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How does the visual system generate percepts of moving forms? How does this happen when the forms
are emergent percepts, such as illusory' contours or segregated textures, and the motion percept is
apparent motion between the emergent forms? We develop a neural model of form-motion interactions
to explain and simulate parametric properties of psychophysical motion data and to make predictions
about how the parallel cortical processing streams VI -+ MT and VI -+ V2 -+ MT control
form-motion interactions. The model explains how an illusory contour can move in apparent motion
to another illusory contour or to a luminance-derived contour; how illusory contour persistence relates
to the upper interstimulus interval (ISI) threshold for apparent motion; and how upper and lower ISI
thresholds for seeing apparent motion between two flashes decrease with stimulus duration and narrow
with spatial separation (Korte's laws). The model accounts for these data by suggesting how the
persistence of a boundary segmentation in the VI -+ V2 processing stream influences the quality of
apparent motion in the VI -+ MT stream through V2 -+ MT interactions. These data may all be
explained by an analysis of how orientationally tuned form perception mechanisms and directionally
tuned motion perception mechanisms interact.

Fonn perception Motion perception Neural networks Visual cortex Visual persistence Apparent motion
Korte's laws

11 INTRODUCflON There exists neurophysiological evidence of fonD and

motion integration as well. Neurophysiological studiesHow does the visual system Integrate visual fonD and suggest that properties of motion (Maunsell & van

motion infonnation to generate a coherent percept of Essen, 1983; Albright, Desimone & Gross, 1984;
moving fonDs? It is well known that many percepts of Mikami Newsome & Wurtz, 1986a) and apparent
fonD are emergent properties of images and scenes, motion (Mikami, Newsome & Wurtz, 1986b; Newsome,
much as illusory contours help to group textured scenes Mikami & Wurtz, 1986) are represented in the process-
into detectable objects (Beck, Prazdny, &. Rosenfeld, ing stream of visual cortex that includes area MT. von
1983). It is also now known that many motion perce~ts der Heydt, Peterhans, and Baumgartner (1984) and
depend on detection of fonD. Chubb and Sperling Peterhans and von der Heydt (1989) have reported evi-
(1991) described motion percepts that are undetectable dence that the interblob cortical stream generates emer-
by some types of motion a~alysis an~ noted how gent properties of visual fonD, notably in area V2. The
detection of moving fonD might explaIn these per- existence of\these parallel cortical processing streams for i
cepts. Cavanagh and Mather (1989) argued tha~ some fOnD and mption processing raises the question of how I
properties of apparent motion require detection of fonD and motion processing can interact. One possible .]
moving fonDs. Wilson, Ferrera, and Yo (1993) des- link is between cortical areas V2 and MT. Such a .i
cribed how integration of lumin~nce-based and fo~- pathway does exist (DeYoe & van Essen, 1988). I
based motion could help to explaIn percepts of moVIng Grossberg (1991) outlined a model that suggested how I

plaids. a VI -.V2 -.MT link between fonD and motion pro- I

.Purdue University, Department of Psychological Sciences, 1364 detecting system to respond
Psychological Sciences Building, West Lafayette, IN 479°:,. U.S.A. ings, such as illusory cont

tCenter for Adaptive Systems a.nd I?epartment of ~ognltive and textures. Second, it was exp
Neural Systems, Boston University, III Curnmington Street, .mechanisms co

ma c es an could its moti
149

GREGORY FRANCIS,. STEPHEN GROSSBERGt~
Received 22 March 1994,' in revised form 20 September 1994; in final form 12 January 1995



150 GREGORY FRANCIS and STEPHEN GROSSBERG

These model mechanisms were used to clarify analogous
neurophysiological evidence about depth sensitivity
from cells in V2 (von der Heydt, Hanny & Diirsteler,
1981) and MT (Logo thetis, Schiller, Charles & Hurlbert,
1990; Schiller, Logothetis & Charles, 1990). With this
model analysis in hand, it was proposed how the form-
to-motion pathway could help the motion system create
motion signals at the computed depths of the perceptual
groupings, thereby integrating form and motion data
into consistent percepts of moving forms. This analysis
suggested at what processing stages outputs from the
form system should input to the motion system.

This article develops the Grossberg (1991) proposal by
showing how to link neural models of emergent bound-
ary segmentation (Grossberg, 1987a, b, 1994; Grossberg
& Mingolla, 1985a, b, 1987) and motion perception
(Grossberg & Mingolla, 1993; Grossberg & Rudd, 1989,
1992) to explain and simulate challenging data about
form-motion interactions. Conceptually, the model
building in this paper simply links two established
models of form and motion processing in an appropriate
way. The result is an analysis of form and motion
percepts that mechanistically links together several types
of data that heretofore have been treated separately. In
particular, it links together data about the persistence of
static images with data about the quality of apparent
motion. The key idea is to relate the time taken to
generate and reset a persistent boundary segmentation in
the form cortical stream (through V2) with threshold
properties of apparent motion in the motion cortical
stream (through MT).

A key property distinguishing this paper from the
earlier approaches to form and motion integration is
thus that we use the dynamic characteristics of the form
processing system to explain data about motion percep-
tion. As a first step in analyzing the form-motion
interactions, we simulate visual displays that generate
two dimensional percepts of apparent motion of moving
forms. Our analysis simulates three sets of illustrative
data using a fixed set of model parameters:

.Illusory contours move in apparent motion and
do not obey the inverse relationship between
upper interstimulus interval (ISI) thresholds 1.2. Persistence of illusory contours
and stimulus duration that is characteristic of The model explains these properties of illusory con-
luminance-based contours (von Griinau, 1979; tour apparent motion as a consequence of form-motion
Ramachandran, 1985; Mather, 1988). interactions. The illusory contours are generated in the

.Apparent motion can occur between one stimu- form perception system and input to the motion percep-
Ius defined by illusory contours and a second tion system. Key properties of Mather's motion percep-
stimulus defined by luminance contrast (von tion data are explained using properties of the stationary
Griinau, 1979; Cavanagh, Arguin & von Griinau, illusory contours that are computed in the form system.
1989 " In particular, data on illusory contour persistence of.

-~~-~---

related to flash duration. The range of ISIs Mat er (19 .FrancIs, ross rg, an mgo a
capable of producing ~pparent motion narrows simulated the persistence of illusory and luminance- -
as the spatial separation between the flashes based contours using the Grossberg and Mingolla 1 i

Before presenting the details of model mechanisms, we
briefly describe these data and how the model addresses
each of these data sets.

1.1. Apparent motion of illusory contours

Several authors have shown that illusory contours
can move in apparent motion (von Griina:u, .1979;
Ramachandran, 1985; Mather, 1988). During the first
time period of the experiment by Ramachandran (1985),
subjects saw an illusory Kanizsa square on the left side
and a jumbled set of lines on the right side. During the
second time period, the pacman circles that induced the
Kanizsa square filled up and the illusory Kanizsa square
disappeared. At the saDie time, lines on the right within
a region defined by an illusory square disappeared.
Subjects reported seeing motion of the illusory square
from the left to the right. Features in the two images
cannot be matched, but the illusory Kanizsa squares
which these features induce can be matched. Subjects in
fact saw motion from one illusory square to the other.
von Griinau (1979) reported similar results.

Mather (1988) investigated the temporal properties of
illusory contour apparent motion. Figure l(a) (from
Mather) shows contour plots of reports of seeing appar-
ent motion between two illusory Kanizsa squares as a
function of the inducing stimuli duration for two sub-
jects. [Some of these points are extrapolations from
measured points as Mather (1988) did not provide the
values of measured data points.] Of key interest is the
inverted-Ushape of the top curves that divide regions of
55% perceived motion. This curve can be considered as
the upper ISI threshold for perceiving apparent motion
of the illusory contour. Figure l(c) replots the curves on
oon-logarithmic axes. The shape of these curves is unlike
the data derived from apparent motion of luminance-
based contours. For example, as described below, the
upper ISI threshold values for illusory contour motion
are larger than those of the corresponding luminance-
based contour motion. The inverted-U shape of
threshold ISIs as a function of stimulus duration is also
unlike that of luminance-based contours, for which
threshold ISIs are inversely related to stimulus duration,
as described below.
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stream. As in the data of Meyer and Ming .(1988), the
Static BCS representation of an illusory contour lasts
longer than that of a real contour and exhibits an
inverted U relationship between persistence and stimulus
duration. These properties are traced in Francis et al.
(1994) to an analysis of why the illusory contour bound-
ary takes longer to form than a luminance-based bound-
ary (increasing portion of the inverted-U curve) and
has fewer reset signals to shut it off (decreasing portion
of the inverted-U curve). This analysis is reviewed in
Section 2 for completeness.

The Static BCS model is distinguished from the
Motion BCS model of motion boundary segmentation
by the Vl-+ MT cortical stream (Chey, Grossberg &
Mingolla, 1994; Grossberg & Mingolla, 1993; Gross-
berg, Mingolla & Nogueira, 1993; Grossberg & Rudd,
1989, 1992). The current model of form and motion
integration suggests how the Static BCS interacts with
the Motion BCS to model the cortical VI -+ V2 -+ MT
interaction. In particular, the persistence of illusory
contour inputs from the form model (Static BCS) to the
motion model (Motion BCS) determines the upper ISI
threshold of apparent motion of the contour. In this way
the dynamic characteristics of form processing are used
below to explain the data in Fig. I(a). Figure l(b)

summarizes ISI thresholds for computer simulations of
illusory contour motion in the model that qualitatively
match the properties of the curves found by Mather
(1988). In particular, Fig. l(c) plots the ISI thresholds
from the subjects in Mather's study and the model. The
results are similar in magnitude and qualitative shape.
This simulation used the same parameters for the Static
BCS as that were used in Francis et aZ. (1994) to simulate
data from Meyer and Ming (1988), who directly
measured the inverted-U relationship between persist-
ence and stimulus duration.

Although the simulated curve falls within the exper-
imental curves, our goal in this article is to demonstrate
key qualitative, rather than quantitative, relationships.
One reason is that the specific shape of ISI curves found
by Mather seems to be subject-dependent. In addition,
the approximations that are necessary to make the
simulations computationally feasible do not yet warrant
a search for optimal parameters.

1.3. lnterattribute motion

von Gronau (1979) observed that subjects sometimes
can see apparent motion between an illusory contour
and a contour defined by luminance edges. Cavanagh
et al. (1989) generalized this result by showing that
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FIGURE 1. (a) Contour maps depicting the percentage of trails in which apparent motion of an illusory contour was reported
as a function of stimulus duration and ISI. Black, 85-100%; mid-gray, 70-85%; light gray, 55-70%; white <55%. [Used with
permission from Mather (1988).] (b) Computer simulation of upper and lower ISI thresholds as a function of stimulus duration.
(c) Upper ISI thresholds for perceiving illusory contour apparent motion for subjects and the simulation. The simulation
thresholds fall between the data of the subjects. For each subject and the simulation, maximal ISI takes a peak value at an ,
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cells to luminance flashes allow the MaC Filter to
respond to rapidly moving stimuli. In contrast, form
processing by the BCS is substantially slower than
motion processing, so that persisting form inputs from
the Static BCS to the MaC Filter often outlast the
effects of purely luminance based inputs. These
form-motion interactions are shown below to be suffi-
cient to explain the properties of the upper ISI thresholds
in the classical Korte's laws.

In particular, Francis et al. (1994) showed that in-
creasing the duration of a stationary form input de-
creases the persistence of the boundary representation in
the Static BCS, much as experiments on visual persist-
ence (e.g. Bowen, Pola & Matin, 1974) report an inverse
relationship between persistence and stimulus duration.
As in the case of illusory contours above, the persistence
of form signals determines the upper ISI threshold of
apparent motion. The remaining properties of Korte's
laws-namely the lower ISI thresholds and influences of
spatial separation-are explained below in terms of
MaC Filter properties. Figure 2(b) summarizes com-
puter simulations of how the form-motion model simu-
lates Korte's laws. This figure demonstrates that the
model reproduces all the qualitative properties of the
classical Neuhaus (1930) data. The most important
quantitative property is also explained, namely the
350 msec gap between the smallest lower ISI threshold
and the largest upper ISI threshold.

subjects reported seeing motion between stimuli defined
by any combination of attributes, including luminance,
color, texture, relative motion, or stereopsis. They also
noted that motion between stimuli of different attributes
is weaker than motion between stimuli of the same
attribute. Taken together, these studies suggest that
interattribute motion is a result of form and motion
integration. The Static BCS is capable of responding to
multiple types of form-supporting cues, including lumi-
nance, color, texture, shading, and stereo cues
(Cruthirds, Grossberg & Mingolla, 1993; Graham, Beck
& Sutter, 1992; Grossberg, 1987a, b, 1994; Grossberg &
Mingolla, 1985a, b, 1987; McLoughlin & Grossberg,
1994; Sutter, Beck, & Graham, 1989). The Motion BCS
is capable of responding to a wide range of apparent
motion, first-order motion, and second-order motion
cues (Grossberg, Mingo11a & Nogueira, 1993; Grossberg
& Rudd, 1989, 1992). Thus many properties of interat-
tribute motion could, in principle, be explained by
interactions between the Static BCS and the Motion
BCS.

Computer simulations described below show how
the model generates interattribute motion between an
illusory contour and a contour defined by luminance
edges (von Griinau, 1979). Grossberg (1994) modeled
how certain combinations of luminance, color, texture,
size, and depth information are bound more closely
together than others during three-dimensional percep-
tion, and thus may more easily activate motion percepts
between themselves using mechanisms such as those in
the present form-motion model. 2. MODEL FORM AND MOTION INTERACfIONS

1.4. Korte's laws, transient cells, and visual persistence 2.1. Boundary segmentation

Figure 2(a) shows the upper and lower ISI threshold 2.1.1. Spatial interactions. Grossberg (1984) and
values for apparent motion of luminance-based stimuli Cohen and Grossberg (1984) introduced the Static BCS
(Kolers, 1972; after Neuhaus, 1930). This figure shows model. Grossberg and Mingolla (1985a, b, 1987) deve1-
that as stimulus duration increases from 10 to 45 to oped the model to simulate how the visual system
90 msec, each upper and lower ISI threshold curve detects, completes, and regularizes boundary segmenta-
decreases at every spatial separation. Moreover, as the tions in response to a variety of retinal images. Such
distance between the two stimuli increases, the range of segmentations can be defined by regions of different
ISIs that produce apparent motion narrows, with the luminance, color, texture, shading, or stereo signals. The
upper ISI decreasing and the lower ISI increasing for Static BCS computations for single-scale monocular
every stimulus duration. These properties are often processing consist of a series of filtering, competitive,
collectively referred to as Korte's laws (Korte, 1915). and cooperative stages as schematized in Fig. 3 and

Grossberg and Rudd (1992) explained the character- reviewed in several reports (e.g. Grossberg, 1987a, 1994;
istics of the lower ISI thresholds and the role of spatial Grossberg, Mingolla & Todorovic, 1989). The first stage,
separation using the Motion BCS. Both the Motion schematized as an unoriented annulus in Fig. 3, models
BCS and the Static BCS are broken up into a multistage in perhaps the simplest possible way the shunting on-
filter followed by a grouping or segmentation network. center off-surround interactions at the retinal and LGN !
Grossberg and Rudd focused their study on the motion levels. These cells compensate for variable illumination
filter, which is called the Motion Oriented Contrast (or and enhance regions of local contrast in the image.
MOC) Filter. The MOC Filter models how interactions Interactions of on-center off-surround and off-center
between sustained cells and transient cells produce on-surround cells are not needed here, but their comp-
motion direction signals in response to input changes. In 1ementary responses to images are modeled elsewhere

-, , ,
was sensitive only to changes in luminance. In the Mingolla & Williamson, 1994; Grossberg & Wyse, 1991;
current form-motion model, the boundary segmentation Pessoa, Mingolla & Neumann, 1994).
outputs of the Static BCS input to the MOC Filter. The These model LGN cells input to pairs of like-oriented ,
MOC Filter is thus sensitive to changes in form as well sim Ie cells that are sensitive to 0 osite contrast 0- i
as changes l-~-



FORM AND MOTION INTEGRATION 153

(a)
400

10 45 -i3---

90 --x---

a ~---

350 ~~~~ -'-
--&.-

~

300

~

"&,.
-~

~

G e._.

x *--. "'8.

,.-x,
250

~

E
,

'S
x,

200 --g G,-::

~/

s.

"X- "
-X 7-': x.

,,'
"1:J

.EI

~
t:

~
~
g
~ 150

,".,'

..0

a'- :-"'~-:: .><- ~'.:~

~ ...0.100 " 0 0-"--
~

(;} EJ-'"
x

..~

--~-50 -~~ *)E- --

0
0 0.5 1 1.5 2 2.5 3

SPATIAL SEPARATION (degrees)
3.5 4 4.5

(b)
400

10 45 .{3---

90 --x- --~~-~-~ ~ ~-~-~~-~-~-~ "' "
350

300 ~

8'."EJ250 D.. 'e.

.--~-~- ~-~~ ~-~--~~~~::~::~:.:::~,~X"
"X,

)( x

200

')<.

')(

150 'X

'in'
"C
c:
8
Q)

~
"e
~
m
"3
E
§.
Ci5

100 [,I- ---I'}- --eJ--EJ EJ EJ e- ---B EJ G---e---EJ---i3 E B--- -e e- .--8 £;}---"1

50 x- ---* x- --~ ~ , ._)(- .--*---~ -x ~-- --~-- --)(- )( *--- -x -x x-- _.~

0
1 52 3 4

SPATIAL SEPARATION (simulated degrees)

FIGURE 2. Upper and lower ISI thresholds as a function of spatial separation for three stimulus durations. Increasing flash
duration decreases the threshold ISI values. The upper IS! threshold decreases with spatial separation and the lower IS!
threshold increases with spatial separation. (3:) Psychophysical data. [Redrawn from Kolers (1972) after data from Neuhaus

c::- ~~'123{})] ()1) ~;!I)I'.1at~ J~Jtbr~sbQln ~ahlcs- -

turn, send their rectified output signals to like-oriented types in the model. Complex cells activate hypercomplex
complex cells. Complex cells are thus rendered insensi- cells through an on-center off-surround network (first

~ --
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endstopping operation. In this way, complex cells excite
hypercomplex cells of the same orientation and position,
while inhibiting hypercomplex cells of the same orien-
tation at nearby positions. One role of this spatial
competition is to spatially sharpen the neural responses
to oriented luminance edges. Another role is to initiate
the process, called end cutting, whereby boundaries are
formed that abut a line end at orientations perpendicular
or oblique to the orientation of the line itself (Grossberg,
1987a; Grossberg & Mingolla, 1985b).

The signals from complex cells to hypercomplex cells
are multiplied, or gated, by habituative chemical trans-
mitters. These habituative gates help to reset boundary
segmentations in response to rapidly changing imagery,
as discussed below. The hypercomplex cells input to a
competition across orientations at each position (second
competitive stage) among higher order hypercomplex
cells. This competition acts to sharpen up orientational
responses at each position, and to work with the habit-
uative gates to res~t boundary segmentations, as dis-
cussed below.

Output from the higher-order hypercomplex cells feed
into cooperative bipole cells that initiate long-range
boundary grouping and completion. Bipole cells fire only
if both of their receptive fields are sufficiently activated
by appropriately oriented hypercomplex cell inputs.
Bipole cells hereby realize a type of long-range co-
operation among the outputs of active hypercomplex
cells. For example, a horizontal bipole cell, as in Fig. 3,
is excited by activation of horizontal hypercomplex cells
that input to its horizontally oriented receptive fields. A
horizontal bipole cell is also inhibited by activation of
vertical hypercomplex cells.

Bipole cells were predicted to exist in Cohen and
Grossberg (1984) and Grossberg (1984) shortly before
cortical cells in area V2 with similar properties were
reported by von der Heydt et al. (1984). At around the
time of the von der Heydt e.t al. report, Grossberg and
Mingolla (1985a, b) used bipole cell properties to simu-
late and explain a variety of data about illusory contour
formation, neon color spreading, and texture segre-
gation. These same properties playa role in our

4
~
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explanations of apparent motion of illusory contours
and interattribute apparent motion.

Bipole cells generate feedback signals to like-oriented
hypercomplex cells. These feedback signals help to create
and enhance spatially and orientationally consistent
boundary groupings, while inhibiting inconsistent ones.
In particular, bipole cell feedback excites hypercomplex
cells at the same orientation and position while inhibit-
ing cells at nearby positions. Hypercomplex boundary
signals with the most cooperative support from bipole
grouping thereupon further excite the corresponding
bipole cells. This cycle of bottom-up and top-down
interaction between hypercomplex cells and bipole cells
rapidly converges 'to a final boundary segmentation.
Feedback among bipole cells and hypercomplex cells
hereby drives a resonant cooperative-competitive de-
cision process that completes the statistically most fa-
vored boundaries, suppresses less favored bound-
aries, and coherently binds together appropriate feature
combinations in the image.

2.1.2. Temporal dynamics. The positive feedback
within the hypercomplex-bipole feedback loop also cre-
ates hysteresis that could, if left unchecked, lead to
undesirably long boundary persistence after stimulus
-offset, and thus to uncontrolled image smearing in
response to image motion (Burr, 1980). In particular,
each cell in the BCS has its own local dynamics involving
activation by inputs and passive decay (of the order of
10 simulated msec). However, the excitatory feedback
loop dominates the temporal aspects of the BCS. As
shown in Francis et al. (1994), when inputs (luminance
edges or illusory contour inducers) feed into the BCS,
they trigger reverberatory interactions that, if left
unchecked can last for hundreds of simulated msec. This
is true because hypercomplex and bipole cell activities at
a particular position and orientation decay away only
when bipole cell output centered at the same position
and orientation weakens. Since bipole cell activation
depends on inputs to both receptive fields, bipole acti-
vation near the ends of contours weakens first after
inputs shut off. As these bipple cells lose activation, so
do all other cells of the same orientation and position,
This decay causes more bipole cell activities to .decay,
which continues the process. The net effect of these
spatial and temporal interactions is that boundaryactivi-
ties erode from contour ends to the contour middle. This
erosion is observable in the simulations in Figs 1 1 (c),
13(c) and 14(c).

Outward-to-inward boundary erosion makes predic-
tions about how masking stimuli may influence the
perception of illusory contours such as Kanizsa squares.
Masking the pacmen that generate a Kanizsa square
may not immediately obliterate the illusory contours

at these locations. A second masking stimulus at
these locations can thus influence the persistence of
these illusory fragments, as Shapley and his colleagues
have recently shown (Shapley, personal communi-

--_ca~~o~):_~

The problem for the Static BCS is to accelerate this
boundary erosion in response to rapidly changing im-
agery. More generally, the BCS needs to- use resonant
feedback to maintain segmentations of unmoving scenic
objects, even as it actively resets segmentations corre-
sponding to rapidly changing scenic objects. The net
effect is to control image smearing in a form-sensitive
way. Remarkably, the same BCS mechanisms that create
resonant boundaries can also be used to reset them. Two
types of mechanism maintain the desired tradeoff be-
tween resonance and reset. The first mechanism uses the
orientational competition that converts model hyper-
complex cells into higher-order hypercomplex cells. Con-
sider how this competition works between pairs of
mutually perpendicular cells. Pairs of mutually perpen-
dicular complex, hypercomplex, and higher-order hyper-
complex cells, designated in gray within Fig. 3, define a
specialized type of opponent processing circuit that
Grossberg (1972) has called a gated dipole. The gates in
the dipole are the habituative transmitters that multiply
signals in the pathways from complex to hypercomplex
cells (square synapses in Fig. 3). Such a gated dipole can
rapidly inhibit a bipole cell when its activating image
features shut off or are removed due to image motion.

To see h9W this woIks,~uppC)se that a horizontal edge
turns on horizontally oriented complex, hypercomplex,
and bipole cells, thereby generating a horizontal bound-
ary segmentation. Offset of the horizontal edge can cause
an antagonistic rebound of activity in the corresponding
gated dipoles, leading to activation of vertically oriented
hypercomplex cells and inhibition of horizontal bipole
cells. The rebound is generated as follows. When the
horizontal input is on, horizontal transmitter gates ha-
bituate. The net result is an overshoot of input to
horizontal bipole cells, followed by a steady input level
after habituation takes place. When the input sub'-
sequently shuts off; the altered balance of transmitter
between the horizontal and vertical channels favors the
vertical channel and permits vertical cell activity to
rebound in response to an internally generated tonic
input that equally activates both channels. When this
happens, an inhibitory input to the bipole cell oCcurs.
The rebound is transient because transmitters in both
channels then gradually equilibrate to equal levels. In
summary, rebound-driven inhibition of the bipole cells
selectively limits persistence and smearing at those lo-
cations where the image is changing. [See Francis et al.
(1994) for further details- and simulations.]

Several conceptual and data,.related properties of reset
by a transient antagonistic rebound are worth noting
here. The first is that, in more complex versions of the
BCS, both ON cells that are turned o.n by an input and I
OFF cells that are turned off by an Input are modeled i
(Gove et al., 1994a, b; Grossberg, 199.1).. In such .a i

,
e~t activation of a horizontal OFF cell, as well as" the j
type of onset of a vertical ON cell that is here simulated. 1
Inhibition of horizontal bipole cells may thus be medi-
ated by horizontal OFF cells, rather than b vertical ON

~!_~~h~~_~~~-,_f2r~~~!!y, _I~ tttis_~-
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general model, any influence of vertical cells on horizon- reverberation strength does not change greatly, but the
tal bipoles could be mediated by horizontal ON or OFF strength of the reset signals continues to grow due to the
cells. slowly habituating transmitters, thereby causing persist-

In support of such opponent interactions, whether ence to decrease. Since the illusory contour has shorter
mediated by ON cells or OFF cells, orientationally luminance contour inducers than an equal length edge,
opponent aftereffects are well known to occur psycho- it produces fewer reset signals, thereby allowing greater
physically (MacKay, 1957; Taylor, 1958). From a persistence of illusory contours than luminance-defined
physiological perspective, several components of the stimuli, in agreement with the psychophysical data of
gated dipole circuit have known cellular correlates in Meyer and Ming (1988).
visual cortex, including tonically active cells (such as the We will show below how the persistence of BCS
cells that feed the habituative transmitters) and polariz- output signals establishes the upper ISI thresholds for
ation from opposite orientations (Creutzfeldt, Kuhnt & apparent motion. This hypothesis links psychophysical
Benevento, 1974; Levitt, Kiper & Movshon, 1994). data on visual persistence of non-moving stimuli to the
Further neurophysiological experiments are needed to data on moving stimuli.
test the cellular substrate of this predicted boundary
reset mechanism and, by implication, of orientationally
opponent aftereffects. 2.2. Early motion processing

The rebound-driven reset mechanism shuts off bound- Grossberg and Rudd (1989, 1992) and Grossberg and
ary segmentations at locations that lose input support Mingolla (1993) developed the Motion BCS and its front
due to image offset or motion. The second reset mechan- end, the MOC Filter, to explain a broad range of motion
ism helps to prevent image smearing across space. It uses and apparent motion data. First and foremost, the
the spatial endstopping competition among like-oriented Motion BCS embodies the idea that motion processing
hypercomplex cells at the first competitive stage (Fig. 3). can generate boundary segmentations of moving objects.
Castet (1994) has reported experiments that are consist- Whereas boundary segmentations of the Static BCS
ent with this model prediction. Francis et al. (1994) compute properties based on static image orientations,
showed that these two mechanisms of the BCS model are boundary segmentations of the Motion BCS compute
sufficient to explain the key parametric properties of properties based on moving image directions. Both BCS
visual persistence experiments. systems generate segmentations whose outputs are insen-

To explain properties of apparent motion, two charac- sitive to direction-of-contrast, so that their boundaries
teristics of visual persistence are particularly import- can interpolate textured and shaded image regions where
ant. First, psychophysical studies of visual persistence contrast polarity reverses.
demonstrate that persistence duration decreases in re- The MOC Filter may be conceptually described in
sponse to image edges as stimulus duration increases several ways. It is a minimal filter that produces output
(Bowen et al., 1974). Francis et al. (1994) provide signals that are insensitive to direction-of-contrast but
simulations of boundary signal persistence that agrees sensitive to direction-of-motion. It pools information
with these findings. The strength of the inhibitory re- from multiple orientations and unoriented input signals
bound in the gated dipole mechanism explains the into directionally selective output signals. To accomplish
model's results. As stimulus duration increases, the gate the transformation from multiple orientations to pre-
habituates more and the strength of the subsequent scribed motion directions, the MOC Filter uses a hier-
rebound covaries with the amount of habituation. A archy of short-range and long-range spatial interactions
longer stimulus generates stronger inhibition at stimu- that help to explain data about short-range and long-
Ius offset, thereby hastening the erosion of boundary range motion within a single system. The qualitative
signals, and reducing measured persistence. properties of the five MOC Filter processing levels of

Second, psychophysical studies of illusory contour Fig. 4 are summarized below. Representative equations
persistence (Meyer & Ming, 1988) show that persistence are listed in the Appendix.
duration increases with stimulus duration up to about 1 . t tt..Level: preprocess Inpu pa ern200 msec and then decreases as stimulus duration grows ..
still longer. These findings, too, have been simulated The image is preprocessed before actlva.tlng the filter.
using BCS interactions (Francis et al., 1994). Since For example, it is passed through a shun~mg °.n-ce~ter,
illusory contour inducers have a smaller proportion of off-surround net to compensate for vanable Illumma-
luminance edges than an image edge of equal length; tion, or to "discount the. illumin.ant," and to thereby
they take longer to establish a strong reverberatio~ in t.he process ~~tio contrasts In the Image (Grossberg &
feedback loop of the BCS. As stimulus duration m- TodorovIc, 1988).
creases, the reverberation ows ston er u to some

5- .
lead to lo~ger persistence. But the reset signals also grow Four operations occur here, as illustrated .in ~~g. 5.
stronger as stimulus duratio~ increases. As stimul~s .Space averag.e. Inputs are ~rocessed by m?IVldual
duration increases up to about\200 msec, ~he increa.se In on~nted recep~lve. ~elds, or sImple cells, WhICh add
reverberation stren th I a i I

---st~~th~B~YQ.nd slimulus-JlJlra:tiQD~L2QOmse.c..JheQLthe recentivefield.
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(off-cells) with positive outputs (Fig. 6). These filters use
five operations.

Space average. This is accomplished by a receptive
field that sums inputs over its entire range, unlike the
receptive field of a sustained cell. This receptive field is
assumed to be unoriented, or circularly symmetric, for
simplicity.

Time average. This sum is time averaged to generate
a gradual growth and decay of total activation.

Change detector. The on-cells are activated when the
time average increases [Fig. 6(a)]. The off-cells are
activated when the time average decreases [Fig. 6(b)].

Rectify. The output signal from a transient cell grows
with its activity above a signal threshold.
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(a) (b)
FIGURE 4. The MOC Filter. The input pattern (Levell) is spatially
and temporally filtered parallel by both sustained response cells with
oriented receptive fields that are sensitive to direction-or-contrast
(Level 2) and transient response cells with unoriented receptive fields
that are sensitive to the direction-of-contrast change in the cell input
(Level 3). Level 4 cells combine sustained cell and transient cell signals
multiplicatively and are thus Tendered sensitive to both direction-of-
motion and direction-of-contrast. Level 5 cells sum across space,
orientation, and oppositely polarized Level 4 cells to become sensitive

to direction-or-motion but insensitive to direction-of-contrast.)

15

;;:e:~
<
i=
a::
w
z

10 "Rectify. The output signal from a simple cell grows
with its activity above a signal threshold. Thus, the
output is half-wave rectified.

Short-range spatial filter. A spatially aligned array
of simple cells with like orientation and direction-of-
contrast pool their output signals to activate the next
cell level. As shown in Fig. 5, the target cells are pooled
in a movement direction that is not necessarily perpen-
dicular to the simple cell's preferred orientation. This
spatial pooling plays the role of the short-range motion ,. .'" , ,
limit Dmax (Braddick, 1974). The breadth of spatial 0 500 1000

pooling scales with the size of the simple cell receptive 151 (msec)
fields [Fig. 5(a, b)]. Correspondingly, Dmax depends on FIGURE 5. The sustained cell short-range filter. Inputs are spatiotem-
the spatial frequency content of the image (Anderson & porally filtered by sustained cells with individual oriented receptive
Burr, 1987; Burr, Ross & Morrone, 1986; Nakayama & fields and temporal filtering characteristics that are determined by the
Silverman, 1984, 1985; Petersik, Pufahl & Krasnoff, dynamics of a shunting membrane equation. The ouput of c:ach
1983) and is not a universal constant. su.stained cell is rectifie~ an~ thre.shold~d. ~e o,:,tputs of a spatially

..' aligned array of cells with like onentation, dlrection-of-contrast, and
Tlme average. The target cell time averages the inputs direction-of-motion are pooled. The breadth of the spatial pooling

that it receives from its short-range spatial filter. This scales with the size of the simple cell receptive fields, as in (a) and (b).
operation has properties akin to the "visual inertia" [Reprinted with permission from Grossberg and Rudd (1992),]
durin a arent motion that was re orted b Anstis and (c). Visual inertia in apparent motion measured by Anstis and

amac an ran , . d th d f b' (.. ) dpnmmg dots, an e egree 0 las Inertia was measure as a

Le I 3 tr . t U filt function of the ISI between the priming dot and test. The bias induced
ve : anslen ce er , ..by the pnmmg dots was about 12% at short ISIs and fell monotom- "
In parallel with the sustained cell filter, a transient cell cally to about 7% for ISIs exceeding 500 msec.] Reprinted with 1

filter reacts to in ut increments on-cells or decrements permission from Anstis and Ramachandran (1987). ; -

Level 2 Level 3 Short-range
sustained sustained space filter

~ t Level1 t t I
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Transient On Cell Transient Off Cell design a filter that is sensitive to direction-of-motion and
insensitive to direction-of-contrast-is not part of the
Marr-Ullman model. This step requires long-range
spatial filtering and competitive sharpening, described
below, that are also not part of the Marr-Ullman model.
This difference in design rationale is fundamental. The
Marr-Ullman model espouses an "independent mod-
ules" perspective. In contrast, the MOC Filter generates
an output that is independent of direction-of-contrast,
and thus is perceptually invisible. Its boundary segmen-
tations help to form compartments in which a comp-
lementary "seeing" system, called the Feature Contour
System (FCS), fills-in surface representations of bright-
ness, color, depth, and form (Arrington, 1994; Cohen &
Grossberg, 1984; Grossberg, 1987b, 1994; Grossberg &
Todorovic, 1988; Paradiso & Nakayama, 1991). The
BCS and FCS are thus not independent ~odules.
Rather,' they have been shown to obey computationally
complementary rules whose individual insufficiencies are
overcome via BCS f:; FCS interactions.

~=~ ~~=~~=~::::::::
INPUT

I_L~~ L 6~ -
RESPONSE

(a) (b)
FIGURE 6. Responses over time of transient on- and off-cells.
(a) On-cell respon~s are formed from the positive-rectified and
thresholded time derivative of a spatiotemporally filtered image. The
spatial filter has an unoriented on-center, off-surround receptive field.
The temporal filter is based on the dynamics of a shunting membrane
equation that time averages the spatially filtered input. The on-cell thus
produces a time-averaged response to an increment in the input.
(b) Off-cells are formed from the negative-rectified and thresholded
time-averaged response to a decrement in the input. [Reprinted with

permissien from Grossberg and Rudd (1992).]

Level 5: long-range spatial filter and competition

Outputs from Level 4 cells that are sensitive to the
same direction-of-motion but opposite directions-of-
contrast activate individual Level 5 cells by a long-range
spatial filter that has a Gaussian profile across space
(Fig. 8). This long-range filter also groups together Level
4 cell outputs that are derived from Level 3 short-range
filters with the same directional preference but different
simple cell orientations. Thus the long-range filter pro-
vides the extra degree of freedom that enables Level 5
cells to function as direction cells, rather than as orien-
tation cells. Cells in cortical area MT can also respond
to a range of orientations that are not perpendicular

Level 4: sustained-transient gating Yields dlrectlon-of- to their preferred direction-of-motion (Albright 1984.
motion sensitivity and direction-or-contrast sensitivity , ,

Maximal activation of a Level 2 sustained cell filter is
caused by image contrasts moving in either of two
directions that differ by .180 deg. Multiplicative gating of
each Level 2 sustained cell output with a Level 3
transient cell on-cell or off-cell removes this ambiguity
(Fig. 7). For example, consider a sustained cell output
from vertically oriented dark-light simple cell receptive
fields that are joined together in the horizontal direction
by the short-range spatial filter [Fig. 5(a)]. Such a
sustained cell output ffl maximized by a dark-light image
contrast moving to the right or to the left. Multiplying
this Level 2 output with a Level 3 transient on-cell ~~

output generates a Level 4 cell that responds maximally
to motion to the left. Multiplying it with a Level 3 off-cell +
output generates a Level 4 cell that responds maximally
to motion to the right. transient sustained transient

Multiplying a sustained cell with a transient cell is the FIGURE 7. Transient cell gating of sustained cell activities to produce
main operation of the Marr and Ullman (1981) motion directionally sensitive responses. The short-range filter, which is con-
detector. Despite this similarity, Grossberg and Rudd structed from like-oriented simple cells, responds ambiguously to a

Filter and the Marr-Ullman model: none of the oper- right ~r to the left. This ambigjlity of mo.tion.direction is.eliminated,
by gating the short-range filter response WIth either a transient on-cellations such as short-range spatral filterIng, tlme- response (to produce a left-motion signal) or a transient off-cell

averaging, and rectification occurs in the Marr-Ullman response {to produce a right-motion signal). [Reprinted with per- 1
model. In addition, the rationale of the MOC Filter-to mission from Grossber and Rudd 1992. !

Habituative transmitter. The rectified signals are .mul-
tiplied by a habituative transmitter that limits their
duration even in response to prolonged monotonic
inputs.
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Albright, Desimone & Gross, 1984; Maunsell & van
Essen, 1983; Newsome, Gizzi & Movshon; 1983).

The long-range spatial filter broadcasts each Level 4
signal over a wide spatial range in Level 5. Competitive,
or iateral inhibitory, interactions within Level 5 con-
trast-enhance this input pattern to generate spatially
sharp Level 5 responses. A winner-take-all competitive
network (Grossberg, 1973, 1982) can transform even a
very broad input pattern into a focal activation at the
position that receives the maximal input. The winner-
take-all assumption is a limiting case of how competition
can restore positional localization. More generally, this
competitive process may only partially contrast-enhance
its input pattern to generate a motion signal whose
breadth across space increases with the breadth of its

inducing pattern.
These model interactions can generate a continuously

moving signal, called a G-wave (after the long-range
Gaussian), in response to the discrete flashes of an
apparent motion display. Upon offset of the first flash,
its Level 4 cell activations began to decay. If the ISI
between the flashes is not too long, these decaying
sil!!!~ls can symmate through !!!e 10ng-E~!!g~Qau~sian

er WI growmg~
code the same direction. As the local motion signals at
the first flash weaken and the local motion signals at the
second flash strengthen, the peak value of activity among
th~ T p.v~1 ~{'.e11~, which adds all these signals through the

/
/

.

FIGURE 8. Combination of like direction-of-motion activities across
space by a long-range Gaussian filter. Local direction-sensitive re-
sponses of opposite direction-of-contrast, over a range of orientations,
are gated by transient cells of opposite types to produce like direction-
of-motion signals. These local signals are combined by a long-range
Gaussian spatial kernel to produce a spatially broad pattern of activity
across the Level 5 network. This broad pattern is then contrast
enhanced by a competitive, or lateral inhibitory, interaction. The
contrast enhancement restores positional information. [Reprinted with

permission from Grossberg and Rudd (1992).]

Gaussian filter, continuously shifts from the location of
the first flash to the location of the second flash.
Grossberg and Rudd (1989, 1992) correlated properties
of this traveling peak of activity with properties of many
apparent motion phenomena, including beta motion,
gamma motion, delta motion, split motion, Ternus
motion, and reverse-contrast Ternus motion.

Grossberg and Rudd (1992) also suggested that the
inverse relationship between lower ISI thresholds and
stimulus duration, as in Fig. 2, is due to a lag in the
response time of the Level 3 transient cells. MOC Filter
model transient cells respond more quickly to the offset
of a long duration flash than to the offset of a short
duration flash. Breitmeyer (1984) reviewed studies of
transient cells that are consistent with this property.
Moreover, keeping the ISI constant and increasing the
spatial separation of apparent motion stimuli produces
weaker G-waves at Level 5. This property clarifies why
the lower ISI threshold increases and the upper ISI
threshold decreases as a function of spatial separation.

This paper shows how to overcome a processing
limitation of the MOC filter pathways that modellumi-
nance-based Vl-+ MT interactions. In particular, the
MOC Filter, by itself, cannot generate motion between
stimuli defined by other stimulus, characteristics, such as
the emergent boundary segmentations that help to define
many visual form percepts in response to textured and
shaded images. Apparent motion of illusory contours
nicely illustrates this human competence because the
illusory contours are emergent boundaries and their
apparent motion depends critically upon the motion
system. Figure 9 shows simulation results of the MOC
Filter to one-dimensional inputs [Fig. 9(a)] that mimic i
illusory contour inducers. Levell, 2, and 3 cells respond I
to the spatiotemporal changes in luminance and combine I
to form local motion signals at Level 4 cells [Fig. 9(b)]
at the onset and offset of each inducer pair. These signals
converge on Level 5 cells to generate a weak G-wave
from the first pair of inducers to the second pair of
inducers. Compared to other apparent motion displays
(described below), this G-wave is so weak as to be
perceptually undetectable.

2.3. Integration of form and motion processing
Since psychophysical studies indicate that people can

see strong apparent motion between illusory contours,
some additional inputs, sensitive to illusory contours,
must contribute to the MOC Filter, thereby allowing it
to generate a G-wave in response to changing illusory
contours and, more generally, to emergent percepts of
form. The Static BCS, which does respond to illusory
contours, provides these inputs. Moreover, as the follow-
ing sections indicate, the persistence properties of the I
Static BCS signals account for many of the upper ISI !
threshold properties of apparent motion. I

connections that are simulated in this article. Oriented
boundary signals from the Static BCS feed into like-
oriented sust~ned cells and unoriented transient cells
in the MOC filter that correspond to the same retinal -
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location. This BCS-MOCFilter pathway, which models
a V2 -+ MT pathway in vivo, renders the MOC Filter
sensitive to spatiotemporal changes in form as well as to
spatiotemporal changes in luminance. This additional
sensitivity allows it to generate apparent motion signals

in response to illusory contours and other boundary
segmentations.

More precisely, signals resulting from the second
competitive stage feed into the Level 2 (sustained)
and Level 3 (transient) cells of the MOC Filter at the
same position. The MOC Filter Level 2 equations are
adjusted so that the sustained cells respond to direct
luminance inputs and to inputs from the Static BCS.
Similarly the Level 3 equations are adjusted so that the
transient cells respond to changes in luminance and to
changes in the inputs from the Static BCS. A lumi-
nance edge or an illusory contour could produce the
Static BCS inputs. Inputs from illusory contours persist
longer than luminance-defined inputs. In either case, the
MOC Filter combines the sustained and transient cell
outputs to produce local motion signals at Level 4.
The local motion signals then contribute to Level 5
cells and can, given the correct image parameters, gener-
ate a G-wave between a pair of temporally displaced
illusory contours.
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3. SIMULATIONS OF FORM-MOTION
INTERACTIONS

3.1. Simulation of illusory contour apparent motion

Figure 11 shows the results of simulating the Static
BCS and MOC Filter interactions with illusory con-
tour inducers. Figure ll(a) shows the inputs for a
display presenting two sets of illusory contour inducers
in sequence. Figure ll(b) shows the responses of Level
1 cells in the MOC Filter. These activities respond only
at the location of the luminance increments. Figure 1 1 (c)

40 shows the responses of the BCS hypercomplex cells at
SPACE(pixe~) the second competitive stage (see Figs 3 and 10), notably

the illusory contour between the two luminance incre-
ments. The activities in Fig. ll(b, c) feed into the
sustained cells at Level 2 and the transient cells at Level
3 of the MOC Filter, whose outputs are multiplied to
generate local motion signals at Level 4. Figure ll(d)
shows the responses of the Level 4 cells. The tall spikes
indicate the onset of the luminous inducers. The smaller
hills mark the offset of different parts of the illusory
contour. These responses are pooled by the long-range
filter to generate the Level 6 activities that are shown in
Fig. 1 1 (e). Due to the strong spatial competition between
these cells, only one cell is active at a time. The location
of the active cell shifts continuously from the first

80 stimulus to the second stimulus during the apparent
motion display. This demonstrates apparent motion of
the illusory contour.

For fixed spatial separation, the strength of the G-
wave depends on the stimulus duration and ISI of the

FIGURE 9. Computer simulation of how the MOC Filter without display. A strong G-wave requires overlap between the
BCS input responds to an illusory contour apparent motion display. BCS inputs to the first stimulus and the BCS inputs to
(a) Input stimuli. (b) Local motion signals at Level 4 cells. The only the second stimulus. Thus, the strength of the G-wave,

response along the perceived illusory contour. (c) Response of Level BCS signals to the first stimulus and as was noted5 globar motion cells. A weak (subthreshold) motion signal travels .f B .I. ' .
from the location of the first set of inducers to the second set of above, persIstence 0 CS sIgna s m response to illusory ,
inducers. This corresponds to perceived motion of the inducing stimuli contours. depends upon the duration of the illusory i

and not of the illusory contour. contour mducers.l
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FIGURE 10. Model of form and motion integration. Oriented boundary signals in the BCS feed into like-oriented sustained
cells and unoriented transient cells in the MOC Filter. -

Figure 12 shows the strength of the G-wave for percepts. Figure l(c) plots the upper ISI thresholds
different combinations of stimulus duration and ISI. from the data and the simulation. The simulation
Also plotted is a threshold value. We assume that when thresholds fall between the thresholds of the two sub-
the combinations of stimulus parameters create a G- jects. Moreover, the simulation thresholds are an
wave with a strength above threshold, then the motion inverted-U function of stimulus duration. The simu-
is observable. When the G-wave strength is below lation of the BCS boundary signals to explain these
threshold, then subjects are assumed not to see it. The apparent motion thresholds of Mather (1988) used ex-
measure of G-wave strength we use is specific to these actly the same parameters and equations as in our
simulations. Other measures would produce similar re- previous study (Francis et al., 1994) to explain the visual
suIts. See Appendix B for details. A notable property of persistence data of Meyer and Ming (1988). In summary,
Fig. 12 is that, as the stimulus duration increases from the model properties responsible for integrating form
50 to 100 msec, the intersection between the G-wave and motion information explain percepts of illusory
strength curve and the threshold shifts to a longer ISI; contour apparent motion (Ramachandran, 1985) by
but as the stimulus duration increases still further, the linking dynamic persistence properties of illusory con-
intersection between the G-wave strength curve and the tour form perception (Meyer & Ming, 1988) to the
threshold shifts to shorter ISIs. This inverted U is dynamic properties of apparent motion (Mather, 1988).
qualitatively explained in Section 2.1.2. The ISIs that
produce intersections in the strength and threshold 3.2. Simulation of interattribute apparent motion

curves identify the upper and lower ISI values for A similar analysis explains the generation of percepts
perceiving apparent motion. Figure l(b) plots those of interattribute apparent motion. Figure l3(a) shows I
threshold ISI values. in uts for an interattribute simulation. The first stimulus
--S-110 e -rrr rorr-., -pi errc:t: -a 1 us C s
contours shows a shape qualitatively similar to the ISI stimulus is a luminance edge. Figure 13(b) shows th~ !
thresholds in Fig. 1. Contours that persist longer supply activation of Levell cells at the MOC Filter. Figure ].
strong inputs to the motion system for longer durations l3(c) shows the boundary signals produced at BCS

..1 in r n the luminous
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display. (a) The stimuli consists of two sets of illusory contour inducers. (b) Levell activities in the MOC Filter do not create
illusory contours. (c) Boundary signals generated by the BCS create an illusory contour between the two inducers. (d) Local
motion signals at Level 4 cells. The tall spikes are responses to the luminous inducers, while the smaller curves are produced ;
by the illusory contours generated by the BCS. (e) Response of levelS gfObalniotion cells. The activity shifts continuously !

via a G-wave from the .:
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FIGURE 12. G-w;ivestl"ength for illusory contours as stimulus duration and ISI varies. Intersections .between G-wave strength
curves and the threshold mark upper and lower ISI thresholds.

contour. The BCS generates an illusory contour between 3.3. Simulation of Korte's laws
the inducers and a contour along the luminous inputs. The previous two sections demonstrate how inte-
Figure 13(d) shows the pooled response of Level 4 local gration of form and motion information helps to explain
motion cells that respond to rightward motion. [To dynamic properties of apparent motion that depend
better show the response at offset of the first stimulus, on visual form. This section shows that the dynamic
the larger activities at stimulus onset are sometimes properties of form perception are also relevant to stimuli
beyond the range of the plot.] With form-motion inter- that do not obviously require form processing for
actions, the Level 4 cells respond to both the illusory motion detection.
contour and the luminance-based contour. These signals Figure l4(a) shows the inputs for a standard apparent
feed into the Level 5 global motion cells [Fig. l3(e)]. This motion display, the stimuli are luminance edges separ-
plot, sampled with greater frequency than Fig. ll(e), ated in space and time. Figure l4(b) shows the MOC
shows that the activity of global motion cells shifts Filter Level 1 activations, and Fig. l4(c) shows the
continuously from the location of the illusory contour boundary segmentation generated in the BCS. Figure
to the location of the luminance-based contour. Figure l4(d) shows the pooled responses of local rightward
13(e) thus demonstrates apparent motion between motion cells at Level 4 in the MPC Filter. The response
stimuli of different attributes. to the first stimulus weakens as the response to the

While not simulated here, the BCS model seg- second stimulus grows. Recall from Section 2.2 that our
ments stimuli of many different attributes, including apparent motion signal, or G-wave, adds the Gaussianly
illusory contours (Gove et al., I 994b; Grossberg & filtered decay of the first response during the growth of
Mingolla, 1985a, b, 1987), textures (Cruthirds et al., the second response. Figure 14(e) plots the activity of
1993; Grossberg & Mingolla, 1985b, 1987), surface Level 5 global motion cells in the MOC Filter. [To better
brightness and color (Grossberg & Mingolla, 1985a; show the apparent motion signals in the contour plot,
Grossberg & Todorovic, 1988), and stereopsis any Level 5 activities>.l 00 are set equal to 100.] The
(Grossberg & Marshall, 1989; Grossberg, 1994; activity among these cells shifts continuously from the

,, .
form and motion offers a consistent explanation of many stimulus~ indicating a percept of apparent motion.
types of interattribute apparent motion by suggesting Korte's laws, summarized in Fig. 2(a),. describe h~w
that these segmentations feed into the MOC Filter, upper and lower ISI thresholds vary mversely with
which enerates the a arent motion erce t. duration; and how the range of ISIs that produce
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FIGURE 13. Computer simulation of interattribate apparent motion. (a) Stimulus input consists of illusory inducers followed !

between the two inducers. Boundary signals also respond to the luminance edge. (d) Level 4 local motion signal~ generated I
by illusory inducers and the luminous input. Offset of the boundary signals generated by the illusory inducers produces local i
motion signals cells that overlap with the local motion signals produced by the onset of the luminous stimulus. (e) Activity J
of Level 5 global motion cells shifts continuously via a G-wave from the location of the illusory contour to the location of

the luminous stimulus.
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apparent motion narrows as a function of the distance
between the stimuli. Grossberg and Rudd (1992) related
the inverse dependence of ISI threshold on duration to
a model.circuit, called a gated shunting cascade, whose
off-cells respond sooner after offset of long duration
stimuli than of short duration stimuli. Such a circuit is
naturally embedded in the MOC Filter design, as well as
the Static BCS design. All that is required is an opponent

process in which there are at least two stages of cell
processing by a membrane equation (also called a shunt-
ing equation) followed by habituative transmitter gates.
In the MOC Filter, these processing stages occur during
transient on-cell and off-cell cell processing; see the
Appendix. In the Static BCS, these stages are embedded
in the gated dipoles in Fig. 3 that are used to reset
boundary segmentations.
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of 10, 45, and 90 msec. Local motion cells respond more quickly and disappear more quickly as stimulus duration increases.
(b) G-wave strength for apparent motion displays as a function of ISI, stimulus duration, and spatial separation. Intersection
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The main idea of the gated shunted cascade is that the
amplitude of activation in the first stage of processing is
larger in response to longer inputs; hence, due to shunt-
ing dynamics, both the amplitude and the rate of.
activation in the second stage of processing are larger in
response to longer inputs. When second stage activities
are gated by habituative transmitters, the rate of trans-
mitter habituation is faster in response to longer inputs,
so both onset and offset of gated responses are faster to
longer inputs. Our main task herein is to convert this
insight into a computer simulation of Korte's laws. Since
Grossberg and Rudd (1992) did not analyze the effects
of boundary persistence on ISI thresholds, part of this
task is to show how the combined ~ffects of form-
motion interactions can generate both upper and lower
ISI threshold curves.

Figure 15(a) plots the response of the rightward local
motion cell at pixel 20, which responds to the onset and
offset of the first stimulus, with time translated so that
each stimulus offset occurs at time zero. To better
display the responses produced by stimulus offset, the
onset responses sometimes extend beyond the range of
the Y -axis. The response of this cell to stimulus offset
shifts to the right (greater lag) as stimulus duration
decreases. These simulation r~sults show that the proper-
ties of the gated shunting cascade described in Grossberg
and Rudd (1992) also exist in the model of form-motion
interactions described here.

The fastest response to the offset of the first stimulus
establishes the lower 1ST threshold. Likewise, the longest
duration response after offset of the first stimulus estab-
lishes the upper ISI threshold. Figure 15(a) shows that
shorter duration stimuli have longer persisting responses
for this cell. This property is due to the persistence of
boundary signals in the BCS, which is inversely related
to stimulus duration, as discussed in Section 2. For many
stimuli, persisting BCS boundary signals last much
longer than the inputs from the direct MOC Filter
luminance pathway, so the dynamic properties of form

, processing establish the upp~r ISI thresholds of apparent
motion.

The lag time of the local motion responses of Level 4
cells to the first stimulus offset, the duration of these
responses, and the spatial separation between the two
stimuli all contribute to the strength of the G-wave
generated in the MOC Filter. Figure 15(b) plots the
strength of the G-wave, generated from offset signals of
the first stimulus to onset signals of the second stimulus,
as a function of ISI, spatial separation, and flash dur-
ation. As Fig. 15(a) predicts, the G-wave strength curve
shifts toward smaller ISI values as stimulus duration
increases,' Also, for fixed stimulus duration and ISI, the
G-wave strength decreases as spatial separation in-
creases from 15 to 110 pixels (corresponding to 0,75 and
5,5 visual !;leg), since the overlap between ()ff-re~p()n~e~
an on-responses, as reglstere t roug t e ong-range
Gaussian filter, decreases with distance. Also plotted is
the G-wave strength threshold. When the strength of the
G-wave is below threshold, we assume that subjects do
nnt pp1'f'pivp motion

The intersections of the motion strength threshold
with a motion strength curve identify the ISI thresholds.
Figure 2(b) plots the points of intersection and shows
that the model captures the key qualitative properties of
the classical Neuhaus (1930) data. Both upper and lower
ISI thresholds are inversely related to stimulus duration
and the range of ISIs that produce apparent motion
percepts narrows as spatial separation increases. Lower
ISI thresholds increase with spatial separation, upper ISI
thresholds decrease with spatial separation, and the
maximum separation of the upper and lower ISI
thresholds is quantitatively correct (350 msec). In sum-
mary, the classical but paradoxical parametric properties
of Korte's laws may be derived from form-motion
interactions that we hypothesize to be mediated by
interactions between VI --.MT and VI --.V2 --.MT
pathways.

4. PREDICTIONS

4.1. Psychophysical prediction

in all cases where the duration of the Static BCS
response to a stimulus establishes the upper ISI
threshold, then the stimulus properties that favor longer
visual persistence should also favor longer upper ISI
thresholds- for apparent motion. This relationship pre-
dicts a result that can support the role of the BCS-MOC
Filter pathway in establishing upper ISI thresholds.
Meyer, Lawson and Cohen (1975) showed that adap-
tation to an oriented grating influences the persistence of
a subsequent test grating in an orientation-specific man- .
nero When the orientation of the adaptation and test;
grating are orthogonal, persistence of the test grating
increases relative to the no-adaptation case. Francis
et al. (1994) simulated this property with the BCS model.

If persistence of boundary signals sets the upper ISI
threshold of apparent motion, then, other things being
equal, adaptation to a grating should increase the upper
ISI threshold for apparent motion of an orthogonally
oriented grating. ill the BCS, the increase in persistence
is due to habituation of an oriented channel by the
adaptation stimulus, followed by habituation of the
orthogonal channel by the test stimulus. When the test
stimulus shuts off, a weaker-than-usual reset rebound
occurs in the habituated pathways after competition
takes place between the corresponding orthogonally
oriented hypercomplex cells at the second competitive
stage (Fig. 3). The MOC Filter does not include a stage
of competition between orthogonal orientations. In-
stead, competition occurs between opposite directions of
motion, which differ by 180 deg, not 90 deg, thereby
creating motion contrast cells (Grossberg, 1991). Thus, I
the luminance-based pathway of the MOC Filter should i~-aoaptation~ 

However, BCS-MOC- Fifierinter-
actions could explain the predicted change in the upper
ISI threshold. More generally, stimulus features that
change the duration of visual persistence should simi-
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4.2. Neurophysiological prediction

Grossberg (1991) suggested that the luminance-based
pathways of the MOC Filter exist in the brain as
connections from area VI to MT, and that signals from
the Static BCS to the MOC Filter exist in the brain as
a pathway from area V2 to MT (or area V4 to MT).
Grossberg (1991) also described a method of testing
whether the: V2 to MT pathway plays the role suggested
in this article. An experimenter could train a monkey to
respond when it sees apparent motion of illusory con-
tours. A (reversible) lesion of area V2 or the V2-+ MT
pathway should abolish the percept and the response.

Additional data links may be derived from the Gross-
berg (1991) analysis of how the fine stereo computations
of the parvocellular cortical stream could be used to
sharpen the coarser stereo computations of the magno-
cellular cortical stream, and thereby achieve more pre-
cise depth estimates for moving forms. This analysis
suggested that the same V2 -+ MT pathway that is
modeled above to simulate form-motion interactions in
response to planar stimuli may also playa key role in
segmenting moving forms in depth. Several psychophysi-
cal experiments are consistent with this suggestion. For
example, experiments by Corbin (1942) and Attneave
and Block (1973) indicated that three-dimensional infor-
mation can influence the quality of apparent motion.
Subsequent experiments have supported the hypothesis
that structure-from-motion can be influenced by stereop-
sis constraints (Dosher, Sperling & Wurst, 1986; Green
& adorn, 1986; Mowafy, 1990; Nawrot & Blake, 1989).
Demonstrations in which illusory contours influence
percepts of motion are particularly informative (Nawrot
& Blake, 1989), since they emphasize that the perceptual
units that define the forms undergoing motion need to
be actively constructed before the movement directions
and speeds of their illusory contours can be determined.
These experiments suggest a host of experiments for
linking properties of the Vl-+ MT and Vl-+ V2 -+ MT
pathways to interacting percepts of depth, persistence,
and motion.

5. CONCLUDING REMARKS

Table I delineates the role of the Static BCS, the
MOC Filter and their interactions in explaining the
data discussed in this paper. The temporal character-
istics of BCS form processing simulate the persistence
characteristics of illusory and luminous contours, while
BCS spatial properties allow it to segmen:t a wide variety
of stimulus attributes. The MOC Filter is insensitive to
many types of form-based motion, but its dynamics do
help to explain the characteristics of lower ISI thresholds
to variable durations and spatial separations. The form-
motion interactions link the properties of the BCS and
the MOC Filter to data on apparent motion of illusory
contours, interattribute motion, Korte's laws, and neu-
rophysiological structures between the parvocellular and
magnocellular cortical streams.

The model hereby clarifies the need (Chubb &
Sperling, 1991; Cavanagh & Mather, 1989) for motion
detection based both upon direct luminance inputs
and upon direct form-based inputs. Moreover-and here
the model differs significantly from other theories of
these interactions-the dynamic aspects of the form-
based inputs determine many temporal aspects of per-
ceived apparent motion. Boundary signals generated by
luminance-based stimuli tend to persist for shorter
lengths of time than boundary signals generated by
illusory contours. The latter stimuli lead to fewer reset
signals to inhibit the reverberating circuits of the BCS.
Since the MOC Filter depends on the persistence of BCS
inputs to establish the upper temporal limit of motion,
the upper ISI threshold follows the persistence of the first
stimulus. The persistence of a luminance-based first flash
is inversely related to flash duration, while the persist-
ence of an illusory contour first rises and then falls with
increases in stimulus duration. As Francis et al. (1994)
showed, these are robust properties of the BCS dynamics
within a broad parameter range. Of particular interest
are the new relationships proposed by the model between
the persistence of static form percepts and the quality of
apparent motion percepts. The model hereby links long

~

TABLE 1. Summary of the roles each model and their interactions play in explaining
the data simulated in this paper

Model

Generation;
persistence

Apparent motion of
illusory contours;
threshold data

Apparent
motion of
dynamic inputs

Interattribute
motion

Apparent motion
across attributes

Boundary Apparent
segmentation motion of
across many dynamic inputs
attributes

Korte's laws Upper ISI
thresholds

Persistence
of form

Lower ISI
thresholds, role of
spatial separation

Neurophysiology VI-+ V2 VI -+ MT V2 -+ MT
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known, but poorly understood, parametric psychophysi-

cal properties such as Korte's laws to directly measur-

able neural mechanisms. These neural mechanisms, in

turn, may be understood in terms of concepts about

how the static form perception system compensates for

variable illumination and fills-in surface representations

within ecologically useful boundary segmentations

(Grossberg, 1987a, 1994; Grossberg et al., 1989) and
how the motion perception system generates motion

segmentations that compute unambiguous directional

signals that overcome aperture ambiguities and are

independent of direction-of-contrast (Grossberg &

Mingolla, 1993; Grossberg & Rudd, 1992).
While the current simulations are restricted to illusory

contours and luminance-based stimuli, more powerful

versions of the Static BCS have been shown to generate

boundaries for a much larger class of perceptual forms,

including forms defined by texture gradients (Cruthirds
et al., 1993; Grossberg & Mingolla, 1985b) and stereo

gradients (Grossberg, 1994; McLoughlin & Grossberg,
1994). While the current discussion has emphasized the

role of static form inputs to motion inputs, Grossberg

and Mingolla (1993) suggested how the MOC Filter

inputs to a grouping network that is analogous to the

hypercomplex-bipole cell network of the Static BCS.

This extended Motion BCS model can account for

various percepts of form derived from motion, including

percepts of motion capture that help to solve the global

aperture problem. It is also of interest that the BCS

model passes a test that every plausible model of biologi-

cal vision needs to face: it is not a toy model. The BCS

is being used to segment complex imagery derived from

a variety of artificial sensors, including synthetic aper-

ture radar, laser radar, multispectral infrared, and mag-

netic resonance sensors (Cruthirds, Gove, Grossberg,
Mingolla, Nowak & Williamson, 1992; Grossberg et al.,

1994; Lehar, Worth, and Kennedy, 1990; Waxman,
Seibert, Bernardon & Fay, 1993).
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inhibitory inputs. The activity xtBD of a Level 2 cell sensitive to a
bright-dark (BD) change in luminance (from left to right) obeys an
equation of the form:

dx2BD
-it- = -CXfBD+(D -xtBD)E(b;(t) + [xl -xl+I]+)' (A2)

where parameter C sets the passive decay rate of the cell, parameter
D sets the maximum activity of the cell, parameter E scales the value
of oriented inputs, [w]+ = max(w, 0) defines a threshold-linear half
wave rectification, and b;(t) is the contribution of boundary signals
from the BCS. A Level 2 cell at position i receives excitatory input from
Level I if the Level I cell at the same position is active and the Level
I cell one position to the right (i + I) is not as active. It also receives
excitatory input if the BCS generates a boundary signal of the same
orientation at the same location. Similarly, a cell sensitive to a
dark-bright (DB) luminance change obeys the equation:

dx2DB
-it- = -CxtDB + (D -xfDB)E(bf(t) + [xl -Xl-l]+). (A3)
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These oriented sustained cells respond at spatial luminance edges of a
flash and at locations of a BCS segmentation.

Level 3: transient cells. The cells of Level 3 respond to dynamic
changes in Level I cell activities and BCS boundary signal inputs. At
each spatial location, there exists ~n on-cell (responsive to increases in
activity) and an off-cell (responsive to decreases in activity). The
activities of these transient on-cells and off-cells are modeled with a
series of stage$. First the system computes the rectified time-derivative
given by the shunting equation:

dYi ) I A4)-=-FYI+(G~YJ(bl(t +x/), (tit

APPENDIX A

This appendix describes the equations and methodology used to
produce the simulation results. All the simulations used a single set of
equations and parameters. The equations and parameters used to
simulate the BCS processing of form are identical to those used in
Francis et aI. (1994).

where parameter F sets the rate of passive decay and parameter G sets
the maximum activity of y;. Here y; is a time average of the Levell
input xl. More generally, the equation could include excitatory inputs
from a spatial range of Level I cells, thereby providing both a space
and time average of the input [Grossberg & Rudd, 1992; equation
(A5)]. The sequential levels of shunting equations from equations (1)
to (4) create a shunting cascade (Grossberg & Rudd, 1992).

To generate transient responses, positive and negative half-wave
rectifications of the time derivative are first performed independently
by defining

BCS: form processing

The BCS model and parameters used in Francis et al. (1994) were
used here too. Since these BCS simulations processed two-dimensional
images and the MOC Filter equations (described below) process
one-dimensional images, a one-dimensional cross-section of boundary
signals (Level 6 in Francis et al., 1994) corresponding to one stimulus
edge were sampled every simulated msec and stored in a data file. This
process was repeated for each stimulus type (real or illusory) and for
each stimulus duration. These activities were used in the MOC Filter
equations as described below and are plotted in Figs ll(c), 13(c), and

14(c).

w/+ =1 (AS)

and

~) (A6;

where parameter A sets the rate of passive decay, parameter B sets the
maximum activity of the cell, and Ii is the input to the cell. More
generally, the equation might include inhibitory input from nearby
positions (Grossberg & Todorovic, 1988) that would allow the cell to
compensate for variable illumination. Since the simulations described
below use a constant level of illumination, these inhibitory interactions

_t=t_..JI.,-;" ';'~ct;~~~~" e;-~.i" I~~~I~.~ sl.~~.. ilt-:::C~gs II~~,
13(b), and 14(b).

Level 2: oriented sustained cells. The cells of Level 2 respond to
spatial contrasts among the activities of Level I cells. The receptive

.field of each Level 2 cell is divided into left and right sides. One side
-receives excitatory inputs from Level I cells and the other side rece~

MOC filter: motion processing

This section describes the equations used to simulate a version of the
one-dimensional Mac Filter of Grossberg and Rudd (1989, 1992).
Grossberg and Mingolla (1993) provide equations of the MOC Filter
for two-dimensional simulations.

Levell: shunting response to input pattern. The cells of the first array
in the Mac Filter obey shunting equations and receive luminance
inputs from the "retina". The activity xi of a Levell cell at position
i obeys the differential equation:

dx) I 1
-=-Ax,+(B-x,)lj, (AI)
dt

~A/,K(f
dt

where parameters Hand J are constant thresholds. The activity w,+
produces a non-zero response at input onset, and the activity w,-
,responds at input offset. Each wi could maintain its activity as long
as its y, input continues to grow. Likewise, w,- coUld remain aetive as
long as y, decreases. The w,+ and wi are converted into responses that
are transient under all conditions by being modulated with an activity-
dependent habituative process. Several authors have applied the
Grossberg (1976) model of early vision habituation to explain their
data (Carpenter & Grossberg, 1981; Gaudiano, 1992a, b; Ogmen,
1993; Ogmen & Gagne, 1990). In this model, each input signal is
multiplied by a transmitter gate that habituates, or is inactivated, at
a rate proportional to the strength of the signal and accumulates at a
constant rate to a finite target level. The strength of the transmitter gate
for the transient on-cell at position i thus obeys the equation:

dz+, M + + ,._,
-,~-" w, z

~~~,X~;.- ~r ~ -7" tlmt tl.~ t.u.."...itt~. ~u...ulat~" t~ uu,8~dllJlll
value of L at a rate K. Term -Mz ,+ w,+ says that the transmitter
habituates in proportion to the strength of the signal passing through
the gate with parameter M scaling the interaction. A similar equation
(replacing superscript -for superscript +) exists for the transient

off-cell.
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The final transient on-cell response is the gated signal. The transient
on-cell response is

Similarly, a Level 5 cell sensitive to leftward motion receives input of
the form

X~+=wtZi+' (A8)
and the transient off-cell response is

3- --X, =w, z, (A9)

£{ = L IjGjI' (AI4)
jThe Gaussian kernel generates a spatially distributed input to Level 5

in response to even a focal input to Level I. The contrast-enhancing
competitive interactions within Level 5 generate the activities that
encode a local measure of motion information. In the simulations
reported here, the competition selects that population whose input is
maxil11al. Thus, the activity of a rightward Level 5 cell is

R = { R{ if R; =.maxjRj. (AI5)
( 0 otherwIse

The values of R{ are computed each time step and are plotted in
Figs II(e), 13(e), and 14(e).

G-wave motion. There are several methods of measuring strength of
the G-wave. One method is to measure the average value of Level 5
global motion cells over the course of the motion. Such an approach
proves impractical in our simulations because the activities of Level 5
cells are sampled once every (simulated) msec. Simulations with
different combinations of ISI, stimulus duration, and spatial separ-
ation sample Level 5 cell activities at different spatial and temporal
locations during the movement. If most of the samples are near a weak
stimulus, the average G-wave strength is less than if the samples are
near a strong stimulus. The discrete sampling of the simulation can
warp the calculated strength when the motion is faster than the
sampling rate.

As an alternative, we measure the input to the global motion cell
centered between the two stimuli at a time that is sampled in every
simulation. Thus, whenever the stimulus display produces apparent
motion, we calculate motion strength as R,(T), where v is the pixel
position centered between the two stimulus and T is the time just before
the global motion signal moves away from the first stimulus. Although
R,(T) does not survive the spatial competition among Level 5 global
motion cells, it nonetheless acts as a sensitive measure of G-wave
strength, as the simulations shown here attest.

The outputs (8) and (9) represent an opponent process (on vs off) with
gated shunting cascade properties.

Level 4: sustained-transient gating. Image contrasts moving in either
of two directions that differ by 180 deg can cause maximal activation
of a Level 2 sustained cell filter. Multiplicative gating of each Level 2
sustained output with a Level 3 transient on-cell or off-cell removes this
ambiguity (see Fig. 4). For example, consider the output of a
dark-light sustained cell. A dark-light image contrast moving to the
right or to the left maximizes such a sustained cell's output. Multiply-
ing this Level 2 output with a Level 3 transient on-cell output generates
a Level 4 cell that responds maximally to motion to the left, as in the
model ofMarr and Ullman (1981). Multiplying it with a Level 3 off-cell
output generates a Level 4 cell that responds maximally to motion to
the right.

In the one-dimensional MOC Filter described here, there are two
types of sustained cells (corresponding to the two directions-of-
contrast) and two types of transient cells (on-cells and off-cells).
Consequently, the system computes four types of gated responses. Two
of these produce cells that are sensitive to local rightward motion: the
(BD, +) cells that respond to xtBD xl+, and the (DB, -) cells that
respond to x;mB xl- .The other two produce cells that are sensitive to
local leftward motion: the (BD, -) cells that respond to xtBD xl- and
the (DB, +) cells that respond to xtDB xl+ .

These cell outputs from Level 4 are sensitive to direction-of-contrast.
Level 5 consists of cells that pool outputs of Level 4 cells that are
sensitive to the same direction-of-motion but to both directions-of-
contrast.

Level 5: local and global motion signals. To create local motion
signals that are insensitive to direction of contrast, define a local right
motion response by

',= N.\,~BD x!+ + PXFB x!- (A 10)

and a local left motion response by

1,=Px~BDx!-+Nx~DBx!+, (All)

where parameter N scales the contribution of local motion signals
created by transient on-cells and parameter P scales the contribution
of local motion signals created by transient off-cells. These responses
are sensitive to direction-of-motion, but are insensitive to the direction-
of -contrast of a moving luminance edge. Boundary signal inputs are
already insensitive to direction-of-contrast (Grossberg & Mingolla,
1985a, b), so their influence does not change the insensitivity of local
motion cells to contrast polarity. The value " is plotted in Figs 9(b),
II(d), 13(d), and 14(d).

These local motion responses are pooled by a long-range spatial
filter that has a Gaussian profile across space. The long-range spatial
filter broadcasts each Level 4 signal over a wide spatial range in Level
5. Competitive, or lateral inhibitory, interactions within Level 5
contrast-enhance this input pattern to generate spatially sharp Level 5
responses. A winner-take-all competitive network (Grossberg, 1973)
transforms even a very broad input pattern into a focal activation at
the position that receives the maximal input.

The outputs of Level 4 are assumed to be filtered by a long-range
operator with a Gaussian kernel. The Gaussian weight of a pathway
from a Level 4 cell at position j to a Level 5 cell at position i is

Gji = exp[ -(j -i)2f2Q2]. (AI2)

raram e rer t? eSta:unsnes-me--spreau-onneu-a:usSla:rrxer-neJ~ ~
values of Q creating broader kernels. Thus, a rightward motion
sensitive cell at Level 5 receives input of the form

R1 = ): rjGJI' (AI 3)
i

APPENDIX B

Parameters

All simulations use one set of parameters. These include: A = 0.5,
B = 10.0, C = 0.1, D = 10.0, E = 10.0, F = 0.4, G = 2.0, H = 0.5,
J= -0.001, K=O.06, L =3.0, M=5.0, N=5.0, P = 1.0, Q =60.0.
With these parameters, 0.01 time units correspond to I msec. All
differential equations defining the MOC Filter were integrated using
Euler's method with a step size of 0.001 time units.

These parameters were not "tweaked" to provide the best quantitat-
ive fit to the data, but were chosen somewhat loosely to generate the
qualitative properties. The key properties of the model that needed to
be generated by the parameters were a lag in response time to the offset
of the luminance input (parameters A, B, F, and G) and a transient
response from Level 3 cells (parameters F, G, H, J, K, Land M). It
is probably possible to generate the particular characteristics needed
in this paper with fewer parameters, but we have chosen to remain
consistent with other versions of the MOC Filter (Grossberg & Rudd,
1989,1992; Grossberg & Mingolla, 1993) where the inclusion of those
parameters is more important. The remaining parameters were chosen
to put the quantitative values of the simulation results in the general
range of the psychophysical data.

Each illusory contour inducer consists of two luminous increments.
The inducers within each stimulus are separated by 26 pixels. In Fig. 11
the edge-to-edge distance between stimulus inducers is 15 pixels. Each...

IgS an use an ge-to- ge stance 0 plxe sween e i
inducer pairs. j

For the interattribute apparent motion simulation in Fig. 13, the 1
illusory inducers remain unchanged. The luminous contour is a row of 1
lamin8nGe inGl'ements J() pi~els long 1'8nging !':om pi~el 48 to pi~el n .1
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described herein, but would force the use of substantially more
computer simulation time.

The G-wave strength threshold plotted in Figs 12 and 15 is 26 units.
G-wave strength was measured at unit intervals (not every 20 units, as
plotted in Figs 12 and 15). The translation of pixel units to visual
degrees [Fig. 2(b)] is the same used by Francis et al. (1994).

The simulations calculating ISI thresholds were performed on a
multi-user Iris 8(280 Silicon Graphics workstation. The data for
Fig. 15 take approximately 2 weeks to calculate. Data showing the
time-course of cell activations for one apparent motion display were
computed on a Gateway 486 4DX2-66V personal computer and take
approximately 1 min.

The illusory inducers are presented for 100 simulated msec and the
luminous contour presented for 90 simulated msec. The stimuli are
separated by 12 pixels and an ISI of 200 simulated msec.

The luminous contours for the studies of Korte's laws are the
same as above (with the first stimulus now a luminous contour).
For both the illusory and luminous stimuli, the inputs to the BCS
simulations described in Francis et ai. (1994) keep the same spatial and
emporal properties, but differ in magnitude from the retinal inputs

to the MOC Filter. This parameter change achieves consistency
with the additional preprocessing of luminous inputs in the
BCS simulations (Levell in Francis et ai., 1994). Including such
preprocessing in the MOC Filter would not change any of the results






