminance. Further evidence is revealed for the neural mechanisms
involved in the theory. Simulations show that the model reset signals generate orientational
afterimages, such as the MacKay effect, when the reset signals can be grouped by a subsequent
boundary segmentation that generates illusory contours through them. Simulations also show
that the same mechanisms explain properties of residual traces, which increase in duration
with stimulus duration and luminance. The model hereby discloses previously unsuspected
mechanistic links between data about persistence and afterimages, and helps to clarify the
sometimes controversial issues surrounding distinctions between persistence, residual traces, and
afterimages.

1 Introduction -

Grossberg (1991) qualitatively analyzed a neural model of emergent boundary
segmentation, called the Boundary Contour System (BCS), and noted that the positive
feedback in the model, which helps to select correct groupings and maintain their
coherence, could also cause smearing in respect to changing images. In this analysis
a mechanism to reset the positive feedback was identified and it was noted how reset
signals generated at stimulus offset could control smearing. Francis et al (1994) quan-
titatively simulated the BCS model and showed that a key process governing the
persistence of visual percepts is the time taken to reset a segmentation. This analysis
explained characteristics of illusory-contour persistence (Meyer and Ming 1988),
effects of orientation-specific adaptation (Meyer et al 1975), spatial masking (Farrell
et al 1990), and inverse relationships between persistence and stimulus luminance and
duration (Bowen et al 1974). Francis (1996a) simulated the model to explain relation-
ships between persistence and interstimulus intervals of masking stimuli (Castet 1994).
Francis and Grossberg (1996) further developed the model to show how persistence
influences percepts of apparent motion, including interattribute apparent motion
(Cavanagh et al 1989; von Griinau 1979) and Korte’s Laws (Kolers 1972; Korte 1915;
Neuhaus 1930).

In the current work we suggest that the reset signals necessary to prevent smearing
of segmentations, which were described in Francis et al (1994), can create afterimage
percepts. We identify two sets of psychophysical data that match the properties of these
reset signals. The first data set identifies orientational afterimages. The second data
set identifies residual traces, which are sometimes found in studies of visual persistence.
We argue that both effects arise out of a need to reset resonating segmentations in
a neural network for boundary segmentation. In addition, we explain why in many
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persistence studies researchers fail to find evidence of residual traces. Our analysis
hereby sheds some light on why the relationship between persistence per se and
the residual effects which sometimes occur in a persistence paradigm have been so
controversial. In the next section we discuss the data in more detail.

1.1 Orientational afterimages :

MacKay (1957) reported an orientational afterimage after viewing a set of concentric
outline circles for several seconds and then looking at a blank screen. The afterimage
consists of a perceived radial form (figure 1). Similarly, viewing a-set of radial lines,
passing through a common center point, produces a circularly organized afterimage.

Image Aftereffect

Figure 1. Prolonged fixation followed by offset of a set of concentric circles produces an
afterimage with a radial organization.

1.2 Residual traces

A common problem for psychophysical studies of dynamic vision is to avoid retinal
afterimages. If subjects can perform a task by taking advantage of retinal afterimages,
the task will not permit measurement of the duration of persisting representations of the
original percept. This is important for studies of visual persistence because the duration
of retinal afterimages is known to increase with stimulus luminance and duration (Brown
1965). In contrast, many studies of visual persistence in which retinal afterimages are not
produced show that persistence decreases with stimulus luminance and duration [see the
review on luminance effects by DiLollo and Bischof (1995)].

It is important to distinguish between studies in which retinal images are probably
produced and those in which they are not because there has been a heated debate
among researchers of persistence about whether persistence duration increases or
decreases with stimulus luminance and duration. Long and his colleagues (eg Long
1980) argued (following Hawkins and Shuiman 1979) that there exist two types of
persistence signals. Type-1 signals were claimed to be inversely related to stimulus
luminance and duration, whereas type-2 signals were claimed to be directly related to
the same variables. In a series of experiments involving probe displays, Long and
colleagues tried to explore the properties of type-2 signals. However, those efforts have
been strongly criticized (DiLollo 1984; DiLollo and Bischof 1995; DiLollo et al 1988;
Irwin and Yeomans 1986a) because it is likely that subjects’ results were based upon
retinal afterimages, rather than persistence of the original percept. Such criticism
appears justified, as many of the studies involved very intense stimuli, dark-adapted
subjects, or both.

On the other hand, there are a few studies that were unlikely to involve retinal
afterimages but still reveal increases in persistence with increases in stimulus
luminance and/or duration (Long and McCarthy 1982; Long and Sakitt 1981; Long
and Wurst 1984). In the study by Long and McCarthy, subjects participated in two
different versions of an experiment. By means of probe-asynchrony measures (reaction-
time measures produced similar results), subjects first judged the perceived offset of
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the visual image. For these judgments, the data (replotted in figure 2a) show inverse
effects between persistence and stimulus duration and luminance.

In a second test, the same subjects judged the disappearance of any perceived
residual trace. For these judgments the data (replotted in figure 2b) show a direct
effect of stimulus duration and luminance on duration of residual traces. Long and
McCarthy (1982) argue that residual traces provide a more complete description of
the properties of visual persistence.

Critics of these experiments (DiLollo 1984; DiLollo and Bischof 1995; Irwin and
Yeomans 1986a) argued that the probe-matching and reaction-time measures are
unreliable and cannot be trusted for drawing conclusions about persistence. Such
caution is to be commended, given that direct relationships between persistence and
stimulus luminance and duration appear only with certain measures and then only
under certain conditions. Other measures of persistence, such as form-integration studies,
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Figure 2. (a) Response latency to target offset when subjects respond to perceived offset.
(b) Response latency to target offsct when subjects respond to any residual trace of the target.
Data in (a) and (b) are replotted with permission from Long and McCarthy (1982).
(©) Simulation results for the persistence of segmentation signals. (d) Simulation results for the
duration of reset signals. (¢) and (f) The same qualitative characteristics exist in model simula-
tions with a different set of parameters. Circles are data for 5.0 ft L and squares for 150 ft L.
(Note: 1 ft L =3.43 cd m™)
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reveal no evidence of residual traces, even though it appears such traces would help
subjects perform their experimental task. Thus, direct relationships must be regarded
as secondary to the properties of persistence and should be distinguished from the
persisting percept measured with other techniques.

" However, to argue that a set of data cannot be directly compared with other sets
of data does not explain the original data. Even though the residual traces measured
by Long and McCarthy (1982) cannot be considered as measures of persisting percepts,
they remain properties of dynamic vision that models of visual perception need to
explain. Indeed, the ability to explain data on the fringes of a research domain
provides strong support for a model that can also explain the main effects.

We agree with the above critics that the properties of residual traces found by
Long and McCarthy (1982) should not be taken as properties of visual persistence
per se. We suggest that residual traces are more properly viewed as a type of cortical
afterimage. Moreover, we suggest that residual traces have a close relationship to
persistence data, not as signals responsible for persistence, but as correlated signals
that help to shorten persisting signals. This close relationship cannot easily be under-
stood or even described without a model that summarizes the temporal unfolding of
the underlying visual process. In section 2 we describe such a model and its dynamic
properties.

The simulations reported in this article involve the identical equations and
parameters that were used in Francis et al (1994) to simulate data about persistence
and in Francis and Grossberg (1996) to simulate data about form —motion interactions.
Our goal in all these studies is to show that the same model mechanisms qualitatively
reproduce all of these data, without a change of parameters, in order to support our
conceptual arguments about the meaning of these data. We also display results of
additional simulations with different parameters to demonstrate the robustness of the
qualitative effects and the fact that quantitative fits are possible within the model.
A more extensive parameter search for quantitative data fits is premature both because
the subject responses are quite variable and the model has been significantly simplified
to make it computationally tractable in response to changing imagery.

2 Boundary segmentation and surface representation
2.1 Boundary segmentation by the BCS
Grossberg (1984) and Cohen and Grossberg (1984) introduced the Static-BCS model.
Grossberg and Mingolla (1985a, 1985b, 1987) developed the model to simulate how
the visual system detects, completes, and regularizes boundary segmentations in
response to a variety of retinal images. Such segmentations can be defined by regions
of different luminance, color, texture, shading, or stereo signals. The Static-BCS
computations for single-scale monocular processing consist of a series of filtering,
competitive, and cooperative stages as schematized in figure 3 and reviewed in several
reports (eg Grossberg 1987a, 1994; Grossberg et al 1989). The first stage, schematized
as an unoriented annulus in figure 3, models in perhaps the simplest possible way the
shunting on-center off-surround interactions at the retinal and LGN levels. These inter-
actions compensate for variable illumination, enhance regions of local contrast in the
image, compute Weber-law-modulated ratio contrasts at regions of local contrast, and
normalize cell activities (Grossberg 1983). Interactions of on-center off-surround
ON cells and off-center on-surround OFF cells are not needed here, but their
complementary responses to images are modeled elsewhere (Gove et al 1994, 1995;
Grossberg and Wyse 1991; Grossberg et al 1994; Pessoa et al 1995).

These model LGN cells input to pairs of like-oriented simple cells that are sensitive
to opposite contrast polarity, or direction of contrast. The simple-cell pairs, in turn,
send half-wave-rectified output signals to like-oriented complex cells. Complex cells
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hereby pool signals from simple cells that are sensitive to opposite contrast polarities.
These opposite-polarity half-wave-rectified signals combine in such a way that complex
cells compute a full-wave-rectified measure of oriented image contrast. In this sense,
complex cells are rendered insensitive to direction of contrast, as are all subsequent
cell types in the model.

Complex cells activate hypercomplex cells through an on-center off-surround
network (first competitive stage) whose off-surround carries out an end-stopping opera-
tion. In this way, complex cells excite hypercomplex cells of the same orientation
and position, while inhibiting hypercomplex cells of the same orientation at nearby
positions. One role of this spatial competition is to spatially sharpen the neural
responses to oriented luminance edges, especially at line ends. Another role is to
initiate the process, called end cutting, whereby boundaries are formed that abut a line
end at orientations perpendicular or oblique to the orientation of the line itself
(Grossberg 1987a; Grossberg and Mingolia 1985b).

The signals from complex cells to hypercomplex cells are multiplied, or gated, by
habituative chemical transmitters. These habituative gates help to reset boundary
segmentations in response to rapidly changing imagery, as discussed below. The
hypercomplex cells input to a competition across orientations at each position (second
competitive stage) among higher-order hypercomplex cells. This competition acts to
sharpen up orientational responses at each position, and to work with the habituative
gates to reset boundary segmentations, as discussed below.

Output from the higher-order hypercomplex cells feed into cooperative bipole cells
that initiate long-range boundary grouping and completion. Bipole cells fire only if
both of their receptive fields are sufficiently activated by appropriately oriented hyper-
complex-cell inputs. Bipole cells hereby realize a type of long-range cooperation among
the outputs of active hypercomplex cells. For example, a horizontal bipole cell, as in
figure 3, is excited by activation of horizontal hypercomplex cells that input to its
horizontally oriented receptive fields. A horizontal bipole cell is also inhibited by
activation of vertical hypercomplex cells.

spatial
sharpening

cooperative
bipole cell

second
competitive
stage

first
competitive
stage

oriented,
no contrast
polarity
oriented,
contrast
polarity
unoriented

Figure 3. Boundary Contour System with embedded gated dipoles.
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Bipole cells were predicted to exist in Cohen and Grossberg (1984) and Grossberg
(1984) shortly before cortical cells in area V2 with similar properties were reported by
von der Heydt et al (1984). At around the time of the von der Heydt et al report,
Grossberg and Mingolla (1985a, 1985b) used bipole-cell properties to simulate and
explain a variety of data about iflusory-contour formation, neon color spreading, and
texture segregation. These same properties play a role in our explanations of apparent
motion of illusory contours and interattribute apparent motion (Francis and Grossberg
1996).

Bipole cells generate feedback signals to like-oriented hypercomplex cells. These
feedback signals help to create and enhance spatially and orientationally consistent
boundary groupings, while inhibiting inconsistent ones. In particular, bipole-cell feed-
back excites hypercomplex cells at the same orientation and position while inhibiting
cells at nearby positions. Hypercomplex boundary signals with the most cooperative
support from bipole grouping thereupon further excite the corresponding bipole cells.
This cycle of bottom-up and top—down interaction between hypercomplex cells and
bipole cells rapidly converges to a final boundary segmentation. Feedback among bipole
cells and hypercomplex cells hereby drives a resonant cooperative—competitive decision
process that completes the statistically most-favored boundaries, suppresses less-favored
boundaries, and coherently binds together appropriate feature combinations in the
image.

2.2 Surface representation by the Feature Contour System

The boundary segmentation of the BCS works with a complementary surface-
representation system called the Feature Contour System (FCS). Because BCS output
signals pool opposite contrast polarities, they do not carry a perceptually visible signal.
They gain visibility by interacting with the FCS. BCS output signals to the FCS define
region boundaries. Signals from the model LGN activate a diffusion process within
the FCS which fills in surface properties like brightness, color, and depth within these
boundaries.

Figure 4 summarizes some key steps in the process whereby BCS signals ‘capture’
or bind FCS signals for filling in of surface representations. This binding process is
illustrated through an analysis of percepts of binocular rivalry (Grossberg 1987b).
The FCS consists of separate monocular retinal and LGN pathways corresponding to
inputs from the right or left eye. In figure 4, the right eye receives stimulation from
a horizontally oriented grating, while the left eye receives stimulation from a vertically
oriented grating. Under such conditions, subjects report secing either a vertical grating
or a horizontal grating, but they do not see both at the same time in the same location
(Kaufman 1974).

The FCS contains opponent and double-opponent ON-cell and OFF-cell stages
that respond to spatial changes in luminance and color. These are indicated by the
on-center off-surround receptive field at the side of each such schematized stage. The
FCS also contains filling-in domains where these center—surround responses diffuse
within regions defined by the spatial organization of boundary signals from the BCS.
Cross-shaped structures of cells mark these stages, indicating that the activity of the
center cell diffuses to the surrounding cells, and vice versa. The presence of a boundary
signal restricts this diffusion process. As a result, a set of boundary signals can
contain the diffusion of FCS signals, and prevent it from spilling into regions outside
the boundary signals.

Input from each eye contributes to the creation of BCS boundary signals. These
BCS boundaries attempt to fuse signals from both eyes to generate a boundary repre-
sentation that is sensitive to the relative depths of objects from the observer. In response
to left-eye and right-eye inputs that are mutually perpendicular, fusion cannot occur.
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Instead, binocular rivalry is initiated by the orientational competition (second
competitive stage, figure 3) among the hypercomplex cells. When the winning hyper-
complex cells interact with the cooperative bipole cells, they generate a boundary
segmentation within each region that favors the horizontal grating or the vertical
grating at any location and time, and suppresses the other one.

Grossberg (1987b, 1994) modeled how this selection takes place and how rivalrous
percepts emerge through time. For present purposes, suppose that the BCS generates
boundaries consistent with the horizontal grating of the right eye. These BCS boundaries
interact with each monocular pathway of the FCS at the first filling-in stage. For the
right-eye pathway, the spatial organization of the binocular boundary signals and
the monocular FCS signals are similar. The filling-in domains are designed so that
filling in is activated when the BCS and FCS signals are spatially aligned in this way.
As a result, a visible-surface representation of horizontal bars fills in only within the
filling-in domain whose relative depth corresponds to that of the active BCS boundaries.
The left-eye pathway produces a different result. Here, the FCS monocular signals are
spatially organized into vertical bars, but the binocular BCS signals are spatially
organized as horizontal bars. As a result, at the filling-in stage of the left-eye pathway,
the FCS signals diffuse throughout the stage, both inside and outside the regions
delineated by the BCS signals.

The difference between the filling-in events corresponding to the right and left
eyes produces dramatically different responses at the next FCS stage of each pathway.
For the right-eye pathway, the on-center off-surround cells of the next stage respond
to contrast boundaries of the filled-in activities. The resulting responses look similar
to the responses produced at the first on-center off-surround stage in the right-eye
pathway. The BCS signals hereby capture FCS data of the horizontal grating for

binocular
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Figure 4. Binding or capture of FCS signals by BCS signals. Each monocular pathway of
the FCS contains stages of on-center off-surround interactions, which detect spatial changes in
activity, and filling-in domains where activities diffuse across regions defined by BCS signals.
The resulting interactions force the filled-in binocular surface representation to correspond to
the organization of the boundary signals. See text for details.




550 G Francis, S Grossberg

subsequent processing. The responses to the filled-in activities of the left-eye pathway
are quite different. Here the activities in the filling-in stage of the left-eye pathway have
spread out to cover the entire spatial extent of the image. The on-center off-surround
and opponent interactions between ON and OFF cells inhibit all outputs. The BCS
signals hereby delete FCS data of the vertical grating from subsequent processing. -

Both the left-eye and the right-eye pathways feed into a binocular stage of filling
in at which perceived surface brightness is represented. Here, the binocular boundary
signals again define the regions that contain the diffusion of FCS signals. Since the
left-eye FCS pathway does not register the vertical inputs of the left eye, the resulting
spatial organization of activities at the binocular filling-in stage looks like a horizontal
grating at the appropriate relative depth from the observer. The FCS activities in the
left-eye pathway make no contribution to the binocular percept even though they
generate large inputs to the first stages of model cortical processing.

At times when the BCS generates vertical boundaries that are consistent with the
grating presented to the left eye, then the same BCS-FCS interactions pick out the
FCS responses to the vertical grating and suppress the responses to the horizontal
grating. Thus, the boundary signals of the BCS are capable of selectively capturing the
FCS signals to produce a surface percept of form and color and depth, or FACADE.
As is shown below, the ability of the BCS to capture or bind FCS signals controls the
persistence of perceived brightness.

2.3 The dynamics of boundary and surface reset

The positive feedback within the hypercomplex - bipole feedback loop of the BCS is
critical for selecting sharp boundary groupings and inhibiting weaker ones, but it also
creates hysteresis that could, if left unchecked, lead to undesirably long boundary
persistence after stimulus offset, and thus to uncontrolled image smearing in
response to image motion. In particular, each cell in the BCS has its own local

© ()]
Figure 5. A demonstration of boundary erosion. Solid squares indicate positive activity of
level 6 boundary cells (see the appendix). The smailer dots mark pixel locations. (a) Stimulus
input to the network, a bright square on a dark background. (b) Boundary response to the
square shortly after the input returns to the background level. (c) Boundary signals start to

erode from the corners of the square toward the middle of the contours. (d) Boundary erosion
is almost complete. Reprinted from Francis et al (1994) with permission.
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dynamics involving activation by inputs and passive decay (of the order of
10 simulated ms). However, the excitatory feedback loop dominates the temporal
aspects of the BCS. As shown in Francis et al (1994), when inputs (luminance edges or
illusory-contour inducers) feed into the BCS, they trigger reverberatory interactions
that, if left unchecked, can last for hundreds of simulated milliseconds.

This is true because activities of hypercomplex and bipole cells at a particular
position and orientation decay away only when bipole-cell output centered at the
same position and orientation weakens. Since bipole-cell activation depends on inputs
to both receptive fields, bipole activation near the ends of contours weakens first after
inputs shut off. As these bipole cells lose activation, so do all other cells of the same
orientation and position. This decay causes activities of more bipole cells to decay,
which continues the process. The net effect of these spatial and temporal interactions is
that boundary activities erode from contour ends to the contour middle (see Francis
et al 1994). McFarland (1965) has reported analogous data.

Figure 5 summarizes a simulation of boundary-signal erosion. Figure Sa shows
the stimulus presented to the system, a bright square on a dark background. Figures
Sb-5d show the boundary-signal response to the luminance edges of the stimulus at
successive moments beyond stimulus offset. The figures show the erosion of boundary
signals from the corners of the stimulus to the middles of the contours.
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Figure 6. Schematic diagram of how the dynamics of the binding process after stimulus offset
control visual persistence. (a) When boundaries are strong and bind FCS activities, the
binocular FCS activities are strong. (b) As boundaries erode, they less effectively bind FCS
activities, and so the binocular FCS activities weaken. (<) As boundaries erode further, they
cannot bind FCS activities at all, so the binocular FCS activities disappear. Disappearance of
binocular FCS activities corresponds to perceived offset of the stimulus.
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Figure 6 summarizes how the erosion of boundaries at stimulus offset results
in an unbinding of monocular FCS signals and the disappearance of a binocular
brightness percept. Figure 6a schematizes the system response just after stimulus offset,
as in figure Sb. The boundaries continue to bind FCS activities, and to produce
a response in the binocular FCS filling-in domain. Figure 6b schematizes the system
response after BCS boundaries have eroded somewhat, as in figure 5c. Here, the
boundaries bind some FCS activities and produce a binocular FCS response, although
not as strong or as sharply delineated as before. Figure 6c schematizes the system
response at a still-later point in time, when the boundary erosion is almost complete,
as in figure 5d. Here, the boundaries cannot bind any FCS activities and thus there is
no binocular FCS response. _

Since the activities of the binocular FCS filling-in domain correspond to a subject’s
perception of stimulus brightness, the time of disappearance of these activities
corresponds to the offset of the stimulus brightness. The time between physical offset
of the stimulus and the disappearance of FCS activities corresponds to measures of
visual persistence of the brightness percept. The dynamical nature of binding by the
BCS controls the disappearance of the binocular FCS activities. The rate of erosion
among the boundary signals controls the dynamics of the binding process. Thus, visual
persistence correlates with the erosion of the boundary signals. In particular, when
the boundaries of an edge erode to such a degree that they no longer bind FCS
monocular activities, then the binocular FCS activities disappear. Thus, visual
persistence is related to the duration of BCS signals. This measure was used by Francis
et al (1994) and Francis (1996a) to explain properties of visual persistence.

2.4 Reset signals and gated dipoles

As noted above, systems with visual persistence need to avoid image smearing. The
problem for the BCS is to accelerate the boundary erosion and unbinding of feature
signals in response to rapidly changing imagery. More generally, the BCS needs to use
resonant feedback to maintain segmentations of unmoving scenic objects, even as it
actively resets segmentations corresponding to rapidly changing scenic objects. The net
effect is to control image smearing in a form-sensitive way. Remarkably, the same BCS
mechanisms that create resonant boundaries also reset them. Two types of mechanisms
maintain the desired trade-off between resonance and reset. One mechanism is the
lateral inhibition that converts complex cells into hypercomplex cells via end-stopping
(first competitive stage, figure 3). Its role is described in Francis et al (1994) and Francis
(1995, 1996a, 1996b). The other mechanism will be the focus of this article. It uses the
orientational competition that converts model hypercomplex cells into higher-order
hypercomplex cells. Consider how this competition works between pairs of mutually
perpendicular cells. Pairs of mutually perpendicular complex, hypercomplex, and
higher-order hypercomplex cells define a specialized type of opponent-processing circuit
that Grossberg (1972) has called a gated dipole. The gates in the dipole are habituative
transmitters that multiply signals in the pathways from complex to hypercomplex cells
(square synapses in figure 3). Such a gated dipole can rapidly inhibit a bipole cell when
its activating image features shut off or are removed owing to image motion.

To understand better how this works, see figure 7, which shows a subset of the cells
from figure 3 consisting of separate pathways sensitive to the same position in visual
space but having perpendicular orientations. These pathways compete through the
second competitive stage of hypercomplex cells. Feeding this competition are inputs
gated by habituative transmitters. Along with signals from external stimuli, each input
pathway receives a tonic source of activity, and all output signals are rectified. It is
this combination of rectification, opponent competition, habituative-transmitter gates,
and tonic input that, in a variety of specialized circuits, constitutes a gated dipole.
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At the offset of stimulation, a gated-dipole circuit generates a transient rebound of
activity in the previously nonstimulated pathway.

The time plot next to each cell or gate describes the dynamics of this circuit.
In the case shown, the sharp increase and then decrease of the time plot at the lower
right of figure 7 indicates that an external input stimulates the horizontal pathway.
In response to the stronger signal being transmitted to the next level, the amount of
transmitter in the gate inactivates, or habituates, during stimulation and then rises
back toward the baseline level upon stimulus offset. Notice that the inactivation and
reactivation of transmitter occur more slowly than changes in the activities of the
neural cells. Each slowly habituating transmitter multiplies, or gates, the more rapidly
varying signal in its pathway, thereby yielding net overshoots and undershoots at input
onset and offset, respectively. During stimulation, the horizontal channel wins the
rectified opponent competition against the vertical channel as indicated in the top-right
time plot. However, upon offset of the stimulation to the horizontal channel, the input
signal returns to the baseline level but the horizontal transmitter gate remains habitu-
ated below its baseline value. As a result, shortly after stimulus offset, the gated tonic
input in the horizontal channel has a net signal below the baseline level. Meanwhile,
the vertical pathway maintains the baseline response at all cells and gates before
the opponent competition. Thus, when the horizontal channel is below the baseline
activity, after stimulus offset, the vertical channel wins the rectified opponent competi-
tion and produces a rebound of activity as shown in the top-left time plot. As the
horizontal transmitter gate recovers from its habituated state, the rebound signal in
the vertical channel weakens and finally disappears. The duration of the transient
rebound thus matches the recovery rate of the transmitter from habituation.

Figure 8 shows how this rebound of activity acts as a reset signal in the fuil BCS
architecture. Figure 8a schematizes how inputs in a horizontal pathway excite
a horizontal bipole cell. Through their positive feedback to hypercomplex cells, these
horizontal bipole cells can generate hysteresis that produces persistence of the segmen-
tation. Owing to the interactions of the gated-dipole circuit, offset of the horizontal
input generates a rebound of activity in the vertical pathway, which, as figure 8b
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Figure 7. At stimulus offset, a gated dipole circuit produces a transient rebound of activity in
the nonstimulated opponent pathway.
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demonstrates, inhibits the horizontal bipole cell and decreases persistence. This reset
property speeds the erosion of boundaries from contour ends to contour middle.

These properties of reset signals also explain why persistence of static stimuli varies
inversely with stimulus luminance and duration (eg Bowen et al 1974), why the persis-
tence of illusory contours is greater than that of luminance contours and differently
affected by stimulus duration (Meyer and Ming 1988), and how orientation-specific
adaptation can increase or decrease persistence (Meyer et al 1975). Details of these
properties are in Francis et al (1994). In section 3 we show how the properties of the
reset signals correspond to psychophysical measures of cortical afterimages.

(2) (b

Figure 8. (2) A horizontal input excites a horizontal bipole cell that supports persistence.
(b) Upon offset of the horizontal input, a rebound of activity in the vertical pathway inhibits
the horizonal bipole cell. This inhibition resets the hysteresis of the feedback loop and reduces
persistence.

3 Cortical afterimages

In the previous sections we reviewed mechanisms for boundary and brightness
detection. Positive feedback in these mechanisms produce strong hysteresis, which
requires additional mechanism to reset the systems. The gated-dipole circuit provides
opponent signals at stimulus offset to reset the feedback loops activated during
stimulus onset. The functional role of these signals is to reset persisting segmentation
signals and prevent blurring and smearing of changing images.

However, since the reset signals are oriented signals (with local orientation
opposite to that of the original stimulus boundaries), we must consider whether the
reset signals can form a new boundary segmentation. In section 3.1, we show that
new segmentations generated by reset signals can sometimes give rise to orientational
afterimages.

3.1 Orientational afterimages

Figure 9 shows simulation results for a stimulus consisting of a series of concentric
outline squares (bright lines on a dark background) presented for 2 (simulated) s
(compare with the image in figure 1). Black pixel points indicate locally horizontal
boundary signals, white pixel points indicate locally vertical boundary signals, and
mid-gray pixel points indicate no strong response to either local orientation. Figure 9a
shows the BCS response while the concentric squares are present. When the stimulus
is present, the local and global orientations of the boundary signals match, so the
system generates appropriately oriented boundary signals that outline the luminance
increments of the squares. Such segmentations can interact with the FCS to bind color
and brightness percepts within the regions defined by the segmentation contours.
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Figure 9b shows the response of the system 250 simulated ms after the offset of
the luminous outline squares. Reset signals of locally opposite orientation have
replaced the boundary signals responsive to the stimulus edges. Significantly, along the
middle of the display there are vertical (and horizontal) segmentations that respond
to the vertical column (horizontal row) of locally vertical (horizontal) reset signals.
Along these columns (or rows) the bipole cells can complete a segmentation to make
a perceived cross shape. This segmentation is analogous to the orientational after-
images noted by MacKay (1957).

It is important to note that these segmentations do not bind corresponding
brightness or color percepts. In section 2.1 we described how FCS brightness and
color signals are not bound to mismatched BCS segmentations. In this case the bright-
ness signals are organized in horizontal rows (vertical columns) while the afterimage
segmentations signals are organized in vertical columns (horizontal rows). This mis-
match means that the perceived afterimage may not include percepts of color and
brightness, but should include perceived oriented segmentations. This prediction
corresponds to percepts of the afterimage.

Because there is nothing to reset the segmentation generated by reset signals, the
afterimage can persist for a substantial length of time. Figure 9c shows the system
response 1.95 simulated s after the stimulus was turned off. The cross-shaped segmen-
tation persists, even though the remaining reset signals weaken (closer to mid-gray).

(a) time = 1150 ms

(b) time = 2250 ms © time = 3950 ms

Figure 9. The spatial organization of segmentation and reset signals for a set of concentric
outline squares. Gray level codes local orientations: black, horizontal; white, vertical; mid-gray,
no local orientation. (a) While the stimulus is present, the boundary segmentation follows the
luminance edges. Local orientations agree with global orientations. (b) After stimulus offset,
reset signals appear. Along the center axes of the image, the local and global orientations
match, thereby allowing the BCS to generate segmentations at those regions. These segmenta-
tions correspond to the perceived orientational afterimage, seconds. (c) Even as the reset signals
fade away, the afterimage segmentation persists.
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Interestingly, MacKay (1957), Taylor (1958), and Schwartz (1980) described
hypothetical neural circuits that are similar to the gated dipole. In those circuits,
habituation and competition generate local rebounds of activity in a fashion similar
to the gated dipole described here. The BCS defines such mechanisms in a mathe-
matically precise way, and also has the ability to segment or group local orientations
through a global process of cooperative and competitive feedback. We suggest that
it is the global feedback process that establishes the strong, lasting percept of the
segmentation afterimage. Moreover, while MacKay (1957), Taylor (1958), and Schwartz
(1980) hypothesized opponent mechanisms to explain how the afterimage formed, they
did not explain why such a circuit exists. We suggest that the circuit exists to reset
persisting segmentations in visual-feedback circuits.

3.2 Residual traces

If reset signals always produced new segmentations, they could undermine their
functional purpose, because massive smearing would result from the afterimage
segmentations. Fortunately, reset signals do not generally create new segmentations.
Figure 10 shows simulation results of BCS responses to a 50 ms dark square on a
bright background. Figure 10a shows the activity and local orientation of signals
at each pixel just before the visual display returns to the background level. The system
responds most vigorously along the vertical and horizontal luminous edges. Moreover,
the local orientations match the global orientation of each edge: locally vertical
boundary signals (white) align in a vertical column; locally horizontal boundary signals
(black) align in a horizontal row.

Figure 10b shows the response of the system 400 simulated ms after stimulus offset.
The only remaining signals are reset signals that have local orientations opposite to
the original segmentation. Significantly, these reset signals do not generate a segmen-
tation because their local orientation is perpendicular to their global organization.
The reset signals along the horizontal edges of the stimulus are now locally vertical
boundary signals (white), and the reset signals along the vertical edges of the stimulus
are locally horizontal boundary signals (black). These signals inhibit, rather than excite,
the horizontal and vertical bipole cells, respectively (see figure 8). As a result, the reset
signals in this case do not generate a segmentation that can bind color and brightness
of the original stimulus.

Figure 10 codes the relative activities of the BCS signals. The strength of reset
signals in figure 10b are substantially smaller than the signals in figure 10a. If the
reset signals are not too weak, they may be recognized by object-recognition pathways
(see section 4), and referred to as a residual trace that has neither brightness, color,
nor consistent orientation.

Thus, for this stimulus, the reset signals inhibit the persisting segmentation and do
not generate a new segmentation. In this capacity, they efficiently prepare the system
to build new segmentations without interference from past segmentations. Figure 2c
demonstrates the effectiveness of the reset signals. This figure shows the simulated
persistence of segmentation signals (see the appendix for details on the images and
equations) over the range of luminances and durations used by Long and McCarthy
(1982) with the same parameters as in Francis et al (1994). As stimulus duration or
luminance increases, the persistence of the boundary signals decreases, in qualitative
agreement with the data of Long and McCarthy shown in figure 2a. Figure 2e shows
the same qualitative effects with an alternative choice of parameters to illustrate the
robustness of the explanation of these data by the model.

We now show that the duration of these reset signals covaries with data on
residual traces. The reset signals generated at stimulus offset are boundary signals of
the locally orthogonal orientation, which observers may recognize through direct BCS
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object-recognition pathways (see section 4). We hypothesize that subjects judging the
duration of residual traces observe the strength of the reset signals. As was noted
above to explain the inverse property for persistence of segmentations, the strength of
reset signals increases with stimulus duration and luminance. Since the habituated
gates in the gated dipole recover at a constant rate [see equation (Al3) in the appendix],
a stronger reset signal takes longer to passively fade away. Thus, reset-signal duration
varies directly with stimulus duration and luminance, while the segmentations. that
they reset persist as an inverse function of stimulus duration and luminance. Figure 2d
shows the duration of reset signals generated at stimulus offset. The duration of these
signals increases as stimulus duration or stimulus luminance increases, in qualitative
agreement with the data of Long and McCarthy (1982) shown in figure 2b. Figure 2f
shows the same qualitative effects with the alternative choice of parameters to illustrate
the robustness of the explanation of these data by the model.

Significantly, the model uses the same mechanisms to explain properties of
orientational afterimages and residual traces. In each case, the afterimage is due to
reset signals that exist to prevent massive smearing. Thus, the model explains why
such afterimages exist in terms of mechanisms necessary to reduce visual persistence.
The model hereby links orientational afterimages and residual traces to properties
of visual persistence and a wide range of spatial properties of visual perception with
a common model.

(@ time = 50 ms (®) time = 450 ms

Figure 10. The spatial organization of segmentation and reset signals for a dark square
on a bright background. Gray level codes local orientations: black, horizontal; white, vertical;
mid-gray, no local orientation. (a) While the stimulus is present, the boundary segmentation
outlines the luminance edges. Local orientations agree with global orientations. (b) Later, after
boundary erosion, only reset signals remain. The local orientation of the reset signals is in
conflict with the global organization of the signals, so the BCS cannot generate a segmentation.

3.3 Residual traces in other paradigms

While Long and McCarthy (1982) argued that residual traces measure persistence,
critics of the study of residual traces have argued that they should not be considered
measures of visual persistence. We agree with the critics on this point. Visual persistence
is a measure of the original percept generated by the stimulus. Reset signals (and, we
suggest, residual traces) are activations generated by the offset of the stimulus. The
distinction is similar to that applied to retinal afterimages, which are clearly distinct
from the original percept. Thus, while we feel residual traces should be studied in their
own right, they should not be described as visual persistence.

These issues aside, we must consider why evidence of residual traces is not
found in other measures of persistence. Studies of temporal integration divide a visual
stimulus pattern into small parts and distribute those parts across two images. Subjects
view the images in rapid succession (possibly separated by an interstimulus interval,
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ISI) and perform a task that requires temporal integration of the displays. For example,
Hogben and DiLollo (1974) used a display consisting of a 5x5 matrix and two frames
of twelve dots each. The subject’s task was to report the location of the missing dot
among the two frames. As the ISI increased, the task became more difficult and the
number of correct identifications decreased. The percentage correct gives an indication
of the persistence of the elements from the leading display. Since the subject must
identify the missing element by using whatever information is available, one might
expect that subjects would attend to residual traces to perform the task. Psychophysical
studies, however, indicate that as stimulus luminance or duration increases, perfor-
mance worsens, indicating shorter persistence of the elements, and indicating that
subjects cannot use residual traces (if they exist).

The model explains why integration (and other) studies do not reveal the properties
of residual traces. Since residual traces are reset signals that usually cannot form a
new segmentation, they are usually uninformative for the integration tasks. As a result,
subjects are forced to rely upon integration of perceived brightness in the FCS. Since
reset signals cannot bind FCS signals, their presence is not revealed in those studies.

Figure 11 schematizes how the model accounts for these findings. Figure 11a shows
the stimulus configuration and the resulting BCS and FCS signals produced by the
model under conditions of a short ISI, which is likely to allow integration. Note that in
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Figure 11. Schematic of the response of the model to an integration display where the subject
must identify the location of the missing element from the two frames. (a) For short ISIs,
the BCS signals are uninformative because of interelement boundaries, while the FCS signals
allow easy identification. (b) For long ISIs, the BCS signals are again uninformative (despite
long-lasting reset signals coded as dashed lines) and FCS signals are also uninformative.
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addition to the stimulus boundaries, the BCS generates boundaries between elements
that correspond to perceived groupings of elements (Grossberg and Mingolla 1985b).
These grouping boundaries coexist with the boundaries generated by luminance
edges, but do not produce percepts of brightness because no FCS signals exist to be
bound by the boundaries. With a short ISI, the BCS signals from the first frame
persist and integrate with BCS signals generated by the onset of the second frame.
Boundaries are thereby created between elements from both frames, rendering BCS
signals uninformative about the location of the missing element. On the other hand,
the FCS uniquely identifies the location of the missing element because no FCS signal
exists at that location.

Figure 11b schematizes BCS and FCS signals under conditions of a long ISI.
During the ISI BCS signals generated by the leading frame erode away and are
replaced by orientationally opposite reset signals. These reset signals are unable
to bind FCS activities. After onset of the second display, the reset signals coexist
with boundaries generated by the elements of the second display. However, grouping
boundaries between elements of the second frame ‘write over’ some of the reset signals
from the first display, and possibly over the empty space of the missing element.
Thus, the BCS signals are generally uninformative about the location of the missing
element. The FCS signals are also uninformative in this display because no FCS
signals from the first frame persist to integrate with the FCS signals from the second
frame. .

In general, in a temporal-integration display subjects must integrate brightness
percepts to perform the task, and FCS signals coding brightness do not reveal the
presence of reset signals (residual traces). Thus, the model predicts that any task
that depends on judging offset of the brightness percept will not reveal evidence of
residual traces. Judgments of perceived brightness offset are, we suspect, the norm
in studies of visual persistence. '

However, the model suggests a way of investigating residual traces with integration
studies. Since the bipole cells require inputs on both sides of their receptive fields to
generate grouping boundaries, when the missing element is located at one of the four
corners of the matrix, no residual traces or grouping boundaries should be produced
in that location. All other matrix elements should have either residual traces or
stimulus boundaries. Thus, with practice, subjects may be able to use the presence of
residual traces to help identify the location of the missing element.

4 Seeing vs recognizing

It remains to say how BCS reset signals can be detected by an observer even if they
do not bind FCS brightness or color signals. Given that BCS output signals are insen-
sitive to contrast polarity, they do not carry their own visible signals. What kind of
detection, then, can a BCS signal generate in the absence of FCS support?

The answer to this question depends upon how FACADE theory explains the
difference between seeing and recognizing (Grossberg 1987a, 1994). For purposes of
recognition, BCS signals input directly to the Object-Recognition System (ORS),
thereby allowing recognition of boundary signals without requiring corresponding
brightness or color percepts. The FCS can also directly input to the ORS, thereby
facilitating recognition due to surface qualities such as brightness, color, and depth.
Grossberg (1994) summarized experimental evidence for BCS and FCS processing in
the interblob-processing and blob-processing streams of the visual cortex, respectively,
and for the ORS in the temporal cortex.

Figure 12 schematizes this global architecture. The distinction between seeing,
which occurs in the FCS, and recognizing, which occurs in the ORS owing to either
FCS or BCS signals, is critical to understanding the properties of residual traces and
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orientational aftereffects. This distinction has a long history in visual perception,
in modified form, as the distinction between seeing and thinking, or the related
distinction between modal and amodal perception (Epstein 1993; Gregory 1993;
Kanizsa 1979; Kellman and Shipley 1991; Michotte et al 1964). Properties of the
BCS, FCS, and ORS help to resolve controversies that still persist based on these
classical concepts. For example, the BCS explicates why al/l boundary segmentations
are perceptually invisible, or amodal, owing to the fact that BCS output signals are
insensitive to contrast polarity. These invisible segmentations can nonetheless generate
large activations of ORS recognition codes, so one can ‘know’ about a segmentation
that one cannot ‘see’. The FCS can generate visible surface representations because its
output signals are sensitive to contrast polarity. The theory predicts that, when we see
a boundary, it is because there is a discontinuity in filled-in surface qualities like
brightness or color within the FCS due to signals from the BCS that prevent filling in
across the intervening boundary. Thus the BCS supports perception of visible, or
modal, boundaries in the FCS, but is not itself a substrate of visible representations.
BCS — ORS signals permit detection of a residual trace or afterimage even if it is not
supported by discontinuities in the filled-in FCS surface representation. In other words,
a residual trace can be amodally registered by a ‘cognitive’ process of object recogni-
tion even if it is not modally seen as a surface-brightness difference. Furthermore,
some residual traces can be amodally recognized even if they do not generate long-
term afterimages.

The model distinction between amodal recognition of residual traces via
BCS — ORS interactions and modal perception of persistence via BCS «+ FCS inter-
actions may help to clarify the difference between visible persistence, whose duration
varies inversely with stimulus intensity, and subsequent nonvisible processes, whose:
duration may vary directly with intensity. Various authors have posited such
a nonvisible process to decode the information in a display, whether as a ‘nonvisible
trace’ (Sperling 1967), a ‘nonvisible identity code’ (Irwin and Yeomans 1986b), or as
‘informational persistence’ (Coltheart 1980). See DiLillo and Bischof (1995) for an
excellent review. From the present account it is suggested that there also exists
a nonvisible trace whose duration varies directly with intensity and that is amodally
recognized but that, in itself, does not play a role in processing the information in
the visible trace.

Object-Recognition System (ORS)
Boundary Feature
Contour Contour

System System
(BCS) d> (FCS)

Figure 12. Signals in the FCS correspond to percepts of surface brightness, color, and depth.
Boundary segmentation signals in the BCS control the FCS percepts. An Object-Recognition
System (ORS) can recognize the spatial layout of oriented BCS signals even if no associated
brightness or color percepts are generated in the FCS.
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5 Conclusions

The FACADE model conceptually links disparate data on the spatial and dynamic
properties of visual processing at stimulus offset. We have shown that the
dynamic properties of reset signals may be used to explain and clarify evidence of
cortical afterimages. It is suggested from figures 9 and 10 that the main qualitative
difference between the orientational afterimages studied by MacKay (1957) and the
residual traces studied by Long and McCarthy (1982) is the spatial organization of the
reset signals generated at stimulus offset. According to the model, when the reset
signals have a spatial structure that can produce a segmentation, subjects should
perceive an orientational afterimage, which in the current simulations cannot bind
color and brightness percepts. On the other hand, when the reset signals have a spatial
structure that cannot produce a segmentation, subjects should recognize the reset
signals as a residual trace produced by the stimulus offset, but should not perceive
a coherent segmentation that binds color and brightness.

In all these simulations, our intention has been to show how the qualitative
properties of the model conceptually clarify diverse data sets, rather than to produce
a precise quantitative fit to any one piece of the data. Indeed, the model simplifications
(eg only two orientations) necessary to make the computations feasible make a
search for optimal parameters premature. As noted in Francis et al (1994), the model
properties are robust across a wide range of parameter choices.

The model links these apparently disparate sets of data with additional data on
the persistence of segmentations (Francis 1996a; Francis et al 1994), temporal integra-
tion (Francis 1996b), and metacontrast masking (Francis 1995). The simulation charac-
teristics used to explain the dynamic processing of visual images remain consistent
with, and depend upon, the previous explanations, by the theory, of illusory contours
(Grossberg and Mingolla 1985a), texture segregation (Grossberg and Mingolla 1985b),
shape from shading (Grossberg and Mingolla 1987), 3-D vision (Grossberg 1987b,
1993, 1994), and motion processing (Francis and Grossberg 1996; Grossberg 1991),
among others. The unifying conceptual links between these data sets that are provided
by the model have already begun to suggest fertile new lines of experimental inquiry.
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APPENDIX
The network equations and parameters are identical to those used in Francis et al
(1994). They are reprinted here to make the present paper self-contained.

A.1 Network equations

Level 0: Image plane

Each pixel has a value associated with retinal luminance. We describe the pixel-
luminance values of the different stimuli used in the simulations below.

Level 1: Center—surround cells
The activity X of a level-1 cell centered at position (i, /) obeys a shunting on-center,
off-surround equation

dx;
i = X0+ 4= X)) Bipelyy ~ (X + )Y Dipgly. (A1)
pq pPg

where I, is the retinal luminance at position (p, ¢), 4 is the maximum activity of the
cell, —C is the minimum activity of the cell, and

By, = Bexp{~a*log2[(i - p)’ + (j — 9]}, A2

Dy, = Dexp{-ftlog 2[(i - P+ - q)z]} (A3)

are excitatory and inhibitory Gaussian weighting functions, respectively. The term
log2 means the parameters « and § set the radius of their respective Gaussians at half
strength. Parameters B and D are constant scaling terms.

To save computation, the equilibrium response of the differential equation is found
by setting the left-hand side of equation (Al) equal to zero. The resulting algebraic
equation can be solved to find

A qu Bilpqlpq — Cqu Dl]pqlm
1O+, (Bypg + Do),
The activities of cells at this level share some key properties with those found in

ganglion cells or LGN (Grossberg and Torodorié¢ 1988). No off-center on-surround cells
were implemented in our simulations.

X} = (a9)

Level 2: Oriented simple cells

The following equations define oriented simple cells that are centered at position (i, j)
with preferred orientation k. To create a vertically oriented input field, or in-field,
that is specific to the polarity of the luminance gradient, divide an elongated region
into a left half L, and a right half R;. Add up the weighted sum of the level-1 inputs
within the range of the left side

Fyp= 3 EpX, (AS)
pacly
and the right side
PYER

of the region, with
Eypy = exp[—ylog 2(i - p)’] A7)



Cortical dynamics of reset 565

decreasing for inputs further away from the oriented center line of the in-field;
the parameter y controls the rate of fall off. Then a simple cell that is selectively
responsive to a bright-to-dark luminance gradient obeys the differential equation

axge _

i - "X.';Z‘BD + [Fj = Gijk]+ s (A8)

where [ p]” =max(p,0). A cell responsive to a dark-to-bright luminance gradient
obeys the equation

208
dXy

PR =Xi0% + (G — Fi]” . (A9)
To save computation, the activities of these cells were computed. at equilibrium as
X3P = [Fp — Gyl* (A10)
and
X% =[Gy — Fl*- (AlD)

Level 3: Oriented complex cells

Each cell in level 3 becomes insensitive to the polarity of contrast by summing the
rectified activities of the cells in level 2 of the same location and orientation. Each
level-3 cell obeys the differential equation

Wi _ ~X3 + H(XY¥P + x208 : Al2
dr A i e - (A12)

Parameter H scales the activities of the input signals to the complex cell.

Level 4: Habituative transmitter gates
The signal in each oriented pathway is gated, or muiltiplied, by a habituative trans-
mitter which obeys the equation (Grossberg, 1972)

if%= KIL(M = XG) = (Xge + T ) X . (A13)
This equation indicates that the amount of available transmitter X accumulates
to the level M, via term KL(M —-X,;,‘), and is inactivated by mass action at rate
K(Xp + J) X, where J is the tonic input of a gated dipole and X, is its phasic
increment. We set the rate X much smaller than 1.0 so that these equations operate on
a slower time scale than the equations describing cell activities. At the beginning of
each simulation, each transmitter value is set to the nonstimulated equilbrium value
Xj=LM/(L+J).

Level 5: First competitive stage of hypercomplex cells
The gated signals of a fixed orientation compete via on-center off-surround spatial
interactions. Along with the tonic signal coming up through the habituative trans-
mitters, each cell also receives a tonic input which supports disinhibitory activations at
the next competitive stage (see Grossberg and Mingolla 1985a, 1985b). The activity of
a level-5 cell obeys the differential equation

dX,

dt

where — X, models passive decay, the parameter J establishes a nonzero baseline of

activity for the cell, the term (X}, +J)X;, is the gated excitatory input from the
lower level at the same position and orientation, the term NX}, is a feedback signal

==X + T+ X+ )X+ NXji = X > P + T ) X, (A14)
’ Pq



566 G Francis, $ Grossberg

from the higher-level cell of the same position and orientation, and the term
X 30 Pipg(Xpgk + J ) Xp is the inhibitory input from the lower-level cells of the same
orientation and nearby spatial positions. The inhibitory weights fall off in strength as
the spatial distance between cells increases, as in

Py, = Pexp{—6"1og2[(i - p)* + (j - )]}, (A15)

where P scales the strength of the inhibition, and § controls the spread.
For the simulations in this paper, the differential equation was solved at equilib-
rium as
J+ (Xpi + J) X + NX§,
L0+ 3", Py X3y + DX

Level 6: Second competitive stage of hypercomplex cells
The output signals from the first competitive stage compete across orientation at
each position. The activity of a cell receiving this competition obeys the differential
equation .

dx;,

& =X + (X = Xix) s (A17)

where X, and X, represent orthogonal orientations.

X = (A16)

Level 7: Cooperative bipole cells and spatial impenetrability
The next level involves a simplified version of bipole cells. As in level 1, we divide the
in-field of each horizontal bipole cell into a left side Ly and a right side Ry (top and
bottom for vertically oriented bipole cells). Each bipole cell then sums up excitatory
like-oriented signals and inhibitory orthogonally oriented signals within each side.
A slower-than-linear bounded function squashes the net signal of each side. We then
set the output threshold of the bipole cells so that boundaries must stimulate both
sides of the receptive field for the cell to generate an output signal. The differential
equation describing each bipole cell activity is
7
S A IR IV SRR )
PRy freTm

where

ow

) =1o+w (A19)
acts to squash the net input on each side of the receptive field of the bipole cell so
that it never exceeds the value of parameter Q. Grossberg and Mingolla (1985b) use
a more complicated bipole cell. Their bipole cells receive excitatory inputs from a
range of orientations that are weighted by a function that decreases with spatial
difference from (i, /) and orientational difference from k. Grossberg and Mingolla
use these features to explain a variety of grouping phenomena, but simpler bipole
cells suffice to simulate the basic properties of boundary signal persistence.

Level 8: Spatial sharpening
Output signals from the bipole cells are thresholded to prevent feedback unless inputs
activate both sides. These output signals then undergo a spatial sharpening much as
in the first competitive stage of level 5. The activities of cells in level 8 obey the
differential equation

dA";k — Xs + X7 R + 8 7 +

5 = X+ X~ R = X3 > TIX), - R, (A20)
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where parameter R is the output threshold for bipole cells, parameter T scales the
strength of the spatial inhibition, and S is the eight nearest neighbors to pixel (i, j).
These signals are scaled by parameter N before feeding back to the cells in level 5 to
close the feedback loop.

A.2 Stimuli and parameters

In this section we describe the stimuli and measures used in the simulations. The
equations and parameters for the simulations are the same as in Francis et al (1994),
except as described below. The Francis et al (1994) parameters are: 4 = 67.5, B= 2.5,
C=600, D=0.05, H=0.1, J=20.0, K=0.0003, L=30, M=50, N=13.0,
P =0.0005 Q =0.5, R=0.61, T=0.3, a =05, =30, y=1.5, 6 =3.0. Each side,
Ly and Ry, of the oriented masks in level 2 were rectangles of 4 pixels x 1 pixel in
size. Each side of a bipole cell was restricted to a single column (vertical) or row
(horizontal) extending 18 pixels from the position of the bipole cell.

For all stimuli, dark means 0.000001 simulated ft L. The stimuli for the simulation
results shown in figures 2c and 2d consisted of dark squares (26 pixels x 26 pixels) on
a bright background (50 or 150 simulated ft L). These stimuli cover the range of
luminances and durations used by Long and McCarthy (1982). Persistence of segmen-
tation offset was measured by noting the time beyond stimulus offset when all the
segmentation signals (activities in level 6) matching the local orientations produced
during stimulus presentation dropped below a constant threshold value of 0.05 units.
" Duration of reset signals (residual traces) was measured by noting the time beyond
stimulus offset when all the reset signals (level-6 activities with local orientations
opposite to those produced during stimulus presentation) dropped below the same
threshold value. For the simulations summarized in figures 2e and 2f, the threshold
value was 0.09 instead of 0.05, and the following parameter changes were made:
B=0.5, D=0.01, and K = 0.003; all other parameters remained the same.

The simulations that produced figures 9 and 10 differed slightly from the
simulations described in Francis et al (1994) and the other simulations reported here.
In these simulations, each boundary signal sent to a bipole cell of the opposite orienta-
tion is multiplied by the value 10 [see equation (A18)]. This weighting describes the
strength of spatial impenetrability, which prevents the creation of spurious segmentations
(Grossberg and Mingolla 1985b). This property was not relevant in previous studies, but
it is here. Such a parameter change in no way modifies the qualitative properties of the
simulation results reported in Francis et al (1994) or in the other simulations reported
here, although the quantitative values produced would differ. Since the model is now at
the stage of explaining large bodies of qualitative data properties, no loss is caused by
this parameter change. :

The stimulus for figure 10 was a dark square (26 pixels x 26 pixels) on a bright
(20 ft L) background present for 50 simulated ms. The stimulus for figure 9 was
a series of four concentric, bright (0.25 simulated ft L) outline squares, 1 pixel
wide each, separated by 3 pixels of dark background present for 2 simulated s.
[Note: 1 ft L =3.43cd m™]

All equations were solved by using Euler’s method with a step size of 0.01 time
units. Cell activities were checked every 0.1 time units (1 simulated ms) to measure
persistence of the signals. All simulations were performed on a Silicon Graphics Indy
R4000 SC workstation. The data in figures 9 and 10 were generated with the graphing
program NXPlot3D (Ludtke 1992).



