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An analysis of the reset of visual cortical circuits responsible for the binding or segmeilltation of visual
features into coherent visual forms yields a model that explains properties of visuall~rsistence. The
reset mechanisms prevent massive smearing of visual percepts in response to rapidly moving images.
The model simulates relationships among psychophysical data showing inverse relatiollS of persistence
to flash luminance and duration, greater persistence of illusory contours than real cont()iurs, a U-shaped
temporal function for persistence of illusory contours, a reduction of persistence due to adaptation with
a stimulus of like orientation, an increase of persistence due to adaptation witlll a stimulus of
perpendicular orientation, and an increase of persistence with spatial separation of a m:asking stimulus.
The model suggests that a combination of habituative, opponent, and endstopping meclflanisms prevent
smearing and limit persistence. Earlier work with the model has analyzed data about boundary
formation, texture segregation, shape-from-shading, and figure.-ground separation. ThIIJS, several types
of data support each model mechanism and new predictions are made.
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INTRODUcrJON test stimulus decreases; but when subjects adapt
Humans and other animals form useful visual represen- to a stim~lus of a pe~ndicular orienta~ion to
tations of rapidly changing scenes, The visual system ~he test stimulus, persistence of the test stimulus
rapidly resets the segmentations of changing parts of a Increases, , .
scene to prevent image smearing, This article explains .The subsequ.ent on~et of a maskIng s~lmulus
how a neural network theory of early visual processes greatly curtails persistence of a target stimulus.

proposed by Grossberg and Mingolla (1985a, b, 1987) Before presenting the details of model mechanisms, we
accounts for many of the data on visual persistence, The briefly describe how the model addresses each of these
theory suggests that a key process governing these data data sets,
is the time taken to reset a segmentation, We simulate
reset dynamics that help to force a rapid return of the Inverse relation of persistence to luminance and to
network to a state unbiased by prior segmentation in stimulus duration
order to better process incoming data, We explain how Figure I (a), taken from Bo,wen, Pola and Matin
hysteresis in the segmentation network is a rate-limiting (1974), shows that, for each luminance curve, persistence
factor in visual persistence, and show that properties of is inversely related to stimulus dll1ration. Except for very
the hysteresis match key psychophysical data. Psycho- short stimulus durations, persi:>tence is also inversely
physical studies of visual persistence have revealed four related to stimulus luminance, Similar results have been
key sets of data, which are all explainable by the model, found by many ~uthors (see Coltheart, 1980; Breitmeyer,

P ' '0 I I d . I 1984 for reviews).
.erslstence IS Inverse y re ate to stlmu us I h d f B ' (1974) b'd t' d t t . I I ' n t e stu y 0 owen et aj. , su ~ects were

ura Ion an 0 s Imu us ummance, "
III t . t h I th I asked to match the perceived offset of a target stimulus

.usory con ours persIs muc onger an rea, 0 0
t d ' II t d t b th with the perceived onset of ~i probe stimulus, The

con ours an I usory con ours 0 no 0 eye, , .,, I t ' h' b t ' t d physical mterstlmulus Interval Ibetween the target and
Inverse re a Ions IP e ween persIs ence an , ...t o I d t. h t ' t ' f I .mask stimuli provided a measure of the target's persist-
S Imu us ura Ion c arac ens IC 0 ummance- L d G'

ld (1981) d h .

db d t ence, ong an I ea argue t at perceive

ase con ours. ffi ' d f .
bWh b . t d t t t . I f th 0 set IS not a goo measure 0 persistence ecause some

.en su ~ec s a ap 0 a s Imu us 0 e same ..,
" " parts of the stimulus may continue to persist beyond the

onentatlon as the test stimulus, persistence of the 0 d t' I ffi t S k' d L (1979) dperceive S Imu us 0 se, a III an ong an
~-~ Long and McCarthy (1982) sho,wed that when subjects

were told to attend to any resid"lal trace of the stimulus,
and not just perceived offset, the duration of total
persistence was directly related to stimulus luminance,
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Measures of total persistence have, in turn, been
criticized as being the result of afterimages or iconic
memory (Coltheart, 1980; Breitmeyer, 1984; DiLollo,
1984). Perceived offset and total persistence are thus
different features of the dynamic processing of a
changing stimulus. In this paper we model persistence
data based upon perceived offset, and we do not consider
the properties of total persistence until the conclusion.
When we refer to persistence we mean the time between
physical offset and perceived offset.

The inverse relationships between persistence and
stimulus duration and luminance imply that persistence
cannot be modeled as a simple decay of activity of some
neural stimulus representation. The initial strength of
such a representation at the moment of stimulus offset
would presumably increase with stimulus duration or
luminance, yielding a higher starting point from which
decay would begin, and thus longer persistence. Figure
I(b) (solid lines) demonstrates that persistence of signals
in the model is inversely related to stimulus duration and
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FIGURE 2. (a) Illusory contours persist longer than real contours.
Persistence of illusory contours is maximal at an intermediate duration
of the stimulus. [Reproduced with permission from Meyer and Ming
(1988).) (b) Computer simulation of real and illusory boundary
contour persistence as a function of flash duration. The boundaries
produced in response to the illusory contours persist longer than the
boundaries produced in response to the real contours. Persistence of
illusory contours peaks at an intermediate stimulus duration. as in the
data. The solid lines connect the points sampled in the data of Meyer

and Ming (1988).
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luminance at all but the shortest durations. The model
achieves this close match with the psychophysical data
by generating an active reset signal at stimulus offset
which inhibits the persisting signals~ of the stimulus
(Grossberg, 1991). We later quantitatively analyze how
the strength of the reset signal increases with stimulus
duration and luminance.
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Parado.\'ical increase of persistence of illusor)' contours

Figure 2(a) (taken from Meyer & Ming, 1988) shows
that illusory contours have different persistence proper-
ties than contours defined by luminance edges. Not only
do illusory contours persist substantially longer than real
contours, but persistence of an illusory contour peaks at
an intermediate stimulus duration. In contrast, the
persistence of a stimulus defined by luminance edges
continually decreases as stimulus duration increases.
These data place strong constraints on the source of
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FIGURE I. (a) Persistence is inversely related to flash luminance and
flash duration. [Reproduced with pennission from Bowen 1'101. (1974).)
(b) Computer simulation of boundary signal persistence as a function
of flash duration and flash iuminance. Dashed lines simulate model
perfonnance ,,'ithout habituative transmitter gates that fonn the basis

of the reset mechanism required to explain data on persistence.
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signals used to reset a changing visual segmentation. In
our model, only changes in luminance-derived edges
generate reset signals. Thus, figural boundaries that in-
clude illusory contours persist longer than contours of
corresponding length that are defined entirely by lumi-
nance edges, because the former contain luminance edges
as a smaller proportion of the total contour. Figure 2(b)
shows that the model's responses to illusory contours
persist longer than real contours. Persistence of illusory
contours in the model is not inversely related to stimulus
duration at short durations because illusory contours
take some time to fully develop (Reynolds, 1981) and, if
not fully developed, they can more quickly disappear.
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Effects of orientation-specific adaptation
Figure 3 (hatched bars) shows that adaptation to

stimuli can also influence persistence duration (Meyer,
Lawson & Cohen, 1975). This figure demonstrates that
when subjects adapted to a stimulus of the same
orientation as the test stimulus, persistence of the test
stimulus decreased; but when subjects adapted to a
stimulus of a perpendicular orientation to the test
stimulus, persistence of the test stimulus increased. In
each case, persistence could be changed by as much as
:i: 20 msec. These data provide two clues about the
hypothesized reset signal. First, it suggests that
adaptation or habituation drives the reset signal. Second,
it indicates that opponent interactions between pathways
sensitive to opposite orientations regulate the inhibition
that forms the reset signal. Below we explain how a
neural circuit consistent with these observations can
generate a transient response at stimulus offset that acts
as a reset signal. Figure 3 (shaded bars) shows that
adaptation influences persistence of signals in the model
in the same way revealed by psychophysical studies.
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FIGURE 4. (a) The persistence of thin lines moving in stroboscopic
motion depends on the spatial separation between successive images.
[Reproduced with permission from Farrell el 01. (1990).) (b) Computer
simulation of boundary signal persist'~nce as a function of the spatial
separation between contours of a target and a mask. The dashed line
simulates model performance without the spatial competition. Note
that the size of our simulation plan'~ did not permit testing spatial

separations larger than shown.

Same Orthogonal

Orientation of adaptation stimulus

FIGURE 3. Hatched bars: change in persistence depending on
whether the adaptation stimulus had the same or orthogonal orien-
tation as the test grating. [plotted from data in Meyer el al. (1975).]
Shaded bars: computer simulation of boundary signal persistence
depending on whether the adaptation stimulus had the same or

orthogonal orientation as the test grating.
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Shortening of persistence by a spatially proximal mask

Figure 4(a) from Farrell, Pavel and Sperling (1990)
shows that the influence of a mask on the persistence of
a target depends on the spatial distance between the
stimuli, with closer masks decreasing the persistence of
the target. Other studies (Farrell, 1984; DiLollo &
Hogben, 1987) have found similar results. Most
researchers interpret this result as being due to spatial
inhibition, which prevents smearing of moving stimuli.
The model contains this type of inhibition and Fig. 4(b)
(solid line) demonstrates that the persistence of signals
in the model correlates well with the psychophysical
data.

The model that we use to simulate persistence data
was originally developed to explain many other types of
psychophysical and neural data, such as data about
boundary completion, illusory contour fonnation, tex-
ture segregation, shape-from-shading, three-dimensional
figure-ground pop-out, brightness perception, and
filling-in of three-dimensional surface percepts
(Grossberg, 1987a,b, 1994; Grossberg & Mingolla,
1985a, b, 1987; Grossberg & Todorovic, 1988). Model
mechanisms have also been derived from several basic
principles about visual infonnation processing
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FIGURE S. Boundary contour system with embedded gated dipoles. See text for details.

(Grossberg, Mingolla & Todorovic, 1989). The model's
success in simulating persistence data lends greater
weight to the physical reality of these: mechanisms. Put
another way, the fact that the model can explain persist-
ence data without a change of mechanism illustrates its
predictive power while linking persistence data to other
types of perceptual data that have been explained by the
same mechanisms. Grossberg (1994) and Grossberg and
Mingolla (1993) summarize a number of experiments
that have successfully tested model mechanisms since
they were first proposed.

The model proposes two sources of inhibition that
reset visual segmentations of stimuli. Upon stimulus
offset, interactions of habituation and opponent process-
ing across units tuned to perpendicular orientations
generate a reset signal. Spatial inhibition among units of
like orientational tuning provides the other inhibitory
signal. Other researchers have suggested using a reset
signal to control persistence (Breitmeyer, 1984; Ogrnen,
1993), but they did not recognize the importance of
habituation and opponent processing, or the relation of
these properties to the generation and reset of illusory
contours. DiLollo and Hogben (1987) and Farrell et al.
(1990) recognized the role of spatial inhibition in ac-
counting for the data described in Fig. 4(a), but they did
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not implement the inhibition in a specific architecture
capable of explaining the properties of visual persistence.

Simulations of the model generated Figs l(b), 2(b), 3,
and 4(b) with a single set of parameters (except where the
model is intentionally "dissected" for analysis). All the
equations and parameters governing the model behavior
are described in the Appendix. These simulations
demonstrate the model's competence to explain qualitat-
ive relationships between persistence and various
stimulus qualities. The simulations do not in every case
provide a quantitative match with the psychophysical
data. Why this is so is discussed in the concluding
remarks.

(a)

(b)

FEATURE BINDING AS A SOURCE OF VISUAL
PERSISTENCE

In this section we describe how the boundary contour
system (BCS) (Grossberg & Mingolla, 1985a, b, 1987)
addresses the psychophysical properties of visual persist-
ence. Figure 5 schematizes the model, with each cell's
icon drawn to indicate its receptive field structure.

We base our first observation on the adaptation
studies of Meyer et al. (1975), which show that persist-
ence can be specifically modified according to stimulus
orientation. These data are explained using model cells
that locate and represent oriented boundaries. Thus,
although cells in the first level contain unoriented
center-surround receptive fields, the remaining cells in
the network respond best to a boundary of a specific
orientation. In agreement with neurophysiological data
on receptive field properties in visual cortex (Hubel &
Wiesel, 1965), the first level of oriented cells in the BCS
correspond to cortical simple cells. These cells respond
to oriented luminance edges of a specific polarity
centered at a particular point on the retina. Cells in the
next level, corresponding to complex cells in visual
cortex, receive rectified inputs from like-oriented simple <~
cells of each polarity. Model complex cells thus respond
to an oriented luminance edge of either polarity.

The orientation-specific habituation identified by
Meyer et al. (1975) is modeled by a habituative transmit-
ter gate (Grossberg, 1972) placed between each complex
cell and its corresponding cell in the next higher level.
Figure 5 codes this habituative transmitter gate as a
rectangle between the pathways connecting the levels.
Whenever a signal passes through this gate, the supply
of transmitter is inactivated in proportion to the strength
of the signal. Upon offset of the signal, the dynamics of
the transmitter gate act to restore the transmitter to its
resting level. The dynamic changes in the gates occur ata slower time scale than the activities of neurons, so that -

a transmitter gate may remain habituated for some time FIGURE 6 ( ) H I.
k th f I ed Ii db k I..a eavy IDes mar pa ways 0 a c os ee ac oop.

beyond stimulus offset. A bipole cell response can excite an additional bipole cell. The response
Embedded along these pathways is one component of of that bipole cell can, in turn, excite the original bipole cell. (b) A

the spatial inhibition implied in Fig. 4(a). This inhibition bipole cell centered above the end of a contour is outside the feedback
occurs from complex cells to the next level of hypercom- loop because it receives inputs only on one side: of its receptive field.

1 As a result, the boundary signal at that location passively decays away
plex. ~e Is. It occurs among hyper~ompl~x cells that are at stimulus offset. (c) After the boundary signa! at this location decays
sensItive to edges of the same onentatlon and nearby away. it exposes a new contour end, and anothelr bipole cell drops out
spatial positions, and the strength of inhibition falls off of the feedback loop.

(c)

c~ c::::>

with distance. Grossberg and Mingolla (1985a, b) call
this process theftrst competitive stage. This competition
occurs across positions in the direction of preferred
orientational tuning (endstopping) as well as across
positions lateral to the preferred direction. Activities
from the first competitive stage feed into a process of
cross-orientation inhibition at each position called the
second competitive stage, which partially accounts for the
opponent processing implied by the results of Meyer et
al. (1975) in Fig. 3.

Signals surviving the competitive stages input to
cooperative bipole cells that are sensitive to more global
properties of the configuration of image contrasts.
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Figure 5, for example, shows a horizontally tuned bipole
cell, which received excitatory inputs from a horizontal
row of horizontally tuned cells and inhibitory inputs
from vertically tuned cells at the same locations. This
orientation-specific inhibition helps to explain the orien-
tation-specific data of Meyer et al. (1975) in Fig. 3.
Grossberg and Mingolla (1985b) showed that this inhi-
bition provides the network with a property of spatial
impenetrability, which prevents boundary linkings from
forming across intervening boundaries of roughly
perpendicular orientation. Every bipole cell has two
independent lobes to its receptive field, and each lobe
must receive a sufficient amount of excitatory input from
the second competitive stage for the bipole cell to
generate a response. A bipole cell triggers a response
only if its receptive fields are each stimulated by one or
more boundary components. For example, a bipole cell
whose receptive field center is at a corner of a boundary
cannot generate a response because the contour
stimulates only one side of its receptive field. On the

other hand, a bipole cell centered between two illusory
contour inducers as in, say, a Kanizsa square, will
generate a bipole response if the inputs are sufficiently
strong. In this fashion, parallel arrays of bipole cells can
generate an illusory contour. von der Heydt, Peterhans
and Baumgartner (1984) have found evidence support-
ing the existence of bipole cells in area V2 of monkey
cortex.

Bipole-to-hypercomplex feedback carries out a spatial
sharpening process similar to the first competitive stage.
Here, each bipole cell feeds back on-center, off-surround
signals to hypercomplex cells of the same orientation
sensitivity. Spatial sharpening is another part of the
model that correlates with t.he spatial inhibition
indicated in Fig. 4(a).

The positive feedback from the bipole cells to lower
level hypercomplex cells provides the rate-limiting
source of persistence in the modc~l because the activities
generated by the feedback from one bipole cell can excite
parallel arrays of other bipole cells, which in turn feed

(b)(a)

(c) (d)

FIGURE 7. (a) Stimulus input to the system, a bright square on a dark background. (b) Boundary response to the square
shortly after the input returns to the background level. (c) Boundary signals start to erode from the comers of the square toward

the middle or the contours. (d) Boundary erosion is almost complete.
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back signals that can excite the original bipole cell, as
indicated in Fig. 6(a). A self-sustaining feedback loop is
generated by the cooperative interactions of the
pathways marked by heavy lines. Thus, within the
model, persistence is due the positive feedback
interactions that choose a coherent boundary segmenta-
tion from among many possible groupings, and inhibit
potential groupings that are weaker. This positive feed-
back loop causes hysteresis that is controlled by other
model mechanisms.

For example, as indicated in Fig. 6(b), the end of a
surface contour does not support these feedback inter-
actions. In this figure the leftmost boundary signal of
Fig. 6(a) has been deleted. Without this boundary signal,
the left bipole cell does not fire because only one side of
its receptive field receives stimulation. Upon stimulus
offset, the effect of this organization is that, even without
an active reset signal, the boundary signal at the end of
a contour passively decays away and exposes a new
contour end [as in Fig. 6(a,b)]. At this new contour end,
the process repeats itself for another bipole cell and so
on from the ends of the surface contour inward toward
the middle of the contour [as in Fig. 6(b,c)]. It is this
inward erosion of boundary signals that we correlate
with the persisting visual percept beyond stimulus offset.
In the simulations described below, we show that, with-
out an active reset signal, this passive erosion is insuffi-
cient to model the psychophysical data on persistence.

Figure 7 summarizes a simulation of boundary signal
erosion. Figure 7(a) shows the stimulus presented to
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FIGURE 8. Time plot of boundary signal activities at a cross-section of Fig. 7 (lower horizontal contour). The signals drop
markedly upon stimulus offset as the bottom-up input is removed. The top-down signals maintain the boundaries for a

substantia! length of time. but the boundaries erode away from the ends toward the middle of the contour.

the system, a bright square on a dark background.
Figure 7(b-<i) show the boundary signal response to the
luminance edges of the stimulus at successive points in
time beyond stimulus offset. The figures show the
slow erosion of boundary signals from the corners of
the stimulus to the middles of the contours. Figure 8
shows the strength of the horizontal boundary
signals along the lower edge of the square as they
vary over time beyond stimulus offset. The plot also
demonstrates the erosion of boundary signals coding this
edge.

RESET SIGNAI.s AND GATED DIPOLES

We now describe how the model generates reset
signals upon stimulus offset. Figure 9 shows a subset of
the cells from Fig. 5. Shown are separate pathways
sensitive to the same position in visual space but perpen-
dicular orientatations. These pathways compete through
the second competitive stage, as described above.
Feeding this competition are inputs gated by habituative
transmitters. In addition to signals from external stimuli,
each input pathway receives a tonic source of activity,
which establishes a non-zero baseline of activity that
energizes the off-response which occurs after the stimu-
lus terminates. All output signals are rectified. This
combination of rectification, opponent competition,
habituative transmitter gates, and tonic input produces
what Grossberg (1972) called a gated dipole circuit. At
the offset of stimulation, a gated dipole circuit generates
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FIGURE 9. At stimulus offset, a gated dipole circuit produces a transient rebound of activity in the non. stimulated opponent

pathway.

a transient rebound of activity in the previously non-
stimulated pathway.

The time plot next to each cell or gate describes the
dynamics of this circuit. In the case shown, the sharp
increase and then decrease of the time plot at the lower
right of Fig. 9 indicates that an external input stimulates
the horizontal pathway. In response to the stronger
signal being transmitted to the next level, the amount of
transmitter in the gate inactivates during stimulation and
then rises back toward the baseline level upon stimulus
offset. Notice that the inactivation and reactivation of
transmitter occur more slowly than changes in the activi-
ties of the neural cells. Each slowly habituating transmit-
ter multiplies, or gates, the more rapidly varying signal in
its pathway, thereby yielding net overshoots and under-
shoots at input onset and offset, respectively. During
stimulation, the horizontal channel wins the opponent
competition against the vertical channel as indicated in
the top right time plot. However, upon offset of the
stimulation to the horizontal channel, the input signal
returns to the baseline level but the horizontal transmit-
ter gate remains habituated below its baseline value. As
a result, shortly after stimulus offset, the gated tonic
input in the horizontal channel has a net signal below the
baseline level. Meanwhile, the vertical pathway main~

Tonic
input

Phasic
On-input

tains the baseline response at all cells and gates before
the opponent competition. Thus, when the horizontal
channel is below the baseline activity, after stimulus
offset, the vertical channel win:s the opponent compe-
tition and produces a rebound 01" activity as shown in the
top left time plot. As the horizontal transmitter gate
recovers from its habituated sta1:e, the rebound signal in
the vertical channel weakens and finally disappears.

Figure 10 shows how this rebound of activity acts as a
reset signal in the full BCS arlchitecture. Figure 10(a)
schematizes how inputs in a "horizontal pathway excite a
horizontal bipole cell. As described above, these
horizontal bipole cells can generate a hysteresis that
corresponds to persistence. Due to the interactions of the
gated dipole circuit, offset of the horizontal input
generates a rebound of activity in the vertical pathway,
which, as Fig. 10(b) demonstral:es, inhibits the horizon-
tal bipole cell. This inhibition greatly speeds up the
erosion of boundary signals al1ld decreases persistence.
Note that, apart from its crucial role in explaining
persistence data, the inhibition of bipole cells by offset
signals from perpendicularly oriented pathways of the
gated dipole circuit has been shown to play an equally
crucial role in preventing unwanted boundary groupings
across intervening surfaces (spatial impenetrability).
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(a)

(b)

FIGURE 10. (a) A horizontal input excites a horizontal bipole cell,
which supports persistence. (b) Upon offset of the horizontal input, a
rebound of activity in the vertical pathway inhibits the horizontal
bipole cell. This inhibition resets the hysteresis of the feedback loop

and reduces persistence.

The inverse relationships between persistence and
stimulus duration and luminance, as shown in Fig. l(a),
follow from the properties of the gated dipole. The
longer the stimulus duration, or the stronger (more
luminous) the input to a gated dipole, the more habitu-
ated becomes the transmitter gates and, thus, the
stronger becomes the reset signals. The significance of
the strength of the reset signals is evident in Fig. l(b),
which shows that persistence of signals in the model is
inversely related to stimulus duration and luminance,
except at very short stimulus durations. At short stimu-
lus durations, there is only a very weak reset signal
generated by the gated dipoles. However, because the
stimulus presentation is so brief, the BCS does not
establish a strong hysteresis in the feedback loop.
Indeed, because stimuli of a greater duration or a higher

luminance create stronger boundary signals and can
more quickly establish strong activities in the feedback
loop, at the shortest stimulus durations persistence is
directly related to stimulus duration and luminance.
Haber and Standing (1970) reported that persistence
increases with stimulus duration v{hen the stimuli are
briefer than 20 msec. At longer stimulus durations, the
gated dipoles begin to generate stronger reset signals,
which more quickly remove the persisting boundary
signals in the feedback loop. Thus, the inverse relation-
ships between persistence and lumimance and duration
occur when a strong hysteresis has been established in
the BCS and when the gated dip-ole circuits produce
strong reset signals.

To emphasize the role of the gated dipole circuit and
its reset signal, we re-ran simulatiotilS for two luminance
values and several different stimulus durations but
modified one parameter so that the transmitter gates did
not habituate. The dashed lines in Fig. l(b) show
that without the transmitter habituation, persistence
increases, or does not change, with stimulus duration.
Similarly, persistence increases with stimulus luminance
without the gated dipole circuit; thus, it is the behavior
of habituative transmitters in the gated dipole circuit
that explains the data of Bowen et al. (1974) within the
BCS model.

Because the habituative transmitters of the gated
dipole circuit are located outside the feedback loop of
the BCS, only the offsets of lumi:rlance-derived edges
generate reset signals. Therefore, only the reset signals
generated by illusory contour inducers inhibit the
persisting illusory contours. Inducers of illusory
contours have few luminance edges and so, at stimulus
offset, generate fewer reset signals than boundaries
defined entirely by real contours. With fewer reset signals
available to break the hysteresis of the feedback loop,
illusory boundaries persist longer than real boundaries.
We show the results of simulations of these properties in
Fig. 2(b). The luminous-based stimulus for these simu-
lations was an outline square, while the illusory contour
inducers were L-shaped stimuli at the corners of a
square. Our choice of inducer folmlS was limited by
computational resources as explained in detail in the
Appendix. This choice suffices to illulstrate the dynamical
properties of contours that are formed at positions
without luminance contrast. Other research concerning
the BCS has more fully analyzed the relationships
between boundary signals and perceived illusory
contours through computer simulation (Gove,
Grossberg & Mingolla, 1993) and psychophysical
experimentation (Lesher & Mingollla, 1993). Grossberg
and Mingolla (1985a) also analyzed! why some inducers
produced stronger illusory contours than others.

Because luminance edges define ,only a small part of
an illusory contour, the boundary representation takes
longer to become strongly established than the boundary
representation of the outline square~. Therefore. illusory
stimuli of short duration do not generate strong hys-
teresis and can more quickly erode at stimulus offset.
Stimuli of an intermediate duration generate strong
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hysteresis, but do not produce strong reset signals at
offset. Thus, these stimuli persist longest. Stimuli of long
duration generate a strong hysteresis, but they also
generate stronger reset signals, which shorten persist-
ence. Thus, over the same range of stimulus durations
that show an inverse relationship with persistence for the
outline square, persistence of boundary signals for an
illusory contour is not inversely related to stimulus
duration at short durations, but peaks at some
intermediate value, as shown in Fig. 2(b). The solid lines
in Fig. 2(b) connect simulation data points of the
stimulus durations sampled in the psychophysical studies
of Meyer and Ming (1988). A comparison of these curves
with the data in Fig. 2(a) shows that they are very similar
in shape, although the absolute persistence values are
different.

Finally, because the opponent processing and
habituative pathways are orientation-specific, the model
explains the adaptation results of Meyer et al. (1975)
shown in Fig. 3. Within the model, adaptation to, say,
a horizontal stimulus habituates the transmitter in
horizontal pathways but leaves the vertical pathways
unadapted. If one then tests persistence of a horizontal
stimulus, the horizontal pathways further habituate the
transmitter during the test presentation. The stronger
than usual habituation of the horizonal pathways means
that, at stimulus offset, the reset signals will be stronger
than usual and persistence will decrease. On the other
hand, if one tests persistence of a vertical stimulus, then
both oriented pathways become habituated: the horizon-
tal pathways from the prior adaptation and the vertical
pathway from the habituation due to the target presen-
tation. As a result of the opponent competition between
these habituated signals (Fig. 9), the reset signals
generated at offset of the vertical test stimulus will be
weaker than usual and persistence will increase.

So far we have accomplished two major goals. First,
we explained how interactions of a tonic input, habitua-
tive transmitter gates, opponent processing, and rectified
output signals in a gated dipole circuit generate a reset
signal upon offset of an oriented luminance edge.
Second, we showed that the properties of this reset signal
at the second competitive and bipole stages of the model
account for the inverse relationships between persistence
and stimulus luminance and duration (Bowen et al.,
1974), the prolonged non-monotonic persistence proper-
ties of illusory contours (Meyer & Ming, 1988), and the
opposite influences on persistence of orientation-specificadaptation (Meyer et al., 1975). .

It remains to show that the spatial inhibition, or
endstopping process, within the first competitive stage of
the model can account for the decrease in persistence
shown in Fig. 4(a). The solid line in Fig. 4(b) demon-
strates that the persistence of boundary signals does
depend on the separation between target and mask
stimuli. For comparison, the dashed line shows the
persistence of boundary signals when we removed the
oriented spatial competition of the first competitive stage
from the model (setting one parameter equal to zero).
The second source of spatial inhibition, in the feedback

pathway of the bipole cells, remains intact. In the current
simulations it is of a smaller range than the interactions
of the rrst competitive stage. The dasl1led line in Fig. 4(b)
shows that without the spatial competition there are no
changes in persistence of the target stimulus until the
target and mask boundaries are within the range of the
inhibition in the feedback pathway. Thus, the spatial
competition accounts for the abilit:f of the masking
stimulus to reduce persistence of the talrget (Farrell et al.,
1990).

NEUROPHYSIOLOGICAL CORRELA TIS AND
PREDICTIONS

Grossberg (I 987a) reviews neural analogs of all stages
of the present model in visual cortex. In particular, von
der Heydt et al. (1984) found analogs of bipole cells in
area V2 of monkey visual cortex, 1Nhich Cohen and
Grossberg (1984), Grossberg (1984), and Grossberg and
Mingolla (1985a) had modeled before these data were
published. It may be possible to use additional neuro-
physiological studies to verify the dynamic properties of
these cells. For example, it should be possible to observe
the inward erosion of boundary sign:als by observing a
single bipole cell in visual cortex. Aftelr finding the center
of the bipole cell's receptive field, one could run a series
of experiments varying the position clf luminance edges
relative to the center of the cell's receptive field. Because
the model predicts that boundary sigI1Lals erode from the
contour ends, the cell should show its greatest persisting
response when its receptive field is centered on the
contour and should show less persistence as the exper-
imenter shifts the contour center to one side or the other
of the receptive field center. Note that this prediction
follows despite another prediction, derived from an
analysis of the BCS in response to :;tatic stimuli, that
before stimulus offset the amplitude of activity should be
nearly identical for bipole cells all allong the contour,
regardless of the cell's distance from inducers before
reset occurs. Properties such as the inverse relationships
between persistence and stimulus duration and
luminance, greater persistence for illusory than real
contours, the effects of adaptation, alild the influence of
a masking stimulus should also be observable in an
investigation of these cells.

Likewise, the ability of masking stimuli to reduce
persistence of the target should be measurable at a
suitable population of hypercomplex cells. Other hyper-
complex cells should exhibit habitualtive gating of their
responses, as well as opponent rebounds to offset of
stimuli that are oriented perpendicular to their receptive
fields. The firing of these rebounding hypercomplex cells
should correlate with diminished pe:rsistence in target
bipole cells that are tuned to a perpendicular orientation.

Lesher and Mingolla (1993) have tested the BCS
model through psychophysical ex]periments on the
induction of illusory contours in a Kanizsa square using
variable numbers of line ends that are perpendicular to
the illusory contour. They found that an inverted U
function relates illusory contour clarity to the number of
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line end inducers. The BCS explains the inverted U as
follows. More line end inducers at first produce more cell
activations at hypercomplex cells of the second competi-
tive stage whose receptive fields are centered at and
perpendicular to the line ends. These responses are called
end cuts (Grossberg & Mingolla, 1985b). They are due
to an interaction between the first and second competi-
tive stages. The first competitive stage inhibits those
hypercomplex cells at a line end whose orientational
preference is parallel to the line. These inhibited cells
disinhibit (via the second competitive stage) hypercom-
plex cells at the line end whose orientational preference
is perpendicular to the line (see Fig. 5). These greater
numbers of end cuts, in turn, collinearly cooperate to
more strongly activate the bipole cells that generate the
illusory contour.

As more line inducers are used, however, they get
closer together. They then inhibit each others' target
hypercomplex cells via lateral inhibitory signals from the
first competitive stage. Their net responses are hereby
weakened by lateral inhibition, as are their end cuts and
their illusory contours. Lesher and Mingolla (1993)
noted that other models of illusory contour formation
cannot explain this inverted U effect.

The BCS model suggests that an inverted U function
may also relate illusory contour persistence to the
number of line end inducers under these experimental
conditions, since weaker bipole cell activations should
erode more quickly after stimulus offset and since a
greafer number of reset signals would be generated. That
is, as the spatial density of line inducers increases beyond
the point where illusory contour clarity reverses, then
illusory contour persistence should also reverse in
response to line inducers that are on for a fixed amount
of time. Stimuli in the rising portion of the Lesher and
Mingolla (1993) study provide both stronger bipole cell
activity and stronger reset signals, and so present a more
ambiguous case. This type of experiment would probe
the interactions between first and second competitive
stages, as well as between the spatial and temporal
properties of emergent segmentation.

Grossberg (1987a, Section 30) linked properties of the
BCS simple, complex, and hypercomplex cells to exper-
imentally reported properties of spatial localization and
hyperacuity. Badcock and Westheimer (1985a, b) used
flanking lines to influence the perceived location of a test
line. They varied the position of the flank with respect
to the test line as well as the direction-of-contrast of
flank and test lines with respect to the background. They
found that two separate underlying mechanisms were
needed to explain their data: a mechanism concerned
with the luminance distribution within a restricted
region, and a mechanism reflecting interactions between
features. Within the central zone defined by the first
mechanism, sensitivity to direction-of-contrast was
found, as would be expected within an individual recep-
tive field. On the other hand, a flank within the surround
region always caused a repulsion which is independent
of direction-of-contrast. Thus "when flanks are close to
a target line, it is pulled toward the flank for a positive

flank contrast but they push eacl1l other apart if the flank
has a negative contrast. A flank in the surround region
always causes repulsion under th,e conditions presented"
(p. 1263). To further test independence of direction-of-
contrast due to the surround, they also found that "the
effect of a bright flank on one side can be cancelled by
a dark flank on the other. Withiin the central zone this
procedure produces a substantia:! shift of the mean of a
positive contrast target line towards the positive contrast
flank" (p. 1266).

Badcock and Westheimer (1985a) noted that the
average of luminance within the 4~entral zone is sensitive
to amount-of-contrast and dir(:ction-of-contrast in a
way that is consistent with a difference-of-Gaussian
model. Such a computation also occurs at the elongated
receptive fields, or simple cells, of the BCS (Fig. 5). Pairs
of simple cells with like positions and orientations but
opposite directions-of-contrast t:hen add their rectified
outputs at complex cells which are, as a consequence,
insensitive to direction-of-contra.st (Fig. 5). Such cells
provide the inputs to the first (:ompetitive stage. The
oriented short-range lateral il1lhibition at the first
competitive stage is thus insensitive to direction-of-
contrast, has a broader spatial Jrange than the central
zone, and, being inhibitory, would al\\rays cause
repulsion-all properties of the Badcock and West-
heimer (1985a) data. In summary, all the main effects in
these data mirror properties of the circuit in Fig. S.

In further tests of the existence and properties of these
distinct mechanisms, Badcock and Westheimer (1985b,
p. 3) noted that "in the surround zone the amount of
repulsion obtained was not influenced by vertical
separation of the flank halves, even when they were
several minutes higher (or lower) than the target line. In
the central zone attraction was only obtained when the
vertical separation was small enough to provide some
overlap of lines in the horizontal direction". These data
further support the idea that the central zone consists of
individual receptive fields, whereas the surround zone is
due to interactions across receptive fields which are first
processed to be independent of direction-of-contrast, as
in Fig. 5. In our computer simulations of boundary
completion and segmentation (Grossberg & Mingolla,
1985a, b), it was assumed that the lateral inhibition
within the first competitive stage is not restricted to any
preferred orientation, as is also true of the surround
repulsion effect in the Badcock and Westheimer (1985b)
data.

This theoretically predicted correlation between
properties of hyperacuity, persistence, and illusory
contour formation presents an opportunity to design
new types of psychophysical experiments with which to
further test the model. Other new experimental opportu-
nities are summarized in Grossberg (1994). Some of
these are now being explored in our laboratory.

RELATED FINDINGS AND CONCLUDING REMARKS

Because the equations presented in the Appendix are
for a "single-scale" BCS, they cannot explain findings by
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Meyer and Maguire (1981) that the persistence of a
grating percept increases with spatial frequency. However,
the multiple scale BCS interactions described in Gross-
berg (1994) can account for this finding without affecting
the explanations described in this paper. With multiple
scales of oriented filters, a grating of a low spatial
frequency excites both large and small filters, whereas a
grating of a high spatial frequency excites only small
scaled filters. The net result of this skewed excitation
distribution across scales is that the low spatial frequency
grating creates more reset signals than the high spatial
frequency grating. All activated filters of similar orienta-
tional and disparity sensitivity at each position input to
the same set of bipole cells. As in the case of real vs il-
lusory contours, more reset signals imply less persistence.

The model also suggests why different experimental
methods find different properties of persistence (Sakitt &
Long, 1979). The results in this paper have correlated the
disappearance of boundary signals with the perceived
offset of the stimulus. However, due to the slow time
constants of the habituation in the gated dipole circuit,
reset signals generated at stimulus offset may persist
beyond the offset of the boundary signals. Perceptual
awareness of these reset signals may be used by subjects
when the experimental instuctions tell them to observe
any residual trace of the stimulus, as in the studies of
Sakitt and Long (1979). In particular, stronger luminance
implies greater habituation, which implies a greater
length of time for the rebounding channels of the gated
dipole to return to baseline. Thus, the persistence of the
reset signals may be directly related to stimulus
luminance, in agreement with the psychophysical studies
of total persistence (Sakitt & Long, 1979; Nisly &
Wasserman, 1989).

In reading the Appendix, note that a single set of
parameters was used to simulate all the properties of
visual persistence. While modifying the parameters may
change the quantitative values given in Figs 1, 2, 3, and 4,
the relevant functional properties expressed by the curves
remain the same. Specifically, regardless of the specific
choice of parameters (excluding cases where boundary
signals or reset signals are not created at all), persistence
of signals in the model is inversely related to stimulus
luminance and duration, illusory contours persist longer
than real contours, orientation-specific adaptation has
opposite influences on persistence, and a spatial masking
stimulus inhibits target persistence. The relationships
between persistence and stimulus properties are built into
the structure, or non-parametric design, of the model. In
the present simulations, our goal has thus been to clarify
and illustrate the qualitative functional meaning of
persistence data. In much the same way, quantitative
persistence values vary from subject to subject and with
experimental conditions. This being said, it needs also to
be noted that no alternative explanation of persistence
properties has explained as wide a range of data,
provided the level of detail implemented herein, or
attributed these properties to fundamental design
constraints on the dynamic balance that regulates
perceptual resonance and reset.

Given that the entire structure and dynamics of the
model had previously been derived and tested on other
data than persistence data, the model's ability to simulate
the important functional properties of persistence data
lends even greater support to the neural reality of these
model mechanisms. The ability of this same small set of
model mechanisms to explain data from several percep-
tual and neural paradigms also provides conceptual
linkages across paradigms whereby new types of exper-
iments can be designed to further test these mechanisms,

In summary we have shown how an analysis of the
BCS cortical model can offer new mechanistic and
functional explanations of data on visual persistence,
These explanations are consistent with the theory's
previous explanations of boundary completion
(Grossberg & Mingolla, 1985a), texture segregation
(Grossberg & Mingolla, 1985b), shape-from-shading
(Grossberg & Mingolla, 1987), and three-dimensional
vision (Grossberg, 1987b, 1994), among others, while
extending its explanatory range still further into the
difficult temporal phenomena of visual persistence, The
functional role of the feature binding and reset mechan-
isms that the model predicts to be responsible for persist-
ence suggests links between persistence and fundamental
issues in the formation and breakup of perceptual group-
ings in a dynamically fluctuating environment. Thus, far
from being esoteric laboratory phenomena, data on
persistence afford important clues about some of the
most fundamental processes of preattentive vision,
processes moreover that are being increasingly well
characterized by neural network architectures.
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APPENDIX
Network Equations and Parameters

The simulations of the model are a simplification of the system's
interactions described elsewhere (Grossberg & Mingolla. 1985a, b,
1987). These simplifications were necessitated by the following fact.
Simulations in the prior reports of the model concerned the spatial
interactions of the segmentation system and so had no need to
implement the temporal dynamics of resonance and reset, whose
juxtaposition of fast and slow time scales greatly increased the
computational load in simulations. To manage this load. the
experimental stimuli were also simplified. as indicated in the text.
without losing their essential characteristics. Thus. the quantitative
matches of simulations to data are less significant in this paper than
the analysis of how model mechanisms work together to explain the
complex qualitative pattern of persistence data. These qualitative
properties are, moreover, robust. In much the same way. different
psychophysical studies of persistence do not produce identical quanti-
tative values across observers, but do show consistent relationships
between persistence and stimulus properties. The psychophysical stud-
ies of persistence also do not give absolute measures. but provide only
relative values that can be ordered within an experimental paradigm.

The model contains a total of eight levels of model neurons or
transmitter gates. Each level, except for the first. consists of two
parallel pathways coding horizontal and vertical orientations at each
pixel location. Within the second level. each orientation-specific
pathway contains two simple cells responsive to opposite polarities of
luminance gradients. Thus. associated with each pixel point of the
image are seventeen different cells and transmitter gates. Since we
carried out all simulations on a 40 x 40 pixel array, the simulated
network contained 27,200 cells and transmitter gates. A differential
equation describes the behavior of each cell and gate.

We eased the computational requirements of integrating 27.200
differential equations with a number of simplifications. First, rather
than integrate all the differential equations explicitly, we algebraically
computed some cell activities at the equilibrium value of the differential
equation. We made this simplification for the unoriented on-center,
off-surround cells in Levell. the oriented polarity-specific simple cells
of Level 2, and the hypercomplex cells undergoing lateral inhibition in
Level 4. Computing the values of these cells at equilibrium makes the
assumption that they operate on a faster time scale than the other cells.
Since the rate-limiting time scales of the simulations involve dynamics
of habituative transmitter gates and feedback within the BCS, unfold-
ing the dynamics of these cells would not adversely affect our
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decreasing for inputs further away from the oriental center-line of the
in-field the parameter l' controls the rate of fall off. Then a simple cell
that is selectively responsive to a bright-to-dark luminance gradient
obeys the differential equation

dx 2BD
", 2BD +

d/= -X;" +[Fi,,-Gi,,) .(AS)

where [PJ+ = max(p. 0). A cell responsive to a dark-to-bright lumi-
nance gradient obeys the equation

dx 2DB
i" WB +-= -X". +[G,.-F".) .(A9)

dl I,. f,. ,.

To save computation. the activities of these cells were computed at
equilibrium as:

X7JD = [Fijk -Gijk]+' (AIO)
and

explanations of visual persistence but would greatly increase the
computation required to simulate the model.

A second simplification took advantage of symmetries in the image
plane. If the images presented to the system on the left and right sides
of the plane are mirror images, then activities produced on the right
half will have corresponding equal values on the left. Thus, to save
computation, we could compute only the values on the right side of
the image plane and extrapolate the results to account for the full
image plane. Similarly, when the top and bottom quadrants of the right
side are mirror images, we only needed to compute the cell responses
on the bottom quadrant. Finally, if the upper and lower diagonals in
the quadrant are mirror images, then the values of the horizontal cells
in the lower (upper) diagonal equal the values of the vertical cells in
the upper (lower) diagonal. Thus, by restricting the input stimuli to be
square-shaped, we only had to integrate the differential equations for
the horizontal cells in the bottom right of the image plane to account
for the behavior of the entire system.

These simplifications reduced the system of 27,200 differential
equations to only 1600 differential equations. The LSODA integrator
routine (Petzold & Hindmarsh, 1987) performed the integration of
these equations. We based all the network equations upon those
described in Grossberg and Mingolla (1985b).

X7jB = (Gilt -F,It]+, (All)

Level 3: oriented complex cells

Each cell in Level 3 becomes insensitive to the polarity of constrast
by summing the rectified activities of the cells in Level 2 of the same
location and orientation. Each Level 3 cell obeys the differential
equation

Level 0: image plane

Each pixel has a value associated with retinal luminance. We
describe the pixel-luminance values of the different stimuli used in the
simulations below.

Level I: center-surround cells
The activity Xlj of a Level I cell centered at position (i,j) obeys a

shunting on-center, off-surround equation

dX)j I I ~ I ~-d = -Xij+(A -XiJt;..Bi.b'f/,.-(X;j+ C)t;..Djj,.,I,., (AI)
t pq pq

where Ipq is the retinal luminance at position (p, q), A is the maximum
activity of the cell, -C is the minimum activity of the cell, and

B;jpq = B exp( -a -2 log 2[(i -p)2 + (j -q)~ (A2)

D;jpq=D exp[-p-210g2[(i -pf+(j-qr']] (A3)

are excitatory and inhibitory Gaussian weighting functions, respect-
ively. The term log 2 means the parameters a and p set the radius of
their respective Gaussians at half strength. Parameters Band D are
constant scaling terms.

To save computation, the equilibrium response of the differential
equation is found by setting the left hand side of equation (I) equal
to zero. The resulting algebraic equation can be solved to find

A L Bijpqlpq -C L Dijpqlpq
X)j= pq pq. (A4)

1.0 + L(B;jpq + Djjpq)/pq
pq

The activities of cells at this level share some key propenies with those
found in ganglion cells or LGN (Grossberg, 1987a). No off-center
on-surround cells were implemented in our simulations.

Level 2: oriented simple cells
The following equations define oriented simple cells that are centered

at position (i,j) with preferred orientation k. To create a vertically
oriented input field, or in-field, that is specific to the polarity of the
luminance gradient, divide an elongated region into a left half L;j. and
a right half Rjj.' Add up the weighted sum of the Leve! I inputs within
the range of the left side

Fi~ = L EiJpqX~
.,eLi..

(AS)

and the right side

G/jk = L E;jpqX~
...Hi..

(A6

of the region, with

orientation, the tenD NX'Jr is a feedback signal from the higher level
cell of the same position and orientation, and the term
X~jk Lpq Pjjpq(X~ + J)X~ is the inhibitory input from the lower level
cells of the same orientation and nearby spatial positions. The
inhibitory weights fall off in strength as the spatial distance between
cells increases, as in

Pjjpq = P exp[ -cS-2Iog 2[(; -p)2 + U -q)2D, (AI5)

where P scales the strength of the inhibition, and cS controls the spread.E1jpq = exp( -y-21og 2(; -p)2j (A7)

dXl~ 3 2BD WB
T=-X,~+H(Xi~ +Xi~ ). (AI2)

Parameter H scales the activities of the input signals to the complex
cell.

Let'el 4: habituative transmitter gates

The signal in each oriented pathway is gated, or multiplied, by a
habituative transmitter which obeys the following equation
(Grossberg, 1972)

dX.
-if' = K[L(M -X~) -(X:~ +J)X1p.). (AI3)

This equation says that the amount of available transmitter X~
accumulates to the level M, via term KL(M -X~), and is inactivated
by mass action at rate K(X~" + J)X~, where J is the tonic input of
a gated dipole and X:" is its phasic increment. We always set the rate
K much smaller than 1.0 so that these equations operate on a slower
time scale than the equations describing cell activities. At the beginning
of each simulation, each transmitter value is set to the non-stimulated
equilibrium value X:" = LM I(L + J).

Level 5: first competitive stage of h}percomple.\" cells

The gated signals of a fixed orientation compete via on-center
off-surround spatial interactions. Along with the tonic signal coming
up through the habituative transmitters, each cell also receives a tonic
input which supports disinhibitory activations at the next competitive
stage (see Grossberg & Mingolla, 1985a, b). The activity of a Level 5
cell obeys differential equation

dX~~ 5 , .IT = -X1~+J +(X;~ +J)Xi~ + NXi.A

-X~~LPijpq(X~k+J)X~, (AI4)
H

where -X~~ models the passive decay, the parameter J establishes a
non-zero baseline of activity for the cell, the term (X:~ + J)X1jk is the
gated excitatory input from the lower level at the same position and
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.. For the simulations in this paper, the differential equation was

solved at equilibrium as

X s J + (Xf" + J)X~ + NX~J;
jk= .(AI6)/ 1.0 + L P;jpq(X~+J)X~k

pq

Level 6: second competitive stage of hypercomple.1: cells

The output signals from the first competitive stage compete across
orientation at each position. The activity of a cell receiving this
competition obeys the differential equation

dXfjk 6 5 5d/ = -Xijk + (X;;.- XijK) (A17)

where X~J; and X~K represent orthogonal orientations.

Level 7: cooperative bipole cells and spatial impenetrability

The next level uses a simplified version of bipole cells. As in Level
I, we divide the in-field of each horizontal bipole cell into a left side
L;;. and a right side R;}: (top and bottom for vertically oriented bipole
cells). Each bipole cell then sums up excitatory like-oriented signals
and inhibitory orthogonally-oriented signals within each side. A
slower-than-linear bounded function squashes the net signal of each
side. We then set the output threshold of the bipole cells so that
boundaries must stimulate both sides of the receptive field for the cell
to generate an output signal. The differential equation describing each
bipole cell activity is

dxl;. 7 fl ~ I 6 )+ I 6 )+)-d = -Xi;, + ,:.. X,.,k -X,.,K
t oR...

+flE. IX~)+ -IX':",,)+) (AI8)

where

(c)
300

100

so

0

Level 8: spalial sharpening

Output signals from the bipole cells are thresholded to prevent
feedback unless inputs activate both sides. These output signals then
undergo a spatial sharpening much as in the first competitive stage of
Level 5. The activities of cells in Level 8 obey the differential equation

~ = -x~~ + [Xl~ -R]+ -X~-" L T(X;'k -R]+ (A20)
..oS"

where parameter R is the output threshold for bipole cells, parameter
Tscales the strength of the spatial inhibition, and Sijis the eight nearest
neighbors to pixel (i,j). These signals are scaled by parameter N before
feeding back to the cells in Level 5 to close the feedback loop.

FIGURE AI. Changes in persistence as parameters are modified. In
each case only one parameter is varied. The large solid diamonds mark
persistence with the default parameter value. (a) Parameter N in
equation (AI4) scales the strength of the bipole pathway feedback
signals. Increasing parameter N strengthens the feedback signals to
generate a stronger hysteresis in the network without affecting the
strength of the reset signals. Persistence increases with N. (b) Parameter
K in equation (AI3) controls the rate of habituation of the transmitter
gates. Greater habituation makes stronger reset signals, so persistence
decreases as K increases. (c) Parameter H scales the inputs to the
habituative gates in equation (AI2). Increasing H creates a stronger
resonance and stronger reset signals. Starting with small values,
increasing H has a larger effect on the hysteresis than on the strength
of the reset signals, thus persistence increases. At larger values,
increasing H has a larger effect on the strength of the reset signals than

on the hysteresis, thus persistence decreases.

Computation of images and persistence

We operationally defined the boundaries of an image to be persisting
whenever, after target offset, a cell in Level 6 at the location and
orientation of the target image edge (real or illusory) had an activity
value> 0.5. The computer checked the values every 0.5 time steps after
stimulus offset (I time unit in the simulation is equivalent to 10 msec).
For all simulated images a value at each pixel in simulated ft-L
indicated luminance intensity. The background luminance was always
10-6 simulated ft-L.

The simulated luminances and durations of the target !lashes for
Fig. l(b) are indicated in the figure and were all bright squares (26 x 26

pixels) on a dark background.
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The inducers for the illusory stimuli in Fig. 2(b) were luminance
increments (pixel values of 0.15 simulated ft-L) in the shape of Ls
oriented appropriately in each quadrant to line up the inducer edges.
The real stimulus was a bright outline (3 pixels wide) square of the
same luminance and size (32 x 32 pixels) as the illusory square.

We did not simulate the remaining stimuli shown in Fig. 2(a) because
the simplified BCS used in our simulations creates boundary signals
between the inducing stimuli for all of the stimulus sets. It is not the
focus of this paper to show that our simulations accurately create
illusory contours. Rather, we investigated the persistence of boundaries
generated without a luminance edge. Illusory contours are one example
of these types of boundary signals. A full simulation of the BCS with
more orientations, and whose bipole cell weights are modulated in two
dimensions of spatial position and one of orientation, can accurately
predict the generation of illusory contours (Gove el al., 1993). Such a
simulation is beyond the scope of this paper.

The test stimulus for Fig. 3(b) was a pair of horizontally oriented
luminance bars (10 x I pixels, pixel values of 0.15 simulated ft-L)
separated by 3 pixel spaces. The adaptation stimulus was either
identical to the test stimulus or six small vertical lines (4 x I pixels
each) evenly spaced and placed to intersect with the horizontal bars of
the test stimulus. The adaptation and test stimuli were both presented
for 100.0 simulated msec.

The target for Fig. 4(b) was a bright square of 20 x 20 pixels with
a pixel luminance value of 0.323 simulated ft-L. The mask for Fig. 4(b)
consisted of a bar (16 x 2 pixels) along each edge of the target with
equal pixel luminance and an edge-to-edge separation from the target
of 3-9 pixel spaces, each pixel space corresponding to 0.05 deg of visual
angle. Larger spatial separations could not be used due to the limited
size of the simulation plane. We always presented the target flash for
a duration of 50.0 simulated msec and matched its offset with the onset
of the mask. We kept the masking flash on until the boundaries of the
target flash fell below threshold.

Parameter' selection

Because integration of nonlinear differential equations is computa-
tionally expensive, we simplified the BCS equations as much as
possible. As a result, we could not use the same parameters as other
simulations of the BCS, which calculated the equilibrium response of
the system (Cruthirds, Gove, Grossberg, Mingolla, Nowak &
Williamson, 1992; Gove et al., 1993; Grossberg & Mingolla, I 985a, b,
1987; Grossberg, Mingolla, & Williamson, 1993). In particular,
whereas the present simulations used only vertically and horizontally
oriented cells, other BCS simulations have used oblique orientations as
well.

To remain consistent with earlier simulations and to explain the
properties of persistence, the parameters used in our simulations were
required to meet several properties. First, the parameter set had to
allow the BCS to locate oriented boundaries. For example, if P is set
too large, then spatial inhibition between cells of like orientation and
nearby positions can mutually inhibit activities at the next layer so
much that no signal survives the competition. Similarly, the threshold
for the bipole cell activities, R, cannot be set too large (relative to the
parameter Q and the strength of the inputs to the bipole cells) or the
bipole cells will never fire.

A second requirement of the parameter set was that the activities in
the feedback loop, once activated, needed to be strong enough to
persist once the external inputs were turned off. The parameters N, Q,
R, and T in the bipole feedback pathway control this property of the
network. These parameters were set to insure a persisting activity in
the network and proper creation of boundary signals.

Figure Al(a) shows how the strength of activities in the feedback
loop influences persistence. Parameter N scales the strength of the
bipole feedback pathway to the lower stages. Increasing N strengthens

the boundaries in the BCS without changing the strength of the reset
signals. Figure AI shows the persistence of a 100 simulated msec,
0.323 ft.L stimulus. Figure AI(a) shows that as N increases, persistence
also increases because the hysteresis in the feedback loop is stronger.

A third requirement of the parameter set was that it had to allow
generation of reset signals upon stimulus offset. This was realized by
properly choosing parameters, J, K, L, and M, of the habituative
transmitter gates. Grossberg (1980, Appendix E) showed that the
strength of the reset signal increases with parameter M and decreases
as J or L are increased. These parameters also establish the lower limit
(equilibrium) of the gate strength. If the gate was allowed to habituate
too much, it would no longer pass on sufficient input to the higher
levels. In such a case, boundaries could disappear before the offset of
the stimulus. It is easy to find parameters which avoid this problem.
Parameter K controls the relative rate of habituation, and increasing
K allows for faster habituation and stronger reset signals. Figure AI(b)
shows that increasing K decreases persistence.

The final task of parameter setting was to control the value of the
inputs to the habituative gates so that they created a strong feedback
loop and generated strong reset signals. The six parameters of uvel
I act to compress the cell response to luminous inputs. Equation (I)
could have been replaced with a function like 10g(/,J to get similar
results, but we choose equation (I) to remain consistent with other
simulations of the BCS (Gove et al., 1993; Cruthirds et al., 1992). This
stage of compression explains why the two lower curves of Fig. I have
similar persistence despite the fact that the stimulus of the lower curve
is significantly more luminous. The parameters of uvels 2 and 3 simply
scale the activities of the oriented filters. Increasing the activities of
these cells has two effects. First, stronger signals create stronger
activities in the feedback loop, which act to increase persistence. At the
same time, these stronger signals increase habituation to generate
stronger reset signals upon stimulus offset. The balance of these factors
determines persistence. Figure AI(c) shows that as parameter H
increases from 0.005 to 0.025 persistence increases. This increase in
persistence indicates that the influence of the additional strength given
to the activities in the feedback loop is greater than the additional
habituation caused by the stronger inputs. As H increases still further,
the additional habituation, and stronger reset signals, tend to dominate
the increases in boundary signal strength. This same analysis was used
to explain the inverted-U shapes of the curves in Fig. I(b) and
Fig. 2(b), as a function of stimulus duration.

For our explanations of persistence properties, the only
"disallowed" values of parameters are ones that would generate absurd
consequences even outside the domain of visual persistence. For
example, parameters could be set to prevent bipole cells from perform-
ing boundary completion. However, once they are set so as to permit
completion, illusory contours persist longer than real contours. That
the data curves can be explained through an analysis of the model
network architecture shows that the persistence properties of the model
are robust.

The network parameters remained unchanged across all simulations,
only the image luminances, durations, or spatiotemporally adjacent
stimuli were varied. The following parameters were used: A = 67.5,
B =2.5, C=60.0, D =0.05, H=O.I, J =20.0, K=0.0003, L = 3.0,
M = 5.0, N = 13.0, P = 0.0005, Q = 0.5, R = 0.61, T = 0.3, « = 0.5,
P = 3.0, y = 1.5, IS = 3.0. Each side of the oriented masks in uvel 2,
Lip., Rip., were rectangles of 4 x I pixels in size. Each side of a bipole
cell was restricted to a single column (vertical) or row (horizontal)
extending 18 pixels from the position of the bipolecell. For comparison
purposes, the dashed lines in Fig. l(b) we computed with K = 0.0; and
the dashed line in Fig. 4(b) was computed with P = 0.0.

All simulations were carried out on an Iris 4/280 or an Iris 8/280
Silicon Graphics Superminicomputer. The computation of each
simulated data point in Figs l(b), 2(b), 3, and 4(b), required approxi-
mately half-an-hour on a multi-user machine.


