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Abstract - Sensors working at different times, locations, 
and scales, and experts with different goals, languages, 
and situations, may produce apparently inconsistent 
image labels that are reconciled by their implicit 
underlying relationships. Even when such relationships 
are unknown to the user, an ARTMAP information 
fusion system discovers a hierarchical knowledge 
structure for a labeled dataset. The present paper 
addresses the problem of integrating two or more 
independent knowledge hierarchies based on the same 
low-level classes. The new system fuses independent 
domains into a unified knowledge structure, discovering 
cross-domain rules in this process. The system infers 
multi-level relationships among groups of output 
classes, without any supervised labeling of these 
relationships. In order to self-organize its expert system, 
ARTMAP information fusion system features 
distributed code representations that exploit the neural 
network’s capacity for one-to-many learning. The 
fusion system software and testbed datasets are available 
from http://cns.bu.edu/techlab 
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1 Introduction: Deriving consistent 
information from inconsistent 
sources and experts 

Image fusion has been defined as “the acquisition, 
processing and synergistic combination of information 
provided by various sensors or by the same sensor in 
many measuring contexts.” [1, p. 3] When multiple 
sources and experts provide inconsistent data, fusion 
methods are called upon to select the accurate information 
components. A fusion method could address this problem 
by weighing the confidence and reliability of each source, 
merging complementary information, or gathering more 
data. In any case, at most one of these answers is correct. 
     The methods described here derive consistent 
knowledge from sources that are inconsistent but accurate 
and from experts who have different goals consistent with 
their domain knowledge. This is a problem that the human 

brain solves very well. A young child who hears the 
family pet variously called Sarah’s dog, Fluffy, Samoyed,  
dog, mammal, and animal is not only not alarmed by these 
labels but readily uses them to infer functional 
relationships (Figure 1). Another child might learn the 
partially overlapping labels chien, dog, pet, and animal – 
as well as the incorrect label wolf. 
    The ARTMAP information fusion system acts as a self-
organizing expert system to derive hierarchical knowledge 
structures from inconsistent training data [2, 3]. This 
ability is implicit in the network’s learning strategy, which 
creates one-to-many, as well as many-to-one, maps of the 
input space. During training on an image, for example, the 
system can learn that disparate pixels map to the output 
class ocean; but, if similar or identical pixels are later 
labeled water or natural, the system learns to associate 
multiple output classes with a given input. During testing, 
distributed code activations predict multiple output class 
labels. A rule-discovery algorithm uses these distributed 
outputs to derive a knowledge hierarchy for the output 
classes (Figure 1). The resulting diagram of the 
relationships among classes can then guide the 
construction of consistently layered maps. 
    The current study addresses the problem of fusing 
multiple knowledge domains.  For example, Figure 1 
illustrates a domain in which one expert labels portions of 
an image as man-made versus natural. Another expert 
working in another domain might label the same region as 
wet versus dry. Yet another expert might label the same 
region with more labels e.g., ocean, river, …, industrial. 
The system described in this paper fuses information 
implicit in the natural/man-made example in Figure 1 
with information from another domain defined by wet/dry 
at the top-level.  The unified system discovers cross-
domain rules such as wet! natural and man-
made! dry. In addition, the cross-domain system 
discovers equivalence relationships, as when an area is 
labeled wet in one domain and water in another.  
     Section 2 outlines how distributed coding in the default 
ARTMAP network supports many-to-one and one-to-
many learning. Section 3 describes two remote sensing 
testbed examples. Section 4 specifies the algorithm that 
derives hierarchical knowledge structures from the trained  
  



 
Figure 1    In the ARTMAP information fusion system, each training set pixel is associated with only one label, but test set 
pixels make multiple predictions. The system derives a hierarchical knowledge structure from these distributed predictions. 

  
network’s distributed output class predictions, and 
Section 5 demonstrates system performance on multiband 
sensor data. Section 6 shows how an extension of the 
single domain ARTMAP information fusion system 
unifies multiple knowledge domains. 

2 Multi-class predictions by 
ARTMAP neural networks 

Adaptive Resonance Theory (ART) neural networks 
model real-time prediction, search, learning, and 
recognition. ART networks function both as models of 
human cognitive information processing (e.g., [4–8]) and 
as neural systems for technology transfer (e.g., [9–13]). 
Design principles derived from scientific analyses and 
design constraints imposed by targeted applications have 
jointly guided the development of many variants of the 

basic networks, including fuzzy ARTMAP [14], simplified 
fuzzy ARTMAP [15], Gaussian ARTMAP [16], and 
distributed ARTMAP [17]. Across many variations of 
these models, a neural computation central to both the 
scientific and the technological analyses is the ART 
matching rule [18], which represents the interaction 
between top-down learned expectation and bottom-up 
sensory input. This interaction creates a focus of attention 
which, in turn, determines the nature of stored memories. 
    While the earliest unsupervised ART [18] and 
supervised ARTMAP networks [19] feature winner-take-
all code representations, many of the networks developed 
over the past fifteen years incorporate distributed code 
representations. Comparative analyses of these systems 
have led to the specification of a default ARTMAP 
network, which features simplicity of design and robust 
performance in many application domains [20, 21]. 



Selection of one particular a priori algorithm is intended 
to facilitate technology transfer. The default ARTMAP 
network, which serves as the recognition engine of the 
information fusion system, uses winner-take-all coding 
during training and distributed coding during testing. 
Distributed test outputs have helped improve various 
methods for categorical decision-making. 

3 Boston and Monterey testbed 
examples 

The methods developed here are illustrated with two 
image testbed examples. 
    The Boston testbed [22], derived from a Landsat 7 
Thematic Mapper (TM), is an image of a 5.4km x 9km 
area that includes portions of northeast Boston and 
suburbs. The resolution of the Boston image is 30m2 in six 
TM bands, 60m2 in two thermal bands, and 15m2 in one 
Panchromatic band. The Boston image region 
encompasses mixed urban, suburban, industrial, water, 
and park spaces. Ground truth pixels are labeled:  ocean, 
ice, river, beach, park, road, residential, industrial. The 
Boston testbed is available from http://cns.bu.edu/techlab. 
    The Monterey testbed is based on an aerial photograph 
of the Monterey Naval Postgraduate School at 0.5 m 
resolution. Ground truth pixels are labeled: cars, roof, 
road, foot path, grass, trees.  

4 Deriving a knowledge hierarchy 
from a trained network: 
Predictions, rules, and graphs 

The ARTMAP fusion system provides a canonical 
procedure for labeling an arbitrary number of output 
classes in a supervised learning problem. Information 
implicit in the distributed predictions of a trained 
ARTMAP network generates a hierarchy of output class 
relationships. To accomplish this, each test set pixel first 
produces a set of output class predictions (Section 4.1). 
The resulting list of test predictions then determines a list 
of rules  

! 

x" y , which define relationships between pairs 
of output classes, with each rule carrying a confidence 
value (Section 4.2). The rules are then used to assign 
classes to levels, with rule antecedents x at lower levels 
and consequents y at higher levels (Section 4.3). Classes 
connected by arrows that codify the list of rules and 
confidence values form a graphical representation of the 
knowledge hierarchy. 

4.1 ARTMAP fusion system training 
protocol 

This section describes the cross-validation, training set 
selection, post-processing, and voting procedures 
employed by the ARTMAP information fusion system. 
    According to a standardized cross-validation procedure 
[22], the Boston image is divided into four vertical strips. 
Training pixels are drawn from three of the strips and test 

pixels from another strip. A single system would be 
trained, for instance, on pixels from Strips 1, 3, and 4 and 
tested on pixels from Strip 2. Note the challenge presented 
by the different distributions of classes, such as water, 
across vertical strips in the Boston image. The simulations 
reported here are the result of cross-validation across the 
four possible train/test strip combinations.  
    A ground truth set typically includes some classes, such 
as ocean, with many pixels and some classes, such as 
road, with few pixels. In order for the learning system to 
encode underrepresented exemplars, the training protocol 
imposes a cap (set to 150 for the Boston testbed and 250 
for the Monterey testbed) on the maximum number of 
labels from each class. During training, once a class 
reaches its cap no more pixels are associated with this 
class.  
    When an ARTMAP training input activates a coding 
node j for the first time, this node is said to become 
committed, and the output weight Wjk from node j to the 
associated output class k is set equal to 1 for the duration 
of training. This procedure partitions the coding nodes 
according to the output class to which they were first 
linked. A post-processing training step [17] presents the 
input-output pairs once more, this time distributing the 
activations y at the coding field and hence also 
distributing the output predictions. The output weights Wjk 
are then retrained to minimize the total least-squared error 
between predicted and actual outputs. This procedure is 
akin to the second stage of training in a radial basis 
function network. Final weights Wjk are here computed in 
batch mode using the Matlab pseudo-inverse function 
pinv. 
    Finally, many applications benefit from voting across 
several ARTMAP systems produced by a given training 
set. This feature derives from the fact that fast learning 
produces different networks, and hence different error 
patterns, for different input orderings. Simple voting 
procedures typically produce improved accuracy 
compared to that of any single network, with five voters 
normally serving as a good default choice.  

4.2 Predictions 
A critical aspect of the default ARTMAP network is the 
distributed nature of its internal code representation, 
which produces continuous-valued predictions across 
output classes during testing. In response to a test input, 
distributed activations in the default ARTMAP coding 
field send a net signal 

  

! 

" k  to each output class k (Figure 
2). A winner-take-all method predicts the single output 
class k=K receiving the largest signal

  

! 

" k . Alternatively, a 
single test input can predict multiple output classes. The 
per-pixel filtering method [3] allows the output activation 
pattern produced by each test pixel to determine the 
number of predicted classes. Namely, if the net signals 

  

! 

" k  projecting to the output classes k are arranged from 
largest to smallest, the system predicts all the classes up to 
the point of maximum decrease in the signal size from one 



class to the next. This strategy is motivated by the 
behavior of a hypothetical system that accurately 
represents all the output classes. In such a system, if a 
pixel should predict three classes (e.g., river, water, 
natural), then the output signals 

  

! 

" k  to each of these 
classes would typically be large compared to those of the 
remaining classes. The maximum decrease in size would 
then occur between the third and fourth largest signals, 
and the per-pixel filtering method would predict three 
classes. 

4.3 Rules 
Once each test pixel has produced a set of output class 
predictions {x,y,…}, according to the per-pixel selection 
method, the list of multi-valued test set predictions is then 
used to deduce a list of output class implications of the 
form   

! 

x" y , each carrying a confidence value C%. This 
rule-creation method is related to the Apriori algorithm in 
the association rule literature [23]. The steps listed below 
produce the list of rules that label class relationships. The 
algorithm introduces an equivalence parameter e% and a 
minimum confidence parameter c%. Rules with low 
confidence (C < c) are ignored, with one exception: if all 
rules that include a given class have confidence below c, 
then the list retains the rule derived from the pair 
predicted by the largest number of pixels. Two classes x 
and y are treated as equivalent (x≡y) if both rules   

! 

x" y  
and   

! 

y" x  hold with confidence greater than e. In this 
case, the class predicted by fewer pixels is ignored in 
subsequent computations, but equivalent classes are 
displayed as a single node on the final rule summary 
graph. Reasonable default values set the equivalence 
parameter e in the range 90–95% and the minimum 
confidence parameter c in the range 50–70%. In all 
simulations reported here, parameter values are set apriori 
to e = 90% and c = 50%. Alternatively, e and c may be 
chosen by validation. 
 The following steps derive the list of rules.  
Rule Step 1 List the number of test set pixels predicting 
each output class x. Order this list from the classes with 
the fewest predictions to the classes with the most. 
Rule Step 2 List the number of test set pixels #(x & y) 
simultaneously predicting each pair of distinct output 
classes. Omit pairs with no such pixels. Order the list so 
that #(x) ≤ #(y):  classes x observe the order established in 
Rule Step 1; and for each such class x, classes y observe 
the same order. 
Rule Step 3 Identify equivalent classes, where   

! 

x " y if 
[#(x & y) / #(y)] ≥ e%. Remove from the list all class pairs 
that include x.  
Rule Step 4 Each pair remaining on the list produces a 
rule   

! 

x" y  with confidence C% = [#(x & y) / #(x)]. If 
Rule Step 3 determined that  

! 

x " y, record the confidence 
C ! e  of each rule in the pair {  

! 

x" y ,  

! 

y" x}. 

Rule Step 5 Remove from the list all rules with 
confidence C < c. Exception (no extinction):  If all rules 
that include a given class have confidence below the 
minimum confidence c, then retain the rule or rules 
  

! 

x" y  with maximal #(x & y) pixels.  
Rule Step 6 The following optional information may be 
useful for purposes of analysis.  
(a) List rules removed in Rule Step 5 that have confidence 
in a marginal range, say    

! 

10% " C < c. 
(b) List class pairs x & y (from Rule Step 2) with 
equivalence values in a marginal range. For example, list 
the rule pairs {  

! 

x" y ,  

! 

y" x} for class pairs x & y for 
which c ≤ [#(x & y) / #(y)] < e.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2  Default ARTMAP notation:  An M-dimensional 
feature vector a is complement coded to form the 2M-D 
ARTMAP input A. Vector y represents a winner-take-all 
code during training, when a single category node (j=J) is 

active; and a distributed code during testing. With fast 
learning, bottom-up weights 

  

! 

wij  equal top-down 
weights

  

! 

w ji , both represented by weight vector wj. Each 
coding node j is connected to a single output class node k, 
for which 

  

! 

Wjk =1. A distributed code y thereby produces 
predictions 

  

! 

" k  distributed across output classes. In all 
simulations reported here, the ARTMAP baseline 

vigilance matching parameter is set to its default value, 
  

! 

" = 0 . [21] 



 
Figure 3    Man-made/natural knowledge hierarchy for the Boston testbed using the ARTMAP information fusion system. 
Numbers on arrows indicate the confidence in the corresponding rule. For arrows with no numbers, C=100%. Parameters 

39% < c < 94% and e > 87% all produce the same result. 

 
Figure 4    Wet/dry knowledge hierarchy obtained as in Figure 3 for the Boston testbed. Parameters 34 % < c < 98% and  

e > 89% all produce the same result. 

 
Figure 5    Man-made/natural knowledge hierarchy for the Monterey testbed. Parameters 42% < c < 78% and  

87% < e < 97% all produce the same result. 

 
Figure 6    Transportation/non-transportation knowledge hierarchy obtained as in Figure 5 for the Monterey testbed. 

Parameter 47 % < c < 73% all produce the same result. 



5 Knowledge domain testbeds  
Suppose that a group of experts label portions of the 
Boston image according to a man-made versus natural 
partition of the region. Certain pixels may, for example, 
be labeled as either ocean or water or natural, and other 
pixels could be labeled residential or built-up or man-
made. Such a labeling scheme defines one knowledge 
domain. 
    In an ARTMAP information fusion system, each 
training pixel is given one of these multiple labels. The 
relationships among these labels are not specified or even 
known to the user. The system discovers these 

relationships and expresses the implicit knowledge of the 
experts in the form of a hierarchy (Figure 3). 
    A different group of experts might define a second 
domain by partitioning the same region as wet versus dry. 
A pixel previously labeled water, ocean, or natural might 
now be labeled as ocean, eau, or wet. Rules discovered for 
such a second knowledge domain are shown in Figure 4. 
    The ARTMAP system tests cross-domain integration 
for the Boston domains defined by man-made versus 
natural and wet versus dry. A second example based on 
the Monterey testbed defines two domains from the image 
partitions man-made versus natural and transportation 
versus non-transportation (Figures 5, 6). 

 
Figure 7    Unified hierarchy obtained on the Boston image using the ARTMAP system showing the fusion of man-made/ 
natural (Figure 3) and water/dry (Figure 4) domains. The system correctly discovers all rules as well as the equivalences  

open space≡recreation, built≡buildings, and water≡eau≡wet. Further, the ARTMAP information fusion system discovers 
the cross-domain rules wet! natural and man-made! dry. Parameters 25% < c < 92% and 82% < e < 93% produce the 

same results. 

 
Figure 8    Unified hierarchy obtained on the Monterey image using the ARTMAP system, showing the fusion of man-
made/ natural (Figure 5) and transportation/non-transportation (Figure 6) domains. The system correctly discovers all 

rules as well as the equivalence natural≡vegetation. Further, the ARTMAP information fusion system discovers the cross-
domain rules transportation!man-made and natural! non-transportation. Parameters 46% < c < 66% and 87% < e < 

97% produce the same results. 
 



6 Fusion of knowledge domains 
When two or more domains have been defined for a given 
testbed, an ARTMAP fusion system can unify this 
information as consistent knowledge. Training pixel labels 
are drawn from both the domains. A pixel over the ocean 
in the Boston image might be labeled water or natural 
(domain 1) or eau or wet (domain 2) or ocean (both 
domains). Another pixel might be labeled built-up or man-
made (domain 1) or buildings or dry (domain 2) or 
residential (both domains). In the training set, a pixel is 
associated with just one such label.  
    Figure 7 shows the cross-domain knowledge hierarchy 
discovered for the Boston testbed. The new hierarchy 
correctly embeds all rules of the individual domains 
(Figures 3, 4). In addition, the ARTMAP system discovers 
the cross-domain rules wet! natural and man-
made! dry. Note that the top-level classes that partition 
the two separate domains do not all appear at the top-level 
of the unified structure. 
    The fused knowledge domain also defines cross-domain 
equivalence classes. The class water (domain 1) is found 
to be equivalent to eau (domain 2), which is seen, in turn, 
to be equivalent to wet (domain 2). Similarly, open space 
(domain 1) is found to be equivalent to recreation 
(domain 2), and built-up (domain 1) to be equivalent to 
buildings (domain 2). Note that the discovery of 
equivalences uses no explicit domain knowledge. Thus, 
labels in one domain might be in an unknown language or 
code.  
    Figure 8 shows the cross-domain knowledge hierarchy 
for the Monterey testbed. Included are the cross-domain 
rules transportation!man-made and natural! non-
transportation. The fused hierarchy also correctly 
includes all rules from the individual domains (Figures 5, 
6).  

7 Conclusion 
The ARTMAP neural network produces one-to-many 
mappings from input vectors to output classes, as well as 
the more traditional many-to-one compressed 
representations of its training space. One-to-many 
learning allows the ARTMAP information fusion system 
to associate any number of output classes with each input. 
Although inter-class relationships are not specified with 
the training inputs, the system readily derives knowledge 
of rules, confidence estimates, and multi-class hierarchical 
relationships from patterns of distributed test predictions. 
The system also fuses independent domains into a unified 
knowledge hierarchy, discovering cross-domain rules in 
this process. The system infers multi-level and cross-
domain rules without any supervised labeling of these 
relationships. 
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