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A neural network model is described for adaptive control of arm movement trajectories during
visually guided reaching. The model clarifies how a child, or infant robot, can learn to reach for
objects that it sees. Piaget has provided basic insights with his concept of a circular reaction. As an
infant makes internally generated hand movements, the eyes automatically follow this motion. A
transformation is learned between the visual representation of hand position and the motor
representation of hand position. Learning of this transformation eventually enables the child to
accurately reach for visually detected targets. Grossberg and Kuperstein (1989) have shown how
the eye movement system can use visual error signals to correct movement parameters via
cercbellar learning. Here it is shown how the arm movement system can endogenously generate
movements which lead to adaptive tuning of arm control parameters. These movements also
activate the target position representations that are used to learn the visuo-motor transformation
that controls visually guided reaching. The arm movement properties obtain in the Adaptive
Vector Integration to Endpoint (AVITE) model an adaptive neural circuit based on the VITE
model for arm and speech trajectory generation of Bullock and Grossberg (1988a).
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Self-organization of intermodal and intramodal maps for visually guided
reaching

This article describes self-organizing neural circuits for the control of
planned arm movements during visually guided reaching. The problem
that motivates our results concerns the issue: how does a child learn to
reach for objects that it sees? This problem requires understanding the
interactions between two distinct modalities: vision (seeing an object)
and motor control (moving a limb). In particular, we need to char-
acterize the self-regulating mechanisms whereby an individual can
stably learn transformations within and between the two different
modalities that are capable of controlling accurate goal-oriented move-
ments. The behavioral events that enable such learning to occur were
called a circular reaction by the Swiss psychologist Jean Piaget (1963).

The circular reaction is an autonomously controlled behavioral cycle
with two components: production and perception, with learning linking
the two modalities to enable sensory-guided action to occur. Such a
circular reaction is intermodal; that is, it consists of the coupling of two
systems operating in different modalities. In order for the intermodal
circular reaction to generate stable learning of the parameters that
couple the two systems, the control parameters within each system
must already be capable of accurate performance. Otherwise, perfor-
mance may not be consistent across trials and a stable mapping could
not be learned between different modalities. Thus it is necessary to
self-organize the correct intramodal control parameters before a stable
intermodal mapping can be learned.

Grossberg and Kuperstein- (1986, 1989) have modelled how such
intramodal control parameters can be learned within the eye movement
system. During early development, eye movements are made reactively
in response to visual inputs. When these eye movements do not lead to
foveation of the visual target, the nonfoveated position of the target
generates a visual error signal. The model suggests how such error
signals can be used by the cerebellum to learn eye movement control
parameters that lead to accurate foveations.

Here we show how the arm movement system can endogenously
generate movements during a ‘motor babbling’ phase. ‘Motor bab-
bling’ describes the spontaneous arm movements of an infant during an
early developmental phase. These movements help to generate the data
needed to learn correct arm movement control parameters. These
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Fig. 1 A schematic diagram of the Adaptive VITE (AVITE) circuit. The Now Print (NP) gate

copies the PPC into the TPC when the arm is stationary and the plastic synapses (semicircles in

the TPC — DV pathways) learn to transform target commands into correctly calibrated outflow
signals at the PPC.

endogenously generated arm movements also activate the target posi-
tion representations that are used to learn the visuo-motor transforma-
tion that controls visually guided reaching.

Our results are developed within a model that we call the AVITE
model (fig. 1) for variable-speed adaptive control of multi-joint limb
trajectories.

Trajectory formation as an emergent invariant

Bullock and Grossberg (1988a) have suggested that trajectory forma-
tion is an emergent invariant that arises through interactions among
two broad types of control mechanisms: planned control and automatic
control. Planned control variables include (1) target position, or where
we want to move; and (2) speed of movement, or how fast we want to
move to the desired position, and the ‘will’ to move at all. Automatic
control variables compensate for (3) the present position of the arm; (4)
unexpected inertial forces and external loads, and (5) changes in the
physiognomy of the motor plant, say due to growth, injury, exercise,
and aging.

The VITE modcl of Bullock and Grossberg implements such a
strategy of trajectory control and has been used to explain a large
behavioral and neurobiological data base (see Bullock and Grossberg
1988a, 1988b, 1989, 1991). The model clarifies how motor synergies can
be dynamically bound and unbound in real-time, and how multiple
joints within a synergy can be synchronously moved at variable speeds.
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Fig. 2. The VITE model, adapted from Bullock and Grossberg (1988a). TPC = Target Position

Command, DV = Difference Vector, PPC = Present Position Command. The GO signal acts as a

nonspecific multiplicative gate that can control the overall speed of a movement, or the will to

move at all. Use of a single GO signal insures synchronous activation of all muscles in the
synergies involved in a coordinated movement.

The synchrony with which different muscles of a synergy contract by
different amounts in equal time emerges from the interactive dynamics
of the network; it is not externally controlled or programmed into the
network.

The VITE model

Fig. 2 summarizes the main components of the VITE circuit. At the
top of the figure, inputs to the Target Position Command (TPC)
populations represent the desired final position of the arm. At the
bottom of the figure, the Present Position Command (PPC) populations
code an internal representation of where the arm actually is. Outflow
movement commands to the arm are generated by the PPC. These
outflow signals, supplemented by spinal circuitry and cerebellar learn-
ing (Bullock and Grossberg 1989, 1991) move the hand to the location
relative to the body that is coded by the PPC.

Signals from the TPC and the PPC enable the Difference Vector
(DV) populations to continuously compute the discrepancy between
present position (PPC) and desired position (TPC). DV activation is
integrated by the PPC until the latter becomes equal to the TPC, at
which time the DV will be equal to zero -and PPC integration stops.
Hence the VITE circuit embodies an automatic process that moves the
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PPC continuously to the TPC. The Adaptive VITE (AVITE) model
presented herein explains how ‘motor babbling’ endogenously gener-
ates PPC representations that move the arm through a full range of
positions, and activate TPCs whose signals to the DV are adaptively
tuned to be dimensionally consistent with the corresponding PPCs, by
using the DVs as source of error signals during learning.

Coding movement speed and intentionality: The GO signal

If the PPC were always allowed to integrate the DV, then a move-
ment would begin as soon as the TPC becomes active. Somehow it
must be possible to ‘prime’ a target position without moving the arm
until another signal indicates the intent to carry out the movement. A
related issue concerns how the overall speed of a movement can be
varied without changing the desired TPC. ‘Priming’ denotes the limit-
ing case of zero speed.

Trajectory-preserving speed control can be achieved by multiplying
the output of the DV with a nonspecific gating signal. This is the GO
signal depicted in fig. 2. Because of its location within the VITE model,
the GO signal affects the rate at which the PPC is continuously moved
toward the TPC, without altering the resulting trajectory.

For example, as long as the GO signal is zero, instatement of a TPC
generates a nonzero DV, but the PPC remains unaltered. This ‘primed’
DV codes the difference between the arm’s present position and desired
position. When the GO signal is nonzero, the DV is integrated by the
PPC at a rate proportional to the product (DV)-(GO). Integration
ceases when the PPC equals the TPC and the DV equals zero, even if
the GO signal remains positive. Other things being equal, a larger GO
signal causes the PPC to integrate at a faster rate, so the same target is
reached in a shorter time.

The synchrony of synergetic movement control by a VITE circuit is
preserved in response to an arbitrary GO signal, and the main qualita-
tive properties of VITE-controlled velocity profiles are preserved in
response to a wide class of increasing GO signals (Bullock and Gross-
berg, 1988a). The model’s prediction of a reversal in the direction of
velocity profile asymmetry with increasing speed was confirmed in an
explicit test by Nagasaki (1989), and its prediction of a late-acting
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execution-gating signal was confirmed in an explicit test by DeJong et
al. (1990).

Autonomous learning of VITE coordinates

In order for the VITE model to generate correct arm trajectories, the
TPC and PPC must be able to activate dimensionally consistent signals
TPC —» DV and PPC — DV for comparison at the DV. There is no
reason to assume that the gains, or even the coordinates, of these
signals are initially correctly matched. Learning of an adaptive coordi-
nate transformation is needed to achieve self-consistent matching of
TPC- and PPC-generated signals at the DV.

In order to learn such a transformation, TPCs and PPCs must
simultaneously be activated that represent the same target positions.
This cannot be accomplished by activating a TPC and then letting the
VITE circuit integrate the corresponding PPC. Such a scheme would
beg the problem being posed; namely, to discover how TPC — DV and
PPC — DV signals are calibrated so that a TPC can generate the
corresponding PPC. An analysis of all the possibilities that are con-
sistent with VITE constraints suggests that PPCs are generated by
internal, or endogenous, activation sources during a motor babbling
phase. After such a babbled PPC is generated and a corresponding
action taken, the PPC is itself used to activate a TPC which a fortiori
represents the same target position. This occurs via pathway PPC —
NP —» TPC in fig. 1 (NP = Now Print gate). Thus motor babbling
samples the work space and, in so doing, generates a representative set
of pairs (TPC, PPC) for learning the VITE coordinate transformation.

Associative learning from parietal cortex to motor cortex durmg the
motor babbling phase -

Further analysis suggests that the only site where an adaptive
coordinate change can take place i$ at the synaptic junctions that
connect the TPC to the DV. These junctions are represented as semi-
circular synapses in fig. 1. Moreover, the DV represents an internal
measure of error, in the sense that miscalibrated signals TPC — DV
and PPC — DV of TPCs and PPCs that correspond to the same target
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position will generate a nonzero DV. Learning is designed to change
the synaptic weights in the pathways T7PC — DV in a way that drives
the DV to zero. After learning is complete, the DV can only equal zero
if the TPC and PPC represent the same target position. If we accept the
neural interpretation of the TPC as being computed in the parietal
cortex (Anderson et al. 1985; Grossberg and Kuperstein 1986, 1989)
and the PPC as being computed in the motor cortex (Bullock and
Grossberg 1988a; Georgopoulos et al. 1982, 1984, 1986), then we are
led to predict that associative learning from parietal cortex to motor
cortex takes place during motor babbling along a possibly multi-syn-
aptic pathway, and attenuates activation of the difference vector cells
in the motor cortex during postural intervals. The GO signal shares
properties with cells in the globus pallidus (Bullock and Grossberg
1989, 1991; Horak and Anderson 1984a, 1984b).

Vector associative map: On-line DV-mediated learning and performance

When such a learning law is embedded within a complete AVITE
circuit, the DV can be used for on-line regulation of both learning and
performance. During a performance phase, a new TPC is read into the
VITE circuit from elsewhere in the network, such as when a reaching
movement is initiated by a visual representation of a target. The new
DV is used to integrate a new PPC that represents the same target
position as the TPC. Zeroing the DV here creates a new PPC while the
TPC is held constant. During the learning phase, the DV is used to
drive a coordinate change in the TPC — DV synapses. Zeroing the DV
here creates new adaptive weights while both the PPC and TPC are
held fixed.

Both the learning and the performance phases use the same AVITE
circuitry, notably the same DV, for their respective functions. Thus
learning and performance can be carried out on-line in a real-time
setting, unlike schemes like back propagation. The operation whereby
an endogenously generated PPC activates a corresponding TPC, as in
fig. 1, ‘back propagates’ information for use in learning, but does so
using local operations without the intervention of an external teacher
or a break in on-line processing.

Autonomous control, or gating, of the learning and performance
phases is needed to achieve effective on-line dynamics. For example,
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Fig. 3. A diagrammatic illustration of a single babbling cycle in the AVITE. (a) The Endogenous
Random Generator ON channel output (ERG ON)}) is integrated at the PPC, giving rise to random
outflow signals that move the arm. (b) When the arm stops moving at ERG ON offset, a
complementary ERG OFF signal opens the Now Print (NP) gate, copying the current PPC into
the TPC through an arbitrary transformation. (c) The filtered TPC activation is compared to the
PPC at the DV stage. DV activation would be zero in a properly calibrated AVITE. (d) The
learning law changes TPC — DV synapses to eliminate any nonzero DV activation, thus learning
the reverse of the PPC — NP — TPC transformation.

the network needs to distinguish whether DV # 0 because the TPC and
PPC represent different target positions, or because the TPC —» DV
synapses are improperly calibrated. In the former case, learning should
not occur; in the latter case, it should occur. Thus some type of
learning gate is needed to prevent spurious associations from forming
between TPCs and PPCs that represent different target positions. The
design of the total AVITE network shows how such distinctions are
computed and used for real-time control of the learning and perfor-
mance phases. We now explain how this is accomplished.
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The motor babbling cycle

During the motor babbling stage, an Endogenous Random Genera-
tor (ERG) of random vectors is activated. These vectors are input to
the PPC stage, which integrates them, thereby giving rise to outflow
signals that move the arm through the workspace (fig. 3a). After each
interval of ERG activation and PPC integration, the ERG aurtomati-
cally shuts off, so that the arm stops at a particular target position in
space.

Offset of the ERG opens a Now Print (NP) gate that copies the PPC
into the TPC through some fixed transformation (fig. 3b). The top-down
adaptive filter from TPC to DV learns the correct reverse transforma-
tion (fig. 3c) by driving the DV toward zero while the NP gate is open
(fig. 3d).

Then the cycle repeats itself automatically. When the ERG becomes
active again, it shuts off the NP gate and thus inhibits learning. A new
PPC vector is integrated and another arm movement is elicited. The
ERG is designed such that, across the set of all movement trials, its
output vectors generate a set of PPCs that form an unbiased sample of
the workspace. This sample of PPCs generates the set of (TPC, PPC)
pairs that is used to learn the adaptive coordinate change TPC — DV
via a vector associative map.

The endogenous random generator of workspace sampling bursts

The ERG design embodies an example of opponent interactions (fig.
4). The motor babbling cycle is controlled by two complementary
phases in the ERG mechanism: an active (ERG ON) and a quiet
(ERG OFF) phase. The active phase generates random vectors to the
PPC. During the quiet phase, input to the PPC from the ERG is zero,
thereby providing the opportunity to learn a stable (TPC, PPC) rela-
tionship. In addition, there must be a way for the ERG to signal onset
of the quiet phase, so that the NP gate can open and copy the PPC into
the TPC (fig. 3b). The NP gate must not be open at other times: if it
were always open, any incoming commands to the TPC could be
distorted by contradictory inputs from the PPC. Offset of the active
ERG phase is accompanied by onset of a complementary mechanism
whose output energizes opening of the NP gate. The signal that opens
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Fig. 4. Response of various ERG levels to a continuous differential input J*. An inverted-U
transfer function through the chemical gates (rectangular synapses) leads to a transient ON
response (O*), followed by activation of the OFF channel (O7). Sufficient OFF channel
activation energizes the Pauser Gate (PG), which shuts off phasic input J* to the ON channel,
causing a larger, transient rebound in the OFF channel. Removal of the phasic input allows ON
channel transmitter Y* to replenish, eventually shutting off the PG and starting a new cycle. The
ON channel output is choppy due to noisiness of phasic input J*. Dashed lines in upper
right-hand plot represent PG activation (not drawn to scale).

the NP gate can also be used to modulate learning in the adaptive
filter. No learning should occur except when the PPC and TPC encode
the same position.

Fig. 4 provides a schematic diagram of the ERG circuit. The design
is a specialized gated dipole (Grossberg 1972, 1982, 1984). A gated
dipole is a neural network model for the type of opponent processing
during which a sudden offset of one channel can trigger activation, or
antagonistic rebound, within the opponent channel. Habituating trans-
mitters in each opponent channel regulate the rebound property by
multiplying, or gating, the signals in their respective channel.

In the present application, note the complementary time intervals
during which the ON and OFF channels of the ERG are active. The
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ON channel output is different during each active phase, leading to
integration of PPCs that sample the workspace. In contrast, OFF
channel activation is fairly uniform across trials, thereby providing
intervals during which learning can stably occur.

The basic gated dipole circuit needs to be specialized to design an
effective ERG circuit. Such an ERG circuit needs to convert an
undifferentiated stream of random inputs to the ON channel into cyclic
output bursts from the ON channel, interspersed with OFF intervals
whose duration is relatively stable across trials, as in the computer
simulation illustrated in fig. 4. In order to convert a stream of random
inputs into a series of output bursts, activation of the ON channel must
initiate a process that spontaneously terminates ON channel output
due to transmitter habituation even while the random inputs remain
on. In addition, after the ON channel shuts off, it must be able to
spontaneously recover, even while its random inputs remain on, so that
it can generate the next output burst.

In order to achieve cyclic output bursts from the ON channel, its
chemical transmitter must be allowed to recover from habituation
during its quiet phase. In order for this to happen, the random input
stream to the ON channel must be blocked during its quiet phase. Our
solution is to let the OFF activation actively gate shut the source of
phasic input, so that the ON transmitter can recover from habituation.
This process is represented in fig. 5 as a feedback pathway from the
OFF channels of the ERG to the input source through a gate labelled
PG that sums all OFF inputs.

Some results: correct parameter learning through motor babbling

This section provides a qualitative overview of the major results
obtained through computer simulation of the AVITE model during its
movement and learning phases. Fig. 5 is a schematic diagram of the
complete system used in the simulations described below to control.a
two-jointed arm. Each AVITE module consists of one agonist channel
and one antagonist channel, coupled in a push-pull fashion. Each
channel receives inputs from its own ERG circuit. All ERG OFF
channels cooperate to activate the PG gate. Fig. 6 summarizes a
computer simulation that illustrates the relatively uniform distribution
of endogenously generated arm positions. Each dot on the scatterplot



152 P. Gaudiano, S. Grossberg / Adaptive vector integration

SHOULDER

ELBOW

Fig. 5. Diagram of the complete ERG-AVITE system used for the two-joint simulations. Each

AVITE agonist-antagonist module is driven by two ERG modules. AVITE outflow commands

control movement of a simulated two-joint system. The GO signal, NP gate and PG are the same
for all modules to ensure synchronous movement and learning for both synergies.

Fig. 6. Computer simulation of ERG-AVITE dynamics: (a) The time course behavior of four state
variables in the ON (left) and OFF (right) ERG channels during 2,000 steps of the simulation.

The range of each plot is indicated in parentheses under the abscissa. From top to bottom: ERG'

outputs (O*, O7), available transmitter (Y*, Y7), input layer activation (X*, X~ ) and total
input signal (/*, J*, I). Note that bottom three plots for OFF channel (right) are always
‘constant. This is due to lack of phasic input to OFF channel. However, baseline activation is
necessary to energize OFF channel rebounds (top right plot). (b) Distribution of joint angles
(between — 7 and = radians) attained during about 400 babbled movements (100,000 steps of the
simulation). Left: each dot in the scatterplot represents the angle of the two joints (8,, 6,) during
each quiet phase. Center point represents resting position. Right: histograms of the distribution of
joint angles around resting position. Magnitude histogram represents the number of dots falling
within each of 16 evenly spaced concentric rings about the center; the unimodal distribution
toward the left side of the histogram indicates a tendency for less extreme joint angles. Phase
histogram represents the number of dots at each of sixteen evenly spaced quadrants about the
resting position; a flat phase histogram indicates a uniform distribution of joint angle combina-
tions. (c) Representative sample of uninterrupted total input 7+ J* for 500 steps.
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Fig. 7. Total DV error as a function of time.

of fig. 6b represents a particular arm configuration attained at the end
of a single ERG active phase. The axes represent joint angle between
—a and 7 for each joint. Fig. 6b also provides histograms of the radial
and angular distributions, respectively, of dots around the center of the
scatterplot. Fig. 6¢c shows the random input that is converted into input
bursts (fig. 6a) by the ERG. Fig. 7 illustrates a computer simulation
showing the convergence of the learning process as motor babbling
progresses. The plot computes the DV at the end of successive quiet
phases, when the PPC equals the TPC. Learning successfully drives the
DV to zero at an approximately exponential rate, that can be chosen
very fast.

Concluding remarks

The AVITE model clarifies how motor babbling can sample the
work space while generating Target Position Commands that can be
used to learn correct intramodal arm trajectory control parameters and
intermodal maps to control visually guided reaching. The mathematical
analysis of how this is achieved will be described elsewhere (Gaudiano
and Grossberg 1991). The Vector Associative Map, or VAM, by which
the AVITE adaptive coordinate transformation is learned on-line
promises to be useful in solving other problems of adaptive sensory-
motor control and beyond.
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