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ABSTRACT 
How do reactive and planned behaviors interact in real time? How are sequences of such 
behaviors released at appropriate times during autonomous navigation to realize valued goals? 
Controllers for both animals and mobile robots, or animats, need reactive mechanisms for 
exploration, and learned plans to reach goal objects once an environment becomes familiar. The 
SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-
oriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual 
reality environment. SOVEREIGN includes several interacting subsystems which model 
complementary properties of cortical What and Where processing streams and which clarify 
similarities between mechanisms for navigation and arm movement control. As the animat 
explores an environment, visual inputs are processed by networks that are sensitive to visual 
form and motion in the What and Where streams, respectively. Position-invariant and size-
invariant recognition categories are learned by real-time incremental learning in the What stream. 
Estimates of target position relative to the animat are computed in the Where stream, and can 
activate approach movements toward the target. Motion cues from animat locomotion can elicit 
head-orienting movements to bring a new target into view. Approach and orienting movements 
are alternately performed during animat navigation. Cumulative estimates of each movement are 
derived from interacting proprioceptive and visual cues. Movement sequences are stored within a 
motor working memory. Sequences of visual categories are stored in a sensory working memory. 
These working memories trigger learning of sensory and motor sequence categories, or plans, 
which together control planned movements. Predictively effective chunk combinations are 
selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning 
chunks effect a gradual transition from variable reactive exploratory movements to efficient 
goal-oriented planned movement sequences. Volitional signals gate interactions between model 
subsystems and the release of overt behaviors. The model can control different motor sequences 
under different motivational states and learns more efficient sequences to rewarded goals as 
exploration proceeds.  
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1. Introduction 
1.1. Three Basic Design Themes. This article describes the SOVEREIGN (Self-Organizing, 
Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation) neural model 
to clarify how an animal, or animat, can learn to reach valued goal objects through planned 
sequences of navigational movements. The SOVEREIGN model embodies a self-organizing 
control system that attempts to learn and perform such behaviors autonomously. As the name 
SOVEREIGN indicates, this control system unifies visual, recognition, cognitive, cognitive-
emotional, and motor competences. We believe that this is the first neural model that embodies 
and coordinates such a wide range of behavioral competences in an autonomous self-organizing 
control system that can operate in real time. These results have been briefly reported in Gnadt 
and Grossberg (2005a, 2005b, 2006). 

SOVEREIGN contributes to three large themes about how the brain works. The first 
theme concerns how brains learn to balance between reactive and planned behaviors. During 
initial exploration of a novel environment, many reactive movements occur in response to 
unexpected and unfamiliar environmental cues (Leonard and McNaughton, 1990). These 
movements may initially appear to be locally random, as an animal orients toward and 
approaches many local stimuli. As such an animal becomes familiar with its surroundings, it 
learns to discriminate between objects likely to yield a reward and those that lead to punishment. 
Such approach-avoidance behavior is often learned via a perception-cognition-emotion-action 
cycle in which an action and its consequences elicit sensory cues that are associated with them. 
Rewards and punishments affect the likelihood that the same actions will be repeated in the 
future. When objects are out of direct sensory range, multiple reactive exploratory movements 
may be needed to reach them. Eventually, reactive exploratory behaviors are replaced by more 
efficient planned sequential trajectories within a familiar environment. One of the main goals of 
SOVEREIGN is to explain how erratic reactive exploratory behaviors can give rise to organized 
planned behaviors, and how both reactive and planned behaviors may remain balanced so that 
planned behaviors can be carried out where appropriate, without losing the ability to respond 
quickly to novel reactive challenges.  

The second design theme illustrates the hypothesis that advanced brains are organized 
into parallel processing streams with complementary properties (Grossberg, 2000a). Each 
stream’s properties are related to those of a complementary stream much as a lock fits its key, or 
two pieces of a puzzle fit together. The mechanisms that enable each stream to compute one set 
of properties prevent it from computing a complementary set of properties. As a result, each of 
these streams exhibits complementary strengths and weaknesses. How, then, do these 
complementary properties get synthesized into a consistent behavioral experience? It is proposed 
how interactions between these processing streams overcome their complementary deficiencies 
and generate behavioral properties that realize the unity of conscious experiences. In this sense, 
pairs of complementary streams are the functional units because only through their interactions 
can key behavioral properties be competently computed. SOVEREIGN clarifies how these 
complementary properties interact together to control goal-orienting sequences of navigational 
behaviors. For example, it is well-known that there are What and Where (or Where/How) 
cortical processing streams (Goodale and Milner, 1992; Mishkin, Ungerleider and Macko, 1983; 
Ungerleider and Mishkin, 1982). In particular, key properties of the What and Where cortical 
processing streams seem to be complementary. Neural models have clarified that properties of 
invariant object learning and recognition in the What cortical stream are complementary to 
properties of goal-oriented movement control in the Where cortical processing stream. 
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 A third design theme underlying the SOVEREIGN model is that brains use homologous 
circuits to compute navigational and hand/arm movements. In other words, movements of the 
body and of the hand/arms are controlled by circuits that share many properties. This proposed 
homology clarifies how navigational and arm movements can be coordinated when a body 
moves with respect to a goal object with the intention of grasping or otherwise manipulating it 
using the hand/arm system. 

A considerable body of neural modeling of arm movement trajectory control (e.g., the 
VITE model: Bullock and Grossberg, 1988; Cisek, Bullock, and Grossberg, 1998) suggests that 
cortical arm movement control circuits compute a representation of where the arm wants to move 
(i.e., a target position) and compare this with an outflow representation of where the arm is now 
(i.e., the present position) by computing a difference vector between target position and present 
position representations. The difference vector represents the direction and distance that the arm 
needs to move to realize its goal position. Basal ganglia volitional signals of various kinds, such 
as a GO signal, translate the difference vector into a motor trajectory of variable speed. 
Additional cortical, spinal, and cerebellar circuitry is needed to ensure that the brain generates 
the forces that are needed to actually carry out such a commanded trajectory (e.g., the FLETE 
model: Bullock and Grossberg, 1991; Contreras-Vidal, Grossberg, and Bullock, 1997).  

A key difference between navigation and hand/arm movement control concerns how 
present position is calculated. Because the arm is attached to the body, present position of the 
arm can be directly computed using outflow, or corollary discharge, movement commands that 
explicitly code the commanded arm position. In contrast, when a body moves with respect to the 
world, no such immediately available present position command is available. This difference 
requires more elaborate brain machinery to compute present position of the body in the world 
during navigational movements. The brain needs to use a variety of sensory cues, both 
proprioceptive and visual, to create a representation of present position that can be compared 
with representations of target position, so that a difference vector and volitional commands can 
move the body towards desired goal objects. In summary, both navigational movement in the 
world and movement of limbs with respect to the body use a difference vector computational 
strategy. 

1.2. What SOVEREIGN Does. SOVEREIGN’s perceptual competences include on-line, albeit 
simplified, visual representations of a 3D virtual reality environment in which the model controls 
navigation. SOVEREIGN computes, in parallel, both visual form and motion information about 
the world. As in the brain, the visual form of objects is computed within the What cortical 
processing stream, whereas visual motion is computed within the Where cortical processing 
stream. In this way, the brain can process both what objects are and where and how to track and 
act upon them.  

SOVEREIGN uses the visual form information to incrementally learn spatially-invariant 
and size-invariant object recognition categories whereby to recognize visually perceived objects 
in the world. These recognition categories, in turn, learn to read out top-down attentive 
expectations of the visual objects that they code. Object categories in the What stream are 
spatially-invariant and size-invariant to prevent a combinatorial explosion from occurring in 
which each position and size of an object would need its own representation. The Where stream 
represents the spatial locations of these objects. In particular, visual motion information is used 
to guide reactive orienting movements and attention shifts to locations at which changes occur in 
SOVEREIGN’s visual world. What-Where inter-stream interactions are needed to enable both 
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recognition and acquisition of desired goal objects. These parallel streams help SOVEREIGN to 
balance between reactive and planned behaviors, in a manner that is further discussed below. 

SOVEREIGN also includes cognitive processes, notably mechanisms to temporarily store 
sequences of events in working memory, and to learn sequential plans, or chunks, of these 
sequences with which to predict and control future planned behaviors. Parallel object and spatial 
working memories and sequential chunking networks are modeled. The object working memory 
and chunking network are in the model’s What stream, and the spatial working memory and 
chunking network are in its Where stream. SOVEREIGN clarifies how these parallel cognitive 
processes cooperate to acquire desired goal objects that can only be reached through a sequence 
of actions, and to disambiguate sequential navigational decisions in contexts where only one of 
them would be insufficient. 

Cognitive-emotional mechanisms include the role of rewards and punishments in shaping 
goal-oriented behaviors. In particular, reinforcement learning can influence which learned 
cognitive chunks will be attended and selected to elicit behaviors that acquire desired goals 
within a familiar environment. Learned interactions between cognitive and emotional 
representations, notably motivationally-mediated attention, play an important role in this context-
sensitive selection process. 

The SOVEREIGN model thus contributes solutions to three key problems: (1) How an 
animal, or animat that embodies biologically-inspired designs, learns to balance between reactive 
and planned behaviors in a task-appropriate way. (2) How plans are learned during erratic 
reactive behaviors in such a way that, after learning, they can be read out fluently at the correct 
times and in the correct spatial contexts. (3) How, in particular, an animat coordinates its reactive 
and planned behaviors so that its perception-cognition-emotion-action cycles of exploration, 
real-time vision, learned recognition, sequential working memory storage, learning of sequential 
plans, reinforcement learning, and planned action sequences are activated when needed as the 
animat navigates novel and familiar environments. 

A number of problems need to be solved in realize these competences:  
1. How are visual inputs used for both target identification and target position estimation? 
2. What coordinate system is used for representing target positions? How is it calibrated 

through learning? 
3. What coordinate system is used for representing body position in space? How is it 

calibrated through learning? 
4. What is the role of proprioceptive feedback in calibrating body position? 
5. How are target position and body position information combined to control the next 

planned movement? Are movement sequences whose units are sensory and motor items (cue-
command pairs) sufficient for some types of spatial navigation? 

6. How are items within movement sequences stored in short-term working memory?  
7. How can a memory system be designed to store and recall sequential plans, or chunks? 

How can such learning solve the classical goal paradox (Grossberg, 1978), which notes that, on 
all sequence learning trials, the goal always occurs last, whereas during planned sequential 
performance, knowledge that the goal is being sought is activated first? That is, how can learning 
be order-preserving, yet also break the learned order to permit the desired goal to activate a plan 
capable of realizing it? 

8. How does reinforcement enable an animal to selectively attend to rewarded goal 
objects? 
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9. How does reinforcement interact with the memory representation of experienced 
sequences in order to preferentially choose and perform them? 

10. How can latent learning, or learning without reward, be explained? 
11. How does competitive decision-making resolve conflicts between visually reactive 

and planned movement commands? 

2. SOVEREIGN Model 
2.1. Approach-Orienting Navigation and Learning in a 3D Virtual Reality Environment. 
The SOVEREIGN model simulates these processes for an animat that experiences a 3D visual 
world in a virtual reality environment. This world is the relatively simple spatial format of a 
plus-maze (Munn, 1950). Although simple, this environment tests in a clear way many of the 
critical competences that the animat needs to achieve. Much of the problem’s difficulty arises 
because an animat may navigate the maze in different ways, including different speeds and 
directions of movement, on successive learning trials. Despite this variability of each experience 
of the maze, the animal can learn to navigate the maze to achieve valued goals in an efficient 
way. For our purposes, it is sufficient to assume that a learning trial starts after placing the 
animat in the maze, at the end of one arm. The goal location, in one of the other three arms, is 
baited with a cue that the animal finds rewarding. By shrouding the top of the maze, only route-
based visual and motor cues can be used for navigation (O’Keefe and Nadel, 1978). Thus the 
model does not attempt to explain how spatial navigation, as supported by hippocampal place 
cells, is achieved. Only one visual cue is assumed to be visible at a time, at the end of each maze 
arm, from any location within the maze. A schematic diagram of the experimental setup appears 
in Figure 1a. 

A sequence of images from the 3D virtual reality simulation during reactive approach 
toward a visual cue appears in Figure 1b. As the animat approaches the choice point, a 
competitive struggle occurs between the salience of form and motion signals. Suppose that the 
form signals have led to previous object category learning and have led to positive reinforcement 
that increases their motivational salience. Such motivational salience enhances the strength of the 
form representation through attentional feedback. Then the form signals may more effectively 
compete with the motion signals to determine the animat’s momentary behavior. If the form cues 
win the competition, then the animat can continue to carry out an approach movement that is 
consistent with its recognition. If the motion signals win the competition, then they may trigger a 
reactive head-orienting movement to the right or left at a choice point, revealing another source 
of form signals at the end of an adjacent corridor. The outcome of this form-motion competition 
is sensitive to navigational variations that change from trial to trial. The sequence of visual 
scenes that are processed during a typical head-orienting behavior is illustrated in Figure 1c. An 
alternation of approach and orienting movements is characteristic of the animat’s exploration of 
a novel environment. 
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(a) 

 
(b) 

 
(c) 

 

Figure 1. (a) The 3D graphical simulation generates perspective-views from any 
location within the plus-maze. (b) Snapshots from the 3D virtual reality simulation 
depict changes in the scene during reactive homing toward the triangle cue. (c) 



 8

During reactive approach to the triangle cue, visual motion signals trigger a reactive 
head orienting movement to bring the star cue into view. 

 

2.2. Parallel Visual and Motor Working Memory and Chunking Networks. The animat’s 
control system is split into a number of subsystems shown in the macrocircuit of Figure 2. The 
primary input is via the visual system. The Visual Form and Motion System processes visual 
cues within the What and Where cortical streams, respectively. The What cortical stream learns 
position-invariant and size-invariant object categories via on-line incremental learning. The 
Where stream computes measures of the relative location of visual cues from the animat. In 
particular, the distance and direction of the animat from a prescribed visual cue are used to cause 
approach movements towards that visual cue, or from memory. Motion cues result from the 
animat’s self-motion, and determine whether the animat will make a left or right turn, and how 
big a turn, instead of continuing to approach a target cue.  

These visual form and motion signals compete for control of the animat’s approach-
orienting behaviors within the Visual Form and Motion System. Learned visual categories can be 
amplified in strength, and thereby more probably attended, by feedback from motivational 
centers, called Drive Representations, through learned reinforcement-motivational feedback 
loops that embody their value as events that predict desired rewards. For this to happen, the 
invariant object categories are amplified by motivational signals that draw attention to them, and 
amplify, in turn, the approach commands corresponding to that object’s position relative to the 
animat. Such a motivational amplification requires What-Where inter-stream interactions 
between position-invariant and position-variant information. 

When a motivationally-modulated form cue wins, approach persists. When a motion cue 
wins, an orienting movement often begins. When motion cues are balanced in strength relative to 
the present gaze direction, the net left vs. right orienting signal is zero, after opponent 
competition between the opposite directions takes place. A form cue can then win with high 
probability. However, a suitably strong left/right motion cue difference can win the form-motion 
competition and direct the Motor Approach and Orienting System to initiate a head-orienting 
movement in the favored direction. Target position information for approach behaviors, and 
motion information for head-orienting behaviors, is relayed from the Visual Form and Motion 
System to the Motor Approach and Orienting System (Figure 2), where they direct body-
approach movements or head-and-body orienting movements.  

How does the animat know where a target cue is with respect to its current position? As 
noted in Figure 2, proprioceptive and vestibular signals provide the ground truth upon which the 
animat’s location is estimated relative to its starting point, and with respect to targets in its 
environment. Proprioceptive and vestibular cues are capable of guiding animat navigation in a 
familiar environment even in the dark, and can modify movements quickly to cope with uneven 
or slippery terrains. Visual cues are also used during navigation to estimate body and head 
position and displacement relative to the animat. These visual signals are associated with, and 
adaptively calibrated with respect to, the representations that are activated by proprioceptive and 
vestibular motor signals. These multiple sources of information work together to more accurately 
guide movements under varying conditions than any one source of positional signals could. 

Estimates of spatial displacement compute the NET body displacement and head rotation 
from a starting point. Sequences of such approach-orienting displacements represent a path that 
can command an animat to move from a starting location to a goal location in a maze.  
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Figure 2. The key interactions between components of the SOVEREIGN model are 
shown in this flow diagram. See text for details. 

 
The Visual Working Memory and Planning System temporarily stores sequences of visual object 
categories in short-term working memory. It also categorizes, or chunks, sequences of stored 
object categories. Chunks are learned that are sensitive to object sequences of variable lengths. 
These visual list chunks can learn to activate motor commands in the Motor Approach and 
Orienting System via top-down learning. The motor commands encode approach-orient 
movements. The Visual Working Memory and Planning System operates in parallel with a 
Motor Working Memory and Planning System that temporarily stores sequences of motor 
commands in working memory. It also categorizes, or chunks, sequences of stored motor 
commands. These motor list chunks can also learn to activate approach-orient commands within 
the Motor Approach and Orienting System.  

Why are visual and motor list chunks both needed? Together these parallel visual and 
motor working memories can disambiguate decisions that only one of them, acting alone, may 
find ambiguous. For example, the sequences of approach distances and head turns in two 
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different environments may be the same, but their sequence of visual cues may be different. In a 
different environment, the sequence of visual cues may be the same, but their sequences of motor 
actions may differ. The visual and motor working memories induce the learning of list chunks, or 
sequential planning cells, that are sensitive to their respective object and action sequences, and 
can read out a prediction of the next motor command. The sequence that can disambiguate two 
different environments will typically win over one that cannot.  

Rewards and punishments can modulate animat learn and determine what visual 
representations are attended and what motor plans are executed. Upon receiving reward, the 
active chunks are associated with active drives and actions. Drive inputs represent the animat’s 
internal motivational state, and reward inputs represent valued inputs from the external 
environment. Both types of inputs combine in Drive Representations, which are most highly 
activated when a drive input representing a strong internal need combines with either a primary 
reward or a conditioned reinforcer input from the Visual Form and Motion System (Figure 2). 
After such a combination of cognitive and emotional learning occurs, when the animat sees a 
familiar sensory cue under a prescribed motivational state, it can recall a motivationally-
compatible plan to reach the site of previous reward. Repeated, random exploration of the 
environment hereby effects a gradual transition from reactive to more efficient, planned control 
that leads the animat to its various motivated goals. Due to the selective role of motivational 
feedback, the animat is capable of learning to carry out different plans to satisfy different 
motivational goals even in response to the same sensory cues. 

Visual and motor list chunks may learn to activate different approach-orient commands 
under different motivational states. How can a single chunk give rise to multiple responses? How 
this occurs can be seen by noting that emotional centers are often organized into opponent 
affective processes, such as fear and relief, and that oppositely valenced rewards can be 
conditioned to these opponent channels (Grossberg, 1984b, 2000b). These opponent-processing 
emotional circuits are called gated dipoles. In such a circuit, habituative transmitters “gate,” or 
multiply, signal processing in each of the channels of the opponent “dipole.” The response 
amplitude and sensitivity to external reinforcing inputs and internal drive inputs of these 
opponent-processing emotional circuits are calibrated by an arousal level and chemical 
transmitters that slowly inactivate, or habituate, in an activity-dependent way.  

Sensory and cognitive representations, no less than emotional representations, can be 
organized into opponent channels with habituative ON and OFF cells. Unexpected events can 
trigger a burst, or sudden increment, of nonspecific arousal. When such an arousal burst is 
received on top of the baseline tonic arousal input of a normal dipole, it can cause an antagonistic 
rebound of activity in the OFF channel. In other words, the sensory, cognitive, or emotional 
hypothesis that is represented in a dipole’s activity can be disconfirmed by an unexpected event. 
An unexpected event can hereby reset ongoing processing and lead to a shift of attention. 
SOVEREIGN expands the gated dipole mechanism into a gated multipole (see Section 2.6.5), 
which can select between multiple opponent drive channels. Each channel, whether representing 
an exploratory or consummatory drive state, can be associated with a particular learned response. 

SOVEREIGN embodies a system synthesis and further development of biologically-
derived neural networks that have been mathematically and computationally characterized 
elsewhere. These include LAMINART and FORMOTION models for form and motion 
processing (Berzhanskaya, Grossberg, and Mingolla, 2007; Cao and Grossberg, 2005; 
Grossberg, Mingolla, and Viswanathan, 2001; Grossberg and Yazdanbakhsh, 2005; Raizada and 
Grossberg, 2003), ART fast incremental learning classifiers (Carpenter, et. al., 1992), STORE 
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working memories (Bradski, Carpenter, and Grossberg, 1994), Masking Field sequence chunking 
networks (Cohen and Grossberg, 1986, 1987; Grossberg and Myers, 2000; Grossberg and 
Pearson, 2007), Gated Dipole opponent processes (Grossberg, 1980, 1984a; Grossberg and 
Seidman, 2006), CogEM cognitive-emotional circuits for reinforcement learning (Grossberg and 
Merrill, 1992, 1996; Grossberg, 2000), Spectral Timing circuits for adaptively timed learning 
(Grossberg and Merrill, 1992; Fiala, Grossberg, and Bullock, 1996), and volitional (GO) and 
endogenous (ERG, Endogenous Random Generator) gates to release consummatory and 
exploratory behaviors, respectively (Bullock and Grossberg, 1988; Gaudiano and Grossberg, 
1991; Pribe, Grossberg, and Cohen, 1997). We are not aware of any other autonomous agent that 
has yet integrated this range of self-organizing biological competences. 

The remainder of this article is organized as follows. This section continues a summary 
of the model during reactive exploration and then details each of the model systems outlined in 
Figure 2. Section 3 describes three SOVEREIGN virtual reality simulations and how they 
illustrate answers to the questions above, while shedding light on relevant experimental data. 
Section 4 discusses and draws conclusions from these simulations. Finally, a complete 
mathematical description of SOVEREIGN appears in the Appendix. 

2.3. Reactive Exploration. The following sequence illustrates the functional flow of the visual 
input system during reactive exploration in the plus–maze of Figure 1. North designates the 
vertical direction, with South, East and West following accordingly. For definiteness, assume 
that the animat is placed into the maze and that all extra–maze cues are suppressed. Furthermore, 
the animat is motivated under both an exploratory and a hunger drive. The drive and reward 
inputs to the Drive Representation and then into the Visual and Motor Working Memory and 
Planning Systems are shown in Figure 2. The exploratory drive is assumed to be excited by an 
Endogenous Random Generator, or ERG, which is an internal arousal source. Such a source is 
active when the animat is placed into a new environment. The exploratory drive is inhibited by 
consummatory drive activity that can support realization of a valued goal. The animat receives a 
reward (e.g., food) upon reaching the goal location, which is located at the end of the West arm. 
We show how reactive visual signals during exploration eventually lead the animat toward the 
goal location, and reinforcement signals strengthen the association between stored plan items and 
the current motivational state. A step-by-step description of the model under reactive visual 
guidance follows. 
 Suppose that, by chance, the animat starts the maze shifted to the left of the corridor, with 
its head facing slightly to the right of the visual cue (Figure 3a). The left shift reduces the 
distance to motion cues on the left side of the maze. Because of this positional bias, motion 
signals within the Visual Form and Motion System (Figure 2) will receive a strong leftward bias. 
These assumptions are used to demonstrate an exploratory trial which ensures that the animat 
makes its first head-orienting movement toward the goal location. During the experimental trial, 
the animat moves forward (Figure 3b), turns left (Figure 3c) and approaches the goal location 
(Figure 3d) under reactive control.  
 Movement is organized into orienting and approach movements. In particular, a visually-
activated motor command from the Visual Form and Motion System triggers a Motor Outflow 
command (Figure 2) that specifies a head-orienting angle to align the head with the triangle 
target. The resulting signals activate the Motor Plant (Figure 2), which converts the movement 
command into a physical displacement. A head-orienting movement towards the triangle target is 
thereby initiated. The head turn continues until the NET head-orienting displacement equals the 
commanded displacement angle. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3. (a) Animat position and head direction facing the triangle cue at the start of 
the trial. Perspective-views of the 3D virtual reality scene at key locations within the 
maze are shown by a dashed line. (b) Animat position and head direction while 
approaching the triangle cue and nearing the choice point. (c) Animat position and 
head direction after a head orienting turn toward the square cue. (d) Animat position 
and head direction after reaching the goal location at the square cue. 
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When the animat faces the triangle cue, a Motor Outflow command from the Visual Form and 
Motion System activates the Motor Plant (Figure 2) to initiate an approach movement toward the 
triangle cue. When the Motor Plant converts the commanded approach movement into a physical 
displacement, the animat’s body is passively aligned with the head during an approach 
movement to maintain a stable posture. Such dynamic stability control is assumed to be present, 
but is beyond the scope of this work.  

During the approach movement, the Motor Approach and Orienting System continues to 
compute the NET head and body displacement toward the visual target cue. In the absence of 
competing cues, the body-approach movement could continue until the animat reaches the cue. 
However, the Visual Form and Motion System processes both form and motion signals while the 
animat continues to move. A sufficiently strong motion signal in the model’s visual periphery 
can win a competition between Parvo form target locations and Magno motion cues. If a motion 
cue wins, then it can terminate the approach movement and trigger a reactive head-orienting 
movement away from the visual target cue. 

As noted above, when the animat starts in a position that is shifted to the left side of the 
corridor, as in Figure 3a, motion signals in the left visual hemifield are stronger than those in the 
right hemifield. Left vs. right motion signals accumulate in the Visual Form and Motion System. 
When the left motion signal is sufficiently strong relative to the right motion cue and the form 
signal, a reactive head-orienting command is sent to the Motor Approach and Orienting System. 

As the animat carries out these movements, it learns an invariant object category, or 
chunk, for the triangle visual cue. Top-down signals from the Visual Working Memory and 
Planning System (Figure 2) corresponding to the Triangle chunk learn the NET body approach 
and orienting movements computed by the Motor Approach and Orienting System. The triangle 
cue hereby learns to predict the Forward-Left body movement. The Forward-Left body 
movements are also stored in the Motor Working Memory and Planning System. 

After the animat turns left, invariant preprocessing and learned ART categorization 
within the Visual Form and Motion System encode a 3D representation of the square cue. This 
3D representation is stored in the Visual Working Memory and Planning System (Figure 2), 
while the NET body displacement in the Motor Approach and Orienting System is reset to 
prepare for the next movement. Then the cycle of computing the NET head and body 
displacements begin again, as the animat navigates toward the square cue.  

The square cue is at the rewarded location. When the animat reaches this location, it 
receives a reward, such as food. The active hunger drive representation is then associated with 
the currently active plan chunks stored in both the Visual Working Memory and Planning 
System and the Motor Working Memory and Planning System (Figure 2). In particular, the 
visual Triangle-Square list chunk is learned and associated with the hunger drive representation. 
In addition, signals from the Triangle-Square chunk learn the NET body orienting and approach 
movement computed by the Motor Approach and Orienting System, and thereby learns to predict 
the Forward body movement that brings the animat to the square cue after it turns left in the 
West arm of the maze. Figure 4 summarizes this sequence of events. 

One additional point should be made: All animat behaviors are motivated by some Drive 
Representation (Figure 2). During initial exploratory activities, an exploratory drive is active. As 
learning occurs, the exploratory drive is supplanted by the consummatory motivational sources 
that correspond to the reward; e.g., the hunger drive when the animat is rewarded by food. These 
processes are now described in greater detail. 
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Figure 4. An initial maze trial in which the animat is under reactive visual guidance 
is shown in this diagram. An approach movement toward the triangle cue is 
interrupted by motion signals to the left. After a reactive head orienting movement, 
the square cue comes into view. After approaching the square cue, the rewarded 
location is reached and adaptive weights are adjusted to strengthen the association 
between the forward-left-forward sequence and the current motivational state. The 
arrows and symbols (F1,L) and (F1,S), along with the triangle and triangle-square 
symbols in the dotted ellipses, summarize that a forward-left movement sequence 
with a forward distance of F1 is associated with the Triangle list category, and a 
forward-straight  movement also with a forward distance of F1 is associated with the 
Triangle-Square list category. 

 

2.4. Visual Form and Motion System. The Visual Form and Motion System processes signals 
from the What Parvo cortical processing stream and the Where Magno cortical processing stream 
(Figure 5). This separation of functionality endows the animat with three major capabilities. 
First, the animat can utilize target object recognition and cognitive-emotional conditioning 
circuitry to learn, choose, and execute motivationally–compatible movements within an overall 
plan. Second, the animat can use form information to localize visual references, or beacons, to 
measure its progress over varying terrain. Finally, the animat can process motion boundaries 
generated during movement toward a choice point within a maze. As the animat nears a choice 
point, its field–of–view and the intensity of boundary-derived motion signals increase, which can 
trigger a reactive head–orienting movement. The visual system also drives several important 
control signals within the model, as described below. 
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Figure 5. The Visual Form and Motion System flow diagram depicts the stages of 
visual processing in the model. See text for details. 

 
The visual environment is simulated in a virtual reality environment by rendering 3D chromatic 
scenes as 2D “snapshots” at regular intervals during head-orienting and body-approach 
movements. For ease of processing, these 2D color snapshots are converted to grayscale using a 
linear combination of color RGB values (Section A1, equation (5)). As indicated in Figure 1, the 
visual environment is simplified in SOVEREIGN, which focuses on the various learning and 
navigational aspects of sequential goal-oriented navigation. A visual target object is separated 
from the background by a two-stage Figure-Ground Separation module that is within the Parvo 
stream (Figure 5, left stream). At present, the first processing stage is accomplished in a simple 
way by using visual targets that are yellow (Figure 1), or have the grayscale corresponding to 
yellow, and are thereby selected from the background. The second processing stage selects 
object boundaries via convolution with a 2D Laplacian-of-Gaussian filter (Section A1, equations 
(6), (7)). Future model developments will include more sophisticated neural models for 3D 
vision and figure-ground separation (Cao and Grossberg, 2005; Fang and Grossberg, 2007; 
Grossberg and Yazdanbakhsh, 2005; Kelly and Grossberg, 2000).  
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When an object falls within the visual field and it is separated from its background, the 
coordinates of its centroid, in the 2D image plane, are computed (cf., Russell, 1932) and passed 
to the Reactive Visual TPV module (Figure 5). The Reactive Visual TPV module converts the 
centroid from image plane coordinates to head-centered spatial coordinates by using the 
perspective transformation (Section A1, equations (8), (9) and (10)). The Body Spatial 
Coordinates module computes the angle between the head and body, before combining this 
information with the target coordinates in the Reactive Visual TPV module to compute the body-
centered distance and angle coordinates of the visual target. The Reactive Visual TPV module 
updates the Reactive Visual TPV Storage module until the volitional Approach and Orienting 
GO signal (GOP) releases a head-orienting or body-approach movement (Figure 5). The head-
orienting movement brings the visual target to the center of gaze. Such a transformation into 
body–centered coordinates can be learned by using a more elaborate network (Greve et. al., 
1993; Grossberg et. al., 1993; Guenther et al., 1993). 

The left path of the Parvo stream in Figure 5 is devoted to learning a size-invariant and 
position-invariant object category representation of a visual target within the Invariant Visual 
Target Map. In order to accomplish this, the figure-ground-separated visual target undergoes a 
log-polar transformation followed by Gaussian coarse-coding (Baloch and Waxman, 1991; 
Bradski and Grossberg, 1993). The log-polar transform computes a representation of the visual 
target object that is size-invariant and position-invariant. Examples of invariance processing of 
the triangle cue from various perspectives are shown in Figure 6a. Further processing by 
Gaussian coarse-coding reduces storage requirements and 3D foreshortening effects (Figure 6b). 
This invariant map representation of the target is then transformed into an object category, 
leading to further compression and invariance under modest changes in object shape, by using 
unsupervised incremental learning by a Fuzzy ART classifier (Carpenter et al., 1991). The grid 
of points in Figure 6b show the location of optimal sample points for the vector input to the 
Fuzzy ART classifier (Section A1; Bradski and Grossberg (1993)). The Fuzzy ART classifier 
and Reactive Visual TPV Storage modules comprise What and Where cortical representations of 
visual target objects.  

The Fuzzy ART classifier can be generalized in a future version of SOVEREIGN to 
enable learning of 3D target objects from one of multiple views. This requires additional 
processing stages to learn individual view categories which can be associatively linked to a view-
invariant object category (Baloch and Waxman, 1991; Bradski and Grossberg, 1993; Fazl, 
Grossberg, and Mingolla, 2007). 

The Magno stream generates visual motion signals in response to changes in the visual 
field during approach movements (Figure 5, right stream). An expanded diagram shows the five 
stages of motion processing in Figure 7. The Directional Transient Cell Network (Grossberg, 
Mingolla and Viswanathan, 2001) comprises the first three stages of motion processing. It is 
designed to sense directional motion signals at a wide range of speeds. Undirectional Transient 
Cells compute responses using two consecutive 2D “snapshots”, or doublets, with spatial 
separation which varies with the approach speed of the animat (Section A2, equations (20), (21)). 
The Undirectional Transient Cell responses persist for longer durations at higher approach 
speeds. Directional Interneurons perform a direction-specific (left/right) time-average of signals 
from Undirectional Transient Cells (Section A2, equation (22)). Finally, Directional Transient 
Cells compute a direction-specific (left/right) response to signals from the Undirectional 
Transient Cells and Directional Interneurons (Section A2, equation (23)). 
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Figure 6. (a) Stages of invariant form, or parvo, processing by the Visual Form and 
Motion System. In the centered (left), close-up (center) or shifted (right) columns, the 
effect of four stages of invariance processing is a very similar representation of the 
cue from each perspective. (b) Coarse-coding of the centered log-polar representation 
reduces sensitivity to 3D foreshortening effects and improves compression by 
reducing Fuzzy ART category requirements. The coarse-coded and centered log-polar 
map is the Invariant Visual Target Map. 

 
Motion Direction Hemifield Cells in the left hemifield are sensitive to the difference between 
Directional Transient Cell activity in the left and right visual hemifields. Cell responses are 
proportional to the visual speed of boundaries, such as those formed by vertical maze walls 
(Figure 1b), in head-centered coordinates. Vertical boundaries help to segment the image and to 
compute the relative azimuth of regions of interest. Since these boundaries are continuous 
vertical lines in this simplified maze environment (Figure 1b), only nine horizontal rows of 
motion cells are utilized, spaced thirty-two pixels apart (Section A2). Using this set of motion 
cells, the Motion Left/Right Decision module computes directional signals that are sensitive to 
the total difference between left and right Motion Direction Hemifield Cell activation (Section 
A2, equations (24), (25)). Such signals are capable of eliciting a reactive left or right head-
orienting signal. 

The Magno motion signals compete with Parvo object position coordinates and random 
ERG signals in the Spatial Attention module (Figure 5). Strong motion signals from the Motion 
Left/Right Decision module can activate the Head-Orienting Movement module and trigger a 
head-orienting attentional shift. The Head-Orienting Movement module sends a left/right 
directional burst to downstream motor circuits which turn the head. The head-orienting burst 
activates an Orienting GO signal (GOM) which initiates the movement and persists until a new 
cue comes into view. Finally, activation of the GOM temporarily halts new head-orienting signals 
from reaching the Head-Orienting Movement module by closing a gate which inhibits output 
from the Spatial Attention module. If neither Parvo nor Magno signals are sufficient to win the 
competition, then an endogenously-generated random signal, or ERG, can elicit head-orienting 
or body-approach movements to continue exploration. 

An example of the response of the Motion Left/Right Decision module when motion 
inputs in the right hemifield are larger than in the left appears in Figure 8a. The top panel of 
Figure 8a shows the perspective-view of the 3D virtual reality scene as the animat approaches 
the choice point. The animat is shifted to the right of the corridor, thereby biasing motion signals 
in the right hemifield. The bottom left panel of Figure 8a shows the left hemifield response of the 
Motion Direction Hemifield map. This map is sensitive to the net difference between left and 
right directional transient cells in the left hemifield. Similarly, the bottom right panel of Figure 
8a shows the right hemifield response of the Motion Direction Hemifield map. The vertical lines 
in each map correspond to vertical edges in the 3D perspective-view. Each map has only nine 
rows since the motion cells are spaced evenly along the vertical direction every thirty-two rows 
(Section A2). The left and right scores (dL and dR) are computed by summing the activity over 
each map (Section A2, equations (24), (25)). The imbalance between left and right motion scores 
are processed in the Spatial Attention module (Figure 5). Similarly, an example of Motion 
Left/Right Decision module response when motion input in the left hemifield is larger than in the 
right appears in Figure 8b. This situation typically occurs when the animat is moving down the 
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left side of the corridor. The Motion Left/Right Decision module comprises one input to the 
Spatial Attention module. 

 

 
 

Figure 7. Detailed stages of motion, or magno, processing within the Visual Form 
and Motion System are shown in this diagram. The Directional Transient Cell 
Network module comprises multiple stages of processing. The Motion Left/Right 
Decision generates signals which are capable of eliciting a reactive left or right head-
orienting signal. 

 
The Spatial Attention module controls either approach or head-orienting movements. If a visual 
target in the Parvo stream wins, then the Reactive Visual TPV Storage module initiates a reactive 
approach movement toward the target. If the Magno stream wins, then the Head-Orienting 
Movement module initiates a head-orienting movement towards the motion cue and away from 
the visual target. The salience of the target is influenced by rewards that have been correlated 
with its prior occurrences. In particular, previous rewards lead to greater incentive motivational 
amplification of the target’s activity. This amplification comes from a Drive Representation 
module (Figure 2) which enhances the amount of motivated attention that a target receives based 
on its reinforcement history. In other words, if a visual target has acquired the properties of a 
conditioned reinforcer, or is an unconditioned stimulus (US), such as a food reward, it can 
activate a significant level of incentive motivational amplification if the drive that was rewarded 
is currently not satisfied. 
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Figure 8. (a) An example of the Motion Left/Right Decision module response, during 
an approach movement toward the triangle cue. The animat is shifted to the right of 
the corridor, causing motion input in the right hemifield to be larger than in the left. 
At the top of the panel, a perspective-view is shown of the 3D virtual reality scene as 
the animat approaches the choice point. The lower left panel contains a map of the 
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difference between left and right directional transient cells in the left hemifield. The 
lower right panel contains a map of the difference between right and left directional 
transient cells in the right hemifield. The left and right scores (dL and dR) represent 
the net left- and right-ward motion signals in the left- and right-hemifields, 
respectively. The imbalance between left and right motion scores are processed in the 
Spatial Attention module and may result in head-orienting movement away from the 
triangle cue. (b) An example of the Motion Left/Right Decision module response 
when motion input in the left hemifield is larger than in the right. These panels depict 
the opposite of the situation outlined above. 

 
The Spatial Attention module (Figure 5) comprises a two-layer feedforward competitive 
network. By employing winner–take–all dynamics, the Spatial Attention module forces a choice 
from among the left/right Magno, or Parvo input signals. Parvo signals, which represent the 
salience of the visual target, are time-averaged in the first stage of processing (Section A3, 
equation (27)). These signals are multiplicatively scaled by a gain factor which is large if 
incentive motivational signals are strong enough, and smaller otherwise (Section A3, equation 
(29)). The amplitude of Parvo input is inversely proportional to the distance to the target object, 
as computed by the Reactive Visual TPV module (Section A3, equation (30)). Targets that are 
closer naturally have greater salience and are more likely to yield immediate reward. On the 
other hand, signals from the Motion Left/Right Decision module reflect the overall level of 
visual motion in the left or right hemifields. These signals are also time-averaged in the first 
stage of processing (Section A3, equations (26), (28)). In the second stage of processing, a 
winner is selected between the Parvo and Magno signals (Section A3, equations (31)-(33)). 
Decision signals are obtained by thresholding each of the three outputs (Section A3, equations 
(34)-(36)). The final output is then determined by how these decision variables activate an 
heuristic motor plant, as detailed in Section A3. If no output is consistently strong enough, then 
random signals from the ERG can elicit head-orienting or body-approach movements to continue 
exploration. 

The output of the Spatial Attention module (Figure 5) is compared under two different 
conditions in Figure 9. In the first example, the animat approaches the choice point under 
reactive control from a starting point that is shifted right in the corridor (Figure 1c). The upper 
panel of Figure 9a displays the Left, Parvo and Right decision signals during an approach 
movement toward the choice point. The difference between the Left and Right signals results 
from the animat starting the trial shifted to the right in the corridor. In the lower panel of Figure 
9a, the orienting decision reaches the speed-sensitive threshold (equal to 2 in this case) toward 
the end of the approach. The baseline Parvo gain (Section A3, equation (29)) allows the Right 
signal to win the competition, thus triggering the Head-Orienting Movement module (Figure 5) 
and a head-orienting movement to the right. In Figure 9b, the animat approaches the choice point 
along the centerline of the corridor. Because of prior experience with the visual target, incentive 
motivational feedback from the Drive Representation module (Figure 2) increases the Parvo 
attentional gain (Section A3, equation (29)), and the animat’s approach speed. This motivational 
bias to the Parvo input enables the Parvo signal to inhibit Reactive Head-Orienting Movement 
signals (Section A3, equations (31)-(33)). At this increased approach speed, the Right motion 
signals are stronger than those to the Left, but they never exceed the amplitude of the Parvo, or 
approach, decision signal, so the animat continues toward the visual cue. 
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Figure 9. (a) An example of the Spatial Attention module response while the animat 
approaches the choice point. The top panel displays the time-averaged left, parvo and 
right decision signals as a function of distance. The difference between left and right 
response is a result of the animat starting the trial shifted to the right of the corridor. 
In the bottom panel, the orienting decision reaches the speed-sensitive threshold (=2 
in this case) toward the end of the approach. Nominal parvo gain allows the right 
signal to ultimately win the competition, thus triggering the Head-Orienting 
Movement module to command a head orienting movement to the right. (b) The 
animat is approaching the choice point while shifted to the left of the corridor. 
Motivational feedback has increased both the running speed and parvo attentional 
gain and simultaneously reduced the Head-Orienting Movement module threshold. 
While the left motion signals are stronger than the right, yet never exceed the 
amplitude of the parvo, or approach, decision signal. Thus, the animat continues 
toward the visual target. 

 
In summary, the sequence of processing in the Visual Form and Motion System when navigation 
begins (Figure 3a) is as follows: Form signals in the visual field are processed by the Figure-
Ground Separation module (Figure 5). The Reactive Visual TPV module computes the head–
centered position of the target and converts its head–centered position to body–centered 
coordinates. While attending to the target, the animat learns to categorize the target using the 
Fuzzy ART Classifier module (Figure 5). The animat updates the activation of the Spatial 
Attention module, which may receive reinforcement signals via the Sensory-Drive Heterarchy 
module (see Figure 17 below). Competition between Magno and Parvo signals in the Spatial 
Attention module (Figure 5) chooses a winning attentional focus. The winning visual signal 
opens a movement gate that enables either the Reactive Visual TPV Storage module to command 
a head-orienting or body-approach movement toward the target, or the Head-Orienting 
Movement module to command a head-orienting movement to orient away from it. 

Head-orienting movements can more easily be elicited as the animat approaches the 
choice point in the maze because the vertically–oriented corners of the corridor walls, shown as a 
sequence of images in Figure 1b, move outward on the retina at an increasing rate as the animat 
nears the choice point. As these signals grow, they may become large enough to win the 
competition within the Spatial Attention module. Such a head turn is assumed to continue as long 
as the motion system is active. For example, as the animat turns its head at the choice point, 
motion signals will arise from new visual information appearing in the periphery of the visual 
field (Figure 1c). The head movement tracks this motion cue until the head is facing down the 
corridor and the motion system becomes quiet. At that time, the Parvo visual system can again 
win the Spatial Attention competition and select a visual target to approach. Model body-
approach and head-turning movements tend to alternate, thereby accumulating sequences of 
approach-orient movement commands.  

The Fuzzy ART Classifier (Figure 5) undergoes a match-mismatch-reset cycle as the 
animat repeatedly categorizes and turns away from potential targets (Figure 1c). A mismatch 
results when fewer features (i.e., a different view) of an object fall within the visual field. This is 
followed by a reset, as the Fuzzy ART module selects another category. A match may then be 
computed on the remaining features of the visual target object. To compute its match-mismatch-
reset cycle, Fuzzy ART uses a combination of ON-cell and oOFF-cell activities that is called 
complement coding (Section A1.2, equation (11)). Ultimately, no features of the visual object are 
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visible. Soon thereafter, a match is computed as features of a new target object come into view. 
The match-mismatch cycle continues until the head-orienting command is satisfied and the turn 
comes to an end. 

2.5 Motor Approach and Orienting System. As noted above, the Motor Approach and 
Orienting System directs body-approach and head-orienting movements (Figure 2). Cumulative 
estimates of each approach-orienting movement that is processed within the Motor Approach and 
Orienting System are stored in the Motor Working Memory and Planning System (Figure 2), 
which is discussed in Section 2.6. This section summarizes how these estimates are computed. 

 

 
 

Figure 10. The Motor Approach and Orienting System flow diagram depicts the 
control hierarchy which generates motor outflow commands. See text for details. 

 
The Motor Approach and Orienting System flow diagram is shown in Figure 10. Target position 
information originates from one of two sources. First, it can be received from the body-centered 
distance and angle coordinates of the visual target object computed in the Reactive Visual TPV 
module (Figure 5). Second, it can be received from learned top–down signals from the 
processing stage that computes Motivated WHAT and WHERE Decisions (Figure 10). These 
decisions comprise responses from the animat’s learned experience which are compatible with 
the current motivational state. An approximate measure of head-orienting and body displacement 
is computed by the NET module (Figure 10 and Section A10, equations (120), (121)). Target 
position information flows from the Reactive Visual TPV to the Reactive Visual TPV Storage 
module (Section A10, equation (116)). The NET activity is subtracted from the Stored TPV via 
learned weights to compute the Reactive Difference Vector, or DV (Section A9, equation (89)), 
which represents the angle and distance to move. The learned weights from the NET activity are 
necessary to calibrate the DV activity. Similarly, learned top-down commands from the 
Motivated WHAT and WHERE Decisions activate the Planned DV (Section A8, equations (78), 
(79)), where NET movement signals are subtracted, yielding a planned angle and distance to 
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move. Calibration of planned commands is accomplished entirely by the top-down adaptive 
weights. The Reactive DV and Planned DV are the first motor control stages which can elicit 
head-orienting and body-approach movements. 

The NET estimates of head-orienting and body-approach displacement requires multiple 
stages of processing to be computed (Figure 10). NET estimates during navigation replace the 
outflow present position estimates that are computed during hand/arm movements. The NETS 
module (Figure 10) calculates this displacement using target positions computed by the Visual 
Form and Motion System (Figure 5). Body–centered spatial coordinates are denoted by an “s” 
subscript. The NETS field activity encodes the net body movement toward a target in spatial 
coordinates by subtracting the Reactive Visual TPV activity from the Reactive Visual TPV 
Storage module activity (Section A10, equation (117)).  

Initially, target position information flows from the Reactive Visual TPV to the Reactive 
Visual TPV Storage module and a short burst of learning zeros the difference at the NETS 
module (Section A10, equation (118)). As the animat moves toward a target, updates to the 
Reactive Visual TPV Storage module cease and the Reactive Visual TPV decreases, thereby 
allowing the NETS module activity to grow. Vestibular and proprioceptive feedback signals are 
integrated into distances by the NETMV module (Figure 10 and Section A10, equation (109)).  

Learning at the output of the NETMV module calibrates the vestibulo-motor signals 
relative to the visual signals at the S-MV Mismatch module (Section A10, equation (115)). This 
adaptive process uses a slow learning rate while visual signals are available from the Visual 
Form and Motion System (Figure 5). The resulting activity at the S-MV Mismatch module 
(Section A10, equation (110)) serves as a correction factor which can account for the animat’s 
progress either without visual feedback (e.g., in the dark) or over uneven (e.g., slippery) terrain. 
When the NETS and NETMV module activity are identical, then the correction factor is zero and 
the S-MV Mismatch module activity is also zero.  

The NET module (Section A10, equations (120), (121)) combines signals from the NETS 
and S-MV Mismatch modules into a robust sensory-motor representation of body displacement 
(Section 2.3.1). The NETS module is only active when Parvo signals are present in the Invariant 
Visual Target Map module (Figure 5). Learned weights from the NET module inhibit activity of 
the Reactive DV (Figure 10). When the animat has reached the target under visual guidance, the 
Reactive Visual TPV reaches zero and these adaptive weights are updated, thereby inhibiting the 
Reactive DV, and stopping the movement. On future trials, the Reactive DV module can be 
driven to zero by a calibrated level of activity in the NET module, regardless of whether visual 
input is available. 

While under reactive control, visual target coordinates flow into the Reactive Visual TPV 
Storage module (Section A10, equation (116)) and activate the Reactive DV module (Section 
A9, equation (89)), which initiates head and body movements. The Approach or Orienting GOP 
control signals (Section A9.3, equations (101), (103)), are activated when the Reactive or 
Planned DV command is released under volitional control. The activation of the Approach or 
Orienting GOP allows the DV signals to initiate a head-orienting or body-approach movement. 
Updates to the Reactive Visual TPV Storage module (Figure 10) continue until the Approach or 
Orienting GOP is activated. However, under planned control, Motivated WHAT and WHERE 
Decisions (Figure 10) learn to read out planned head-orienting and body-approach movements. 
Top-down commands are computed in the Planned DV module, which can initiate head and 
body movements in response to motivationally-compatible plan items. As then plan unfolds, 
NET increases until the Planned DV approaches zero, thus terminating a planned movement. The 
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Top-down Readout Mismatch module compares the activity of the learned top-down command 
and the NET module. A sufficiently large discrepancy between these fields can elicit a control 
signal to select a different top-down signal from the Motivated WHAT and WHERE Decisions. 
For instance, the control signal is released when a planned response is interrupted by a strong 
motion signal which activates the Head-Orienting Movement module (Figure 5) and the animat 
turns away from the planned response direction. 

 To summarize, there are four sites which utilize adaptive weights in the Motor Approach 
and Orienting System (Figure 10). First, there is fast learning from the Reactive Visual TPV 
module to the NETS module when a new visual target cue is categorized and loaded. This 
learning effectively calibrates differences between the Reactive Visual TPV and Reactive Visual 
TPV Storage to ensure accurate visual distance and angle measurements. Second there is slow, 
continuous learning from the NETMV module to the S-MV Mismatch module to calibrate 
proprioceptive and vestibular signals to be consistent with the visual signals. Third, there is fast 
learning from the NET module to the Reactive DV module while visual signals are on to 
calibrate their signals against the angle or distance fields of the Reactive Visual TPV module, 
thereby enabling reactive movements to stop accurately. After new plan items are stored in the 
Visual or Motor Working Memory and Planning System, there is top-down learning of the NET 
movement from the Motivated WHAT and WHERE Decisions (Figure 10) to the Planned DV 
module. An example follows that describes the flow of spatial and motor signals through the 
model. 

The following sequence illustrates the flow of both spatial and motor information during 
a maze trial after exploratory learning. This trial follows the same sequence as the initial reactive 
exploratory trial summarized in Section 2.1, but with an emphasis on motor processing. As in the 
previous case, the animat by chance starts the maze shifted left in the corridor, with its head 
turned slightly to the right of the visual cue (Figure 3a). The model initiates processing when a 
target in the visual field attracts the animat’s attention, as follows. 

Invariant preprocessing and learned ART categorization within the Visual Form and 
Motion System (Figure 5) encode a compressed representation of the triangle cue. The NET 
body displacement, from a prior trial, is reset by zeroing the proprioceptive and vestibular and 
motor integrator activity (Section A10.1). The head–centered azimuth and distance to the triangle 
cue are computed and converted to body–centered coordinates by the Reactive Visual TPV 
module (Figure 5). The animat loads the body–centered Reactive Visual TPV module into the 
Reactive Visual TPV Storage module. The reactive movement command is then relayed to the 
Reactive DV module (Figure 10) to initiate reactive approach. A short burst of Vector 
Associative Map, or VAM, learning (Gaudiano and Grossberg, 1991) is used at the NETS field to 
zero any differences between the coordinates of the Reactive Visual TPV and Reactive Visual 
TPV Storage fields. The Motor Approach and Orienting System response under these conditions 
is shown in Figure 11a. In the panels of Figure 11, the cell activity of each field of the Motor 
Approach and Orienting System, the GO and ERG control signals, and the resulting motor 
outflow commands, DVS and DVM, are shown. In Figure 11a, the Reactive and Planned 
commands have been calibrated with respect to the NET displacement via VAM learning. 
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Figure 11. A series of simulations depicting the Motor Approach and Orienting 
System (Figure 10) response under various conditions (d = distance, a = angle). The 
on- and off-channel activities of each module, denoted by “+” and “-“ symbols, are 
shown graphically within the following six panels. The activity of ERG and GO 
control signals appear for reference. (a) The animat has identified a visual target 
object, computed its body-centered coordinates, and loaded the Reactive Visual TPV 
Storage module. The activity of the Reactive Visual TPV Storage module is shown 
graphically in the upper left corner. The vertical bars represent the activation levels, 
which show the target some distance away, and offset to the left. There is no planned 
movement command from the Motivated WHAT and WHERE Decision module, 
hence the on- and off-channel responses are equal. The control hierarchy 
implemented by the Motor Approach and Orienting System causes the reactive 
orienting command to inhibit the approach command. The resulting movement 
command (DVS) gates the Orienting GOP control signal and enables the outflow 
command (DVM) to initiate a head turn to face the visual cue. (b) The animat has 
turned to face the visual target object, at which time the Reactive Visual TPV Storage 
module is updated. The activity of the Reactive Visual TPV Storage module, shown 
in the upper left corner, indicates that the visual target object is some distance directly 
ahead of the animat. The resulting movement command (DVS) gates the Approach 
GOP control signal and enables the outflow command (DVM) to initiate a body 
movement to approach the visual cue. (c) During a reactive body approach 
movement, the Visual Form and Motion System (Figure 5) responds to peripheral 
motion signals. When such signals are strong enough, the Head-Orienting Movement 
module commands a head-orienting movement to turn away from the visual cue. A 
large head turn command (DVS) is gated by the Orienting GOM and causes the motor 
outflow (DVM) to command a head turn away from the visual target object, even 
while still approaching it. (d) The Motor Approach and Orienting System response is 
shown after top-down readout from the Motivated WHAT and WHERE Decisions 
overrides the reactive approach command. Then, activation of the Approach GOP 
gates the top-down body approach command (DVS), causing the motor outflow 
(DVM) to initiate a forward movement under planned control. (e) The Motor 
Approach and Orienting System response is shown after the planned approach 
movement is complete and a planned orienting command inhibits the reactive 
approach command. The planned head turn (DVS) gates the Orienting GOP and the 
motor outflow command (DVM) initiates an orienting head turn under planned 
control. 

 
The Reactive DV module (Figure 10) computes a motor command to initiate a head-orienting 
movement toward the triangle cue. The motor command drives alternating body orienting and 
approach movements. The Motor Approach and Orienting System also combines visual, 
proprioceptive and vestibular inputs to compute a NET head and body displacement toward the 
visual target cue. The head turn continues until the NET turn signals zero the angle component of 
the motor command and the animat is facing the triangle cue. The Motor Approach and 
Orienting System response under these conditions is shown in Figure 11b. 

Once the animat is facing the triangle cue, the Reactive DV module (Figure 10) computes 
a motor command to initiate an approach movement toward the triangle cue. The animat’s body 
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is passively aligned with the head during an approach movement. The Motor Approach and 
Orienting System response under these conditions is shown in Figure 11c. When the volitional 
signal to approach the target is activated, the Visual Working Memory and Planning System, or 
Visual Memory System (Figure 2), is updated by storing the learned category in the Fuzzy ART 
Classifier module (Figure 5). After additional processing, described below, a motivationally-
compatible plan chunk, called the Motivated WHAT Decision, is chosen. Furthermore, the Drive 
Representation module can energize nonspecific reinforcement signals via its incentive 
motivation output. This incentive arousal is added to the Parvo input to the Spatial Attention 
module to enhance attention to the visual cue (Figure 2). Finally, the selected sensory chunk 
reads–out a spatial pattern representing a distance and turn angle to the Planned DV module in 
the Motor Approach and Orienting System (Figure 10). This target movement vector can 
override the visual representation of body–centered target position in a later stage of processing. 
The Motor Approach and Orienting System response under these conditions is shown in Figure 
11d. 

During the approach movement, the Motor Approach and Orienting System (Figure 10) 
updates the multimodal NET head and body displacement via visual, vestibular and 
proprioceptive signals. NET inhibits the Reactive DV via calibrated weights. When the activity 
of the Reactive DV is zero, then the body-approach movement stops because the animat has 
reached the triangle cue. Simultaneously, the Visual Form and Motion System (Figure 5) 
processes both form and motion signals which compete via learned interactions. A suitably 
strong motion signal in the periphery can win the competition and trigger a head-orienting 
movement away from the visual target cue. If motion signals were able to win the competition in 
the Spatial Attention module, then the Head-Orienting Movement module (Figure 5) would be 
activated, as shown in Figure 11e. 

Because the animat is shifted to the left side of the corridor, motion signals in the left 
visual hemifield are stronger than those in the right hemifield (Figure 3b). A left/right orienting 
signal accumulates in the Visual Form and Motion System (Figure 5). Once the left orienting 
signal is sufficiently strong relative to the form signal, an attentional shift to the left occurs. 
However, in this case, incentive motivation signals from the Drive Representation module 
(Figure 2) increase the gain on Parvo inputs to the Spatial Attention module. Motion signals in 
the periphery are unable to overcome the attention focus on the currently visible triangle cue. 
Now that the distance field of the Planned DV module (Figure 10) has zero activity, the angle 
field of the Planned DV module can initiate the previously learned head turn to the left. The 
Visual Form and Motion System sends a command to the Motor Approach and Orienting System 
(Figure 10), which then computes a Motor Outflow command to initiate an orienting head turn to 
the left. The Motor Approach and Orienting System updates the NET body displacement during 
the head-orienting turn. The Motor Approach and Orienting System response under these 
conditions is shown in Figure 11f. 

The head-orienting movement continues until the angle field of the NET module inhibits 
the angle field of the Planned DV module (Figure 10) and the square cue is centered in the visual 
field. Top-down signals from the Visual Working Memory and Planning System (Figure 17) 
corresponding to the Triangle chunk learn the NET body orienting and approach movement 
computed by the Motor Approach and Orienting System (Figure 10). Top-down learning is gated 
when the Approach or Orienting GOP signal is shut off. The representation of the triangle cue is 
thereby associated with the exploratory drive and learns to predict the Forward-Left body 
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movement. Finally, the Forward-Left body orienting and approach movement is stored in the 
Motor Working Memory and Planning System (Figure 2). 

Invariant preprocessing and learned ART categorization within the Visual Form and 
Motion System (Figure 5) encode a compressed representation of the square cue. Then, the NET 
body displacement in the Sensory-Motor NET Movement module (Figure 10) is reset by zeroing 
the proprioceptive and vestibular and motor integrator activity. The head–centered azimuth and 
distance to the square cue are computed and converted to body–centered coordinates. This 
reactive movement command is relayed to the Motor Approach and Orienting System to begin 
reactive approach. The animat’s body is passively aligned with the head during an approach 
movement. If a volitional signal to approach the target is activated, then the Visual Memory 
System (Figure 2) is updated by storing the learned category from the Fuzzy ART Classifier 
module (Figure 5). After multiple stages of processing, described below, a motivationally-
compatible plan chunk is chosen and the Motivated WHAT and WHERE Decisions (Figure 10) 
are computed. The learned Drive Representation module (Figure 2) response can energize 
nonspecific reinforcement signals via its incentive motivation output. This incentive arousal is 
added to the Parvo input to the Spatial Attention module (Figure 5) to enhance attention to the 
previously-reinforced square cue. Finally, the sensory chunk reads–out a spatial pattern 
representing a distance and turn angle to the Planned DV module (Figure 10). This target 
movement vector may then override the visual representation of body–centered target position 
via a high–gain pathway. During the approach movement, the Motor Approach and Orienting 
System updates the NET head and body displacement toward the visual target cue. The body-
approach movement can continue until the NET approach signals zero the approach component 
of the Motor Outflow command and the animat reaches the square cue. 

When the animat reaches the rewarded location, it receives a food reward. Plans stored in 
both the Visual and Motor Working Memory and Planning System are associated with the 
currently active hunger drive. Top-down signals from the Visual Working Memory and Planning 
System corresponding to the Triangle-Square chunk learn the NET body orienting and approach 
movement computed by the Motor Approach and Orienting System. The short-term memory 
representation of both the Triangle and Triangle-Square chunks are associated with the hunger 
drive. However, only the Triangle-Square chunk learns to predict the Forward-Straight body 
movement in this context. Top-down signals from the Motor Working Memory and Planning 
System corresponding to the Forward-Left chunk learn the NET body orienting and approach 
movement computed by the Motor Approach and Orienting System. The short-term memory 
representations of both the Forward and Forward-Left chunks are associated with the hunger 
drive. However, only the Forward chunk learns to predict the Forward-Straight body movement. 

To summarize this learned maze trial, the animat is initially under reactive visual 
guidance. Then, previously learned planned responses override the reactive signals. An overview 
of the movement trajectory and related learning appears in Figure 4. An approach movement 
toward the triangle is followed by a head-orienting movement to the left. After the head-
orienting movement, the square cue comes into view. Based on this new visual information, and 
the NET movement, a new plan item to approach the square cue is recalled. After approaching 
the square cue, the rewarded location is reached and adaptive weights are adjusted to strengthen 
the association between the currently active plan and the current motivational state. These 
learned expectations can be read out at a later time under the same motivational state. 

2.5.1 Sensory-Motor NET Movement. The Sensory-Motor NET Movement module (Figure 12) 
implements the body–centered spatial representation and computes net body displacement during 
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reactive and planned orienting and approach movements. The motor control system is a variant 
of the DIRECT model of arm reaching (Bullock, Grossberg, and Guenther, 1993) which has also 
been adapted as the DIVA model of speech articulator control (Guenther, 1995). Each of the 
model vectors is modeled by fast differential equations, which are approximated using algebraic 
equations. In Figure 12, “d” denotes the distance representation, whereas “a” denotes the angle 
representation of each field.  

The Reactive Visual TPV module, at the upper left, receives input from the Visual Form 
and Motion System (Figure 5). Similarly, the Fuzzy ART Classifier module receives input from 
the Invariant Visual Target Map, then categorizes the input, which comprises the WHAT stream 
representation of the visual target object. A Reactive Visual TPV, the WHERE stream 
representation of the visual target object, arrives from the visual input system simultaneously. 
The visual target coordinates then flow into the Reactive Visual TPV Storage module (Section 
A10, equation (116)) and activates the Reactive DV module (Figure 10 and Section A9, equation 
(89)), which initiates head and body movements via the Motor Approach and Orienting System. 
As the Reactive Visual TPV Storage module is loaded, any differences between it and the 
Reactive Visual TPV module are registered at the NETS field (Section A10, equation (117)). 
These signals are in body–centered spatial coordinates and denoted by an “s” subscript. The 
NETS module, which depends on visual input, is only active when Parvo signals are present in 
the Invariant Visual Target Map module (Figure 5).  

At the onset of the Approach GOP, which is activated by the volitional release of the 
Reactive DV, adaptive weights learn to zero the activity of the NETS module, which computes 
the visual representation of body displacement, via a burst of VAM learning at the adaptive 
weights, w3 (Section A10, equation (118)). A simulation of the Sensory-Motor NET Movement 
module in which a Reactive Visual TPV is stored and the adaptive weights are updated is shown 
in Figure 13a. In each of the panels of Figure 13, the distance fields of the Sensory-Motor NET 
Movement module are depicted. In Figure 13a, note that the initial target distance has been 
loaded and the adaptive weights have zeroed differences at the NETS module. Furthermore, with 
zero response at the PPVV and PPVM, the NET indicates zero activity. 

Updates to the Reactive Visual TPV Storage module (Figure 12) continue until the 
Approach or Orienting GOP is activated (Section A9.3, equations (101), (103)). As the Reactive 
Visual TPV module activity changes during a movement, the NETS module computes the 
difference between the current and stored initial target position. The NET module (Section A10, 
equations (120), (121)) combines both sensory and motor information by adding the NETS and a 
vestibulo-motor correction computed by the S-MV Mismatch module. As such, the NET module 
comprises the primary inhibitory signal reaching the Reactive DV and Planned DV modules. The 
Planned DV module (Section A8, equations (78), (79)) computes the difference between the 
completed approach movement and the top-down planned target position. The NET module 
learns to inhibit the Reactive DV module via learned adaptive weights in the Motor Approach 
and Orienting System (Figure 10). Alternatively, the NET module can directly inhibit the 
Planned DV module. A simulation of the Sensory-Motor NET Movement module in which the 
NET displacement is computed using both vision and proprioception is shown in Figure 13b. 
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Figure 12. The Sensory-Motor NET Movement module learns to compute a robust 
representation of body displacement using a combination of visual, vestibular and 
motor copy signals (d = distance, a = angle). 

 
The NETMV module (Figure 12 and Section A10, equation (109)) computes a cumulative 
measure of body displacement from motor copy and vestibular signals. The Motor Copy input 
signal represents the directional efference copy feedback available internally to the animat. 
Motor efference signals are represented by a present position vector after integration by the 
PPVM module (Section A10.1). In addition, a measure of passive movement is computed from 
acceleration sensors in the vestibular system and integrated by the PPVV field (Section A10.1). 
The angular integrator is reset at an attentional shift, and both the angle and distance integrators 
are reset at the onset of a volitional movement signal.  
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Figure 13. A series of simulations which depict the response of the Sensory-Motor 
NET Movement module under various conditions (d = distance). Only the distance 
response of each field within the network is shown for simplicity. (a) The Sensory-
Motor NET Movement module response after a Reactive Visual TPV is stored and 
the adaptive weights (w1 and w3) are updated. The NET displacement is depicted by 
the differential height of the dark bars in the NET field on the left side of this panel. 
The NET field response at the outset of a movement is zero. (b) The Sensory-Motor 
NET Movement module response computed using both vision and proprioception. 
The large NET displacement is the result of computing the difference between the 
current distance to the target (Reactive Visual TPV) and the initial distance to the 
target (Reactive Visual TPV Storage). This difference, or NET displacement, is 
shown at the NETS field. Similarly, the response of vestibular and proprioceptive 
integrators, are combined at the NETMV field. Since the NETS and NETMV have 
identical activity, the S-MV Mismatch field is zero. (c) The relative gain of the 
vestibular and proprioceptive integrators is calibrated by adaptive weights (w1). The 
Sensory-Motor NET Movement module response is shown after any differences 
between vestibular and proprioceptive feedback are calibrated by VAM learning. The 
calibration process ensures that vestibular signals can compensate for potential 
inaccuracies in proprioceptive signals. (d) The Sensory-Motor NET Movement 
module response after the NET displacement is computed using visual signals. 
Simultaneously, the NETMV module feedback is calibrated by adjusting adaptive 
weights (w2) using VAM learning. This learning occurs when the NETS and NETMV 
activity should be equal, as is the case when the animat has reached the visual target 
object. (e) The Sensory-Motor NET Movement module response after the NET 
displacement is computed without visual signals. Calibrated vestibular and 
proprioceptive feedback signals are able to provide an accurate estimate of body 
displacement. 

 
The difference between the PPVV and PPVM vectors are computed by the M-V Mismatch 
module (Section A10, equation (106)). There, adaptive weights are adjusted by VAM learning 
such that the PPVV signals are calibrated with respect to the PPVM signals (Section A10, 
equation (107)). The VAM learning at the M-V Mismatch module is on continuously, to account 
for ongoing developmental differences between the motor and vestibular signals. Since the 
difference is usually zero, the NETMV module is driven primarily by the PPVM signals. However, 
in the event that the vestibular and motor signals differ, the VAM pathway projects a 
compensatory difference to the NETMV module. A simulation of the Sensory-Motor NET 
Movement module in which a difference between vestibular and proprioceptive feedback are 
calibrated by adjusting adaptive weights (w1) appears in Figure 13c.  

The NETMV field (Figure 12) learns to zero the NETS module activity via VAM learning 
at the w2 weights (Section A10, equation (115)) in the S-MV Mismatch module. A simulation of 
the Sensory-Motor NET Movement module in which the NET displacement is computed with 
vision and NETMV module feedback and calibrated by adjusting adaptive weights (w2) is shown 
in Figure 13d. In the event that visual input is unavailable, NETMV field can take over via this 
calibrated pathway, enabling feedback during blind movements. A final simulation shows the 
Sensory-Motor NET Movement module when the NET displacement is computed without vision 
appears in Figure 13e. 
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2.5.2 Motor DV System. Reactive movements by the animat are characterized by alternating 
head-orienting and body-approach movements. One main function of the Motor Approach and 
Orienting System (Figure 2), described above, is to control the interactions between reactive and 
planned motor commands. Another control structure is needed to regulate read-out of 
sequentially occurring alternations between approach and orienting movements. Furthermore, if 
both reactive and planned commands are present, as in the case of top-down readout at the outset 
of a learned trial, then the control hierarchy must reconcile the priority of each signal. The Motor 
DV System (Figure 14) carries out this task. In Figure 14, the “d” refers to the distance field and 
the “a” refers to the angle field of each module. Each of these fields, in turn, is described by 
complementary pairs of neural activation. 

 
 

Figure 14. The Motor DV System computes the Reactive DVC (d = distance, a = 
angle) and Planned DVC module response by prioritizing reactive and planned body 
approach and head orienting movements. 

 
The Motor DV System comprises four modules, shown in Figure 14: Reactive DV, Reactive 
DVC, Planned DV and Planned DVC. The Reactive DV module, codes the motor command in the 
form of an angle and distance to turn toward and approach a visual target cue. The Planned DV 
module, codes the planned motor command to approach and orient away from a visual target 
cue. By orienting away from a cue, a new visual target cue may come into the visual field. 
However, the Reactive DV and Planned DV cannot control the animat at the same time. The 
Reactive DVC and Planned DVC form a control hierarchy to resolves which head-orienting and 
body-approach command is to be performed next. The Reactive DVC (Section A9.1, equation 
(92), (94)) and Planned DVC (Section A9.1, equations (95), (96)) modules result from both direct 
and competitive signals from the corresponding DV modules.  

There are four direct and four competitive connections from the distance and angle fields 
of the DV modules to the DVC modules. In the first competition, the angle field of the Reactive 
DV inhibits the distance field of the Reactive DVC module. This ensures that the animat will first 
orient toward the target visual cue before beginning an approach movement under reactive 
control. In the second competition, the angle field of the Reactive DV inhibits the distance field 
of the Planned DVC module. This inhibition prevents the animat from releasing a planned 
approach movement before orienting directly toward the visual target cue. In the third 
competition, the distance field of the Planned DV inhibits the angle field of the Planned DVC 
module. This prevents the animat from orienting away from a target visual cue before 
completing the corresponding planned approach movement. Finally, both fields of the Planned 
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DVC nonspecifically inhibit both fields of the Reactive DVC module. This strong inhibitory 
interaction enables a planned movement command to override a reactive movement command. 
The remaining components of the Motor DV System can now be introduced. These stages appear 
in the four panels of Figure 15. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 15. (a) The Reactive Orienting System computes the head orienting outflow 
command, DVM (a = angle) in response to reactive parvo and magno visual signals. 
(b) The Reactive Approach System computes the body approach outflow command, 
DVM (d = distance) in response to parvo visual signals. (c) The Planned Orienting 
System computes the head orienting motor outflow command, DVM (a = angle) in 
response to planned head orienting signals. (d) The Planned Approach System 
computes the body approach outflow command DVM (d = distance) in response to 
planned body approach signals. 
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2.5.3 Reactive Orienting System. The Reactive Orienting System, or ROS, computes head-
orienting outflow commands in response to visual target position signals (Section A9.2). A block 
diagram of the ROS appears in Figure 15a. The ROS operates in response to two different types 
of input. In the first, a reactive head-orienting movement toward a visual target cue is computed 
by the Motor DV System (Figure 14). Such a head-orienting command, in turn, activates the 
Reactive DVC module. The angle field of the Reactive DVC module appears in the upper left of 
Figure 15a. Any activation of the DVC angle field projects directly to the DVS, which computes a 
representation of how far to turn in sensory coordinates.  

The mapping from DVS to DVM assumes that the normalized opponent pair of cells 
representing the body–centered direction of the target can be directly used to compute a motor 
command. The DVS vector is transformed into a DVM, or motor coordinate, vector via an innate 
spatial–to–motor transform. The rule for this transform is that the direction of body movement is 
in the same direction as the target position. The DIRECT model suggests how this transform may 
be learned (Bullock et al., 1993).  

In the second type of input, the Head-Orienting Movement module (Figure 5) releases a 
burst of activity in response to peripheral Magno signals. This burst is denoted by Φ  in the 
upper right of Figure 15a. The orienting burst can directly activate the DVS and gates itself by 
activating GOM, the Magno GO gate. When the GOM is active, the animat is said to be 
performing an attentional shift. Sufficient activation of the GOM then excites the Orienting GOP, 
which initiates a reactive head-orienting movement away from the visual target cue. 

The motor outflow command for orienting movements is computed by scaling the DVM 
by volitional GO signals from the GOM and Orienting GOP, which multiply DV commands and 
thereby control the overall speed of movement (cf. Bullock and Grossberg, 1988). In particular, 
the Orienting GOP signal directly modulates the orienting head movement speed. Furthermore, 
the GO signal is designed to remain activated until the DVC field is zero and the movement is 
complete. For example, the animat is designed to perform a head turn at a velocity that precludes 
a body roll over. As mentioned previously, the computation of the volitional signals and stability 
limits is hypothesized to occur via circuits (e.g., the basal ganglia) that are beyond the scope of 
this project. 

2.5.4 Reactive Approach System. The Reactive Approach System, or RAS, computes body-
approach outflow commands in response to visual target position signals (Section A9.2). A block 
diagram of the RAS appears in Figure 15b. The RAS operates in response to reactive head 
approach movements, as computed by the Motor DV System, discussed above (Figure 14). The 
distance vector of the Reactive DVC module appears in the upper left of Figure 15b. Any 
activation of the DVC distance vector projects directly to the DVS, which computes a 
representation of how far to approach in sensory coordinates. The DVS vector is transformed into 
a DVM, or motor coordinate vector, via an innate spatial–to–motor transform (Section 2.3.3).  

The Approach GOP modulates the activity of the distance field of the DVM, in order to 
control the approach movement. The activity of the Approach GOP derives primarily from a 
volitional signal, released upon activation of the DVC. The Approach GOP is also modulated by a 
phasic signal indicating that a target object is nearby. This suffices to stop an approach 
movement and prevent a collision if the animat is too close. Furthermore, the Approach GOP is 
amplified (Section A9.3, equation (104)) by incentive motivational signals released by the 
Sensory-Drive Heterarchy (Section 2.4.3). The resulting motivational speedup emulates the well-
known increase in running speed as a navigating rat reaches a goal location (Hull, 1932, 1934). 
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An additional function of the Approach GOP is to inhibit random head-orienting signals from the 
ERG, discussed in Section 2.3.7. Finally, the DVM generates an outflow motor command which 
defines the desired speed and direction of movement. 

2.5.5 Planned Orienting System. The Planned Orienting System, or POS, computes head-
orienting outflow commands in response to planned target position signals (Section A9.2). A 
block diagram of the POS appears in Figure 15c. The POS operates in response to planned head-
orienting movement commands computed by the Motor DV System (Figure 14). Such a head-
orienting command, in turn, activates the Planned DVC module. The angle vector of the Planned 
DVC module appears in the upper right of Figure 15c. Any activation of the DVC angle vector 
projects directly to the DVS, which computes a representation of how far to turn in sensory 
coordinates. The innate mapping from DVS to DVM assumes that the normalized opponent pair 
of cells representing the body–centered direction of the target can be directly used to compute a 
motor command (Section 2.3.3). Finally, the DVM generates an outflow motor command that 
defines the desired speed and direction of head orienting. 

2.5.6 Planned Approach System. The Planned Approach System, or PAS, computes body-
approach outflow commands in response to planned target position signals (Section A9.2). A 
block diagram of the PAS appears in Figure 15d. The PAS operates in response to planned head 
approach movements, as computed by the Motor DV System, discussed above (Figure 14). The 
distance vector of the Planned DVC module appears in the upper right of Figure 15d. Any 
activation of the DVC distance vector projects directly to the DVS, which computes a 
representation of how far to approach in sensory coordinates. The DVS vector is transformed into 
a DVM, or motor coordinate vector, via an innate spatial–to–motor transform (Section 2.3.3).  

The Approach GOP modulates the activity of the distance vector of the DVM, in order to 
control the approach movement. The activity of the Approach GOP derives primarily from a 
volitional signal, released upon activation of the DVC. The Approach GOP is also modulated by a 
phasic signal indicating that a target object is nearby. This suffices to stop an approach 
movement and prevent a collision if the animat is too close. Furthermore, the Approach GOP is 
influenced by incentive motivational signals released by the Sensory-Drive Heterarchy (Section 
2.6.3). An additional function of the Approach GOP is to inhibit random orienting signals from 
the ERG (Section 2.3.7). Finally, the DVM generates an outflow motor command which defines 
the desired speed and direction of movement. 

2.5.7 Endogenous Random Generator. During exploratory movements in the environment, the 
animat acquires feedback about cues that may result in reward. As shown in the plus–maze 
example of Figure 1a, the animat may initially see the triangle cue and approach it. Say, for 
instance, that as it approaches the choice point, visual motion cues are strong enough to win the 
competition in the Spatial Attention module (Figure 5). Furthermore, say the Magno system 
generates a head movement to the left. The animat then rapidly performs the head turn, while 
tracking the motion cue generated by new visual information in the visual field.  

When the head turn is complete, the Magno system is quiescent, and a stable Fuzzy ART 
Classifier module (Figure 5) match signal is computed. The body–centered coordinates of the 
target are loaded into Reactive Visual TPV module and an approach movement is computed by 
the Motor Approach and Orienting System (Figure 10), then by the DVS to DVM transform of the 
RAS (Section 2.3.4). This step initiates both an approach movement and counter–rotation of the 
body. During this time, the animat homes toward the visual target. Finally, as the animat reaches 
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the target, the distance field of the DVS signal reaches zero. No visual cues remain to guide 
approach or orienting movements. If the animat is not rewarded within some period of time, then 
it will likely perish. Part of the control system designed to address this situation enables the 
animat to turn around and continue to explore the environment. 

A proposed solution for enabling a turn–around is via an endogenous random generator, 
or ERG, that is adapted from the Vector Associative Map, or VAM, model of Gaudiano and 
Grossberg (1991). The proposed ERG (Section A9.3, equation (105)) creates a random burst of 
activation in body–centered motor coordinates, as part of the ROS (Section 2.3.3). When the 
ERG is firing, the animat makes a rapid head turn in one direction. The action of the ERG turns 
the animat away from the current cue and activates the Magno orienting system. Once the head 
turn has started, the Magno system takes over and continues the turn until the visual field reaches 
a stable state, as specified above. In the model, the ERG is disinhibited at a dead–end, after a 
short delay. This allows the animat to continue exploration if not rewarded at the dead–end. 

2.6 Visual and Motor Working Memory and Planning System. For each traversal through the 
plus–maze, the animal can build a representation of the location of the goal in a short-term serial 
order buffer, or working memory. This representation helps to learn a plan capable of solving the 
maze. The activation of a stored plan can be strengthened by associating the plan with reward, or 
satisfaction of a drive. The more often a successful sequence is rewarded, the more likely it will 
be recalled in the same motivational state. On subsequent trials, that information is used to direct 
the return to the goal location. 

Experiments with rats have shown that learned spatial movement plans, or motor habits 
(O’Keefe and Nadel, 1978), can be very strong. This conclusion is the result of testing rats in a 
complex Hampton–court maze (Carr and Watson, 1908). Once the rats had become familiar with 
the apparatus, several experimental manipulations were attempted. The major findings were 
twofold. First, when one arm of the maze was shortened, the rats would run into the end of the 
corridor, even if not visually impaired. Second, when cul–de–sacs were constructed where turns 
to open corridors once had been, the rats again ran into the wall. It was subsequently shown that 
when previously correct arms end in open space, the rats run off the end of the arm (Dennis, 
1932). Finally, it has been observed that when a rat has learned to run to a small food reward at 
the end of an alley, and a large pile of food is placed in the middle, the rat runs over the food for 
more than twenty trials (Stoltz and Lott, 1964). In the competition between visual stimuli and the 
learned plan, the planned response often takes precedence. 

The storage process during learning of plans is important as it can affect the overall 
efficiency of planned behavior. For example, during an exploratory run of the plus–maze, the 
animat may execute the path shown on the left panel of Figure 16. This sequence contains extra 
loops before reaching the goal. The corresponding turn sequence would be: Forward, 
Turnaround, Forward, Turnaround, Forward, Right, Forward, Turnaround and Forward. For the 
optimal path, shown in the right panel of Figure 16, the sequence is simply: Forward, Left, and 
Forward. However, the two paths lead to the same goal and therefore both satisfy the animal’s 
internal need. How can the practiced path be simplified in memory?   
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Figure 16.  In this diagram, the overhead view of two plus–mazes show the 
exploratory path (left panel) and stored path to the goal (right panel). This type of 
simplification involves a translation between spatially–equivalent movement 
sequences. 

 
Such a simplification would require a translation that is sensitive to the equivalence of the two 
movements. This is similar to the notion of motor equivalence (Saltzman, 1979), in which spatial 
movements with different trajectories have the same spatial consequence. It is possible that rats, 
like humans, are capable of a geometric sense (Leonard and McNaughton, 1990), which might 
also be applied in the generation of novel trajectories between familiar places. Another possible 
explanation is that repeated exploration of the environment might allow stored representations of 
successful, rewarded plans to be selected by conditioning. Thus, more frequently rewarded plans 
would be selectively amplified relative to others. This is what happens in SOVEREIGN. 
 The Visual Working Memory and Planning System temporarily stores and categorizes, or 
chunks, sequences of categorized objects and learns the corresponding approach-orient motor 
commands, via top-down learning from the Motivated WHAT and WHERE Decisions. A 
detailed diagram of the Visual Working Memory and Planning System, which includes the stages 
that compute the Motivated WHAT and WHERE Decisions, is shown in Figure 17. Sequence, or 
list chunks, are learned that selectively respond to object sequences of variable lengths. This 
happens in the Masking Field module (Figure 17). The Visual Working Memory and Planning 
System operates in parallel with a Motor Working Memory and Planning System, which 
temporarily stores and categorizes, or chunks, sequences of motor commands. A detailed 
diagram of the Motor Working Memory and Planning System is shown in Figure 18. Together 
these parallel Visual and Motor working memories can disambiguate decisions that only one of 
them would find ambiguous. When the animat receives reward, the active list chunks, which play 
the role of plans, are associated with active drives and actions. The animat is hereby capable of 
learning different plans to satisfy different motivational goals. After such learning occurs, when 
the animat sees a familiar sensory cue under a prescribed motivational state, it can recall a 
motivationally-compatible plan to reach the site of previous reward. Repeated, random 
exploration of the environment effects a gradual transition from reactive to more efficient, 
planned control that leads the animat to its various motivated goals. Each component of the 
multi-stage Visual and Motor Memory System is discussed in the following sections. 
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Figure 17. The Visual Working Memory and Planning System computes 
motivationally-reinforced representations of sequences of 3D object categories.  
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Figure 18. The Motor Working Memory and Planning System computes 
motivationally-reinforced representations of sequences of motor map positions. 

 

2.6.1 Working Memory. This model working memory circuit uses the STORE 2 working 
memory model (Bradski et al., 1992) for both sensory and motor items. Two working memory 
modules appear in the Visual Working Memory and Planning System block diagram of Figure 
17 and two in the Motor Working Memory and Planning System block diagram of Figure 18. In 
the Visual Working Memory and Planning System, the STORE 2 network first codes the order of 
the items from the View-Invariant Category Learning module (Section A4.1). Thus, the short-
term activity of the 3D Object Working Memory neurons encodes a stored list of 3D object 
categories. Only one invariant visual 3D object category is activated while attending to its visual 
cue. The invariant visual 3D object category inputs to the Object Working Memory module after 
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a match is computed and a volitional signal activates the Approach GOP control cell. 
Normalization within the STORE working memory network is tuned to generate a recency 
gradient, in which the item order is coded by magnitude, with the most recent item having the 
greatest activation.  

Finally, the outputs of the Object Working Memory module (Section A4.2, equation (47)) 
provide parallel inputs to the Masking Field module (Section A4.3), which learns to code object 
list categories. The second working memory module, near the top of Figure 17, stores sequences 
of object list categories. The cells representing object list categories input to this Object List 
Working Memory (Section A4.4) during a reset event. The output of the Object List Working 
Memory makes parallel connections to the Gated Multipole module (Section 2.4.5) which fuses 
cognitive plans with information about the rewards they acquire. 

The first working memory in the Motor Working Memory and Planning System (Figure 
18) employs an algorithmic vector-to-map transform to convert the body movement vector, 
comprised of a distance and angle, into a spatial pattern (Section A7). Also assumed are winner-
take-all dynamics which result in the activation of single map positions in response to distance 
and angle pairs. There are several networks capable of accomplishing this function. One such 
transform is the DODOG, or Difference of Difference of Gaussians (Gaudiano and Grossberg, 
1991) inputting into a recurrent competitive field (Grossberg, 1982a) with faster–than–linear 
feedback signal functions to choose the cell with the largest input. Whatever vector-to-map 
transform is used, the winning cell represents the current position of the body and is input to the 
Motor Map Working Memory after a head-orienting movement is complete. 

The second working memory, near the top of Figure 18, stores sequences of motor list 
categories. The cells representing motor lists are printed to this Motor List Working Memory 
during a reset. The output of the Motor List Working Memory makes parallel connections to the 
Gated Multipole module (Section 2.4.5). 

2.6.2 Masking Field. The Visual and Motor Working Memory and Planning Systems (Figures 
17 and 18) use a modified masking field network (Cohen and Grossberg, 1986, 1987; Grossberg, 
1978) to code lists of sensory cues and motor commands to reach a goal. The masking field is 
comprised of a network of input cells (F1) and a network of chunk cells (F2). Network F1 forms a 
spatial pattern of activation that stores both the items and their temporal order from the Object or 
Motor Map Working memory. As discussed above, the Object Working Memory stores 
sequences, or lists, of object categories, while the Motor Map Working Memory codes stores 
lists of motor map positions. The F2 field list chunk cells are selectively activated by sequences 
of F1 items (Section A4.3, equation (48)). List chunk activation is computed using bottom–up 
weighted signals from F1 and a competitive process between F2 list chunks that selects the 
winning list representations. There are several modifications hypothesized to the original 
masking field architecture in order to achieve robust performance in response to bottom-up 
signals from the Visual and Motor Working Memory modules. First, inputs to F1 are scaled by a 
size-dependent factor. Second, bottom-up adaptive weights are assumed to have achieved their 
steady-state values, subsequent to long-term memory (LTM) adaptation. Finally, inputs to F1 are 
subject to ART1 (Carpenter and Grossberg, 1987) category constraints via an additional dynamic 
process (Section A4.3, equations (50), (51) and (52)). 

The masking field is duplicated for sequences of sensory items and motor items, shown 
in the block diagrams of Figures 17 and 18. The winning cells form object and motor list 
categories, which play the role of plans. Subsequences of each plan may also be coded by list 
chunks within the masking field. However, their activation is suppressed by plans representing 
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longer event sequences by competitive dynamics within the field of F2 cells. Active list chunks in 
F2 of each masking field are stored, during a reset, in the Object or Motor Map Working 
Memory, respectively. Stored sequences of winning list chunks in the Object List or Motor List 
Working Memory module are then processed by the Gated Multipole module (Section 2.4.5). 

2.6.3 Drive Representation and Sensory-Drive Heterarchy. The Drive Representation module 
(Figures 2, 17 and 18) represents the animat’s response to internal drive inputs, to external 
unconditioned stimulus (US) inputs, and to learned conditioned reinforcer inputs (Section A5, 
equation (67)). The Sensory-Drive Heterarchy module (Section A6, equations (68), (69)) chooses 
a winning sensory-drive combination in response to signals from the Drive Representation 
module. The Sensory-Drive Heterarchy module also influences the Gated Multipole module 
(Section 2.4.5) via learned incentive motivational signals. The combination of incentive signals 
from the Sensory-Drive Heterarchy module, that reflect the history of rewards, and bottom-up 
signals from the Object List and Motor List Working Memory modules (Figures 17 and 18), can 
bias the choice of output channels from the Gated Multipole module. The selected output 
channel can release a learned motor response via the Motivated WHAT and WHERE decision 
stages. 

Both the Drive Representation and Sensory-Drive Heterarchy modules build upon the 
CogEM model. CogEM joins cognitive, emotional, and motor processes (Grossberg, 1982b, 
1984a, 2000a, 2000b; Grossberg and Seidman, 2006) to model how emotional centers of the 
brain, such as the amygdala, interact with the sensory and prefrontal cortices – notably the 
ventral, or orbital, prefrontal cortex – to generate affective states, attend to motivationally salient 
sensory events, and elicit motivated behaviors. Activation of the feedback loop between 
cognitive and emotional centers is predicted in the brain to generate a cognitive-emotional 
resonance that can support conscious awareness of events happening in the world and how one 
feels about them. 

 
 



 47

Figure 19. The simplest CogEM (Cognitive-Emotional-Motor) model: Three types of 
interacting representations (sensory, drive and motor) that control three types of 
learning (conditioned reinforcer, incentive motivational, and motor) help to explain 
many reinforcement learning data. Sensory representations S temporarily store 
internal representations of sensory events in working memory. Drive representations 
D are sites where reinforcing and homeostatic, or drive, cues converge to activate 
emotional responses. Motor representations M control the read-out of actions. 
Conditioned reinforcer learning enables sensory events to activate emotional 
reactions to drive representations. Incentive motivational learning enables emotions to 
generate a motivational set that biases the system to process information consistent 
with that emotion. Motor learning allows sensory and cognitive representations to 
generate actions. 

 
The diagram in Figure 19 summarizes the hypothesis that (at least) three types of internal 
representation interact during reinforcement learning: sensory and cognitive representations S, 
drive representations D, and motor representations M. Sensory representations S temporarily 
store internal representations of sensory events in working memory, Drive representations D are 
sites where reinforcing and homeostatic, or drive, cues converge to activate emotional responses. 
Motor representations M control the read out of actions. Three types of learning take place 
among these representations: Conditioned reinforcer learning (CRL) enables sensory events to 
activate emotional reactions at drive representations. Incentive motivational learning (IML) 
enables emotions to generate a motivational set that biases the system to process cognitive 
information consistent with that emotion. Motor learning allows sensory and cognitive 
representations to generate actions. 

In particular, learning within the S→D conditioned reinforcer pathways converts a 
conditioned stimulus (CS) into a reinforcer when it activates its sensory representation just 
before the drive representation is activated by an unconditioned stimulus (US), or other 
previously conditioned reinforcer CSs. The ability of the CS to subsequently activate D via this 
learned pathway is one of its key properties as a conditioned reinforcer. As these S→D 
associations are being formed, incentive motivational learning within the D→S incentive 
motivational pathways also occurs, because of the same pairing of CS and US. Incentive 
motivational learning enables an activated drive representation to prime or modulate the sensory 
representations of all cues, including the CSs that have consistently been correlated with it. That 
is how activating D generates a “motivational set”: It primes all of the sensory and cognitive 
representations that have been associated with that drive in the past. These incentive motivational 
signals are a type of motivationally biased attention. The S→M motor, or habit, learning enables 
the sensory-motor maps, vectors, and gains that are involved in sensory-motor control to be 
adaptively calibrated, thereby enabling a CS to read out correctly calibrated movements. Taken 
together, these processes control the learning and recognition of sensory and cognitive memories, 
which are often classified as part of a “declarative memory” system (Mishkin, 1982, 1993; 
Squire and Cohen, 1984), and the performance of learned motor skills, which are often classified 
as part of a “procedural memory” system (Gilbert and Thach, 1977; Ito, 1984; Thompson, 1988). 

Each drive representation obeys a polyvalent constraint whereby it can generate large 
incentive motivational output signals to sensory representations only if it gets a sufficiently large 
primary or conditioned reinforcer input at the same time that it gets a sufficiently large internal 
drive input. The internal drive input designates whether an internal drive, such as hunger, thirst 
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or sex, is high and in need of satisfaction. Different drive representations exist to represent these 
distinct internal homeostatic states. The polyvalent constraint means that a drive representation 
cannot fire vigorously unless it simultaneously receives a sufficiently large external sensory 
input and internal drive input. Because of the polyvalent constraint at the drive representation, an 
external reinforcing cue cannot activate strong incentive motivation and, with it, action to satisfy 
a drive that is already satisfied, because the drive input would be too small. 

The Gated Multipole and Drive Representation circuits of Figures 17 and 18 build upon 
CogEM circuits to model how multiple cues can be conditioned to multiple drives, notably how a 
transfer can occur from behavior that is motivated by an exploratory drive to behavior that is 
motivated by a specific consummatory drive after it is rewarded and used to direct planned 
behavior. 

2.6.4 Sensory-Motor Top-Down Readout. The Sensory-Motor Top-Down Readout module 
(Figure 20a) combines information from the Visual and Motor Working Memory and Planning 
Systems (Figures 17 and 18). These systems compute the Motivated WHAT and WHERE 
Decisions which comprise a spatial pattern representing a motor command. The Top-down 
Readout module combines the Motivated WHAT and WHERE decisions to form a composite 
expectation representing the next motor command. Both primes are required to distinguish 
between mazes with the same sequence of sensory cues, but different motor commands, and vice 
versa. The Sensory-Motor Top-Down Readout module (Figure 20a) computes the sensory-motor 
Planned DV activity (Section A8, equations (78), (79)) by combining learned signals from the 
Motivated WHAT and WHERE Decisions (Section A8, equations (80), (81)). Top-down readout 
activates the WHAT and WHERE DV, (Section A8, equations (70), (71)) which is inhibited by 
signals from the NET module (Section A10, equation (120)). Activity of the WHAT and 
WHERE DV fields are rescaled by tonic activation at second-layer cells (Section A8, equations 
(73), (74) and (75)). The sensory-motor convergence cells (Section A8, equations (76), (77)), 
compute a normalized sum of WHAT and WHERE DV activity which is tolerant to the absence 
of either top-down signal. Finally, Planned DV activity is computed via a differential 
competition from sensory-motor convergence cells.  
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 50

Figure 20. (a) The Sensory-Motor Top-down Readout module combines spatial 
patterns comprising distance/angle motor doublets from the Motivated 
WHAT/WHERE Decision module. The resulting motor doublet forms a planned 
movement command in the Motor Approach and Orienting System. (b) The Gated 
Multipole module is a multi-layer neural network which combines bottom-up signals 
from either the Visual or Motor Memory System with learned motivational signals 
from the Sensory-Drive Heterarchy module to compute a motor response. 
 

2.6.5 Gated Multipoles. The dynamics of the Masking Field and Working Memory modules 
(Figures 17 and 18) are insufficient to execute a plan memory in a motivationally appropriate 
way. In particular, it is known that rats chunk movement sequences in mazes by the type of 
reward (Dallal and Meck, 1990). List chunks of visual cues and motor commands are therefore 
associated with active drive representations within the model. Such lists, or chunks, are also 
capable of eliciting learned responses. During performance, previously rewarded chunks will be 
preferentially primed by active drives, ensuring that the selected plan is motivationally 
compatible. 

The Gated Multipole module addresses the need to combine object and motor list 
categories, that are stored in the Working Memory module, with the current motivational state. 
The result is the choice of Motivated WHAT and WHERE decisions (Figures 17 and 18) which 
respond to joint cognitive and motivational contextual influences. A detailed wiring diagram of 
the Gated Multipole module appears in Figure 20b. The Working Memory represents stored 
object or motor list categories. Each category within the Working Memory activates a separate 
four-layer Gated Multipole whose pathways represent distinct drive channels. Gated Multipoles 
generalize gated dipoles, wherein only two opponent channels are available to represent the 
responses to bottom-up signals.  

Activation of the Gated Multipole first-layer cells (Section A4.5, equation (54)) depend 
on bottom-up signals from the Working Memory and learned incentive signals, corresponding to 
different drives, (Section A4.5, equation (65)) from the Sensory-Drive Heterarchy (Section A6, 
equations (68), (69)). First-layer cells can, in turn, input to drive representations (Section A5, 
equation (67)) via learned conditioned reinforcer signals (Section A4.5, equation (62), (63) and 
(64))). The transmitters (rectangular synapses in Figure 20b; see Section A4.5, equation (57)), 
habituate (inactivate, depress) in response to output signals from first-layer cells. The activity of 
second-layer cells (Section A4.5, equation (58)) responds to signals from first-layer cells that are 
multiplicatively gated by transmitter level. Third-layer cells carry out a winner-take-all 
competition of signals from second-layer cells (Section A4.5, equations (59), (60)). Feedback 
from third-layer cells to first-layer cells achieves this choice by amplifying the largest signal in 
the feedforward pathway. The activity of fourth-layer cells (Section A4.5, equation (61)) 
depends on input from third-layer cells and a nonspecific excitatory signal from the Sensory-
Drive Heterarchy. This nonspecific signal ensures that only plans which receive sufficient 
motivational support to fire Sensory-Drive Heterarchy outputs are allowed to release a top-down 
planned movement command and to potentially override a reactive movement command. 

SOVEREIGN employs Gated Multipoles with three separate drive channels. This 
expands a typical gated dipole (Section 2.2). The rationale behind this choice is the need to 
represent exploratory and multiple consummatory drive states. Each object and motor list 
category stored in Working Memory can be associated with three distinct outcomes, one for each 
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channel. Furthermore, individual channels can be selected via a rebound mechanism similar to 
that of a gated dipole. This mechanism operates in four steps: 

(1) Bottom-up signals from the Working Memory activate first-layer cells via a fixed 
spatial gradient of connection strengths across the channels. The drive channel with the 
strongest, or prepotent, bottom-up pathway receives the largest input. As noted above, first-layer 
cells then activate second-layer cells via signals that are gated by habituative transmitters. The 
transmitters immediately begin to deplete their transmitter levels in response to first-layer cell 
activity. Although the prepotent drive channel initially attains the highest activation, it also 
causes the most transmitter depletion. Competitive dynamics at third-layer cells then choose the 
second-layer cell of the prepotent channel, since it is the maximally activated channel.  

(2) Third-layer cells initiate strong top-down on-center off-surround feedback to first-
layer cells. The winning cell receives excitatory feedback, while the others are suppressed. The 
feedback is strong enough to maintain winning activity at third-layer cells, even after transmitter 
habituation occurs at the second-layer cell inputs. While the activity of the prepotent drive 
channel inactivates much of its transmitter, the other two channels, which are nearly inactive, 
have fully recovered transmitter levels.  

(3) The arrival of a burst of nonspecific arousal across all the channels can rebound the 
currently active drive channel. Such a burst occurs in response to an unexpected mismatch 
between learned top-down signals and the NET body displacement. The mismatch signals that a 
change in the currently active drive channel is needed to allow associations to be learned with a 
different motor response. When the arousal burst is sensed by the first-layer Gated Multipole 
cells, it causes a rapid increase in activity level at a time when the habituative gates of the second 
and third drive channels have nearly full transmitter levels. Thus, the corresponding second-layer 
cells respond strongly to the burst. As a result, third-layer cells choose the drive channel with 
least habituation. The third channel as the new winner. This happens because the third channel 
receives the smallest bottom-up signal, but the same top-down inhibition as the second drive 
channel. The second channel is slightly habituated due to a larger bottom-up input. As a result, 
the third channel attains the highest transmitter level. Under an arousal increment, second-layer 
cells in the third channel receive the largest increase to their input.  

The third channel then triggers strong top-down on-center off-surround feedback to first-
layer cells. The feedback strengthens the third drive channel, even though it has the smallest 
bottom-up signal, and inhibits the others. As the Gated Multipole activity equilibrates, the third 
drive channel maintains its activation level via this feedback loop, and can be associated with 
active drive representations and motor responses. Given the same working memory input and 
motivational state at a later time, this channel can be reactivated. Thus, this new cue-drive 
combination can selectively control its own response. If another arousal burst is applied, then the 
second drive channel can be activated, and thereby conditioned, using similar dynamics. 

The Motivated WHAT and WHERE decisions (Figure 20b) are computed via a global 
winner-take-all process across all Gated Multipoles (Section A4.6, equation (66)). A single 
winning cell is selected, which can then read out (or learn) the activity of a Planned DV (see 
Figure 10). In the event of a mismatch between top-down readout and the NET body 
displacement, a nonspecific arousal signal to the first-layer cells can rebound all active Gated 
Multipoles, resulting in new Motivated WHAT and WHERE decisions and a different top-down 
readout (Section A8.1, equations (83)-(88)). Conditioning within these modules, at the 
appropriate time during exploration, leads to learning of a plan whose route is capable of 
reaching rewarded locations. 
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Figure 21. This series of diagrams depicts the response of several stages of the Visual 
Working Memory and Planning System under different conditions. (a) The 3D Object 
Working Memory response (Ii) and Masking Field STM response (xi

(J)) when a single 
input, representing the triangle cue, is applied. Along the left side, the activity level 
for nodes with 1, 2 or 3 inputs are shown. In the lower right, the input and bottom-up 
ART weights (w ji

 (J)) are shown. The most active node, representing the Triangle 
chunk, is shown by an asterisk (*). In this case, the winning node receives one input, 
and inhibits the other nodes by masking field competitive dynamics. (b) The Object 
List Working Memory response and Gated Multipole STM response when a single 
input, representing the Triangle chunk, is applied. Each processing layer is labeled 
along the left side of the panel. The most active node appears at the output of the first 
Gated Multipole in the z field. After winner-take-all competition, top-down readout 
or learning may be activated in response to the Triangle chunk. (c) The 3D Object 
Working Memory response and Masking Field STM response when two inputs, 
representing the triangle and square cues, are applied. The most active node, 
representing the Triangle-Square chunk, is shown by an asterisk (*). (d) The Object 
List Working Memory response and Gated Multipole STM response when two inputs, 
representing the Triangle and the Triangle-Square chunks are applied. The most 
active node appears at the output of the second Gated Multipole in the z field. After 
winner-take-all competition, top-down readout or learning may be activated in 
response to the Triangle-Square chunk. 

 
The following sequence illustrates the flow of both spatial and motor information during a maze 
trial after learning. This trial is similar to the reactive exploratory trial summarized in Section 
2.1. In that case, the animat learned the sequence Forward-Left-Forward to receive a reward 
when hungry. The animat now starts the maze along the centerline of the corridor, with its head 
facing the visual cue. Furthermore, the animat is again motivated by hunger, and will receive a 
food reward upon reaching the goal location. We will show how planned signals guide the 
animat toward the goal location and learned reinforcement signals strengthen the association 
between stored plan items and the current motivational state. The model initiates processing 
when a target in the visual field attracts the animat’s attention, as follows: 

Invariant preprocessing and learned ART categorization within the Visual Form and 
Motion System (Figure 5) encode a compressed representation of the triangle cue. The Visual 
Memory System (Figure 17) is updated by storing this category in the 3D Object Working 
Memory module and then computing the response of the remaining Visual Memory System 
modules. The Visual Memory System Masking Field module response is shown in Figure 21a. 
Furthermore, the Visual Memory System Gated Multipole module response is shown in Figure 
21b. Finally, the NET body displacement in the Motor Approach and Orienting System (Figure 
10) is reset by allowing the proprioceptive and vestibular and motor integrator activity to decay 
to zero (Figure 12). The head–centered azimuth and distance to the triangle cue are computed 
and converted to body–centered coordinates. The reactive movement command is relayed to the 
Motor Approach and Orienting System to begin reactive approach. Since the animat is facing the 
triangle cue, the Motor Approach and Orienting System computes a Motor Outflow command to 
initiate an approach movement toward the triangle cue. 

The Sensory-Motor Top-down Readout module (Figure 20a) computes a Planned DV in 
response to the Motivated WHAT and WHERE Decisions from the Visual Memory System 
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(Figure 17). This planned command is relayed to the Motor Approach and Orienting System 
(Figure 10) and overrides the reactive movement command. The animat hereby approaches the 
triangle cue under planned control. During the approach movement, the Motor Approach and 
Orienting System updates the NET head and body displacement toward the visual target cue. The 
body-approach movement can continue until the NET approach signals zero the approach 
component of the Motor Outflow command and the animat reaches the triangle cue. 
Simultaneously, the Visual Form and Motion System (Figure 5) processes both form and motion 
signals which compete via learned interactions. A suitably strong motion signal in the periphery 
is unlikely to trigger a head-orienting movement away from the visual target cue since incentive 
signals from the Sensory-Drive Heterarchy module act to enhance attention on the visual target 
cue. 

Once the approach movement is satisfied, the Motor Approach and Orienting System 
then computes a Motor Outflow command to initiate a planned orienting head turn to the left. 
The Motor Approach and Orienting System updates the NET body displacement during the 
head-orienting turn. The head-orienting movement continues until the NET head-orienting angle 
matches the planned angle and the square cue is centered in the visual field. Top-down signals 
from the Visual Working Memory and Planning System (Figure 17) corresponding to the 
Triangle chunk again learn the NET body orienting and approach movement computed by the 
Motor Approach and Orienting System (Figure 10). The representation of the triangle cue is 
thereby associated with the exploratory drive and learns to predict the Forward-Left body 
movement. The Motor Memory System is updated by storing the Forward-Left body orienting 
and approach movement in the Motor Working Memory and Planning System (Figure 18). (The 
Motor Memory System Masking Field module and Gated Multipole module response is similar 
to the initial Visual Memory System response depicted in Figures 21a and 21b.) 

Invariant preprocessing and learned ART categorization within the Visual Form and 
Motion System (Figure 5) encodes a compressed representation of the square cue. The Visual 
Memory System (Figure 17) is updated by storing this category in the 3D Object Working 
Memory module and then computing the response of the remaining Visual Memory System 
modules. The Visual Memory System Masking Field module response is shown in Figure 21c. 
Furthermore, the Visual Memory System Gated Multipole module response is shown in Figure 
21d. Finally, the NET body displacement in the Motor Approach and Orienting System (Figure 
10) is reset by allowing the proprioceptive and vestibular and motor integrator activity to decay 
to zero (Figure 12). Compute the head–centered azimuth and distance to the square cue and 
convert them to body–centered coordinates and relay this reactive movement command to the 
Motor Approach and Orienting System (Figure 10) to begin reactive approach. Since the animat 
is facing the square cue, the Motor Approach and Orienting System computes a Motor Outflow 
command to initiate an approach movement toward the square cue. 

The Sensory-Motor Top-down Readout module (Figure 20a) computes a Planned 
Movement Command in response to the Motivated WHAT and WHERE Decisions from the 
Visual Memory System (Figure 17). This planned command is relayed to the Motor Approach 
and Orienting System and overrides the reactive movement command. The animat approaches 
the square cue under planned control. The animat’s body is passively aligned with the head 
during an approach movement. During the approach movement, the Motor Approach and 
Orienting System updates the NET head and body displacement toward the visual target cue. The 
body-approach movement can continue until the NET approach signals zero the approach 
component of the Motor Outflow command and the animat reaches the square cue. 
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When the animat reaches the rewarded location, it receives a food reward. Plans stored in 
both the Visual and Motor Working Memory and Planning System are associated with the 
currently active hunger drive. Top-down signals from the Visual Working Memory and Planning 
System corresponding to the Triangle-Square chunk again learn the NET body orienting and 
approach movement computed by the Motor Approach and Orienting System (Figure 10). The 
representation of the Triangle-Square chunk is thereby associated with the hunger drive and 
learns to predict the Forward-Straight body movement. Top-down signals from the Motor 
Working Memory and Planning System corresponding to the Forward-Left chunk learn the NET 
body orienting and approach movement computed by the Motor Approach and Orienting System 
(Figure 10). The representation of the Forward-Left chunk is thereby associated with the hunger 
drive and learns to predict the Forward-Straight body movement. 

To summarize this maze trial, the animat is under planned guidance. A planned approach 
movement toward the triangle is followed by a head-orienting turn to the left. After approaching 
the square cue, the rewarded location is reached and adaptive weights are adjusted to strengthen 
the association between the currently active plan and the current motivational state. The Masking 
Field and Gated Multipole modules provide the dynamic plan representation which, coupled with 
learning at the appropriate time, leads to reinforcement of a successful planned response 
sequence. 

3. End-to-end SOVEREIGN Simulations 
Three key SOVEREIGN simulations are demonstrated herein. In the Motivated Choice 
Experiment, the animat learns the route to two different goal locations under two different 
motivational states. In the Multiple Reward Experiment, the animat learns to repeatedly revisit 
two rewarded goal locations. Finally, in the Shortest Path Experiment, the animate learns the 
shortest path to the goal location, after repeated random exploration of the maze environment. 
Each of the simulation summaries contains the following types of information: (1) Explanation 
of the experimental setup; (2) movement trajectories; (3) a step-by-step description of model 
dynamics; (4) snapshots of visual input at key moments; (5) multi-trial learning; and (6) 
summary of the model properties demonstrated. The entire series of results is followed by a 
discussion of latent learning and how it might be explained by the SOVEREIGN model. 

3.1 Motivated Choice Experiment. In this classic example of spatial learning, the animat learns 
the route to two different goal locations under two different motivational states. Specifically, the 
Forward-Left-Forward sequence when hungry leads to a food reward, whereas the Forward-
Right-Forward sequence leads to a water reward when thirsty. Upon reaching the end of the goal 
arm, the animat is rewarded and long-term memory weights are updated using a slow learning 
rate. For the first five training trials of this sequence, the animat has a high hunger drive and is 
rewarded with food at the end of each trial. For the next five trials, the animat is thirsty and is 
rewarded with water at the end of each trial. The eleventh and final trial retests the response 
under the hunger drive to demonstrate that learning under each drive is preserved. 
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Figure 22. (a) Perspective views are shown for selected points during maze 
exploration toward the goal location in the left arm. (b) Each ellipse graphically 
depicts the short-term memory chunks represented in both the Visual and Motor 
Memory System during exploratory learning. (c) Each ellipse graphically depicts the 
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short-term memory chunks and associated motor responses in both the Visual and 
Motor Memory System after exploratory learning. 

 
The diagram shown in Figure 22a shows the position, actions and local views seen by the animat 
during this training trial. Similarly, the diagram in Figure 22b shows the Visual and Motor 
Memory System plan chunks which are stored during this experimental trial. This simulation is 
similar to that presented in earlier examples. However, a summary is offered here for 
completeness. The animat starts this trial shifted to the left within the corridor, thereby increasing 
Magno signals in the left hemifield. The hungry animat learns to categorize the triangle cue and 
updates the Visual Memory System (Figure 17). It approaches the triangle cue under reactive 
control. As it nears the choice point, Magno signals trigger a head-orienting movement to the left 
bringing the square cue into view. The Triangle chunk is associated with the exploratory drive 
and can now sample the Forward-Left movement. The animat then learns to categorize the 
square cue. The Visual and Motor Memory System (Figures 17 and 18) are updated and the 
animat approaches the square cue under reactive control. Upon reaching the food reward, all 
active chunks are associated with the hunger drive and the Forward-Left and Triangle-Square 
chunks sample the Forward-Straight movement command. The initial training trial is complete. 

The diagram in Figure 22c shows the learned plan chunks and their associated motor 
responses which are gradually strengthened during training. After several trials, the hungry 
animat starts this trial centered in the corridor, yielding Magno signals which are balanced 
between left and right. After learning to categorize the triangle cue and updating the Visual 
Memory System (Figure 17), the Triangle chunk can read out the command to go Forward-Left 
via top-down signals. The planned command overrides reactive signals and the animat moves 
forward and turns left. Both the approach speed and Parvo gain are increased because the 
previously rewarded plan element has been reactivated. After the turn is complete, the Triangle 
chunk is again associated with the exploratory drive. This learning is triggered by the exploratory 
learning signal in the absence of explicit reward, and is activated after a head turn is completed 
(Section A5). This model feature can explain the mechanism behind latent learning (Section 3.4). 
After learning to categorize the square cue, the Visual and Motor Memory System (Figures 17 
and 18) are updated and the Forward-Straight command is directly read out via top-down 
Motivated WHAT and WHERE Decision signals. After approaching under planned control, the 
animat is rewarded with food and the active chunks are associated with the hunger drive. The 
Forward-Left and Triangle-Square chunks can sample the Forward-Straight movement 
command. The test trial is complete. 
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Figure 23. (a) Perspective views are shown for selected points of maze exploration 
during learning. (b) Each ellipse graphically depicts the short-term memory chunks 
represented in both the Visual and Motor Memory System during exploratory 
learning. 

 
The diagram in Figure 23a shows the position, actions and local views seen by the animat during 
the second training trial. Similarly, the diagram in Figure 23b shows the Visual and Motor 
Memory System plan chunks which are stored during this experimental trial. In this training trial, 
the animat starts shifted to the right in the corridor, thereby increasing Magno signals in the right 
hemifield. The now-thirsty animat learns to categorize the triangle cue and then updates the 
Visual Memory System (Figure 17). The prepotent Forward-Left motor command is read out 
under the weakly active exploratory drive, but there is no Parvo gain or running speed increase. 
The animat moves toward the triangle cue under planned control. As it nears the choice point, 
Magno signals trigger a head-orienting movement to the right bringing the star cue into view. A 
top-down mismatch between the planned Forward-Left and NET Forward-Right movement 
triggers an arousal burst which selects an alternate channel in the Visual Memory System Gated 
Multipole module (Figure 17). The Triangle chunk is associated with the exploratory drive and 
can now sample the Forward-Right movement. The animat learns to categorize the star cue. The 
Visual and Motor Memory System (Figures 17 and 18) are updated and the animat approaches 
the star cue now under reactive control. The diagram in Figure 24 shows the Gated Multipole 
module response after the rebound and Visual Memory System update. Upon reaching the water 
reward, all active chunks are associated with the thirst drive and the Forward-Right and Triangle-
Star chunks sample the Forward-Straight movement command. This training trial is complete. 
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Figure 24. The Working Memory and Gated Multipole short-term memory response 
when two inputs, representing the Triangle-Square chunk, are applied. After winner-
take-all competition, top-down readout is activated in response to the Triangle-Square 
chunk, the most active node in the zij field, shown by the arrow. Top-down signals are 
processed by the Sensory-Motor Top-down Readout module. In the event that top-
down signals don’t match the actual NET movement, an arousal signal triggers a 
rebound in the Gated Multipole module. The rebound event allows a new channel to 
be selected for conditioning. 

 

Most active output
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The diagram in Figure 25a shows the position, actions and local views seen by the animat during 
this experimental test trial. Similarly, the diagram in Figure 25b shows the Visual and Motor 
Memory System plan chunks which are stored during this experimental trial. After several 
learning trials, the thirsty animat starts this trial centered in the corridor, yielding Magno signals 
which are balanced between the left and right sides of the visual field. After learning to 
categorize the triangle cue and updating the Visual Memory System (Figure 17), the Triangle 
chunk is able to read out the command to go Forward-Right via top-down Motivated WHAT and 
WHERE Decision signals. The planned command overrides reactive signals and the animat 
moves forward and turns right. Both the approach speed and Parvo gain are increased because 
the previously rewarded plan element has been reactivated. After the turn is complete, the 
Triangle chunk is again associated with the exploratory drive. After learning to categorize the 
star cue, the Visual and Motor Memory System are updated and the Forward-Straight command 
is directly read out via top-down signals. After approaching under planned control, the animat is 
rewarded with water and the active chunks are associated with the thirst drive. The Forward-
Right and Triangle-Star chunks can sample the Forward-Straight movement command. The test 
trial and this sequence of experiments are complete. 
 

 
(a) 

 
(b) 

 
Figure 25. (a) Perspective views are shown for selected points during maze 
exploration under planned control. (b) Each ellipse graphically depicts the short-term 
memory chunks and associated motor responses in both the Visual and Motor 
Memory System after exploratory learning. 

 
The next series of experiments demonstrate the acquisition of learned responses under different 
motivational states. Although the long-term memory (LTM) weights rapidly learn the 
appropriate responses, several trials are required for the weights to achieve asymptotic levels. 
The total level of conditioned reinforcement (CR) and incentive motivational learning is shown 
in the six panels of Figure 26. In the upper panel of Figure 26a, the CR adaptive weight from the 
Visual Memory System Gated Multipole module (Figure 17), denoted “SENSORY”, to the 
hunger Drive Representation module is plotted as a function of training trial. Recall that the first 
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five training trials comprise the Forward-Left-Forward movement sequence to receive a food 
reward while hungry. The next five training trials comprise the Forward-Right-Forward 
movement sequence to receive a water reward while thirsty. The eleventh, and final test trial 
demonstrates no loss of learning of the first sequence while hungry. In the middle panel of 
Figure 26a, the same CR data is shown for the Motor Memory System Gated Multipole module 
(Figure 18) to the hunger drive. In the bottom panel Figure 26a, the total learned CR versus 
training trial is shown. The CR levels increase and remain high as a consequence of doubly-gated 
learning (Section A4.5, equations (62)-(64)).  

The learned CR to the thirst input of the Drive Representation module is similar to the 
hunger drive input, discussed above. In the upper panel, the learned CR from the Visual Memory 
System Gated Multipole module (Figure 17), denoted “SENSORY”, to the thirst input of the 
Drive Representation module is plotted as a function of training trial. In the middle panel, the 
same CR data is shown for the Motor Memory System Gated Multipole module (Figure 18) to 
the thirst drive. Finally, in the bottom panel, the total learned CR versus training trial is shown. 
The CR levels only increase after the fifth trial, when the thirst drive is active, and the animate 
receives a water reward for reaching the goal. 

The exploratory drive performs an important role in spatial learning. The exploratory 
drive input to the Drive Representation module is inhibited by consummatory drive activity. 
However, it is never completely inactive, thereby allowing some conditioned reinforcement (CR) 
and incentive motivational learning to it. The exploratory drive input and its affect on the Drive 
Representation module is discussed in Section A5. In Figure 26c, upper panel, the learned CR 
from the Visual Memory System Gated Multipole module (Figure 17), denoted “SENSORY”, to 
the exploratory input of the Drive Representation module is plotted as a function of training trial. 
In the middle panel the same CR data is shown for the Motor Memory System Gated Multipole 
module (Figure 18) to the exploratory drive. Finally, in the bottom panel, the total learned CR 
versus training trial is shown. During the first five trials, the Star chunk and Forward-Left motor 
sequence were conditioned to the exploratory drive. This resulted in low CR levels for this first 
phase of training and a rapid increase in the CR levels after the fifth trial. The effect seen is that, 
during reactivation of the Star chunk, learned CR contributes to an increase in the Drive 
Representation module activity. This increase, in turn, is sampled by the Visual and Motor 
Memory System Gated Multipole modules. 
 Incentive motivational signals aid in the selection of Visual and Motor Memory System 
Gated Multipole module channels. These signals are important for enabling a chunk to read out 
the correct motor command under different motivational states. The Gated Multipole module 
dynamics are discussed in Section A4.5. The total learned incentive motivation from the 
exploratory channel of the Sensory-Drive Heterarchy module is shown as a function of trial in 
Figure 26d. The upper, middle and lower panels are as discussed above. The acquisition of 
learned incentive motivation to the hunger and thirst drives is shown in Figures 26e and 26f. The 
upper, middle and lower panels are as above. The initially large incentive motivation signals 
under the hunger drive decrease later in the experiment when learning under the thirst drive. This 
results from the ongoing exploratory learning to the prepotent Gated Multipole channel which 
weakens its prior conditioning to the hunger drive. In summary, this experimental setup 
demonstrates the capacity for the SOVEREIGN model to learn different routes to a goal location 
under different motivational states. 
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Figure 26. This series of plots show the acquisition of learned conditioned 
reinforcement and incentive motivation over a series of 11 experimental trials 
navigating to goal locations under either the hunger or thirst drives (see text for 
details). In each panel, the Visual Memory System (sensory), Motor Memory System 
(motor) and total learned associations are plotted vs. trial. (a) Acquisition of sensory 
and motor conditioned reinforcement to the hunger drive vs. trial. (b) Acquisition of 
sensory and motor conditioned reinforcement to the thirst drive vs. trial. (c) 
Acquisition of sensory and motor conditioned reinforcement to the exploratory drive 
vs. trial. (d) Acquisition of sensory and motor incentive motivation from the Sensory-
Drive Heterarchy module exploratory channel vs. trial. (e) Acquisition of sensory and 
motor incentive motivation from the Sensory-Drive Heterarchy module hunger 
channel vs. trial. (f) Acquisition of vision and motor incentive motivation from the 
Sensory-Drive Heterarchy module thirst channel vs. trial. 

 

3.2 Multiple Reward Experiment. The second series of simulations demonstrate the ability to 
learn to visit multiple reward sites under a given motivational state. Shuttling between the 
rewarded locations continues until the Motor List Working Memory module capacity is reached. 
At that point, alternating high-level chunks can read out the appropriate motor response to 
continue. Results are presented in Figure 27 and discussed below. 

In this trial, the animat visits multiple reward sites under reactive control. The layout of 
the experiment as well as the motor movements and Visual Memory System chunks are shown in 
Figure 27a. After visiting the second rewarded location, the animat should turn 180o and 
continue the shuttling behavior between the first and second locations to receive continued 
reward. The animat starts shifted to the left within the corridor, thereby increasing Magno signals 
in the left hemifield. The hungry animat learns to categorize the triangle cue and updates the 
Visual Memory System (Figure 17). It moves toward the triangle cue under reactive control. As 
it nears the choice point, Magno signals trigger a head-orienting movement to the left bringing 
the square cue into view. The Triangle chunk is associated with the exploratory drive and can 
now sample the Forward-Left movement. The animat learns to categorize the square cue. The 
Visual and Motor Memory System (Figures 17 and 18) are updated and the animat approaches 
the square cue under reactive control. Upon reaching the food reward, all active chunks are 
associated with the hunger drive.  

After a short time, the reward is removed and the ERG is disinhibited to trigger a random 
head-orienting movement. The ERG head turn brings the star cue into view. The Forward-Left 
and Triangle-Square chunks are associated with the exploratory drive and can both sample the 
Forward-Turnaround movement command. After learning to categorize the star cue, the Visual 
and Motor Memory System are updated. The animat approaches the star cue under reactive 
control. Incentive signals from the Sensory-Drive Heterarchy module enable an increase in 
running speed and attentional gain. The increase in attentional gain precludes a Magno 
attentional shift, even at the increased running speed. Upon reaching the second food reward, all 
active chunks are associated with the hunger drive. The Forward-Left, Forward-Turnaround 
chunk and Triangle-Square-Star chunk sample the Forward2-Straight movement command. The 
subscript, 2, denotes an approach distance of twice the arm length. Soon thereafter, the Forward2-
Straight movement command is again selected under reactive control.  



 65

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
 



 66

Figure 27. This series of figures show the key results after repeated shuttling to 
rewarded locations (see text for details). A symbolic representation of visual cues and 
motor commands during maze traversal is shown in the upper panels. This is followed 
by detailed plots of the acquisition of learned conditioned reinforcement and 
incentive motivation. In these lower panels, the Visual Memory System (sensory), 
Motor Memory System (motor) and total learned associations are plotted vs. trial. (a) 
Each ellipse graphically depicts the short-term memory chunks represented in the 
Visual Memory System along with the route during. (b) Each ellipse graphically 
depicts the short-term memory chunks and associated motor responses in both the 
Visual and Motor Memory System after exploratory learning. (c) Acquisition of 
sensory and motor conditioned reinforcement to the hunger drive vs. trial. (d) 
Acquisition of sensory and motor incentive motivation from the Sensory-Drive 
Heterarchy module hunger channel vs. trial. (e) Acquisition of sensory and motor 
conditioned reinforcement to the exploratory drive vs. trial. (f) Acquisition of sensory 
and motor incentive motivation from the Sensory-Drive Heterarchy module 
exploratory channel vs. trial.  

 
In the second phase of learning, the animat visits multiple reward sites under planned control. 
The layout of the experiment as well as the motor movements and Visual Memory System 
chunks are shown in Figure 27b. The animat starts centered in the corridor, thereby balancing 
Magno signals in the left and right hemifields. The hungry animat learns to categorize the 
triangle cue and updates the Visual Memory System (Figure 17). The Triangle chunk can then 
read out the Forward-Left movement command via top-down signals. The animat approaches the 
triangle cue and turns left under planned control. The Triangle chunk is associated with the 
exploratory drive and can now sample the Forward-Left movement. The animat learns to 
categorize the square cue. The Visual and Motor Memory System (Figures 17 and 18) are 
updated and can read out the Forward-Turnaround command via learned top-down signals from 
the Motivated WHAT and WHERE Decisions. The animat thereby approaches the square cue 
under planned control.  

Upon reaching the food reward, all active chunks are associated with the hunger drive. 
After a short time, the reward is removed and the learned Turnaround command triggers a head-
orienting movement. The head turn brings the star cue into view. The Forward-Left and 
Triangle-Square chunks are associated with the exploratory drive and can both sample the 
Forward-Turnaround movement command. After learning to categorize the star cue, the Visual 
and Motor Memory System are updated. The Forward-Left, Forward-Turnaround and Triangle-
Square-Star chunks read out the Forward2-Straight movement commands. The animat 
approaches the star cue under planned control. Learned incentive signals from the Sensory-Drive 
Heterarchy module enable an increase in running speed and attentional gain.  

Upon reaching the second food reward, all active chunks are associated with the hunger 
drive. The Forward-Left, Forward-Turnaround chunk and Triangle-Square-Star chunk can 
sample the Forward2-Straight movement command. Soon thereafter, the Forward2-Straight 
movement command is again selected under reactive control. Eventually, an alternating 
combination of these chunks can take over and enable continuous shuttling for reward. The 
acquisition of learned conditioned reinforcement and incentive motivation to the hunger drive is 
shown in Figures 27c and 27d. The upper, middle and lower panels follow the convention 
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discussed above. Both conditioned reinforcement and incentive motivation increase during the 
experiment while learning under the hunger drive.  

The acquisition of learned conditioned reinforcement and incentive motivation to the 
exploratory drive is shown in Figures 27e and 27f. Conditioned reinforcement and incentive 
motivation weights initially increase under the exploratory drive, and then decrease later in the 
experiment as learning to the hunger drive reaches asymptotic levels. In summary, this 
experimental setup demonstrates the capacity for the SOVEREIGN model to learn to repeatedly 
revisit goal locations while motivated under a constant drive state. As new shuttling continues, 
an alternating pair of chunks read out motor responses to receive reward. 

3.3 Shortest Path Experiment. In the final series of simulations, the ability to randomly explore 
the maze from several starting locations and learn the shortest path to the goal is demonstrated. 
The experiment proceeds in three phases shown in Figures 28a-c and discussed below. 

In the initial trial, the animat randomly explores the maze under reactive control with 
high exploratory and hunger drive inputs. The layout of the experiment as well as the motor 
movements and Visual Memory System chunks are shown in Figure 28a. Exploratory 
movements continue until reward is received. The animat starts shifted to the left within the 
corridor, thereby increasing Magno signals in the left hemifield. The hungry animat learns to 
categorize the triangle cue and updates the Visual Memory System (Figure 17). It approaches the 
triangle cue under reactive control. As it nears the choice point, Magno signals trigger a head-
orienting movement to the left bringing the square cue into view. The Triangle chunk is 
associated with the exploratory drive and can now sample the Forward-Left movement. The 
animat learns to categorize the square cue. The Visual and Motor Memory System (Figures 17 
and 18) are updated and the animat approaches the square cue under reactive control.  

After a short time, the ERG is disinhibited to trigger a random head-orienting movement. 
The ERG head turn brings the star cue into view. The Forward-Left and Triangle-Square chunks 
are associated with the exploratory drive and can both sample the Forward-Turnaround 
movement command. After learning to categorize the star cue, the Visual and Motor Memory 
System are updated. The animat approaches the star cue under reactive control. As it nears the 
choice point, Magno signals trigger a head-orienting movement to the left bringing the triangle 
cue into view. The Forward-Left, Forward-Turnaround and Triangle-Square-Star chunks are 
associated with the exploratory drive and can both sample the Forward-Left movement 
command. 

After learning to categorize the triangle cue, the Visual and Motor Memory System are 
updated. The animat approaches the triangle cue under reactive control. After a short time, the 
ERG is disinhibited to trigger a random head-orienting movement. The ERG head turn brings the 
plus cue into view. The Forward-Left, Forward-Turnaround, and Forward-Left motor category 
working memory items comprise the motor chunk. The Square-Star-Triangle object list working 
memory item comprises the sensory chunk. Both of these chunks are associated with the 
exploratory drive and can sample the Forward-Turnaround movement command. After learning 
to categorize the plus cue, the Visual and Motor Memory System are updated and the animat 
approaches the plus cue under reactive control. By chance, the Magno signals in the left and right 
hemifields are nearly balanced, thus no head-orienting movement is triggered as the animat nears 
the choice point. Upon reaching the plus cue, the animat stops. 

After a short time, the ERG is disinhibited to trigger a random head-orienting movement. 
The ERG head turn brings the triangle cue into view. The Forward-Turnaround, Forward-Left, 
Forward-Turnaround and Star-Triangle-Plus chunks are associated with the exploratory drive 
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and can sample the Forward2-Turnaround movement command. Once the animat learns to 
categorize the triangle cue, the Visual and Motor Memory System are updated. The animat 
approaches the triangle cue under reactive control. As it nears the choice point, Magno signals 
trigger a head-orienting movement to the right bringing the star cue into view. The Forward-Left, 
Forward-Turnaround, Forward2-Turnaround and Triangle-Plus-Triangle chunks are associated 
with the exploratory drive and can sample the Forward-Right movement command. After 
learning to categorize the star cue, the Visual and Motor Memory System are updated and the 
animat approaches the star cue under reactive control. Upon reaching the food reward, all active 
chunks are associated with the hunger drive. At this point, there is a transfer of incentive 
motivational and conditioned reinforcer learning from the exploratory drive to the consummatory 
hunger drive. The Forward-Turnaround, Forward2-Turnaround, Forward-Right and Plus-
Triangle-Star chunks can sample the Forward-Straight movement command. This completes the 
initial exploratory training trial. 

In the second training trial, the animat starts shifted to the right in the corridor, thereby 
increasing Magno signals in the right hemifield. The layout of the experiment as well as the 
motor movements and Visual Memory System chunks are shown in Figure 28b. The hungry 
animat learns to categorize the triangle cue and updates the Visual Memory System (Figure 17). 
The prepotent Forward-Left motor command is read out under the weakly active exploratory 
drive. There is no Parvo gain or running speed increase since learned conditioned reinforcer 
inputs to the hunger and exploratory drives are insufficient to activate Sensory-Drive Heterarchy 
output (equations (67)-(69), (104)). The animat moves toward the triangle cue under planned 
control. As it nears the choice point, Magno signals trigger a head-orienting movement to the 
right, thereby bringing the star cue into view. A top-down mismatch between Forward-Left and 
Forward-Right triggers an arousal burst, which selects an alternate channel in the Visual Memory 
System Gated Multipoles (Figure 20b; Section 2.6.5, A4.5). The Triangle chunk is associated 
with the exploratory drive and can now sample the Forward-Right movement. The animat also 
learns to categorize the star cue. The Visual and Motor Memory System are updated and the 
animat approaches the star cue under reactive control. Upon reaching the food reward, all active 
chunks are associated with the hunger drive and the Forward-Right and Triangle-Star chunks 
sample the Forward-Straight movement command. 

After several learning trials under a slow learning constraint, each starting from a random 
left or right corridor shift, the hungry animat starts this trial centered in the corridor, yielding 
Magno signals which are balanced between left and right. The layout of the experiment as well 
as the motor movements and Visual Memory System chunks are shown in Figure 28c. After 
learning to categorize the triangle cue and updating the Visual Memory System (Figure 17), the 
Triangle chunk is able to directly reactivate the alternate Gated Multipole channel, conditioned 
after the rebound, in the prior trial. This direct access to the alternate channel enables the top-
down read out of the command to go Forward-Right. The planned command overrides reactive 
signals and the animat moves forward and then turns right. Both the approach speed and Parvo 
gain is increased because the previously rewarded plan element has been reactivated. After the 
turn is complete, the Triangle chunk is again associated with the exploratory drive. After learning 
to categorize the star cue, the Visual and Motor Memory System (Figures 17 and 18) are updated 
and the Forward-Straight command is directly read out via top-down signals. After approaching 
under planned control, the animat is rewarded with food and the active chunks are associated 
with the hunger drive. The Forward-Right and Triangle-Star chunks can sample the Forward-
Straight movement command. 
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Figure 28. (a) Each ellipse graphically depicts the short-term memory chunks 
represented in the Visual Memory System along with the route during exploratory 
learning while shifted to the left of the corridor. (b) Each ellipse graphically depicts 
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the short-term memory chunks represented in the Visual Memory System along with 
the route during exploratory learning while shifted to the right of the corridor. (c) 
Each ellipse graphically depicts the short-term memory chunks and associated motor 
responses in both the Visual and Motor Memory System after exploratory learning. 

 
In this shortest path experiment, the SOVEREIGN model can demonstrate how repeated 
experience with the environment can selectively amplify the shortest path chunk, leading to plan 
optimization under a specific motivational state. 

3.4 Latent Learning. The SOVEREIGN model explains aspects of latent learning by using its 
endogenously active exploratory drive (ERG). Three types of latent learning experiments have 
been tested using rats (Munn, 1950): (1) introduction of reward after non–rewarded training; (2) 
non–rewarded maze exploration followed by learning of the maze; and (3) Incidental learning of 
cues while being trained under the condition of another drive or while satiated. 

The introduction of reward after non–rewarded training is the least contested of these 
paradigms. In such an experiment, rats are allowed to run a maze for several trials before a food 
reward is given. Thereafter, a food reward is given on each trial. The results show that there is 
little learning before food was introduced, followed by a rapid decrease in errors (Blodgett, 1929; 
Tolman and Honzik, 1930). Both groups of experimenters argued that the decrease can be 
explained by latent learning of the movements required to reach goal locations in the maze 
apparatus, which was not exploited until after reward was introduced. A similar experiment 
failed to reproduce these findings, however (Reynolds, 1945). 

Non–rewarded maze exploration followed by learning of the maze is a second form of 
latent learning. It was first reported by Haney (1931), who trained two groups of rats on a maze 
after one group had explored the maze for eighteen hours on each of four days. In both errors and 
time the exploration group was superior (Haney, 1931; Daub, 1933). In order to reduce the 
amount of non–experimental reinforcement, a variation of this training was introduced (Buxton, 
1940). The modified approach allowed the test rats to live in a multiple–T maze for a varying 
number of nights, while changing their entrance and exit points to the maze. During testing, each 
rat was taken to the food box to eat, and then placed at the entrance for each run. The errors for 
the experimental groups were much lower than for the controls. Thus, latent learning was 
demonstrated under reduced non–experimental reinforcement. 

Incidental learning of cues while satiated or under a different drive condition is the most 
controversial of the three paradigms. It was successfully demonstrated by Leeper (1935) who 
trained rats to go to one place in a maze if hungry and to another place if thirsty. If they made an 
incorrect choice, the rats were allowed to backtrack to the correct location. The results were 
much stronger than in a similar study by Hull (1933) which did not allow backtracking, and so 
lacked immediate reinforcement on every trial. In contrast, there are several studies in which 
negative results were found (Spence and Lippett, 1946; Kendler, 1946, 1947a, 1947b; Grice, 
1948 and Walker, 1948). This form of latent learning, while weak, has been experimentally 
demonstrated in a simple case. 

These results are consistent with model properties. The proposed exploratory drive is one 
of the nominal drive inputs. The exploratory drive is inhibited by internal hunger and thirst 
drives and, though not explicitly modeled, assumed to be excited by an internal, habituative 
excitatory source. Such an excitatory source is assumed to be activated by novelty, or a general 
arousal level upon entering a new environment. This effect is emulated by directly manipulating 
the drive inputs to the model. Even if the animat is satiated for food and water, the exploratory 
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drive can excite the Motor Approach and Orienting System (Figure 10) to generate movements. 
If learning is allowed to occur with the exploratory drive as with the other drive representations, 
then a nonspecific motivational drive is created. For example, during exploratory, satiated runs, a 
small amount of learning to the exploratory drive can later be reactivated by a hunger or thirst 
state. This occurs since exploratory learning takes place after each orienting movement is 
complete. Sequences of movements are always conditioned to the exploratory drive. Only when 
reward is received, is the learning transferred to the consummatory drive state. This is sufficient 
to explain the first and second types of latent learning.  

Finally, the third paradigm’s data may be clarified by the fact that US inputs to the Drive 
Representation act as sampling signals in the model. Thus, if water is encountered during a run, 
the chunks of that plan resonate with the thirst Drive Representation. Reciprocal learning 
between the Gated Multipoles and the Drive Representation reinforces the currently active 
chunks. Active chunks gain conditioned reinforcer properties (equation (62) as well as incentive 
motivational properties (equation (65). At a later time, these chunks can influence the choice of 
motivational state by the Sensory-Drive Heterarchy, and the overall choice of chunk capable of 
top-down read out. This can be accomplished under either exploratory or consummatory drive 
states. 

4. General Discussion and Conclusions 
The SOVEREIGN architecture embodies a number of design principles whose mechanistic 
instantiation as neural circuits (Figure 2) enable incremental learning of planned action 
sequences to carry out route-based navigation  towards a rewarded goal. SOVEREIGN circuits 
are based on neural models that have elsewhere been used to explain and predict many 
behavioral and brain data. Here the emphasis is on designing a neuromorphic controller that 
emphasizes behavioral competence.  

The model has several notable strengths relative to other available models, including the 
following ones: First, it provides an end-to-end model that includes on-line vision, visual 
recognition learning and categorization, working memory storage of sequences of visual and 
motor categories, learning of sequential cognitive and motor plans, cognitive-emotional 
interactions whereby reinforcement learning can select plans that can attain a currently valued 
goal, and balancing of visually reactive exploratory vs planned movement decisions, based upon 
the relative salience of bottom-up and top-down information through time. Second, unlike 
various other models (e.g., Barto and Sutton, 1981; Dayan, 1987; Schmajuk, 1990), no explicit 
spatial goal gradient, proportional to the spatial distance from the goal, is required to guide goal-
oriented sequential behavior in SOVEREIGN. Third, list chunks provide a compact context-
sensitive code for learning plans to navigate a large number of different routes. Fourth, reliable, 
single–trial learning of a maze can occur if the animat happens to find the goal location during an 
exploratory trial. Fifth, the animat can respond to the same sequence of visual or motor events in 
different ways to achieve different goals when different drives are prepotent.  

Whereas the detailed circuit realizations that are currently used in SOVEREIGN will 
doubtless be modified and further developed in the future, it embodies design principles that may 
need to be incorporated, in some form, into future autonomous adaptive controllers of 
navigational behaviors. One weakness in the current version of SOVEREIGN is that its 
navigational behaviors are all route-based. The model does not yet include mechanisms of spatial 
navigation (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978) such as the role of 
hippocampal place fields, head-direction cells, and the theta rhythm (e.g., Burgess et al., 1995). 
Such a development would require an understanding of how place fields form, notably the role of 
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entorhinal grid cells in their formation (e.g., Hafting, Fyhn, Molden, Moser, and Moster, 2005), 
which other modeling research is currently investigating (e.g., Fuhs and Touretzky, 2006; 
Gorchetchnikov and Grossberg, 2007). 
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Appendix. Model Equations 
SOVEREIGN is defined by interacting neurons, or neuron populations, whose activities, or 
membrane potentials, ( )V t , obey a membrane, or shunting, equation: 

  
Cm

dV (t)
dt

= − V (t) − Eleak⎡⎣ ⎤⎦γ leak − V (t) − Eexcit⎡⎣ ⎤⎦γ excit (t) − V (t) − Einhib⎡⎣ ⎤⎦γ inhib(t)  (1) 

(Grossberg, 1973; Hodgkin, 1964). In (1), mC  is the cell membrane electrical capacitance, leakγ  is 
the leakage conductance neuron, and ( )excit tγ  and ( )inhib tγ  are the time-varying excitatory and 
inhibitory conductances, respectively In (1), the E terms represent reversal potentials that 
introduce shunting properties into cell responses. The excitatory and inhibitory conductance 
terms scale with the number, type and strength of neural synapses impinging on each cell. 
Without loss of generality, the reversal potentials are assigned as follows: 0leakE = , excitE B=   
and .inhibE E= −  The cell membrane capacitance, mC , and leakage conductance, leakγ , are 
combined with other terms. The resulting equation defines the response of a neuron with 
shunting response: 

[ ] [ ]( ) ( ).excit inhib
dV AV B V t V E t
dt

γ γ= − + − − +  (2) 

Reading from left to right, equation (2) includes a leakage or decay term, a shunting excitatory 

term, and a shunting inhibitory term. At steady-state, 0dV
dt

= , and the response of the neuron is: 

.excit inhib

excit inhib

B EV
A
γ γ
γ γ

−
=

+ +
 (3) 

 Similarly, the potential in (2) approximates an additive response, 

( ) ( )excit inhib
dV AV B t E t
dt

γ γ= − + −  (4) 

when excitA γ�  and .inhibA γ�  In this regime, the cell responds linearly to excitatory and 
inhibitory inputs. Both shunting and additive equations are employed herein. 

Model equations were simulated using the Matlab simulation environment and: (1) 
Runge-Kutta 4th order methods, (2) iterating the steady-state response, or (3) direct evaluation at 
steady-state. The method chosen depended upon the need for the exact system response and 
computational simplicity. 

Concerning mathematical notation: each variable name is a lower-case letter, whereas 
constants and control signals are upper-case letters. A constant may have a subscript to denote 
various values in different contexts. Similarly, a variable may have subscripts to define the 
endpoints of its connections. For example, ijw , is a variable representing the adaptive weight 
which makes connections between the ith and jth cells. Superscripts define the group to which a 
variable belongs. For example, variable, d

ijc , represents the cell membrane potential with 
direction, d (d = L for left, R for right), which makes connections between the ith and jth cells. 
A1. Parvo processing 
The Visual Form and Motion System (Figure 5) computes all visual input signals to the 
SOVEREIGN model. Each 3D view of the environment is generated in color by an OpenGL-
based graphical simulator, implemented within the Matlab simulation environment. In the 
Matlab graphical simulator, a camera is defined which can be moved through a 3D virtual 
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environment, namely the plus-maze. Each component of the maze is defined by specifying the 
3D coordinates of the vertices of a closed polygon. For example, the walls and floor comprise 
rectangles specified by the 3D coordinates of each vertex. Each visual target object, such as the 
triangle, square, star or plus is specified similarly. Furthermore, distinctive colors are chosen for 
each environmental component: floor, walls, choice point edges, and visual target objects. Since 
a flat shading model is chosen, a unique color, or grayscale value, corresponds to each target 
object. The lack of shading, texture or a sophisticated lighting model does not detract from the 
task of spatial learning. It merely simplifies the problem of locating and identifying visual 
landmarks in the environment. Such problems have been addressed by other lines of research. 

The Matlab simulation environment and OpenGL graphics library define a 3D Cartesian 
coordinate system to describe locations within the virtual world. For convenience, each maze 
arm is defined to be 10,000 units long in world coordinates. The walls are 1000 units high and 
corridors are 1000 units wide. Thus, the viewing distance from animat to 3D visual target object 
is maximal when the animat is at the end of one arm and is looking at the visual target object at 
the far end of the corridor. In world coordinates, this distance equals the length of two arms (2 x 
10,000 = 20,000) plus the width of the intervening corridor (1000) at the choice point. This sum 
is defined by the constant, 21,000MAXD = , which is used to normalize distance inputs to the 
Spatial Attention module; see equation (30). 

The camera resolution is 384 x 288 pixels, which is a tradeoff between computational 
throughput and accurate pattern recognition at long-range. Thus, the aspect ratio, or horizontal 
resolution/vertical resolution, is 4/3. The camera has a fixed field-of-view of 45 degrees 
horizontally. The vertical field-of-view is scaled by the aspect ratio and is therefore 37.5 degrees. 
The dimensions of the 3D environment are selected such that only one target object is visible at a 
time. This simplification again eases the visual processing task, without detracting from the 
model’s ability to demonstrate spatial navigation. Although the camera rotates and translates 
along the X and Y axes, the camera’s vertical position is fixed on the Z-axis at 500 units. This 
results in a constant height during maze traversal. 

The animat makes discrete steps forward during body-approach movements and discrete 
steps during head-orienting turns to the left or right. After each head or body movement, the 
world coordinates of the animat are updated. During the initial model development, a minimum 
approach step size of 35 units was selected based on visual observation. In other words, after 
moving forward at least 35 units, there is a perceptible change in the scene. Multiples of this 
minimum step size were selected to define various approach speeds during exploratory reactive, 
or during goal-oriented behavior. The four multipliers: 3, 4, 5 and 6 correspond to step sizes of 
105, 140, 175 and 210 units, respectively. These four approach speeds are denoted: very slow, 
slow, normal, and motivated.  

When approaching under visually reactive or planned control, the animat moves at the 
normal speed of 175 units per step. When the Approach GOP receives incentive motivational 
signals from the Sensory-Drive Heterarchy module, then the motivated speed of 210 units per 
step is used. A heuristic rule causes the animat to slow down as it approaches a target location. If 
the animat’s body dynamics were modeled in further detail, this rule would reduce overshoot or 
collisions with the target object. The model is designed to reduce spurious motion signals during 
a planned approach. As the distance field of the DVM (Figure 15d; Section 2.3.6) drops below an 
activity level equivalent to 750 units, the animat drops one speed level. Then, as the distance 
field of the DVM drops below 375 units, the animat drops to a second, even more reduced speed 
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level. The animat continues to approach at the slow speed of 140 units per step. The animat does 
not stop entirely while slowing down under planned control. 

The control of head-orienting movements has been chosen to complement the various 
body-approach speeds. When the Spatial Attention module (Figure 5) triggers a head-orienting 
turn, there is a two-step process which ensues. First, the animat’s approach speed is decreased 
and a fast head-orienting movement begins. A baseline of 2.5 degrees per step of head orienting 
was selected because it is small enough for precise head orienting, but large enough to readily 
scale to rapid head orienting. The initial fast head-orienting speed is proportional to the animat’s 
approach speed. For very slow or slow approach rates, defined above, a multiplier of 2 yields a 
turn rate of 5 degrees per step. For normal approach rates, a multiplier of 3 yields a turn rate of 
7.5 degrees per step. Finally, for motivated approach rates, a multiplier of 6 yields a turn rate of 
15 degrees per step. Such speed-sensitive head orienting emulates a system in which the head-
orienting control signal is proportional to the speed of self-motion. The first phase of fast head 
orienting continues for 45 degrees of head rotation. This phase is designed to orient the animat 
away from the current visual target object. Once it is complete, the visual target object is out of 
the camera’s field-of-view. In the second phase of head orienting, a slower head turn with a 
multiplier of 1.5, yielding a turn rate of 3.75 degrees per step, is used. The second phase of head-
orienting slowly brings the new visual target object into view. The reactive head turn continues 
until the object is centered in the visual field. In short, these heuristics are chosen because they 
enable head orienting to reliably bring new visual target information into view over a range of 
approach speeds. 

After each step of the simulation, the Matlab graphical environment updates the 2D 
rendering of the 3D perspective view. Then, a 2D “snapshot” of the 3D scene is copied into 
memory for further processing. This image in memory comprises the content of the image plane 
if acquired by an equivalent combination of camera and lens. By using 2D “snapshots” of the 
current 3D perspective view, and several stages of image processing and learned categorization, 
the Parvo processing stream computes the head-centered distance and azimuth to the target 
(Section A1.1) and an invariant 2D representation of the visual target object. The head-centered 
azimuth is converted to body-centered coordinates by adding the current head-to-body angle. 

The body-centered target position is then sent to the Reactive Visual TPV module (Figure 
5; equations (10) and (30)) which competes with motion signals to generate reactive head-
orienting and body-approach movements. On the other hand, the Invariant Visual Target Map is 
categorized by unsupervised Fuzzy ART learning for later storage in the Visual Working 
Memory and Planning System (Figure 17). The stages of processing, similar to the VIEWNET 
model (Bradski and Grossberg, 1993), are implemented as follows: 

1. Capture a 2D view (RGB color format) from the 3D visual front-end. Each 2D view 
has 384 x 288 pixels (width x height) of resolution. 

2. Convert the 2D image to grayscale (YUV format) via linear combination of RGB 
values. The YUV model defines a color space in terms of one luminance and two chrominance 
components. Y stands for the luminance component (the brightness) and U and V are the 
chrominance (color) components. YUV signals are created from an original RGB (red, green and 
blue) source. The weighted values of R, G and B are added together to produce a single Y signal, 
representing the overall brightness, or luminance, of that spot. The U signal is then created by 
subtracting the Y from the blue signal of the original RGB and then scaling, while V is derived 
by subtracting the Y from the red, and then scaling by a different factor. The Y channel preserves 
nearly all of the information of an equivalent black-and-white camera. In this simulation, the Y 
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channel is sufficient for image segmentation, and is chosen for that reason. The relationship 
adopted for computing the Y channel response, y(i,j), from RGB input is shown in the following 
equation, 

( ) ( ) ( ) ( )1 1 1, , , , ,
2 3 6

y i j r i j g i j b i j= + +  (5) 

where r(i,j), g(i,j), and b(i,j) denote the red, green, and blue components of the color image at 
pixel coordinates (i,j). A unique grayscale value is guaranteed under these experimental 
conditions since uniform lighting ensures that each color will always have a unique luminance. 

3. Compute figure-ground separation by scene segmentation using the unique grayscale 
value of visual target objects. This is performed by copying those pixels with a grayscale value 
corresponding to the yellow of the visual target objects, to another image map. Without a 
minimum number of pixels, it is difficult to reliably compute the Invariant Visual Target Map 
(Figure 5). Continue to step 4, only if the area of the visual target object in the resulting image 
map exceeds a minimum threshold. (The minimum area threshold is 25 pixels.) Otherwise, do 
not update the Parvo, or form, output signals of the Visual Form and Motion System. 

4. Perform edge detection via a 2D Laplacian-of-Gaussian filter (Schalkoff, 1989). This 
step is implemented by performing a 2D convolution on the grayscale image using a 3 x 3 kernel, 
( )1 2,h n n , defined by: 

( ) ( ) ( )

1 2

2 2 2
1 2 1 2

1 2 6
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πσ

+ −
=

∑∑
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where 

( ) ( ) ( )2 2 2
1 2 / 2

1 2, ,n n
gh n n e σ− +

=  (7) 

and the indices of the 3 x 3 kernel are 1 1, ,3n = …  and 2 1, ,3.n = …  The variance parameter, 
0.1σ = , is a constant which defines the sharpness of the filter. This parameter is chosen 

empirically to yield a closed contour of the target object, which is suitable for further invariance 
processing. 

5. Find the centroid of the target object and center it by shifting horizontally and 
vertically. The horizontal position of the target centroid relative to the head direction is extracted 
for the Reactive Visual TPV. 

6. Apply a log-polar transformation by replacing pixel coordinates (x,y) with ( )10log .ir e θ  
7. Find the centroid of the transformed image and center it by scaling and rotating. The 

resulting representation of the visual target object is invariant to 2D variations in position, size 
and rotation. 

8. Update the Invariant Visual Target Map by coarse-coding the centered log-polar 
image. A coarse-coded image requires less memory, can help to correct 3D foreshortening 
effects, and can improve generalization when categorized. Coarse-coding is accomplished first 
by computing a 2D convolution of the centered log-polar image with a Gaussian kernel having 
standard deviation, 12.σ =  The result is sampled on an evenly spaced grid, with a sample period 
of 24 pixels, yielding an Invariant Visual Target Map with 12 x 16 pixels (height x width) of 
resolution (Figure 6b). The standard deviation of the Gaussian kernel is chosen to be one-half of 
the sample period by the Nyquist criterion, which ensures that the original image is accurately 
represented by its samples, as was done in the VIEWNET model (Bradski and Grossberg, 1993). 
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9. Learn to categorize the Invariant Visual Target Map by unsupervised Fuzzy ART 
learning (Section A1.2). The input to the Fuzzy ART module (Figure 5) is formed from the 
output of the Invariant Visual Target Map as a 192-element vector (12 x 16), which is then 
complement-coded (see equation (11)). The resulting 384-element vector is categorized using the 
Fuzzy ART classifier. 

10. The Fuzzy ART categories comprise the “What” component and the stored Reactive 
Visual TPV defines the “Where” component of the Parvo stream. 
A1.1 Perspective transformation. In order to solve for the world coordinates of objects that 
appear in the image plane of the camera, the effects of the perspective transformation should be 
considered (Schilling, 1990). Consider, for example, the case in which a camera and lens are 
aimed directly at the centroid of a visual target object. Suppose that the image plane of the 
camera lies in the plane defined by the x- and y-axes. Therefore, the image plane is aligned such 
that the z-axis connects the center of the image plane and the centroid of the visual target object. 
The distance between the image plane and lens, or focal length, is unknown in this case. Just as 
in a real camera, the focal length must be computed in order to translate between image and 
world coordinates. A simplified expression for the effective focal length, f, of the camera is 
obtained by the following expression: 

,O I

I O

z xf
x x

=
−

 (8) 

where zo is the distance to the visual target object in world coordinates, xI is the target height in 
image coordinates, and xo is the target height in world coordinates (Schilling, 1990). World 
coordinates are known and the image coordinates are chosen manually from the 2D snapshot of a 
visual target object. 

Once the effective focal length, f, is known, then the expression in equation (8), can be 
solved for xo to yield an expression for the visual target height in world coordinates at any time. 
This relationship is defined by the following equation: 

( )I O
O

x f z
x

f
−

= . (9) 

Using equation (9), any point in the image plane, such as the centroid of a newly seen visual 
target object, can be translated into world coordinates. If the visual target object does not lie in 
the center of the visual field, then its relative offset in world coordinates can be computed. The 
head-centered azimuth,α , and body-centered azimuth, aP , are obtained once such world 
coordinates are known, by: 

arctan ; ,aO
HB

O

x P
z

α α α= = +  (10) 

where the head-centered azimuth is converted to body-centered coordinates by adding the current 
head-to-body angle, HBα . The body-centered target distance, dP , is computed algorithmically by 
calculating the distance between the body position and the target position in world coordinates 
(see equation (30)). The body-centered target azimuth, aP , and target distance, dP , comprise the 
angle and distance of the Reactive Visual TPV module (Figure 5). 
A1.2 Fuzzy ART. The Fuzzy ART model (Carpenter, Grossberg, and Rosen, 1991) is capable of 
unsupervised learning of recognition categories in response to binary or analog input patterns. 
This model is the simplest ART model that can categorize analog patterns such as those 
produced by the Invariant Visual Target Map. The control of Fuzzy ART dynamics is 
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accomplished by the selection of the choice parameter, α, the vigilance parameter, ρ and the 
learning rate, β, discussed below. 

Normalization of Fuzzy ART input patterns is necessary to prevent category 
proliferation. Let ( )1 Ma a= …a  denote the M-dimensional ON-cell response of the input pattern. 
Each input pattern is preprocessed using complement coding, which combines the responses to 
the input pattern of ON cells and the complementary responses of the corresponding OFF cells. 
Together, the total pattern of ON and OFF cell activities is normalized. The complement-coded 
OFF cell response vector, ac, is defined by: 

  a
c = 1− a.  (11) 

The total input pattern comprises both the ON and OFF responses: 

    I = a, ac( )= a1K aM , a1
c K aM

c( ),  (12) 
and has the L1 norm of M. Among other benefits, complement coding enables the categorization 
of input patterns that contain all zeros. In the SOVEREIGN model, this event might occur if no 
target object is visible at the beginning or end of a head orienting turn. In such an instance, the 
output of the log-polar and Gaussian processing stages is also zero. 

Category activation is controlled by input pattern, I, as it is filtered by the learned 
weights, w. Let    T = T1K TN( ) be the N-dimensional category input vector. Then the input to the 
jth category is: 

  
Tj (I ) =

I ∧ wj

α + wj

,  (13) 

where  wj is the weight vector whose synapses abut category j and α is a choice parameter that 
influences how categories are searched. The winning category J is the one whose input is 
maximal:  

   
TJ = max Tj : j = 1K N{ }.  (14) 

If multiple categories have the same input, the one with the lowest numbered index is chosen as 
the winner. The choice parameter 0α =  for all simulations because small values of α tend to 
minimize category recoding during learning. 

In (13), ∧  is the fuzzy AND operator (Zadeh, 1965) defined by: 
( ) ( )min , .i ii
x y x y∧ ≡  (15) 

The vector norm operator, i , is defined by: 

1
.

M

i
i

x x
=

≡ ∑  (16) 

Once the winning category is chosen, a vigilance test is performed to ensure that the match is 
sufficiently close. If it is, then resonance and learning ensue. If the match is not good enough, 
reset ensues which causes a memory search whereby another category index is chosen. The 
degree of match required is controlled by the vigilance parameter, ρ. If: 

,jI w
I

ρ
∧

≥  (17) 
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then resonance occurs, since the input is close to the learned weight, wj. A high degree of 
accuracy is required to discriminate visual target objects at long-range. Thus the choice of 

0.995σ =  was made. Conversely, if 

,jI w
I

ρ
∧

<  (18) 

then reset occurs, leading to a memory search, or hypothesis testing, whereby a new category 
index, j, is chosen. This reset cycle continues until either a sufficiently good match occurs or an 
uncommitted cell is chosen. Once the resonance criterion is satisfied, the chosen adaptive weight 
vector is updated as follows: 

( ) ( )( ) ( ) ( )1 .new old old
j j jw I w wβ β= ∧ + −  (19) 

The learning rate, β, determines the speed at which the weights converge to the input values. By 
using the maximal learning rate β = 1, categories are formed after a single input presentation.  
A2. Magno processing 
The Visual Form and Motion System (Figure 5) computes all of the visual inputs to the 
SOVEREIGN model. Each 3D view of the environment is generated in color by an OpenGL-
based graphical simulator, implemented within Matlab. To simulate the Magno response due to 
self-motion, consecutive pairs of 2D “snapshots”, or doublets, of the current 3D perspective view 
are sampled during body-approach movements. Since approach movements are separated into 
discrete steps for ease of computation, these steps are a convenient way to define the spatial 
sampling of static frames for Magno processing. During a body-approach movement, the first 
frame of a doublet is selected after a fixed step distance in world coordinates. In contrast, the 
second frame of a doublet is selected after a step distance which is proportional to the animat’s 
approach speed. The constant first frame spacing is chosen equal to twice the just noticeable 
difference in visual input, or 35·2 units in world coordinates. The intra-doublet spacing is chosen 
equal to 35·β, where β = 1, 2 or 3, while approaching at the slow, normal and motivated approach 
speeds, respectively. Consecutive snapshot pairs, or doublets, form the transient inputs to a 
dynamic neural network, discussed below. 

The transient cells are designed to respond to variable speeds. The following equations 
are a subset of the circuitry derived for this purpose by Grossberg, Mingolla and Viswanathan 
(2001). The Directional Transient Cell Network (Figure 7) is defined by three stages of cells. 
The first stage comprises the undirectional transient cells, which compute the transient response 
to the consecutive frames of a doublet. The undirectional cell response,  ijb , at position (i,j) is 
defined by: 

( ) ( ) if

( ) ( ) if ,

ij ij

ij

ij ij

U g t K g t t
b

U g t K g t t

α

α

⎧ ⎡ ⎤+ + <⎪ ⎣ ⎦= ⎨
⎡ ⎤+ − ≥⎪ ⎣ ⎦⎩

 (20) 

where the transient response is bounded by a step function, [ ] 2U x =  for 0x > , and 0 otherwise. 
The stimulus is presented for the duration 0.2α =  seconds. The activities of undirectional cell 
input,  ( )ijg t , at position (i,j) and time t, is defined as follows: 

2 if ( )
( )

0 otherwise,
ij
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h t
g t

ε>⎧
= ⎨
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 (21) 
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where ( )ijh t  is the grayscale value of the 2D “snapshot” at position (i,j) and time t. The threshold 
parameter 0.5.ε =  Likewise, ( )ijg t K+  is the response to the input at the same location, but at a 
later time, .t K+  The fixed time interval, K, is approximated by choosing the approach speed-
sensitive spacing of consecutive pairs of doublets using the method described above. Thus, ( )ijg t  
and ( )ijg t K+  correspond to the thresholded, saturating responses to the 2D “snapshots” of the 
first and second frames of a doublet, respectively. 

In the second stage, directional interneurons perform a time-average of undirectional 
transient cell activities. The cell activity, d

ijc , of the directional interneuron at position (i,j) with 
directional preference d (d = L for left, R for right) is defined by: 

10
d
ij d D

ij ij xy

dc
c b c

dt
+

⎡ ⎤= − + − ⎣ ⎦ , (22) 

where each cell receives excitatory input, ijb , from an undirectional cell at the same location, and 

inhibitory input,  D
xyc , from the directional interneuron tuned to the opposite direction and 

spatially offset one unit from (i,j) along the preferred direction. For example, a directional 
interneuron that is sensitive to leftward motion, receives inhibition from a directional interneuron 
sensitive to rightward motion, but offset one unit to the left. In the third stage, the activity of 
directional transient cell,  d

ije , at position (i,j) with directional preference d, is defined by: 
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de
e b c
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+

⎡ ⎤= − + − ⎣ ⎦ , (23) 

where the undirectional cell response, ijb , at position (i,j) and complementary directional 

interneuron response,  D
xyc , is defined in (22). There is no need for vertical directional 

interneurons or transient cells, since the output of this motion circuitry provides only a left/right 
orienting signal. The directional interneuron activities, d

ijc , and directional transient cell 

activation,  d
ije , are integrated for a period of 0.5 seconds to obtain robust response over a range 

of body approach speeds. 
The activity of the directional transient cells, d

ije , at position (i,j) with directional 
preference d comprise the input to the Motion Direction Hemifield Map (Figure 5). This map is 
partitioned into a left and right hemifield, each of which is sensitive to the difference between the 
activities of directional transient cells of opposite directional tuning. For example, map cells in 
the left hemifield,  Le , are sensitive to the difference between left and right directional transient 
cell activation, whereas cells in the right hemifield, Re , are sensitive to the difference between 
right and left directional transient cell activation. The Motion Left/Right Decision module yields 
the total normalized left hemifield response, Ld , using the following equation: 
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and the total normalized right hemifield response, Rd , using the following equation: 
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where N is the number of rows, and M is the number of columns in the Motion Direction 
Hemifield Map. To reduce computational demands, the vertical index, i, is evaluated for only ¼ 
of the total number of rows, N, in the 2D grayscale snapshot. The normalized quantity, Ld , is 
sensitive to the total difference between left-tuned and right-tuned directional transient cells in 
the left hemifield. Conversely,  Rd , is sensitive to the total difference between right-tuned and 
left-tuned directional transient cells in the left hemifield. Both quantities tend to increase in 
absolute value as the total motion signals increase. Differences in the two signals,  Ld  and Rd , 
relative to Parvo signals, are used in the Spatial Attention module (Figure 5) and can command 
the Head-Orienting Movement module to turn away from the visual target cue. 
A3. Spatial Attention module 
The Spatial Attention module (Figure 5) implements a competitive choice mechanism between 
visually-guided approach toward a visual target object, or motion-induced orienting away from a 
visual target object, or random head orienting in the absence of form or motion signals. The 
circuit is defined by a two-stage feedforward competitive network. In the first processing stage, 
cell activities 1l  (Left), 1p  (Parvo, or Straight) and 1r  (Right) compute a time-averaged response 
to their inputs: 

1
1

L Ldl Al G d
dt

= − + , (26) 

1
1

P Pdp Ap G d
dt

= − + , (27) 

and 
1

1
R Rdr Ar G d

dt
= − + , (28) 

where the decay constant 0.5A =  and inputs Ld  and Rd  are obtained from the output of the 
Motion Left/Right Decision module, defined in equations (24) and (25). The Magno input gain 
parameters are constant; namely, 640.L RG G= =  In contrast, the Parvo input gain 
parameter,  PG , is emotionally modulated by the output of the Sensory-Drive Heterarchy 
module, kt , as follows: 

[ ]1.15 if

0.6 otherwise,

k tP
k

t
G

+⎧ > Γ⎪= ⎨
⎪⎩

∑
 (29) 

where the kth output, kt , of the Sensory-Drive Heterarchy is defined in Section A6, and the 
threshold parameter 0.5.tΓ =  The normalized Parvo input, Pd , represents the visual target 
object salience: 

( )d
MAXP

MAX

D P
d

D
−

= , (30) 

where 21,000MAXD =  is the maximum viewing distance from the animat to any 3D visual target 
object in world coordinates. (World coordinates refer to the spatial coordinate system which 
defines the location of points within the 3D graphical front-end.) The distance in world 
coordinates to the visual target object, dP (see Section A1.1), comprises the distance field of the 
Reactive Visual TPV module (Figure 5). 
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The second processing stage implements competitive interactions between the cell 
activities, 1l  (Left), 1p  (Parvo, or Straight) and 1r  (Right): 

( ) ( )( )2
1 2 1 2 1 2 1 1 1

dl A l B l l l E r p
dt

= − + − − + + , (31) 

( ) ( )( )2
1 2 1 2 1 2 1 1 1

dp A p B p p p E l r
dt

= − + − − + + , (32) 

and 

( ) ( )( )2
1 2 1 2 1 2 1 1 1

dr A r B r r r E l p
dt

= − + − − + + , (33) 

where 1 0.1A = , 1 1B = , and 1 0.5.E =  The decay constant A1 is chosen small enough to allow the 
network response to be integrated over a relatively long time period; namely, several steps 
forward during a body-approach movement within the 3D virtual environment. The three 
decision signals, 2 l+  (Left), 2p+  (Parvo, or Straight) and 2r

+  (Right), are: 

[ ]2 2 cl l ++ = −Γ , (34) 

[ ]2 2 cp p ++ = −Γ , (35) 
and 

[ ]2 2 cr r ++ = −Γ , (36) 
where threshold 0.12.cΓ =  

Inertia in the response of the Motor Plant (Figure 2) to movement commands is modeled 
by an additional stage of processing that improves robust performance over variable approach 
speeds. This inertial effect also reduces false alarms due to noise in the environment. One source 
of noise is from variations in the visual scene resulting from the discrete steps used during body-
approach movements. The final output is thus controlled by a heuristic Motor Plant, PM. If PM 
exceeds a variable threshold, ΓM, then a head-orienting movement, or attentional shift, is 
initiated. After each step forward during a body-approach movement, the output is computed by 
the following algorithm: 

1. If no decision signal ( 2 2 2, ,  or l p r+ + + ) is active, then decrement the value of PM by one, 
stopping at zero. 

2. If the Parvo output, 2p+ , is active, then decrement the value of PM by one, stopping at 
zero. 

3. If either Magno decision signal ( 2 2or l r+ + ) is active, then increment the value of PM by 
one. 

4. If the value of PM exceeds a variable threshold, ΓM, then an attention shift to the left or 
right is initiated in the direction commanded by 2 2or l r+ + . The Head-Orienting Movement module 
commands a reactive head-orienting movement in the direction indicated and the value of PM is 
set to zero. The threshold ΓM = 2 for the nominal approach speed and ΓM = 1 for the motivated 
walking speed. (The motivated walking speed is twice the nominal speed.) More details on the 
body approach speeds are provided in Section A9.3. 

5. If no head-orienting movement is indicated, then the parvo decision signal ( 2p+ ) 
commands the Reactive Visual TPV module (Figure 5; equations (10) and (30)) to load the 
Reactive Visual TPV Storage module (Figure 5; equation (116)), and then activates the 
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Approach or Orienting GOP control signals (Figure 10; equations (101) and (103)) to initiate 
head-orienting or body-approach movements toward the target object. When the Approach or 
Orienting GOP control signals are active, further update of the Reactive Visual TPV Storage 
module is inhibited. 

6. If no decision signal ( 2 2 2, ,  or l p r+ + + ) is active, and the distance field, or measure of 
linear displacement, of the Approach GO signal, p

dGO  in the parvo stream (see equation (103)) is 
inactive, then no planned or reactive movement command is present. The Endogenous Random 
Generator, or ERG (see equation (105)), is then disinhibited to initiate exploration with a random 
head-orienting or body-approach movement. Further details on the ERG are provided in Section 
A9.3. 
A4. Visual Working Memory and Planning System 
The Visual Working Memory and Planning System, called henceforth the Visual Memory 
System for simplicity (Figure 17), computes motivationally-reinforced representations of 
sequences of 3D object categories. These sequences are categorized into goal-oriented list 
chunks, or plans, which are learned and read out under various exploratory or consummatory 
motivational states. The Visual Memory System comprises six different components. 
A4.1 View-invariant category learning. The View-Invariant Category Learning module 
(Figure 17) links multiple view categories that are learned by Fuzzy ART into a view-invariant 
category representation of a visual object. Even with log-polar and Gaussian coarse-coding, there 
are enough changes in the Invariant Visual Target Map (Figure 5) during an approach movement 
that several dozen categories are formed in the Fuzzy ART Classifier module, as details of the 
visual target object are resolved within the 2D “snapshot”. The dynamics of view-invariant 
category learning have been described elsewhere (Bradski and Grossberg, 1995, Carpenter and 
Ross, 1993, Fazl, Grossberg and Mingolla, 2007). Here the process is realized algorithmically, 
for simplicity: 

1. Learn a Fuzzy ART category (AC) in response to signals from the Invariant Visual 
Target Map module. 

2. Determine if an associative link already exists from AC to a view-invariant visual 3D 
object category (IC). If not, add AC to a list mapping AC to IC. 

3. When the Spatial Attention module signals an attentional shift and head-orienting 
movement away from the visual target object, create a new invariant visual 3D object category 
(IC) and associated list mapping. 

4. View-invariant visual 3D object categories, IC, comprise the inputs to the 3D Object 
Working Memory module. 
A4.2 3D Object working memory. The 3D Object Working Memory module (Figure 17) stores 
lists of 3D object categories in a short-term working memory. Item-and-order information is 
represented by a spatial gradient of cell activation; that is, the most active item representations 
are performed first. We use the STORE 2 working memory model (Bradski, Carpenter and 
Grossberg, 1992, 1994). Subsequent to STORE 2 processing, an additional processing stage 
thresholds and normalizes the working memory output. This normalization maintains consistent 
pattern activity after the nonlinear thresholding operations. At most, three output cells have 
positive outputs with the chosen parameters. This limit provides a sufficient temporal context to 
disambiguate object sequence contexts in the current study. For simplicity, a list-based storage 
algorithm is employed to represent repeated items. A total of four items, repeated no more than 
twice, can be represented in any order within the 3D Object Working Memory module. 
Additional presentations of a given 3D object category will overwrite earlier items in the list. 
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The STORE 2 model equations generate a stable representation of event order that 
minimizes dependence on input presentation duration. The model dynamics also allow tuning of 
the shape of the stored activity gradient. A recency gradient is formed if the parameters are 
chosen such that the most recently active items have the highest activity levels. 

Input, I, which represent individual items, are presented for the duration, α, as follows: 
1 if

( )
0 otherwise.

i i i
i

t t t
I t

α − < <⎧
= ⎨
⎩

 (37) 

The activity of input cells, xi, respond to total input activity, I, and to stored memory cell activity, 
yi, as follows: 

( ) ,i
i i i i

dx AI y x x Bx I
dt

= + − −  (38) 

where kk
x x=∑ and .kk

I I=∑  Term x helps to normalize the xi response. Term I allows input 
cells to respond only when some input is on. The activity, yi, of stored memory cells, tracks the 
activity, xi, of input cells, as follows:  

( ) Ci
i i

dy x y I
dt

= −  (39) 

where 1CI I≡ − . These cells respond to the frozen xi values when all inputs are off. Initially, 
(0) (0) 0.i ix y= =  

Equations for the total input cell and stored memory cell activities are found by summing 
equations (38) and (39). By defining kk

y y≡∑ , the following equations are obtained: 

( )2dx AI y x Bx I
dt

= + − −  (40) 

and 

( ) .Cdy x y I
dt

= −  (41) 

Let the total input cell activity, after the ith input shuts off at ti, equal ( ) ( )i i k ik
S x t x t≡ =∑ . By 

(41), 1 1( ) ( )i i iy t x t S− −≅ ≡  and by (40),  
2

1 0.i i iA S S BS−+ − − ≅  (42) 
The total activity, 1S , during the first time interval, 1t , therefore obeys: 

( ) ( )2
1 1 0.5 4S x t B B A≡ = − + +  (43) 

where 0 0S ≡ . Similarly, for subsequent time intervals, it , the total F1 activity, iS , obeys: 

( ) ( )( )2
10.5 4 1i i iS x t B B A S i−≡ = − + + + >  (44) 

where each cell activity, ( )k ix t at position k, and time it of the working memory F1, obeys: 

( ) ( ) ( ) ( )1
1 1 1; ;k i

k i k k
i i

x t Ax t S x t x t
S B S B

−= = =
+ +

 (45) 

These iterative STORE 2 working memory equations are employed within the SOVEREIGN 
model for computational simplicity. The decay parameter 0.01A = , and the working memory 
decay constant 1.45B =  were selected to generate a gradual recency gradient. 
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The output of the STORE 2 network is supplemented by additional processing steps. The 
STORE 2 output is thresholded: 

( ) ( ) ( )if
0 otherwise,

i i W
i

x t x t
z t

⎧ > Γ
= ⎨
⎩

 (46) 

with threshold 0.0022,WΓ =  chosen so that no more than three cells are active at once. Second, 
the output is then normalized so that the total activation ( ) 1.5ii

H t =∑ : 

( ) ( )
( )1.5 i

i
kk

z tH t
z t

=
∑

 (47) 

Normalized working memory activity, ( )iH t , is stored using a simplified list-based algorithm to 
represent repeated items. During animat exploration, visual target objects may be seen more than 
once. This leads to multiple instances of 3D object categories stored in the working memory. The 
ability to represent repeated items may be necessary to reach a goal location. Since repeated 
items are overwritten by new instances of the same 3D object category. The STORE 3 model 
(Bradski, Carpenter and Grossberg, 1994) provides a method for storing repeated working 
memory items. Here, a simple list-based algorithm was adopted instead, that is defined by the 
following steps: 
 1. At the start of a trial, create a list with eight zero entries to store enumerated order 
information for four view-invariant visual 3D object categories, IC (see Section A4.1), each 
repeated at most twice. The list is represented by a 2D array with dimensions: (category, repeat). 
 2. To add a new object category to the list, search the list for non-zero entries. Entries in 
the list are numbered from 1...N. The highest numbered entry, N, designates both the most recent 
stored object category and total number of stored items. Check list location (IC, 1) to determine if 
IC has already been stored once. Then, complete one of the following: 
  2a. If IC has not been stored once, then increment N, and store the result, N + 1, in 
list location  (IC, 1). 
  2b. If IC has been stored once, then increment N, and store the result in list 
location (IC, 2). 
 3. To read out the contents of the working memory, and to convert them to STORE 2 
activity levels, search the list for non-zero entries. Such a conversion provides inputs to the 
Masking Field module. Compute the activities, ( )iH t , of the limited-length working memory, 
defined by (47), after presenting N inputs at times ti, where i=1,...,N. Form an eight-dimensional 
(4 categories x 2 repeats) output vector, I, by using the enumerated category order information 
from the list array to index into the N locations of ( )iH t . The resulting output vector, I, is an 

ordered copy of STORE 2 activities, ( )iH t , which form inputs to the Masking Field module 
(Section A4.3; equations (48)-(50),(52)). 
A4.3. Masking field. The Masking Field module is a short-term memory which activates a 
single object list category, or plan, in response to combinations of one, two, or three active items 
in the 3D Object Working Memory (Cohen and Grossberg, 1986, 1987; Grossberg, 1978; 
Grossberg and Myers, 2000). Each plan cell receives permutations of subsets of bottom-up input 
signals and the cell with the closest matching bottom-up signals inhibits the activity of other plan 
cells (Section 2.6.2). Specifically, the activity, ( )J

ix , of the ith plan cell, that receives the inputs J, 
where i  denotes the size of set J, obeys: 
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 (48) 

In (48), the excitatory saturation level 1 1,B =  the inhibitory gain 2 500,F =  and the inhibitory 
saturation level 1 10.E =  The choice 1 1E B�  ensures that plan cells whose bottom-up signals Jm  

do not closely match their weights   wmi
( J )  are strongly inhibited.  

The excitatory input term in (48) comprises two parts. The first part is the filtered sum 
over all bottom-up inputs to plan cell, ( )J

ix : 

( ) ( )11
8

J J
m mi mi

m J

I w z
J ∈

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

∑  (49) 

where the normalizing term 11
8J +

 decreases with increasing cell size, { }1, 2, 3 ,J =  mI is the 

activity of the mth input from the 3D Object Working Memory, ( )J
miw  represents the strength of 

the learned weight connecting the mth input in set J from the 3D Object Working Memory to the 
ith plan cell, and the fixed connection weights, ( )J

miz , cause slightly different initial inputs to 
different plan cells with the same number of inputs, J . When  1J = , the 

coefficients ( ) {1.0}.J
miz =  When 2J = , ( ) {0.95,1.05},J

miz =  and when 3,J =  
( ) {0.95,1.0,1.05}.J
miz =  These fixed connections are similar to the random normalized growth 

rule of Cohen and Grossberg (1987). In the present case, random coefficients are not necessary, 
since permutations of the fixed, deterministic coefficients, ( )J

miz , are sufficient to select the plan 
cells. 

The adaptive weight, ( )J
miw , obeys the ART 1 category learning law (Carpenter and 

Grossberg, 1987): 

( ) ( )
( )

( ) ( ) ( )1 ,
J

J J Jmi
i mi m mi n

n m

dw f x w LI Kw I
dt ≠

⎡ ⎤= − −⎢ ⎥⎣ ⎦
∑  (50) 

where learning is gated on and off by the sigmoid signal function: 

( ) ( )
( )

2
( )

( )
2

( )1

J
i

J
i

J
i

x
f x

x

+

+

⎡ ⎤⎣ ⎦
=

⎡ ⎤+ ⎣ ⎦

 (51) 

The positive constants L and K control the normalizing competition between the inputs, ,nI  in 
allocating learned weight. At steady-state, 



 87
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=

=
− + ∑

 
(52) 

where the constants 2.0,L = 1.0K =  and 8.N =  
The second term, ( )( )

1 ,J
iD f x  of the total excitatory input in (48) is a sigmoid positive 

feedback signal with 1 50,D =  and enables plan cells with more inputs to suppress those plan 
cells that represent fewer inputs. The total inhibitory input term in (48) obeys: 

( ) ( )
( )

( )
,

,

1
,

1

K
mm K

m K

f x K K J

K K J

+ ∩

+ ∩
∑

∑
 (53) 

where the inhibitory signals from competing plan cells are scaled by a size-dependent strength 
term K  and by the size K J∩  of the shared set of cells. 
A4.4. Object list working memory. The Object List Working Memory module (Section 2.6.5; 
Figure 17), stores sequences of object list categories, stored one-by-one from the winner-take-all 
Masking Field module. Object list categories accumulated here provide context before 
motivational association in the next level, the Gated Multipole module (Section A4.5). This 
working memory activity gradient is also stored by a STORE 2 network, as in the 3D Object 
Working Memory module (Section A4.2). Again, only three list category cells can have a 
positive output with the chosen parameters. A list-based algorithmic stage (see Section A4.2) 
allows the encoding of as many as eight items, each repeated at most twice. Items are stored in 
the list when the volitional signal to approach a target object is released (Section A9.3). The 
stored list is reset at the beginning of each trial. The parameters and other details are the same as 
in the 3D Object Working Memory module (Section A4.2). 
A4.5. Gated multipoles. The Gated Multipole module (Figures 17, 18 and 20b), computes 
emotionally modulated object list categories. This module enables motivationally-compatible 
plan items to learn and to read out head-orienting and body-approach commands. There is one 
three-channel Gated Multipole module for each cell in the Object List Working Memory module. 
Each channel corresponds to a distinct motivational state that is modulated by conditioned 
reinforcement and incentive motivational learning. When signals from the Object List Working 
Memory module, representing the stored list categories, reach the Gated Multipole module, the 
signals are broadcast across all three drive channels via a hard-wired spatial gradient. The 
prepotent channels receive the largest bottom-up signals, and rapidly win the feedforward 
competition. Top-down feedback within each gated multipole (Figure 20b) strengthens this 
choice and results in strong habituation in the feedforward pathway (see rectangular synapses in 
Figure 20b). The winning channel from among all of the gated multipoles can then elicit top-
down signals from the winner-take-all computation (Figure 20b) which can learn or read out 
motor commands. In the event that such a top-down command does not match the current NET 
head-orienting or body-approach movement, a mismatch arousal burst can rebound the gated 
multipole and select a different drive channel. The bottom-up choice and mismatch cycle 
continues until an uncommitted drive channel is able to sample the NET head-orienting or body-
approach movement. In this way, each plan can come under the learned control of any drive. 
After repeated experience with a particular reward, learning trials based upon reactive behaviors 
gradually give way to planned responses. 
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The Gated Multipole modules comprise a four-layer feedback network. The activity, ijp , 
of first layer cells in the jth drive channel of the ith Gated Multipole are defined by: 

( ) ( )( ) [ ]

( )

(2)
1 1 1 1 1

1

1

.

ij
ij ij i j u ij k kij

k

ij u ik
k j

dp
A p B p C y S D f u E t w L

dt
F p f u

+

≠

⎛ ⎞
= − + − + + +⎜ ⎟

⎝ ⎠
−

∑

∑
 (54) 

The decay constant 1 1A = , the excitatory saturation level 1 1,B =  the excitatory input gain 1 2,C =  

and the bottom-up spatial gradient across drive channels 1 1 1, , .
6 3 2jS ⎧ ⎫= ⎨ ⎬

⎩ ⎭
 The inputs, iy , are the 

sigmoid output signals from the stored object list category cells: 
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The superscripts (J) in ijp  are not shown for simplicity. In (54), top-down attentional feedback 
from the final choice stage of the multipole provides excitatory modulation of the input, ,iy  via 

term ( )( )11 u ijD f u+  that is balanced by lateral inhibition via term ( )1 .ij u ik
k j

F p f u
≠

− ∑  The 

inhibitory gain 1 3.F =  The sigmoid excitatory feedback signal: 
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+

⎡ ⎤⎣ ⎦
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 (56) 

where 1.7, 5, 9.8Nα θ= = =  and the excitatory feedback gain 1 18.D =  These parameters were 
chosen following numerical search and simulation, although others are possible, owing to the 
robustness and flexibility of the model. Term [ ] (2)

1 k kij
k

E t w+∑  alters the plan choice using learned 

incentive motivational signals from the Sensory-Drive Heterarchy (Section A6). The excitatory 
incentive gain 1 2.E =  The arousal burst L (L=10 when “on”) is a signal arising from a mismatch 
between the Planned DV and NET modules (Figure 20b). The onset of arousal rebounds, and 
thereby resets, all active Gated Multipoles, allowing them to gain conditioned reinforcement and 
incentive properties under a different motivational state. 

Habituative transmitter levels (rectangular synapses in Figure 20b) are depleted in 
response to activity of the first-layer cells, .ijp  The transmitter levels, ijv , in the jth drive channel 
of the ith Gated Multipole, obey: 

  

dvij

dt
= 1− vij( )C2 − F2vij pij  (57) 

(Grossberg 1972, 1980), where the accumulation rate 2 0.5C =  and the linear depletion rate 

  F2 = 1.5. Such a habituative mechanism ensures that the most active drive channel of each first-
layer cell is weakened by its own activity. Conversely, less active drive channels habituate 
relatively little. At the onset of an arousal burst, the other drive channels can therefore 
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immediately elicit a strong excitatory feedforward burst of activity (Grossberg, 1972, 1984a), 
and potentially win the competition at the fourth-layer (see equation (59)). 

The activity of second-layer cells, ijq , in the jth drive channel of the ith Gated Multipole, 
obey: 

2 3 ,ij
ij ij ij

dq
A q C p v

dt
= − +  (58) 

where the signals from the first-layer cells, ijp , are multiplicatively gated by the habituative 
transmitter, .ijv  The decay constant 2 1A = and the input gain 3 1.C =  

The activity of third-layer cells, iju , obey: 

( ) ( ) ( )3 2 3 ,ij
ij ij ij ij ik

k j

du
A u B u g q F u g q

dt ≠

= − + − − ∑  (59) 

where the decay constant 3 7.5,A =  and the excitatory saturation level 2 170.B =  These cells 
implement a feedforward competition to choose the most active drive channel, given the 
momentary combination of bottom-up list category signals, learned incentives, and the effect of 
arousal, L. Excitatory inputs from second-layer cells, ijq , are amplified by a faster-than-linear  

feedback function, ( )ijg q , defined by: 

( ) ( )2

ij ijg q q
+

⎡ ⎤= ⎣ ⎦  (60) 

and balanced by the inhibitory off-surround term, ( )3 ,ij ik
k j

F u g q
≠

− ∑  where the inhibitory gain 

3 0.5.F =  The winning cell then provides strong top-down support to first-layer cells, ijp . 
The activity of fourth-layer cells, ijz , obey: 

( ) [ ]4 4 1 31 ,ij
ij ij ij k

k

dz
A z z C u D t

dt
ε

+ +⎛ ⎞⎡ ⎤= − + − +⎜ ⎟⎣ ⎦ ⎝ ⎠
∑  (61) 

where the decay constant 4 1A =  and the input gain 4 0.5.C =  Fourth-layer cells respond to 
excitatory signals from the third-layer choice cells. Activities of these fourth-layer cells, ijz , are 
amplified by learned incentive motivational signals. The baseline gain 1 0.1,ε =  which provides 

some excitatory input, even when the nonspecific incentive signals, [ ]3 ,k
k

D t +∑  are zero. The 

incentive gain 3 0.5.D =  
First-layer cells in (54) acquire conditioned reinforcer properties by sampling the drive 

representation activities, kr  (see Section A5), via doubly-gated outstar learning: 

( )
(1)

(2) (1) (1) ,ijk
ij ij k k ijk

dw
N p N r w

dt
η= −  (62) 

where the learning rate 1.η =  The learned weights, (1)
ijkw , where i is the Gated Multipole index , j 

is the drive channel, and k is the drive representation index, track the gated activity of the drive 
representation, (1)

k kN r . Both (1)
kN  and (2)

ijN are gating signals which must be on for learning to 
occur. In particular, 
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(1) 1 if 0
0 otherwise,
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which is triggered by Sensory-Drive Heterarchy cell activity, kt , ensuring that the weights do not 
sample a zero quantity, and 

(2) 1 if 1
0 otherwise,

ij
ij
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>⎧
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⎩

 (64) 

which allows only the drive channel which wins the competition at third-layer cells, to acquire 
conditioned reinforcer properties. Learning is doubly-gated by activity at first-layer cells, ijp , 

representing the outstar sampling signal. Initially, all conditioned reinforcement weights, (1) ,ijkw   
are zero. Once the learned weights are strong enough, they can bias the activity at the Drive 
Representation module (see Section A5) and influence the selection of the most active 
motivational state. 

First-layer cells (see equation (54)) can also acquire incentive motivational properties via 
gated instar learning as follows: 

[ ]( )
(2)

(2) (2) ,kij
ij ij k kij

dw
N p t w

dt
η += −  (65) 

where again the learning rate 1.η =  Adaptive weights, (2)
kijw , track the activity, [ ] ,kt

+  of the 

Sensory-Drive Heterarchy module. The term, (2)
ijN  gates learning on (equation (64)) when it is 

activated by the winning channel at the fourth-layer competition. Learning is further gated by 
activity at first-layer cells, ijp , representing the instar sampling signal. The initial strength of 

incentive motivation weights, (2)
kijw , is zero. When these learned weights are strong enough, they 

can bias the activity at first-layer cells, ijp , potentially changing the feedforward signals through 
the Gated Multipole module, thus activating a different drive channel. 

The ability of Gated Multipole modules to activate different drive channels after learning 
is demonstrated by simulation (Section 3) and summarized here. For example, in the Motivated 
Choice Experiment (Section 3.1), the animat learns to move Forward-Left-Forward when hungry 
to receive a food reward, and Forward-Right-Forward when thirsty to receive a water reward. In 
both instances, the animat initially responds to the Triangle cue (Figure 1a) under different 
motivational states, and learns to respond differently. The mechanism employed is the 
conditioning of two different drive channels in the Gated Multipole to the same compressed 
representation of the Triangle cue. Specifically, the prepotent channel is conditioned to the 
Forward-Left command under the hunger drive, whereas the second channel is conditioned to the 
Forward-Right command under the thirst drive. During maze exploration, the second drive 
channel of the Gated Multipole cell was conditioned to the Drive Representation (Section A5) 
thirst channel. Furthermore, the Sensory-Drive Heterarchy (Section A6) thirst channel was 
conditioned to the second channel of first-layer Gated Multipole cells. The effect of such a 
learned feedback loop is the direct reactivation of the second drive channel, when the Triangle 
cue is seen under the same motivational state. 

After learning the Motivated Choice Experiment task, the animat can repeat the 
experiment from the beginning while thirsty. When the Visual Memory System (Figure 17) is 
updated at the start of the trial, a compressed category representation of the Triangle cue is stored 
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in each stage, up to the Object List Working Memory (Section A4.4). The activity, ijp  (equation 
(54)), of first-layer Gated Multipole cells begin to respond to Object List Working Memory 
signals, iy , which are broadcast across all three drive channels via a hard-wired spatial gradient, 

iS . The prepotent channel receives the largest bottom-up input, followed by the second and third 
channels. Subsequently, the activity, kr , (equation (67)) of Drive Representation cells (Section 
A5) respond to learned conditioned reinforcer inputs, (1)

mn kmn
Jmn

p w∑ , from first-layer Gated 

Multipole cells.  
Thus, the Drive Representation thirst channel receives both a drive input and a learned 

conditioned reinforcer input. In the absence of other more salient inputs, this combination can 
win the competition at the Sensory-Drive Heterarchy module (Section A6). Thus, the activity, kt , 
of the Sensory-Drive Heterarchy cells can influence the activity first-layer Gated Multipole cells 
via learned incentive motivational input, [ ] (2)

1 k kij
k

E t w+∑  (equation (54)). These learned incentive 

inputs are sufficient to overcome the bias implicit in the bottom-up spatial gradient, iS . The 
second drive channel Gated Multipole cell receives more total input than either the prepotent or 
third drive channels. Consequently, the second drive channel can win the competition at the 
third-layer cells (equation (59)), which sends on-center off-surround top-down feedback to first-
layer cells. This feedback enhances the activity of the first-layer cell receiving the largest 
bottom-up input, and suppresses the others. The second drive channel is thereby selected over the 
prepotent channel, and can again read out the command to move Forward-Right. 
A4.6. Winner-take-all competition. The Winner-Take-All Competition module (Figures 17, 18 
and 20b) computes a global choice, also called a Motivated WHAT and WHERE decision, 
across each set of Gated Multipoles. These Motivated WHAT and WHERE decisions correspond 
to the output of the Visual and Motor Memory Systems, respectively. The maximally active 
fifth-layer cells, ijz  (equation (61)), from the Gated Multipole module is computed by a steady-
state approximation to a high-gain shunting feedback competitive network: 

( ) ( )
[ ]( )

2

2

,

N

ij

ij N
N

mn
m n

z
T z

zα

+

+

⎡ ⎤−Γ⎣ ⎦
=

+ −Γ∑∑
 (66) 

where the threshold 2 0.1Γ = , exponent 240,N =  and slope parameter α = 0.05. The winning 
cell can activate top-down learning and read out of head-orienting and body-approach 
movements to the Top-Down Readout module (Section A8).  

To select parameters, Gated Multipole activities, ijz , under various conditions during 
maze exploration, are computed and processed by (66) using nominal values for 2Γ , N , and α . 
The amplitude of the winner, T, relative to other cells is then maximized by systematically 
varying each of the parameters in turn. This optimization process realizes good performance 
under all operating conditions. 
A5. Drive representation 
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The Drive Representation module (Figures 17, 18 and 20b), computes the internal drive state of 
the model by combining drive inputs, kD , unconditioned stimulus inputs, kU  and conditioned 
reinforcer inputs, (1)

mn kmn
Jmn

p w∑ : 

( ) (1)
5 3 2 3( ) ,k

k k k k mn kmn
Jmn

dr A r B r D U p w
dt

ε
+

⎡ ⎤⎛ ⎞
= − + − + + −Γ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑  (67) 

where the decay constant 5 1A = , the excitatory saturation level 3 1.25B = , and the baseline 
excitatory input gain 2 0.01.ε =  The drive inputs, kD , are on at the beginning of a learning trial 
and remain active until the end of the trial. The model can accommodate up to three drive inputs, 
denoted by 1D , 2D  and 3D . The “exploratory” drive, 1D , is assumed to be endogenously active. 
Consummatory drive inputs, like hunger, 2D , or thirst, 3D , can vary under different learning 
conditions. There are also unconditioned stimulus inputs, kU , which correspond to these 
exploratory or consummatory drive states. The “exploratory” learning signal, 1U , is activated 
when head orienting is completed. Such a learning signal is the primary means of effecting 
learning without an explicit reward, or latent learning (see Section 3.4). In the model, this 
internally generated learning signal is triggered at the offset of the head orienting GO signal, 

p
aGO  (equations (82) and (101)). Activation of kU  can yield a strong excitatory response in (67) 

if the corresponding drive inputs, kD , are large. Even if the drive inputs are small, a large kU , 
can generate a positive response resulting from the multiplicative baseline gain, 2ε , provided that 
the input threshold 3 0.025Γ =  is exceeded. Similar conditions hold for the consummatory kU , 
which are activated when a rewarded location is reached. Finally, activation of any 
unconditioned stimulus reinforces the plan represented by Gated Multipole activity (equations 
(62) and (65)). Learned conditioned reinforcement signals, (1) ,mn kmn

Jmn
p w∑  can eventually supplant 

kU , after repeated explorations that lead to reward. 
A6. Sensory-drive heterarchy 
The Sensory-Drive Heterarchy module (Figures 17, 18 and 20b), implements a competitive 
feedforward network whose winning cell represents the motivational state which has the largest 
total internal and external support. The activity of Sensory-Drive Heterarchy cells, kt , are 
defined by the following shunting on-center off-surround network: 

( ) ( ) ( )31 ,k
k k k m

m k

dt t t g r F g r
dt ≠

= − + − − ∑  (68) 

where signals from the Drive Representation module, kr , are amplified by the faster-than-linear 
transfer function, ( )g ω , as follows: 

( ) [ ]( )2
100 ,m mg r r +=  (69) 

and the inhibitory gain 3 0.5.F =  Sensory-Drive Heterarchy module activities,  kt , gates several 
types of learning, modulate the animat’s approach speed, and prime the Gated Multipole signals 
to the Winner-Take-All Competition module (Section A4.6). 
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A7. Motor Working Memory and Planning System 
The Motor Working Memory and Planning System, or Motor Memory System (Figure 18), 
computes motivationally-reinforced representations of sequences of motor map positions. These 
sequences represent goal-oriented motor plans, which are learned and read out under various 
consummatory or exploratory motivational states. The Motor Memory System comprises six 
different components. The Visual and Motor Memory System has five of these components in 
common. The only difference is that the Motor Memory System uses a heuristic Self-Organizing 
Map module to convert NET motor displacements, which are approach-orient pairs, into map 
positions which are suitable for encoding by STORE 2 dynamics into the Motor Map Working 
Memory. The other layers are described in the Visual Memory System sections. 
A8. Sensory-Motor Top-Down Readout 
The Sensory-Motor Top-Down Readout module (Figure 20a), combines top-down signals from 
the Visual and Motor Memory System (Figures 17 and 18) to enable the learning and read out of 
motor displacement commands. The convergence of sensory and motor information is necessary 
because, under some circumstances, one type of signal may be unavailable. For example, at the 
beginning of a learning trial, the Visual Memory System is updated, leading to top-down 
readout. However, before a motor command is performed, no Motor Memory System readout is 
available. With the Top-Down Readout module, the system can accommodate this situation. This 
module comprises a four-layer feedforward network which represents distance and angular 
motor commands as opponent vectors. In the first layer, the WHAT and WHERE DVs compute 
the difference between top-down readout and net motor displacement. The distance (d) or angle 
(a) field ON-channel activities, /

s
d ap + , and OFF-channel activities, /

s
d ap − , of first-layer sensory 

cells are defined by: 

( )/
/ / /

s
s sd a
d a d a d a

dp p f T w t
dt

+
+ + += − + −  (70) 

and 

( )/
/ / / ,

s
s sd a
d a d a d a

dp p f T w t
dt

−
− − −= − − +  (71) 

where T  is the Motivated WHAT Decision from the Winner-Take-All Competition module in 
the Visual Memory System (Figure 17; equation (66)). The sigmoidal signal function, ( )f ω , is 
defined by: 

( )
1 if 0
0 otherwise.

f
ω

ω
>⎧

= ⎨
⎩

 (72) 

The adaptive weights in the ON-channel, /
s
d aw + , and OFF-channel, /

s
d aw − , from the WHAT 

decision to the read-out module, encode the planned top-down body movement command. Top-
down adaptive weight strengths, /

s
d aw +  and /

s
d aw − , are initially zero. The ON-channel activity, /d at+ , 

and OFF-channel activity, /d at−  activities represent the calibrated NET body distance and angle 
displacement (Section A10; equation (120)). The activities, /

m
d ap +  and /

m
d ap − , of first-layer motor 

cells are defined similarly for top-down signals from the Motor Memory System (Figure 18). 
The second layer amplifies and adds a tonic input to first-layer cell activities. If first-layer cells 
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have zero activity, then second-layer cells have constant tonic responses. The activities, /
s
d aq +  and 

/
s
d aq − , of second-layer sensory cells are defined by: 

/
/ /2

s
s sd a
d a d a s

dq q p T
dt

+
+ += − + +  (73) 

and 
/

/ /2 .
s

s sd a
d a d a s

dq q p T
dt

−
− −= − + +  (74) 

The tonic cell response, sT , which is activated by first-layer cell activities, /
s
d ap +  and /

s
d ap − , is 

defined by: 

( )/ /
s s

s d a d aT f p p
+ ++ −⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  (75) 

and the signal function, ( )f ω , is defined in equation (72). The activities of second-layer motor 

cells, /
m
d aq +  and /

m
d aq − , are defined similarly. The third layer combines sensory and motor signals 

from the second-layer cell activities. Competitive interactions at third layer cells normalize the 
response to sensory and motor inputs to enable accurate learning, and read out even if one is 
missing. The activities, /d as+  and /d as− , of third-layer sensory-motor cells are thus defined by: 

/
/ / / / / / /(1 )( ) ( )s m s md a

d a d a d a d a d a d a d a
ds As s q q s q q

dt

+
+ + + + + − −= − + − + − +  (76) 

and 
/

/ / / / / / /(1 )( ) ( ),s m s md a
d a d a d a d a d a d a d a

ds As s r r s r r
dt

−
− − − − − + += − + − + − +  (77) 

where the decay constant 0.01.A =  The activities of fourth-layer cells, /d au+ , and /d au− , define the 
Planned DV in the Motor DV System (Figure 14): 

/
/ / /

d a
d a d a d a

du u s s
dt

+
+ + −= − + −  (78) 

and 
/

/ / / .d a
d a d a d a

du u s s
dt

−
− − += − + −  (79) 

These cells thus receive opponent inputs from the third layer to generate a differential response 
consistent with the NET body distance and angle displacement (equation (120)). Finally, top-
down learning from the Visual Memory System (Figure 17) utilizes the VAM learning rule, 
whereby the adaptive weights, /

s
d aw +  and /

s
d aw − , learn to zero the activities of first-layer cells, /

s
d ap +  

and /
s
d ap −  (equations (70) and (71)). By doing so, the top-down weights, /

s
d aw +  and /

s
d aw − , learn the 

NET body distance and angle displacement (Section A10; equation (120)), which can be read out 
during later exploration. These adaptive weights, /

s
d aw +  and /

s
d aw − , are updated as follows: 

( ) ( )/
/ /

s
p s sd a
a d a d a

dw f T GO p w
dt

η
+

+ += − −  (80) 

and 
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( ) ( )/
/ / ,

s
p s sd a
a d a d a

dw f T GO p w
dt

η
−

− −= − −  (81) 

where the learning rate,  1η = , T  is the Motivated WHAT Decision from the Winner-Take-All 
Competition module in the Visual Memory System (Figure 17) and the transfer function, ( )f ω , 

is defined in equation (72). The last term, ,
p
aGO  is the activity of the learning gate derived from 

the Motor DV System (Figure 14), which turns on when head orienting is completed. This 
learning gate triggers learning (e.g., latent learning) in the absence of reward (see Section A5). It 
obeys:  

( )1 ,
p p
a aGO f GO= −  (82) 

where p
aGO  is the Parvo GO signal and ( ) f ω  is again defined in equation (72). Activation of 

p
aGO  occurs at the offset of the .p

aGO  The p
aGO , which commands head orienting movements 

(Figure 15a,c), shuts off when both reactive and planned head orienting signals are zero (see 
equation (101)). Top-down adaptive weights, /

m
d aw +  and /

m
d aw − , from the Motor Memory System 

(Figure 18) are defined similarly. 
A8.1. Control signals. The Top-down Readout Mismatch signal (Figures 10 and 20b) compares 
the Sensory-Motor NET Movement (Section A10) with the WHAT and WHERE DVs (Section 
A8). A sufficiently large difference between the NET body displacement and learned top-down 
weights leads to a mismatch. Mismatch leads to arousal, which rebounds and thereby resets 
active Visual and Motor Memory System Gated Multipoles (Figures 17 and 18).  

The arousal calculation is accomplished in three stages. First, the activity, 1T , of the 
sensory tonic cell, is inhibited by the activities, /

s
d ap +  and /

s
d ap − , (equations (70) and (71)) of first-

layer Top-Down Readout sensory, or WHAT DV, cells: 

( ) ( ) ( ) ( )1 2 .s s s s
d d a aT g p g p g p g p

+
+ − + −⎡ ⎤= − − − −⎣ ⎦  (83) 

Likewise, the activity, 2T , of the motor tonic cell, is inhibited by the activities, /
m
d ap +  and /

m
d ap −  of 

first-layer Top-Down Readout motor, or WHERE DV, cells: 

( ) ( ) ( ) ( )2 2 ,m m m m
d d a aT g p g p g p g p

+
+ − + −⎡ ⎤= − − − −⎣ ⎦  (84) 

where the sigmoidal signal function: 

( )
[ ]( )

[ ]( )

2

2 .
0.25
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ω

ω
ω

+

+
=

+
 (85) 

Next, the activity, smU , of the mismatch cell, which responds to the activities, /d at+  and /d at− , (see 
equation (120)) of the Sensory-Motor NET Movement, is defined by: 

( ) ( ) ( ) ( ).sm d d a aU g t g t g t g t+ − + −= + + +  (86) 
Finally, the activities of sensory and motor arousal signals are defined by the following: 

11 if 0.15
0 otherwise

sm
s

U T
A

− >⎧
= ⎨
⎩

 (87) 

and 
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21 if 0.15
0 otherwise.

sm
m

U T
A

− >⎧
= ⎨
⎩

 (88) 

Generally, the activities, 1T  and 2T , of tonic cells increase when the activities, /
s
d ap +  and /

s
d ap − , of 

WHAT DV cells and the activities, /
m
d ap +  and /

m
d ap − , of WHERE DV cells decrease, respectively. 

In the extreme case, if WHAT and WHERE DV cells are zero, then the tonic cells are 
disinhibited, the activity, smU , of the mismatch cell is zero, and the activities, sA  or mA , of 
arousal cells are zero. WHAT and WHERE DV activity results from differences between the 
top-down motor commands and the NET body displacement. If the activities, sA  or mA , of the 
arousal cells exceed the fixed threshold (equation (87) and (88)), as is the case when then the 
WHAT and WHERE DV cells are sufficiently active, then the cells trigger an arousal burst in the 
Vision or Motor Memory System Gated Multipoles (Section A4.5), respectively. 
A9. Motor Approach and Orienting System 
The Motor Approach and Orienting System (Figure 10) directs head orienting and body 
approach movements in response to reactive and planned motor commands. The body-centered 
distance and angle coordinates of the visual target object are computed in the Reactive Visual 
TPV module. The visual target coordinates flow into the Reactive Visual TPV Storage module 
and activates the Reactive DV module, which initiates head and body movements via motor 
processing downstream. The Reactive DV distance (d) or angle (a) ON-channel activity, dav+ , 
obeys: 

  

dvd / a
+

dt
= −vd / a

+ + yd / a
+ − td / a

+ wd / a
n+ ,  (89) 

where the excitatory input term, day+ , is the Reactive Visual TPV Storage module distance (d) or 
angle (a) ON-channel activity, and the inhibitory input term, / /

n
d a d at w+ + , is the NET body 

displacement activity, /d at+ , scaled by learned adaptive weights, /
n
d aw +  to make the two terms 

dimensionally consistent. The OFF-channel response of the Reactive DV module distance or 
angle fields, /d av− , is defined similarly. The NET module can learn to zero the activity of the 
Reactive DV by modifying adaptive weights, /

n
d aw + . Weight updates obey VAM learning: 

  

dwd / a
n+

dt
= η f xd / a

+( ) td / a
+⎡⎣ ⎤⎦

+
−vd / a

+ − wd / a
n+( ),  (90) 

where 1η = , /d av+  is the Reactive DV distance or angle field ON-channel activity, and /d ax+  is the 
Reactive Visual TPV ON-channel activity. The activities, /d ax+  and /d ax− , code the present 
distance and angle to the target object. ( )f ω  is the gating signal defined by: 

( )
1 if 0.025
0 otherwise,

w
f w

<⎧
= ⎨
⎩

 (91) 

which activates learning when the Reactive Visual TPV is small, or upon reaching the target 
object. The threshold value 0.025w =  corresponds to approximately 500 distance units in world 
coordinates. VAM learning in (90) is also gated by NET module distance or angle ON-channel 
activity, /d at

++⎡ ⎤⎣ ⎦ , to preclude learning if the animat has not moved. A more detailed description 
of the NET module is provided in Section A10. 
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The Motor Approach and Orienting System also processes top-down planned motor 
commands. Motivated WHAT and WHERE Decisions (Figures 10, 17, 18 and 20) learn to read 
out planned head-orienting and body-approach movements. Top-down learning is gated by the 
Orienting GOP offset, 

p
aGO  (equations (82) and (101)), which is activated when a head-orienting 

movement is completed. Top-down commands are computed in the Sensory-Motor Top-Down 
Readout module (Figure 20a), which can initiate head and body movements by further 
processing in the Motor DV module (Section A9.1). The NET module (Figure 10) inhibits 
activation of the Planned DV, thus ending a planned movement. The Top-down Readout 
Mismatch signal (Figure 10 and 20b; Section A8.1) compares the activity of the Planned DV and 
the NET modules. A sufficiently large discrepancy can elicit an arousal burst to select a different 
top-down channel from the Motivated WHAT and WHERE Decision circuit. A more detailed 
description of top-down readout is provided in Section A8. 
A9.1 Motor DV system. The Motor DV system (Figure 14) computes the difference between 
target position and body displacement, and controls the execution of reactive and planned head-
orienting and body-approach movements. Head-orienting and body-approach movements are 
complete when the DV reaches zero. The Motor DV system comprises a two-stage feedforward 
network with reactive and planned streams. The output stage is the result of three types of 
competitive interactions: 

1. The angle field of the Reactive DV module inhibits the distance fields of the Reactive 
and Planned DVC modules. This competition ensures that the animat reactively orients toward a 
visual target object before releasing reactive or planned body-approach. 

2. The distance field of the Planned DV module inhibits the angle field of the Planned 
DVC module. This interaction ensures that any planned body-approach movement is completed 
before a planned head-orienting movement. This enables read out of approach-orient movement 
pairs. 

3. The distance field of the Planned DVC module nonspecifically inhibits the distance and 
angle fields of the Reactive DVC module. This enables planned body-approach commands to 
override reactive movement commands. 
These competitive interactions between the first and second stage of the Motor DV system are 
codified by the following equations. The activity, dt

+ , of the Reactive DVC distance field ON-
channel obeys: 

( ) ( ) ( )2 1 ,d
d d d a a

dt t v f s f s f v
dt

+ +
+ + + + +⎡ ⎤= − + − − −⎣ ⎦  (92) 

where dv+  is the Reactive DV distance field ON-channel activity (see equation (89)), av+  is the 
Reactive DV angle field ON-channel activity, ds+  and as+ , are the Planned DVC distance (d) and 
angle (a) field ON-channel activities, respectively (see equation (76)), and the signal function: 

( )
1 if 0
0 otherwise.

w
f w

>⎧
= ⎨
⎩

 (93) 

The activity,  at
+ , of the Reactive DVC angle field ON-channel obeys: 

( ) ( )2 1 ,a
a a d a

dt t v f s f s
dt

+ +
+ + + +⎡ ⎤= − + − −⎣ ⎦  (94) 
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where  av+ is the Reactive DV angle field ON-channel activity, and the other variables are defined 
as in equation (93). The OFF-channel activities of the Reactive DVC module distance and angle 
fields, dt

−  and at
− , are defined similarly. 

 The activity, ds+ , of the Planned DVC module distance field ON-channel obeys: 

( )1 ,d
d d a

ds s u f v
dt

+ +
+ + +⎡ ⎤= − + −⎣ ⎦  (95) 

where   du+ is the Planned DV distance field on-channel activity (see equation (77)), av+  is the 
Reactive DV angle field ON-channel activity and the signal function, ( )f w , is defined by (93). 

The activity, as+ , of the Planned DVC module angle field ON-channel obeys: 

( )1 ,a
a a d

ds s u f u
dt

+ +
+ + +⎡ ⎤= − + −⎣ ⎦  (96) 

where   au+ is the activity of the Planned DV angle field ON-channel,  du+ is the Planned DV 
distance field ON-channel activity, and ( )f w , is again defined by (93). The activities, ds−  and 

 as− , of the Planned DVC module distance and angle field OFF-channels are defined similarly. 
A9.2 Reactive/Planned Orienting and Approach Systems. The Reactive/Planned Orienting 
and Approach Systems (Figure 15) translate head-orienting and body-movement commands into 
outflow signals which move the head or body. This translation effects the change from sensory to 
motor coordinates. In particular, signals from the Reactive DVC and Planned DVC modules 
converge within the Reactive/Planned Orienting and Approach Systems. First, the signals are 
combined into a single Reactive/Planned DVS, or difference vector, in sensory coordinates. The 
DVS computes the difference between target position and net body displacement, thereby 
representing the distance to approach and angle to turn to reach the target. Then, via an innate 
sensory-motor transform, the Reactive/Planned DVS signals project directly to the 
Reactive/Planned DVM module. The Reactive/Planned DVM module output is gated by the 
Orienting and Approach GOP that are volitionally modulated. The gated output of the 
Reactive/Planned DVM module generates outflow motor commands that control stance and gait. 
The Reactive/Planned DVS and the Reactive/Planned DVM modules are defined in the following 
equations. 

The activity, dx+ , of the Reactive/Planned DVS distance field ON-channel obeys: 

,d
d d d

dx x t s
dt

+
+ + += − + +  (97) 

where  dt
+ is the activity of the Reactive DVC distance field ON-channel, and  ds+  is the activity of 

the Planned DVC distance field ON-channel. 
 The activity, ax+ , of the Reactive/Planned DVS angle field ON-channel obeys: 

,a
a a a

dx x t s
dt

+
+ + += − + + +Φ  (98) 

where  at
+  is the activity of the Reactive DVC angle field ON-channel, as+  is the activity of the 

Planned DVC angle field ON-channel, and Φ  is a left or right head orienting burst, from the 
output of the Head-Orienting Movement module (Figure 15a), computed in the Spatial Attention 
Module (Figure 5; Section A3). If the Spatial Attention Module, which computes a choice 
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between visually-guided approach and motion-induced orienting, commands the Head-Orienting 
Movement module to initiate a head turn, then the burst signal, 1Φ � , active for the duration of 
the head turn, is applied to either the DVS ON-channel, ax+ , for a left turn, or to the DVS OFF-
channel, ax− , for a right turn. The activities, dx−  and ax− , of the Reactive/Planned DVS distance 
and angle field OFF-channels are defined similarly. 

The activity, dy+ , of the Reactive/Planned DVM distance field ON-channel obeys: 

,pd
d d d

dy y GO x
dt

+
+ += − +  (99) 

where  dx+  is the activity of the Reactive/Planned DVS distance field ON-channel, and  p
dGO is 

the activity of the Approach GOP (see equation (103)). 
 The activity, ay+ , of the Reactive/Planned DVM angle field ON-channel obeys: 

,pa
a a a

dy y GO x
dt

+
+ += − +  (100) 

where  ax+  is the activity of the Reactive/Planned DVS angle field ON-channel, and   p
aGO is the 

activity of the Orienting GOP (see equation (101)). The activities, dy−  and ay− , of the 
Reactive/Planned DVM distance and angle field OFF-channels are defined similarly. 
A9.3 GOP, GOM and ERG. Both reactive movement signals from the Visual Form and Motion 
System (Figure 5), and planned movement signals from the Visual and Motor Working Memory 
and Planning Systems (Figures 17 and 18), need to be performed at the correct times. Release of 
such signals is known to be under volitional control in vivo. Such volitional circuits have been 
modeled elsewhere (Brown, Bullock, and Grossberg, 2004; Gaudiano and Grossberg, 1991). To 
that end, GO signals gate the output of motor commands control the timing of the animat’s 
movements. As seen above, these signals are also important to gate learning and to control other 
model functions, such as Vision or Motor Memory System updates. In the absence of either 
reactive or planned movement commands, an ERG, or endogenous random generator, is released 
to initiate exploratory random head-orienting movements. 
 The activity of the Orienting GOP, or p

aGO , is defined by: 

( ) ( ) ,p m
a a a aGO f t f s GO+ += + +  (101) 

where at
+  is the activity of the Reactive DVC angle field ON-channel, as+  is the activity of the 

Planned DVC angle field ON-channel, and the signal function, ( )f ω , incorporates volitional 
modulation, such that: 

( )
1 if 0 and volitional gating is ON
0 otherwise.

f
ω

ω
>⎧

= ⎨
⎩

 (102) 

Volitional gating is controlled heuristically within the SOVEREIGN simulations since circuitry 
for volitional control is beyond the scope of this research. For simplicity, volitional input in 
(102) is assumed to be always on. A more sophisticated control mechanism will be used in future 
research. Finally, m

aGO  represents the activity of the Orienting GOM, controlled by the Head-
Orienting Movement module (Figure 5). The activity of the Approach GOP, or p

dGO , is defined 
by: 
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( ) ( )( ) ,p nearby speed
d d d dGO f t f s V G+ += +  (103) 

where dt
+  is the activity of the Reactive DVC distance field ON-channel, ds+  is the activity of the 

Planned DVC distance field ON-channel and the signal function, ( )f ω , is defined by (102). The 
nearbyV term is a visual signal which responds to the salience of the visual target object: 1nearbyV =  

if the apparent size of the visual target object is greater than 65% of the total size of the object’s 
2D snapshot, in either the vertical or horizontal dimension. This fixed ratio was selected by 
examining the behavior of the animat under controlled conditions. The activity of p

dGO  is also 
multiplicatively scaled by an incentive motivation speed signal, .speed

dG  This speed signal is 

sensitive to activities, [ ]kt
+ , of the Sensory-Drive Heterarchy, defined by (68). The general idea 

is that a motivated animat will increase its running speed in anticipation of reward, in order to 
receive the reward sooner. The speed signal,  speed

dG , is defined by: 

[ ] [ ]
3

1
2

2 if 0.25

1 otherwise,

kspeed
kd

t t
G

+ +

=

⎧ ⎛ ⎞− >⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪
⎩

∑  (104) 

where 3N =  is the total number of drives, and [ ]kt
+ is the output of the sensory-drive heterarchy. 

Note that [ ]2t
+  and [ ]3t

+  correspond to the consummatory drive channels, hunger and thirst, 

whereas [ ]1t
+  is the exploratory drive channel. If sufficiently large, the total consummatory 

activities of the Sensory-Drive Heterarchy module can double the approach speed. This increase 
in speed is analogous to that observed experimentally (Hull, 1932, 1934). 
 The ERG is modeled as an endogenously active noise source (Gaudiano and Grossberg, 
1991). When the ERG is disinhibited, it generates an orienting burst of activity that is sufficient 
to initiate a head orienting turn in a random direction. The ERG activation continues until the 
distance field of the Approach GOP is reactivated. The ERG obeys: 

1 .p
dERG GO= −  (105) 

The ERG allows the animat to continue random exploration, even after the visual target object is 
reached, or when Parvo and Magno signals may be unavailable. Although not part of the current 
SOVEREIGN simulations, the ERG could also be used to initiate a random body approach 
movement. 
A10. Sensory-Motor NET Movement Module 
The Sensory-Motor NET Movement Module (Figure 12), learns to compute a robust 
representation of body displacement using a combination of visual, vestibular and motor copy 
signals. The primary output from this module, the NET vector, provides signals which are used 
to zero the Reactive and Planned DV fields, as well as for encoding by the Motor Working 
Memory and Planning System, shown in Figure 18. One input to this module is the vestibular 
Present Position Vector, or PPVV, a vector which codes the head and body displacement using 
vestibular signals. A second input is the motor Present Position Vector, or PPVM, a vector which 
also codes the head and body displacement, but uses motor outflow, or corollary discharge, 
signals. The PPVV and PPVM, are computed by the Motor Integrator Module (Section A10.1). 
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 The activities, du+  and au+ , of the M-V Mismatch module distance (d) and angle (a) field 
ON-channels obey: 

1/
/ / / / ,d a

d a d a d a d a
du u p w q

dt

+
+ + + += − + −  (106) 

where /d ap+  is the activity of the PPVV distance or angle field ON-channels, obtained from the 
integration of vestibular feedback and /d aq+  is the activity of the PPVM distance or angle field 
ON-channels, obtained from the integration of proprioceptive feedback. The strength of adaptive 
weights, 1

/d aw + , obey VAM learning: 

( )( )
1

1/
/ / / ,d a

d a d a d a
dw f p u w

dt
η

+
+ + += − −  (107) 

where 0.001η = , du+  and au+  are the activities of the M-V Mismatch distance and angle field 
ON-channels, dp+ and ap+  are the activities of the PPVV distance and angle field ON-channels, 
and the signal function, ( )f ω , is defined by: 

( )
1 if 0
0 otherwise.

f
ω

ω
>⎧

= ⎨
⎩

 (108) 

The adaptive weights, 1
/d aw + , are updated continuously, albeit with a slow learning rate. The 

learning rate was chosen to be large enough to calibrate differences between the PPVV and 
PPVM, but small enough to preclude interference from learning if vestibular signals temporarily 
deviate from motor copy signals. A short-term error between the signals might occur when the 
animat is traversing slippery terrain. Because VAM learning is employed, the activities, du+  and 

au+ , of the M-V Mismatch module ON-channels are almost always near zero. 
The activities,  dr

+  and  ar
+ , of the NETMV distance and angle field ON-channels obey: 

/
/ / / /2 ,d a

d a d a d a d a
dr r q q u

dt

+
+ + − += − + − +  (109) 

where dq+  and aq+  are the activities of the PPVM distance and angle field ON-channels, dq−  and 

aq−  are the activities of the PPVM distance and angle field OFF-channels and du+  and au+  are the 
activities of the M-V Mismatch distance and angle field ON-channels. The activities, dr

−  and ar
− , 

of the NETMV distance or angle field OFF-channels are defined similarly. 
The activities, ds+  and as+ , of the S-MV Mismatch module distance and angle field ON-

channels obey: 
2/

/ / / / 1 ,md a
d a d a d a d a a

ds s r w z GO
dt

+
++ + + + ⎡ ⎤= − + − −⎣ ⎦  (110) 

where dr
+  and ar

+  are the normalized activities of the NETMV distance and angle field ON-
channels, dz +  and az +  are the normalized activity of the NETS distance and angle field ON-
channels and m

aGO  is the activity of the Magno GO. The normalization of /d ar +  and /d ar −  is 
defined by: 
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/ /
/ /

1 1; .
2 2

d a d a
d a d a

r rr r
+ −

+ −+ −
= =  (111) 

Similarly, the normalization of  /d az +  and /d az −  is defined by: 

/ /
/ /

1 1; .
2 2

d a d a
d a d a

z zz z
+ −

+ −+ −
= =  (112) 

This type of normalization derives from the following shunting competitive system: 

( )( ) ( )1 1 1dc c c a c a
dt

ε= − + − ± − ∓  (113) 

which defines the activity, c, that results from push-pull inputs, a. At steady-state, the activity, c, 
is defined by: 

1 ,
2

ac ±
=  (114) 

as in equations (111) and (112). The adaptive weights, 2
dw +  and 2

aw + , obey VAM learning: 

( )( )
2

2/
/ / / ,d a

d a d a d a
dw f r s w

dt
η

+
+ + += − −  (115) 

where 0.001η = , dr
+  and ar

+  are the activities of the NETMV distance or angle field ON-channels, 

( )f ω  is the signal function in (108) and ds+  and as+  are the activities of the S-MV Mismatch 

module distance and angle field ON-channels, and. The adaptive weights, 2
dw +  and 2

aw + , are 
updated continuously, albeit with a slow learning rate. Because VAM learning is employed, the 
activities, ds+  and as+ , of the S-MV Mismatch module distance or angle field ON-channel are 
almost always near zero. 

The activities, dy+  and ay+ , of the Reactive Visual TPV Storage module distance and 
angle field ON-channels obey: 

( ) ( )( )
( )( )

/
1 / / / /

/ / /

1 5  

5  ,

pd a
d a d a d a d a d

p
d a d a d a d

dy A y y y x GO onset
dt

y y x GO onset

+
+ + + +

+ − −

= − + − +

− +
 (116) 

where the decay term 1 0.001A = . The excitatory input, ( )/ /5  p
d a d a dy x GO onset+ ++ , comprises two 

parts. First, there is strong excitatory feedback via /5 d ay+ . Second, there is a gated input from the 
activities, dx+  and ax+ , of the Reactive Visual TPV module distance and angle field ON-channels. 
The onset of the Approach GOP (Section A9.3; equation (103)), or  p

dGO onset , marks the 
beginning of a body-approach movement, and expresses the Reactive Visual TPV input, /d ax+ . 
This onset signal lasts only briefly, while the Reactive Visual TPV Storage module tracks the 
Reactive Visual TPV ON-channel and OFF-channel activities, /d ax+  and /d ax− . After the 

 p
dGO onset , the activity of the Reactive Visual TPV Storage module is maintained via strong 

self-feedback. The inhibitory terms, ( )/ /5  p
d a d a dy x GO onset− −+ , also comprise two parts, which 

function similarly and serve to normalize the positive and negative opponent cells. The activities, 
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dx−  and ax− , of the Reactive Visual TPV Storage module distance field OFF-channels, are 
described similarly. 

The activities, dz+  and az+ , of the NETS distance and angle field ON-channels obey: 

3/
/ / / / ,d a

d a d a d a d a
dz z y x w

dt

+
+ + + += − + −  (117) 

where  dy+  and  ay+  are the activities of the Reactive Visual TPV Storage module distance and 
angle field ON-channels and dx+  and ax+  are the activities of the Reactive Visual TPV module 
distance and angle field ON-channels. The adaptive weights, 3

/d aw + , obey the VAM learning rule 
as follows: 

( )( )( )
3

3/
/ / / ,pd a

d a d d a d a
dw f x GO onset z w

dt
η

+
+ + += − −  (118) 

where 1η = , dz+  and az+  are the activities of the NETS module distance and angle field ON-
channels, dx+  and /d ax+  are the activities of the Reactive Visual TPV module distance and angle 
field ON-channels, ( )f ω  is the signal function in (108), and  p

dGO onset  is active at the onset of 
the Approach GOP (Section A9.3; equation (103)). Since fast VAM learning, 1η = , is employed, 
the activity of the distance and angle field of the NETS module is zero shortly after the onset of 
the Approach GOP,  p

dGO onset , gates learning. 
 Fast VAM learning is used to calibrate target position information in the NETs module 
(Figure 12) for the following reason: After calibration, the NETs module has zero activity, but is 
gradually disinhibited as the animat approaches the target. A high learning rate enables 
calibration to be completed before the movement commences. Fast learning is also used in the 
Top-down Readout module to learn the NET body displacement before the start of a new  
movement. 

In contrast, slow VAM learning is used in the S-MV Mismatch module to calibrate 
differences between visual and proprioceptive signals. These differences are typically small, thus 
easily handled by slow learning. A short-term error might occur if visual signals were shut off 
entirely (i.e., in the dark). The M-V Mismatch module accomplishes a similar calibration 
between vestibular and proprioceptive signals. Again, slow learning can maintain calibrated 
adaptive weights, which are unaffected by short-term deviations in input (i.e., on slippery 
terrain). 

The combined activities, dv+  and av+ , of the distance and angle field of the NETS and S-
MV Mismatch ON-channels are defined by: 

/
/ / /2 1 2 ,md a

d a d a a d a
dv v z GO s

dt

+
++ + +⎡ ⎤= − + − +⎣ ⎦  (119) 

where dz+  and az+  are the activities of the NETS distance and angle field ON-channels, m
aGO  is 

the activity of the Magno GO and ds+  and as+  are the activities of the S-MV Mismatch distance 
and angle field ON-channels. The activities of the NET module distance and angle field ON-
channels obey: 

( )( ) ( )/
2 / / / / /1 ,d a

d a d a d a d a d a
dt A t t v T t v T

dt

+
+ + + + −= − + − + − +  (120) 
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where dv+  and av+  are the activities of the combined NETS and S-MV Mismatch distance and 
angle field ON-channels, and 1T = , is a tonically-active input cell (Figure 12). The resulting 
normalized ON-channel activities, /d at+ , and OFF-channel activities, /d at− , (see equations (113) 
and (114)) are defined by: 

/ /
/ /

1 1; .
2 2

d a d a
d a d a

t tt t
+ −

+ −+ −
= =  (121) 

A10.1 Motor integrators. The Motor Integrator module (shown at the bottom of Figure 12), 
computes the activities, p, of the PPVV, or vestibular Present Position Vector, a measure of body 
displacement in vestibular coordinates, and the activities, q, of the PPVM, a similar signal based 
on proprioceptive, or motor copy, signals. A heuristic implementation of an integrator with linear 
response over a long time period is assumed, and implemented using a counter, which adds the 
head turn angle and body approach distance after each step. These angle and distance inputs to 
the vestibular (F) and proprioceptive (C) counters are also emulated heuristically. The distance or 
angle fields of the vestibular and motor copy integrators are reset by a burst of activity at the 
onset of the Approach GOP, or  p

dGO onset  (Section A9.3; equation (103)). 
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