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Abstract 

The hippocampus participates in multiple functions, including spatial navigation, adaptive 
timing, and declarative (notably, episodic) memory. How does it carry out these particular 
functions?  The present article proposes that hippocampal spatial and temporal processing are 
carried out by parallel circuits within entorhinal cortex, dentate gyrus, and CA3 that are 
variations of the same circuit design. In particular, interactions between these brain regions 
transform fine spatial and temporal scales into population codes that are capable of representing 
the much larger spatial and temporal scales that are needed to control adaptive behaviors. 
Previous models of adaptively timed learning propose how a spectrum of cells tuned to brief but 
different delays are combined and modulated by learning to create a population code for 
controlling goal-oriented behaviors that span hundreds of milliseconds or even seconds. Here it 
is proposed how projections from entorhinal grid cells can undergo a similar learning process to 
create hippocampal place cells that can cover a space of many meters that are needed to control 
navigational behaviors. The suggested homology between spatial and temporal processing may 
clarify how spatial and temporal information may be integrated into an episodic memory. The 
model proposes how a path integration process activates a spatial map of grid cells. Path 
integration has a limited spatial capacity, and must be reset periodically, leading to the observed 
grid cell periodicity. Integration-to-map transformations have been proposed to exist in other 
brain systems. These include cortical mechanisms for numerical representation in the parietal 
cortex. As in the grid-to-place cell spatial expansion, the analog representation of number is 
extended by additional mechanisms to represent much larger numbers. The model also suggests 
how visual landmarks may influence grid cell activities via feedback projections from 
hippocampal place cells to the entorhinal cortex.  
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Introduction 

The multitude of seemingly independent behavioral functions carried out by the hippocampal 
system has attracted intense interest from researchers. Several of the most studied functions are 
the following: (1) The role of the hippocampal system in spatial navigation has been of special 
interest since O’Keefe and Dostrowsky (1971) showed the spatial correlates of pyramidal cell 
firing in the hippocampus. These cells tend to fire in a specific portion of the environment 
(place) independently of the head direction and movement speed, hence the term place cells. 
How place cells are formed has attracted even more interest since the recent discovery of grid 
cells (Hafting et al., 2005) within entorhinal cortical circuits that project to the hippocampus. (2) 
The role of the hippocampus in classical conditioning is limited to certain experimental 
paradigms that require temporal integration over a delay period; e.g., trace conditioning and 
sufficiently delayed non-matching to sample, and is crucial for adaptive timing of the 
conditioned response (Berger & Thompson, 1978; Eichenbaum, Otto, & Cohen, 1994). (3) 
Another function that was first highlighted by studies of patient HM (Scoville & Milner, 1957) is 
the role of the hippocampal system in declarative memory, especially in episodic memory. 
Eichenbaum et al. (1999) suggested that each episode in memory consists of a specific 
spatiotemporal combination of stimuli and behavior and discussed the evidence supporting this 
claim. 

While these functions are often studied independently and in different species, there is no 
reason to believe that they are, in fact, independent. Spatial information and temporal 
information are crucial parts of an episode, and may be used to form an episodic memory. This 
paper focuses on hippocampal spatial and temporal processing and proposes that these are 
parallel computations performed within the same system by circuits that are sufficiently 
homologues to be considered variations of the same design.  

Space and Time in Homologous Circuits. The adaptive timing model of Grossberg and 
colleagues (Grossberg & Merrill, 1992, 1996; Grossberg & Schmajuk, 1989) proposed how the 
dentate gyrus (DG) and hippocampal field CA3 may interact to learn adaptively timed behavioral 
responses (e.g., Gibbon, 1991; Roberts, Cheng, & Cohen, 1989; Smith, 1968) and 
neurophysiological cell activations (Berger, Berry, & Thompson, 1980; Berger, Laham, & 
Thompson, 1986; Hoehler & Thompson, 1980) during classical and instrumental conditioning. 
Here we introduce a model of spatial processing that describes how the same DG-CA3 circuits 
may also learn place fields for spatial localization. Grossberg et al. proposed a circuit to bridge a 
temporal interval that can span up to several seconds, and showed how this circuit could learn to 
adaptively time responses within this interval. A homologous spatial circuit is described herein 
that can similarly expand the range of positions and distances that can be represented, up to 
many meters, but instead of providing the information in the form of “now is the time…,” it 
signals that “here is the place…” 

The spatial case is in general more complex than the temporal, but it is more easily 
compared with the latter by the following simplifying assumptions. First, assume that the spatial 
environment is one-dimensional. Second, assume that the movement always proceeds in one 
direction. Finally, assume that the movement speed is constant. Under these assumptions, the 
spatial position of the animal is linearly dependent on time from the trial onset. Experimental 
evidence supports the link between time and spatial properties of place cells. For example, 
Redish et al. (2000) has shown that the elapsed time since leaving the start box on the 1D linear 
track is a good predictor of the place field realignment on a variable length track. Nevertheless, 
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building the theory under all three assumptions would be overly simplistic. Thus we replace the 
last two assumptions by assuming that appropriate path integration (PI) system is in place and 
provides the input to the model presented herein. 

Behavioral studies showed the existence of PI system in mammals (Mittelstaedt & 
Mittelstaedt, 1980) and PI happens at least partially outside of the hippocampus (Alyan et al., 
1997). On the other hand, the hippocampus is involved in the navigation based upon integration 
of idiothetic information, since a fornix lesion disrupts this type of navigation (Whishaw & 
Gorny, 1999). A PI system by definition should accommodate for changes in an animal's 
velocity and direction, and provide some measure of distance between the place where the trial 
started and the current location of the animal. Such a spatial output is similar to the output of a 
time integration system that records the time between the trial onset and current moment. 

 

Figure 1. Homologous entrorhinal-dentate-CA3 circuits for spatial and temporal processing. See 
text for details. 
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Spectral Timing. Both spatial and temporal representational systems need to solve the 
following problem. The brain builds representations and guides the behavior over spatial scales 
of many meters and temporal scales of many seconds, while many individual neurons operate on 
much smaller spatial and temporal scales. One approach to solving this problem is to use a 
population code for space and time that combines a limited number of integrators with fixed but 
different spatial or temporal periods. These fixed periods can span a spectrum of spatial or 
temporal scales, and indeed the Grossberg et al model of adaptively timed learning is called the 
spectral timing model. This paper investigates how a representation of space that is much larger 
than any individual scale of the spectrum can be built by combining several spatial scales in a 
manner that strikingly resembles the circuitry that has been proposed for spectral timing; see 
Figure 1. 

In the spatial domain, the recent exciting discovery of grid cells in the entorhinal cortex 
(EC) by Hafting et al. (2005) casts a new light on the input signal that can lead to adaptive 
formation of the large behavioral scales that are needed for navigation. This paper shows how a 
proper combination of multiple scales of grid cells leads to formation of hippocampal place cells 
through two stages of converging inputs as shown in Figure 1. 

In the first stage of a spectral timing model, multiple cue cell outputs from the entorhinal 
cortex converge on cells in the dentate gyrus. Different DG cells are tuned to respond to different 
temporal delays along a spatial gradient in a septo-temporal direction (Nowak & Berger, 1992). 
Such a gradient of temporal delays may be implemented within EC-DG projections by using a 
gradient of different Ca++ concentrations that influence metabotropic glutamate receptors 
(mGluR) across the cells in the gradient (Fiala, Bullock, & Grossberg, 1996; Grossberg & 
Merrill, 1992, 1996).  

Spectral Spacing. An analogous gradient of spatial coordinates can be based on 
entorhinal grid cells. Hafting et al. (2005) reported that there exists a gradient of spatial periods, 
or scales, of grid cells in EC that is aligned with the dorso-ventral EC axis. Spatial scale 
increases from 40cm at the most dorsal recording sites to 70cm in the most ventral sites (Hafting 
et al., 2005). The dorso-ventral gradient of grid cells’ periods instantiates the spectrum of spatial 
scales. To further clarify the analogy between the spatial and temporal model, note that there is a 
topology in the projections from EC to DG such that the dorsolateral band of EC projects more 
to the septal end of the DG while the ventromedial band of EC projects more to the temporal end 
of DG (Burwell & Amaral, 1998). Thus the dorso-ventral gradient in EC corresponds to the 
septo-temporal gradient in DG. Within each spatial scale, grid cells have various orientations of 
the grid and shifted grid positions. According to these results, for a specific orientation, about 
five evenly shifted grid cells are sufficient to cover the space without gaps. The model presented 
here thus uses five cells per spatial scale. This is represented in the sketch of the first stage of the 
spatial model in Figure 2. When the animal moves through the environment, different grid cells 
from each spatial scale are periodically active. Multiple grid cell outputs from the entorhinal 
cortex converge on cells in the dentate gyrus. 

The spatial model outlined in Figures 1 and 2 can be called a spectral spacing model by 
comparison with its homologous spectral timing model. We show here how a spectral spacing 
model can, through a two stage entorhinal-dentate-CA3 network, expand the spatial scale of grid 
cells in a manner analogous to how the spectral timing model expands the temporal scale through 
its parallel entorhinal-dentate-CA3 network. Previous simulations (e.g. by Fuhs & Touretzky, 
2006) showed that the combination of several spatial scales leads to a unique spatial 
representation over an expanded spatial interval much larger than the period of any of the 
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individual spatial scales of entorhinal grid cells. The spectral spacing model presented herein not 
only replicates these results, but also provides a first theoretical explanation of why and how this 
expansion occurs. 

In the second stage of a spectral timing model, output of DG cells with a fixed preferred 
delay, or temporal phase, converge on hippocampal CA3 cells (see Figure 1) to form a full 
temporal spectrum that can span a behavioral time scale of hundreds of milliseconds or seconds. 
In the second stage of a spectral spacing model, DG cells with a fixed preferred spatial phase, as 
explained below, provide signals that converge on hippocampal CA3 cells to form a full spatial 
spectrum that can span a behavioral spatial scale of many meters. 

 

Figure 2. Model for place cell learning. 3 populations of entorhinal grid cells of 5 cells each are 
aligned along the dorso-ventral gradient in entorhinal cortex and have respective spatial scales. 
Their firing profiles are represented as peaks of corresponding activity trace and aligned with the 
track. The current location of the animal causes the corresponding grid cells to fire (filled 
circles). The dentate gyrus granule cell that receives strong projections from all three of the 
active grid cells fires in response to this input (filled circle) and activates the interneuron to 
suppress other granule cells. The back-propagating action potential in this granule cell (dotted 
arrow) triggers learning of projections from active entorhinal grid cells; cf. Grossberg (1975). 
For clarity, only currently active projections are shown. 

Materials and Methods 

Multiple Spatial Scales. Here we propose a mechanism for how dentate gyrus granule cells 
receive inputs from several nearby spatial scales in the entorhinal cortex and learn to combine 
these inputs to generate place cells that operate on a much larger spatial scale than individual 
grid cells. Fuhs and Touretzky (2006) showed to some extent that combining input from multiple 
spatial scales does lead to unique place fields. However, they did not analyze: (1) how the 
synaptic connectivity between grid cells and place cells can learn to combine spatial scales; (2) 
what is the maximal spatial expansion that can be achieved by combining certain scales; and (3) 
what is the theoretical foundation for this expansion. The model presented here proposes answers 
to these three questions. 
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Now Print Signals. In both spectral timing and spectral spacing systems, transient Now 
Print learning signals act at the dentate gyrus to selectively tune a subset of temporal or spatial 
phases. In the spatial model, the modulatory Now Print signal that enhances the synaptic 
modification is theta-bound and likely to be induced by cholinergic and GABAergic inputs from 
medial septum. Hasselmo, Bodelòn, and Wyble (2001) suggested, based on experimental data, 
how septal modulation can enhance spatial learning on a certain phase of the theta rhythm. In the 
temporal model, a Now Print signal can also be theta-bound, especially in the light of data on 
stimulus-evoked theta reset (Givens, 1996). The spectral timing model predicts that the temporal 
window during which a Now Print signal is effective is provided by metabotropic glutamate 
receptor (mGluR) dynamics (Fiala, Bullock, & Grossberg, 1996; Grossberg & Merrill, 1992; 
Ichise et al., 2000). Each of the fixed delays in the spectral timing model is proposed to be due to 
an mGluR burst that occurs at a different delay. These different delays are predicted to be 
determined by different calcium concentrations that are organized on a spatial gradient across the 
cells with different delays. If the homolog between temporal and spatial learning persists down 
to the biochemical level, then one would expect the temporal window during which a Now Print 
signal is effective in the spectral spacing model to also be determined by mGluR, but without 
different delays across cells. Indeed, spatial learning is disrupted by blocking mGluR (Balshun et 
al., 1999). The remainder of this paper analyzes the spectral spacing model, because the spectral 
timing model has previously been presented. 

Least Common Multiple of Spatial Scales. As in the data of Hafting et al. (2005), EC grid 
cell activity for each spatial scale is a periodic process (Figure 2). The only difference between 
the scales is the period of this activity, and therefore, of the inputs to DG. Thus DG cells add 
several periodic processes ( ) ( ) ( )txatxatxa nn+++ …2211  through synaptic integration. EC inputs 
could, in principle, be set up as a gradient of influences from different spatial scales, or as a set 
of equal influences for all scales (in the latter case naaa === …21 ). The period of the resulting 
process does not depend on these coefficients as long as they are non-zero; it only depends on 
periods of components and is equal to their least common multiple (e.g., see p.143 in Hartmann, 
1997). As a result, the total space that can be covered by unique input combinations, and 
therefore unique representations, within a transversal DG slice is predicted to have the size of the 
least common multiple of the incoming grid periods. It will not depend on whether a gradient of 
influences or equal influences were used (the supporting simulation results with Gaussian 
profiles of influences normalized to match total input signal are not shown). For simplicity, this 
paper illustrates how an equal influence of spatial scales determines the resulting DG activity. 

In the model simulations, different DG slices receive different combinations of nearby 
spatial scales. Suppose, for example, there are scales of 40, 50, 60, and 70cm along a dorso-
ventral gradient in EC. Assume that the slice closer to the septal end of DG receives the three 
finest scales, while a slice of DG that is closer to the temporal end receives the three coarsest 
scales. Then the first DG population will expand space up to 6m (least common multiple of 40, 
50, and 60cm), and the second population will expand it to 21m (least common multiple of 50, 
60, and 70cm). Note that both of these numbers are still less than the maximal possible 
expansion for combining all four inputs (42m). On the other hand, there are now two spatial 
scales in two transverse slices of DG, which can be further used downstream in the hippocampus 
to support the gradient of place field sizes observed by Kjelstrup et al. (2006). There can also be 
some interaction between these scales in DG based on mossy cells that mainly project between 
different transverse slices (Patton & McNaughton, 1995). 
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From a mathematical point of view, the best spatial scales to combine in order to achieve 
the maximal space expansion would have periods equal to prime numbers. For example, the 
scales of 40, 50, and 60cm suggested above have total space coverage of 6m, while the nearby 
scales of 41, 53, and 59cm can cover up to 1.282km. On the other hand, if one uses five grid 
cells per spatial scale and three spatial scales, combining inputs from them will lead to only 
53=125 place fields across this space. It is just as unlikely that the brain uses prime numbers or 
multiples of 10 as scale periods, so the grid cell periods are likely to attain intermediate values. 
The simulations below show that these intermediate values are capable of providing both space 
expansion and dense place field coverage over the expanded space. 

The first two simulations compare DG activity resulting from inputs from two spatial 
scales of 40 and 50cm that can expand the spatial representation up to 2m, and inputs from two 
spatial scales of 44 and 52cm that can expand the space up to 5.72 m. The simulations used a 6m 
track so that both results can be accomplished within the same setup. An interneuron (basket 
cell) driven by the combined activity of all granule cells inhibits the granule cells (Patton & 
McNaughton, 1995). The general structure of the network is shown in Figure 2. Only two spatial 
scales (two populations of EC grid cells) were used in the simulations. An ideal result would be a 
unique DG firing pattern for every combination of entorhinal inputs. Such a result would achieve 
precise spatial localization on the expanded spatial interval. 

Fixed Connection Weights. The first two simulations used prewired EC-DG connection 
weights. In the ideal case, each DG cell will have weights so that only one of the EC cells per 
spatial scale has a strong influence on DG cell activity. That can be represented as a weight set 
shown in Table 1a. In this example, the DG cell responds when the second cell fires in the 40cm 
scale (44cm for the second simulation) and the fourth cell fires in the 50cm scale (52cm for 
second simulation). There are 25 possible combinations of EC inputs, so 25 custom weight sets 
were crafted and preloaded into the EC-DG projections to 25 granule cells. The simulation was 
run for 30 simulated seconds over 6m linear track simulating motion from the leftmost end to the 
rightmost end at a constant speed of 20cm/s. This allows direct correspondence between spatial 
coordinates and time. 

Learned Connection Weights. The third simulation tested whether the ideal weights used 
in the first two simulations can emerge in the brain from a competitive learning process 
(Grossberg, 1976, 1978; Kohonen, 1984; Rumelhart & Zipser, 1988). For this simulation, two 
DG slices that consisted of 125 granule cells each to allow some redundancy. Each slice received 
input from the same spatial scales as in simulation 2, but the inputs to the second slice were 
spatially shifted by 30cm relative to inputs to the first slice. This was done to illustrate the idea 
of different spatial phases discussed above. The initial synaptic weights of EC-DG projections 
were generated randomly on the all-to-all basis. An example of a set of random weights is shown 
in Table 1b. These weights were updated during the simulation according to a spike-timing 
dependent plasticity rule with postsynaptically gated decay (Gorchetchnikov, Versace, & 
Hasselmo, 2005; Grossberg, et al., 2002). Several runs through the track were completed until 
the weight change during a single run fell below 5% for all weights. Cells with firing rates below 
0.1Hz were discarded from analysis. For the rest of the cells the spatial information per spike 
was calculates using the equation ii

i
i RRpnInformatio 2log∑=  that Jung and McNaughton 

(1993) used for the analysis of the experimental results. The track was divided into 5cm bins, iR  
is the ratio of firing rate within bin i to the average firing rate, and ip  is the probability of the 
animal being in bin i. 
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a) 
Spatial Scale Grid cell index 

 1 2 3 4 5 
40(44) 0.05 0.9 0.05 0.05 0.05 
50(52) 0.05 0.05 0.05 0.9 0.05 

b) 
Spatial Scale Grid cell index 

 1 2 3 4 5 
44 0.167 0.158 1.010 0.499 0.479 
52 0.857 0.963 0.194 0.333 0.558 

c) 
Spatial Scale Grid cell index 

 1 2 3 4 5 
44 0.050 0.050 0.950 0.111 0.050 
52 0.082 0.986 0.114 0.050 0.050 

Table 1. (a) Pre-wired ideal synaptic weights for EC-DG projections for a single granule cell. (b) 
Random synaptic weights for EC-DG projections for a single granule cell. (c) Synaptic weights 
for EC-DG projections after fourth run for the same granule cell as in panel (b). Boldface 
highlights the two inputs that drive place field activity in this cell (double peak field 12 in 
Figures 3d and 3e). 

Cellular dynamics were modeled with the KInNeSS software package (available for 
download at http://www.kinness.net) using conventional compartmental membrane equations 
described in the Appendix as well as elsewhere (Gorchetchnikov & Hasselmo, 2005). The 
precise sets of currents and parameters for each population are provided in the Appendix. 

Results 

The results of the first and second simulations are presented in Figures 3a-d. They show 
that the periodicity of the model dentate granule cell activities follow the theoretically calculated 
period. Only 10 out of 25 cells show place fields for entorhinal input with periods 40 and 50 cm 
(Figure 3b). All 25 cells show place fields when fed with entorhinal input with periods of 44 and 
52cm (Figure 3d). One fifth of these place fields (fields 3, 10, 12, 19, and 21) show two peaks in 
different parts of the track. In both simulations, place fields cover about half of the space; the 
other half is filled with single spikes of various granule cells. The average firing rate for cells in 
the first simulation is 0.43Hz for cells that have place fields, 0.2Hz for cells that do not show 
place fields, and 0.3Hz overall. The firing rate within a place field is 10Hz, driven by the 10Hz 
theta rhythm-bound entorhinal input. The average firing rate for cells in the second simulation is 
0.335Hz, and the average firing rate within a place field is 10Hz. 

The results of the third simulation are presented in Figure 3e and 3f. The simulation was 
stopped after the fourth run because the change in synaptic weights fell below the criterion. In 
the first slice (Figure 3e) 21 out of 25 place fields that were shown during the prewired 
simulation were replicated after learning. However, four place fields shown during the second 
simulation were not learned and are marked in Figure 3e by black crosses. All four undeveloped 
place fields were single-peaked. Seven of the place fields that had single peaks during a prewired 
run developed second peaks during learning (fields 1, 7, 8, 15, 16, 18, and 24). Due to a 
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redundant number of granule cells, often different cells developed the same place fields (for 
example 12 cells developed place field 1). Table 1c shows the synaptic weights that evolved 
through learning after 4 runs, starting from the initial random weights shown in Table 1b. Most 
of the space not covered by place fields in the first slice (yellow bars in Figure 3e and 3f) was 
covered by place fields in the second slice. 
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Figure 3. Simulation results: panels (a) and (b) refer to the first simulation; panels (c) and (d) 
refer to the second simulation, panels (c), (e) and (f) refer to the third simulation. (a) Activity for 
EC input with periods of 40cm and 50cm used in the first simulation. (c) Activity for EC input 
with periods of 44cm and 52cm used in the second and third simulations. (b), (d), (e), and (f): 
Spiking activity of dentate granule cells in the first, second, and third (e and f) simulations, 
respectively. Light purple vertical bars show the theoretical limit of space expansion. Light green 
vertical bars show single peak place fields. Light orange vertical bars show double peak place 
fields. Numbering of place fields in (b) and (d) correspond to the cell number in the population. 
Red triangles in (e) point to learned place fields that correspond to prewired place fields in (d). 
Black crosses mark prewired place fields in the second simulation that did not develop through 
learning. Orange bars with numbers in (e) show additional second peaks that developed through 
learning for place fields that had single peak in prewired case. The number next to the bar 
corresponds to the number of the original place field. Yellow bars in (e) and (f) correspond to the 
space that is not covered by place fields in (d) and (e). Red bars in (f) highlight parts of these 
areas that were not covered by the second DG slice. 

For the cells in the third simulation the average firing rate is 0.339±0.097Hz during run 1 
and 0.363±0.071Hz during run 4, which is an insignificant increase in firing rate as a result of 
learning. Average spatial information per spike did not change during learning (4.04±0.65 during 
run 1, 4.04±0.55 during run 4), but became more consistent as shown by reduction of standard 
deviation. Maximal firing rate inside individual bins was taken as a maximal firing rate inside the 
place field of the cell. It was 8.69±3.14Hz on average and reaching 12Hz for about one third of 
the cells. Place fields were on average 2.32 bins long before learning and 2.23 bins long after 
learning. 

Discussion 

The results of the first two simulations show that the spatial expansion was performed according 
to theoretical predictions. In the case of 40 and 50cm spatial scales, only 10 cells have reliable 
place fields, while with scales 44 and 52cm, all 25 cells had reliable place fields. In both cases, 
only about one-half of the expanded spatial interval was covered by place fields, while the other 
half was only marked by individual spikes that can be considered spontaneous firing. Since the 
size of place fields in the model approximately corresponds to the size of the entorhinal grid cell 
field with the smallest scale (about 10cm), this space coverage can be used to calculate the 
number of grid cells and spatial scales that are needed to cover a specific space. For example, 
combining three spatial scales leads to 125 possible input combinations, which can result in 125 
place fields of about 10cm each. Therefore, these fields can cover 12.5m of space, which will be 
half of the expanded interval. Thus, the three spatial scales to be combined should have a least 
common multiple around 25m for the maximal efficiency of the model. 

Multiple spatial phases. How can the model cover both halves of the expanded interval? 
The third simulation showed how two transverse slices in DG can be combined to cover the 
whole environment with place fields, even though each individual slice only covers half of the 
environment. In other words, two DG slices provide two phases of the spatial code and CA3 can 
combine these phases in a population code for an expanded spatial interval. Combining the 
activity from these two slices through convergence of DG-CA3 projections leads to complete 
coverage of the space by DG input to CA3 cells. In simulation 3, the only places that remained 
uncovered are places where place fields were supposed to be developed, but did not emerge 
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during learning, such as fields marked with black crosses in the first slice (Figure 3e) or by red 
bars in the second slice (Figure 3f). 

Multi-peaked Dentate Gyrus Place Fields. The double-peak place fields in simulations 2 
and 3 correspond to data recorded by Jung and McNaughton (1993) showing a significant 
fraction of multi-peaked dentate gyrus place fields. While these multiple peaks seem to be at 
odds with the idea of unique spatial representation that this paper proposes, this is not really the 
case. Again, addition of another DG slice to the network can resolve the ambiguity of multiple 
peaks. If a second slice combines two other spatial scales, both of the slices would probably have 
multi-peaked place fields. On the other hand, due to the difference in input spatial scales to these 
slices, it is highly unlikely that both peaks of the same place field in one slice will coincide with 
both peaks of some multi-peaked place field in another slice. As a result, through the 
convergence of inputs from these two slices in CA3, different CA3 cells will be active for 
different peaks of the same DG place field. Theoretically, the more slices one adds to the model, 
the higher the chances that the total population activity of DG cells is able to provide unique 
spatial coding over an arbitrary length of the track. Thus the next step in model development is to 
expand the network to include more than two spatial scales, multiple DG slices, and to converge 
the output of these slices onto a CA3 population. 

What and Where in Context-Dependent Place Cells. Based on the experimental data, 
Doboli, Minai, and Best (2000) proposed that the DG plays a role in forming context-dependent 
place representations in the hippocampus. This suggestion is explicated by the model presented 
here. Grid cells are found in the more medial part of the entorhinal cortex, which receives input 
through postrhinal cortex (Burwell & Amaral, 1998) from the visual areas that represent the 
cortical “where” stream. At the same time, lateral entorhinal cortex receives inputs through 
perirhinal cortex (Burwell & Amaral, 1998) from temporal visual areas that represent the cortical 
“what” stream, and thus is a good candidate for providing contextual input to DG. Such input to 
granule cells will provide contextual information and lead to context-dependency and remapping 
of DG representations even when spatial input from grid cells does not change. 

Comparing DG Simulations and Data. The firing rate of the model DG cells outside of 
the main place field is low and comparable with the spontaneous firing rate of these cells 
recorded experimentally (Jung & McNaughton, 1993). The model predicts that this rate is not 
truly spontaneous: a positive correlation should exist between firing of cells outside of their place 
fields and the activity of grid cells that are active when the animal is in the place field. This 
prediction follows from the size of overlap between firing of grid cells in different spatial scales. 
For example, in Figure 3c, yellow cells in both spatial scales have a long overlap of their 
activities at about 5.6-5.7m that results in a place field 25 in Figure 3d, but these cells also have 
much shorter overlaps of activity at about 0.45, 2.6, and 3.1m, which result in individual spikes 
in Figure 3d that can be considered as spontaneous by an outside observer. 

Firing properties of DG granule cells in the simulations roughly correspond to properties 
recorded experimentally by Jung and McNaughton (1993, see their Table 1). In their recordings 
the diameter of DG place field was around 2.8 bins or 14.7cm. In the simulations presented here, 
the length of place field is around 2.23 bins or 11.15cm. Number of place fields per cell recorded 
experimentally was 1.79±1.4. Simulation 3 provided the number of place fields per cell as 
1.41±0.64 after learning. The smaller size of field and smaller number of multipeak fields in the 
simulations is due to the simplicity of simulated network comparing to the real dentate gyrus. It 
also leads to a higher information value per spike in simulations (4.04±0.55 bits/spike vs 
2.36±1.17 in experiments). Note that Jung and McNaughton used an additional time-shifting 
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paradigm to get rid of the noise in the data, and this paradigm further reduced their information 
scores. Finally, model development of the two-dimensional map case will also likely entail the 
reduction of the information value per spike. 

Place Fields in DG, CA1, and CA3. Simulation 3 illustrates that the mechanism 
suggested here can be achieved through a self-organization process in EC-DG projections. 
Moreover, this process does not have to be limited to EC-DG projections; a similar process can 
take place in direct EC-CA1 projections. CA1 has much smaller number of cells than DG, which 
will lead to a larger number of entorhinal inputs per CA1 cell and a less precise spatial 
representation in CA1 than the one shown here. This property corresponds to data showing that 
place fields exist in CA1 after DG-CA3 lesion, but these fields are less precise than their normal 
counterparts (Brun et al., 2002). 

How Do Grid Cells Arise? From Path Integration to a Resettable Grid Cell Map. As 
discussed so far, the model proposes how the limited spatial scales of grid cells can be expanded 
into a large-scale representation of space, but did not explain why grid cells have limited spatial 
scales in the first place. Spatial representation in the hippocampus has been shown to be 
disrupted by manipulations of the proprioceptive system (Calton et al., 2003). Furthermore, 
proprioceptive input allows navigation without sensory cues, notably homing behaviors based on 
path integration (Mittelstaedt & Mittelstaedt, 1980). In the absence of sensory cues, path 
integration (PI) inputs provide a “ground truth” upon which the computation of present location 
can build. PI has a limited spatial capacity, and must be reset periodically. Thus the output of the 
PI system must be periodic, leading to the periodic property of grid cells. The model’s learned 
mapping from grid cells into hippocampal place cells then expands the spatial representation of 
the grid cell computation. Homologs of the PI to grid cell integration-to-map process are 
proposed to exist in other brain systems, as summarized below.  

The key question that PI system design must answer is how a scalar signal that 
accumulates with path-integrated distance can be converted into a spatial map whose position of 
maximal activation changes with the distance traversed?  In particular, suppose that a scalar 
signal is integrated from the outputs of animal proprioceptors as the animal moves through an 
environment. How can this scalar signal be converted into a map representation of space?  

The model predicts that this is accomplished using the same strategy that has been used 
by the brain to generate other spatial brain maps that convert scalar inputs into a positional shift 
across a spatial map, namely a Position-Threshold-Slope (PTS) model. In particular, the model 
predicts that both the thresholds and the slopes (or sensitivities) of the grid signal functions 
increase from one side of the map to the other, and that the responses of the grid cells to these 
inputs are sharpened by an on-center off-surround network (Figure 4). If this hypothesis is 
confirmed by future experiments, then the grid cell representation can be viewed as a particular 
case of a general brain design. 

The PTS hypothesis was first used to derive a spatial map from an analog scalar signal by 
Grossberg and Kuperstein (1989) in their model of saccadic eye movement control, which is 
another example of a “where” cortical stream process. Neurophysiological data wherein 
thresholds and slopes covary across cells involved in eye movement control have been reported 
by several investigators (Luschei & Fuchs, 1972; Robinson, 1970; Schiller, 1970). The same sort 
of network design was later used by Grossberg and Repin (2003) to explain how an analog 
spatial map for numerical representation is created in the parietal cortex, which is yet another 
“where” cortical stream process (Naccache & Dehaene, 2001; Rickard et al., 2000). 
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Figure 4. Position-Threshold-Slope (PTS) model. A scalar input on the left is provided to three 
cells whose signal functions have increasing thresholds and slopes that activate a contrast-
enhancing on-center off-surround network. Increases in the scalar input selectively activates cells 
across a spatial map, which are periodically excited when the scalar input is reset through time. 
See text for further details. 

Interaction between Position, Threshold, and Slope converts an accumulating input into a 
shift across the spatial map in the following way (see Figure 4). The scalar input excites all cells 
equally. A small input can strongly activate only cells whose signals have low thresholds. As the 
input continues to accumulate, the cells that have low thresholds fire more vigorously. However, 
cells with somewhat higher thresholds also start to fire. In addition, the rate of firing by cells 
with higher thresholds overtakes and exceeds that of the cells with lower thresholds, because the 
slopes of their signal functions are larger, even though their thresholds are also larger. As cells 
with higher thresholds become activated, they suppress the activity of the cells with lower 
thresholds through on-center off-surround interactions.  As the input increases even further, the 
cells with even higher thresholds start to fire more than all the others. And so on. The location of 
the maximally activated cells hereby shifts across the map as the input accumulates (Grossberg 
& Kuperstein, 1989; Grossberg & Repin 2003). Because larger inputs can activate cells with 
both smaller and larger thresholds, the spatial span of active cells can increase with input 
amplitude even as the peak response shifts to the right. In order to control this distributed 
activation pattern, competitive interactions between the cells, notably on-center off-surround 
interactions among cells that obey membrane equations, respond to the inputs received through 
the array of signal functions by normalizing and spatially sharpening them into mode localized 
responses (Grossberg, 1973, 1980).  

As in the case of analog numerical representation, such a spatial map has a limited spatial 
extent in which it can accurately represent its analog signal. In the case of numerical 
representation, this limitation leads to properties such as the Number Size effect (Dehaene, 1997; 
Grossberg & Repin, 2003). The path integration signal must therefore be reset when a maximal 
path integration size is reached, in order to preserve the accuracy of the map. After reset, path 
integration begins again as the animal continues to move through the environment, leading to the 
striking periodic activation pattern that is characteristic of grid cells. 
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Given that the conversion of scalar path integration signals into grid spatial 
representations has a limited spatial capacity, the brain needed to find a way to expand this 
spatial representation to enable effective navigation over terrains of terrestrial size. The multiple-
scale self-organizing map that is described above provides such a way.  

In summary, it may be that an iteration of two often used circuit designs (PTS maps and 
self-organizing maps) give rise to the basic grid and place cell profiles in response to path 
integration signals. Interestingly, the parietal map of numerical representation also faces the 
problem of how to extend its small numerical capacity to large numbers. Grossberg and Repin 
(2003) propose an explanation for how the brain uses the basic analog number map to learn 
place-value number systems that have an unlimited capacity. 

Visual Landmarks and their Influence on Grid Cells via Hippocampal-to-Entrorhinal 
Feedback. Previous work on spectral timing has shown how correct timing of a response can be 
learned using DG-CA3 interactions, such that the DG provides a spectrum of timings over a 
range of delays, thereby enabling task-appropriate behavioral timing to be learned by the 
network using a cue-driven process that is modulated by reinforcement (Grossberg & Merrill, 
1992, 1996; Grossberg & Schmajuk, 1989). In the case of spectral spacing, the DG provides a 
spectrum of grid-based spatial coordinates that can be used to learn place codes capable of 
spanning a large behaviorally-appropriate space. This space can, in turn, be organized with 
respect to landmarks and reward locations by a cue-driven process, much as in the case of 
spectral timing.  

How is learning in this neural system stabilized through time? That is, how is the 
stability-plasticity dilemma solved, and catastrophic forgetting of the map prevented (Grossberg, 
1980; Raizada & Grossberg, 2003)? Typically, this is done via top-down, modulatory on-center 
off-surround matching signals which, in the present case, would be carried from hippocampal 
place cells to the grid cells. Such feedback signals can modulate the activity of grid cells based 
upon which place cells are active. Place-to-grid feedback illustrates how visual landmarks can 
modulate the activity of both grid and place cells, whose primary activation is derived from path 
integration signals. Future studies will attempt to characterize this spatial cue-driven process 
using a unified framework in which two widely studied functions of the hippocampus, namely 
spatial and temporal processing, are combined and shown to benefit from homologous circuitry. 

Appendix 

Entorhinal cell description 

At this point of model development, EC grid cells are just input generators that provide bursts of 
spikes to DG granule cells. These bursts are tuned to represent grid cell activity. 

DG granule cell description 

DG granule cells in the model consist of two compartments: soma and dendrite. This two-
compartmental structure increases the integration time for synaptic inputs from EC to dendrites, 
and makes the inhibition to the soma relatively faster and more effective than the excitation to 
the dendrites. This improves the competitive interactions between DG cells. 
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The somatic potential is calculated according to  
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where MC  is the membrane capacitance, S
iV  is the somatic potential of the cell i, Lg  is the 

leakage conductance, Ag  and AE  are the AHP conductance and reverse potential, respectively, 
S
Dg  is the diffusion coefficient from dendrite to soma, D

iV  is the potential in the dendrite of the 
cell i, Q

iI is the quadratic integrate-and-fire representation of currents producing a spike, and the 
last term is the synaptic inhibition from an inhibitory interneuron so that IE  is a reversal 
potential of the inhibitory GABA channel, I

qig  is a channel conductance controlled by 
presynaptic action potentials of the interneuron (cell q), and the synaptic weight inhw , which 
roughly corresponds to billions of channels per cm2 of the membrane. 

The dendritic potential is calculated according to  
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where MC  is the membrane capacitance, D
iV  is the dendritic potential of the cell i, D

Dg  is the 
diffusion coefficient from soma to dendrite, S

iV  is the potential in the soma of the cell i, Lg  is 
the leakage conductance, and the last term is the synaptic excitation from EC cells with EE  the 
reversal potential of the excitatory AMPA channel, E

jig  a channel conductance controlled by 
presynaptic action potentials of the EC cell j, and jiw  is the synaptic weight of the projection 
from entorhinal cell j to DG cell i. 

Both diffusion coefficients S
Dg  and D

Dg  are calculated as shown for a generic coefficient 
z
Dg  from z-th compartment’s diameter zd  and length zl , and axial resistance SD

AR  between soma 
and dendrite, which is identical for both compartments: 

SD
Az

zz
D Rl

dg 24
= .          (3) 

Both I
qig  and E

jig  are controlled by the presynaptic action potential as summarized below for a 
generalized synaptic conductance zg . Note, that zg  only provides the shape of synaptic 
conductance, while its magnitude is determined by the maximal conductance of the channel g , 
and its timing is determined by a time zt  that is reset to zero by the arrival of the presynaptic 
action potential to this particular synapse. Note also, that this time reset includes axonal delay on 
the way to this synapse, so a presynaptic spike in the soma will arrive at different axonal 
terminals made by the same cell at different times, and as a result will cause a shift in time for 
the respective postsynaptic potentials. 
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where g  is the maximal conductance of the channel, rτ  and fτ are rise and fall synaptic time 
constants, respectively, and zt  is the time since an action potential in the z-th axonal terminal 
between presynaptic and postsynaptic cells; and p  is a scaling coefficient that enforces 
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The conductance for the AHP current Ag  is also calculated according to equations (4) and (5), 
except that the triggering spike in this case is produced by the same cell and there is no 
transmission delay. 

Entorhinal-to-Granule Cell Learning. The synaptic weights from entorhinal cells to 
granule cells were preset in simulations one and two to the values such that a single granule cell 
has one strong weight from each of the spatial scales. An example of these weights is shown in 
Table 1a. In simulation three these weights were set initially to random values from a uniform 
distribution on the interval [0, 1.1]. An example of these random weights is presented in Table 
1b. Learning is carried out by a postsynaptically gated learning equation. Variations of such 
gated learning equations have been used in many applications since they were introduced by 
Grossberg and his colleagues (e.g. Grossberg, 1974; Grossberg, Hwang, & Mingolla, 2002). 
They were applied to STDP learning by Gorchetchnikov, Versace, and Hasselmo (2005), and 
used here as: 
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where λ is the learning rate, and ( )S
iG Vf  gates the learning process by a non-negative function 

of the postsynaptic signal S
iV , where 

( ) ( )2S
i

S
iG VVf = .         (7) 

By equation (6), jiw  tracks the spike-timing correlation ( )S
iN

E
ji Vfg  of presynaptic and 

postsynaptic signals, where E
jig  obeys equation (4) and 
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In equation (6), w� , w� , and 0w  (maximal, minimal, and baseline weights, respectively) scale the 

jiw  response. In equation (8), θ
iV  is the spiking threshold potential, t is time, s is the moment of 

the postsynaptic spike, and ( ) ( )wwwwD ��� −−= /0 . 

Action Potentials. Action potential generation was modeled with a quadratic integrate-
and-fire (IAF) equation. This equation is a reduction of the classical Hodgkin-Huxley model 
(Hodgkin & Huxley, 1952) that includes fast sodium, delayed rectifier potassium, and leakage 
currents. The quadratic IAF equation was derived through a Taylor expansion of the original 
system by Ermentrout and Kopell (1986). Izhikevich (2004) provided a detailed comparison of 
quadratic IAF to other methods of spike generation. The specific version used in the model 
presented here was described previously by Gorchetchnikov and Hasselmo (2005): 

( )θ
zzzz

Q
z VVVsI −= 2 ,         (9) 

where zV  is the somatic membrane potential, θ
zV  is the spiking threshold potential, and 

parameter zs  has the dimension of 
2cmmV

mS
⋅

 for consistency with other equations. 

DG interneuron description 

The DG interneuron (basket cell) in the model consists of a single compartment where the 
membrane potential is calculated according to  

( )q
EE

qexc
Q
qqL

q
M VEgwIVg

dt
dV

C −++−= ,      (10) 

where MC  is the membrane capacitance, qV  is the somatic potential of the interneuron (index q 
is used to distinguish interneuron potentials and currents from granule cells potentials and 
currents), Lg  is the leakage conductance, Q

qI  is the quadratic integrate-and-fire representation of 
currents producing a spike, and the last term is the synaptic excitation from granule cells so that 

EE is a reverse potential of the excitatory AMPA channel, E
qg  is a channel conductance 

controlled by presynaptic action potentials of granule cells, and excw  is the constant synaptic 
weight of projections from granule cells to the interneuron. 

* * * 

The parameter values used in simulations are summarized in Tables A1 and A2. Note, that in all 
equations, the cell’s resting potential is chosen to be 0mV; thus for conventional 
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neurophysiological voltage notation, 60mV should be subtracted from parameters listed in Tables 
A1 and A2. 

Parameter Used in equations Value 

CM (membrane capacitance) (1), (2), (10) 1μF/cm2 

EE (AMPA reverse potential) (2), (10) +60mV 

EI (GABAA reverse potential) (1) -10mV 

EA (AHP reverse potential) (1) -30mV 

RA (axial resistance) (3) 25kOhm·cm 

λ  (learning rate) (6) 0.1 

w�  (maximal weight) (6), (8) 1.1 

w�  (minimal weight) (6), (8) 0 

0w  (baseline weight) (6), (8) 0.05 

wexc (excitatory weight) (10) 3 

winh (inhibitory weight) (1) 1 

Table A1. Parameters of simulations that are used across all cells. 

Parameter Used in 
equations 

Used in compartment Value 

rτ  (AMPA raise time constant) (4), (5) Interneuron soma 2ms 

fτ  (AMPA fall time constant) (4), (5) Interneuron soma 2ms 

g  (exc maximal conductance) (4) Interneuron soma 0.1pS 

rτ  (GABAA raise time constant) (4), (5) Granule cell soma 1ms 

fτ  (GABAA fall time constant) (4), (5) Granule cell soma 7ms 

g  (inh maximal conductance) (4) Granule cell soma 2.5pS 

rτ  (raise time constant) (4), (5) Granule cell dendrite 11ms 

fτ  (fall time constant) (4), (5) Granule cell dendrite 11ms 

g  (exc maximal conductance) (4) Granule cell dendrite 0.15pS 

rτ  (AHP raise time constant) (4), (5) Granule cell soma 0.1ms 

fτ  (AHP fall time constant) (4), (5) Granule cell soma 5ms 

g  (AHP maximal conductance) (4) Granule cell soma 2.5pS 
gL (leakage conductance) (10) Interneuron soma 0.01mS/cm2 
gL (leakage conductance) (1) Granule cell soma 0.001mS/cm2 
gL (leakage conductance) (2) Granule cell dendrite 0.2mS/cm2 

dS (somatic diameter) (3) Granule cell soma 100μm 
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lS (somatic length) (3) Granule cell soma 100μm 
dD (dendritic diameter) (3) Granule cell dendrite 10μm 

lD (dendritic length) (3) Granule cell dendrite 500μm 
θ

qV  (spiking threshold) (9) Interneuron soma 20mV 

qs  (scaling of IAF) (9) Interneuron soma 0.06
2cmmV

mS
⋅

 

θ
iV  (spiking threshold) (8), (9) Granule cell soma 30mV 

is  (scaling of IAF) (9) Granule cell soma 0.03
2cmmV

mS
⋅

 

Table A2. Population-specific parameters used in simulations. Note that somatic passive leakage 
conductances for are reduced to compensate for additional leakage included in quadratic 
integrate and fire equation. 
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