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Abstract

A neural network model is developed to explain how visual thalamocortical interactions give rise to
boundary percepts such as illusory contours and surface percepts such as filled-in brightnesses. Top-down
feedback interactions are needed in addition to bottom-up feed-forward interactions to simulate these data.
One feedback loop is modeled between lateral geniculate nucleus (LGN) and cortical area VI, and another
within cortical areas VI and V2. The first feedback loop realizes a matching process which enhances LGN
cell activities that are consistent with those of active cortical cells, and suppresses LGN activities that are
not. This corticogeniculate feedback, being endstopped and oriented, also enhances LGN ON cell
activations at the ends of thin dark lines, thereby leading to enhanced cortical brightness percepts when the
lines group into closed illusory contours. The second feedback loop generates boundary representations,
including illusory contours, that coherently bind distributed cortical features together. Brightness percepts
form within the surface representations through a diffusive filling-in process that is contained by resistive
gating signals from the boundary representations. The model is used to simulate illusory contours and
surface brightnesses induced by Ehrenstein disks, Kanizsa squares, Glass patterns, and cafe wall patterns in
single contrast, reverse contrast, and mixed contrast configurations. These examples illustrate how boundary
and surface mechanisms can generate percepts that are highly context-sensitive, including how illusory
contours can be amodally recognized without being seen, how model simple cells in VI respond
preferentially to luminance discontinuities using inputs from both LGN ON and OFF cells, how model
bipole celis in V2 with two colinear receptive fields can help to complete curved illusory contours, how
short-range simple cell groupings and long-range bipole cell groupings can sometimes generate different
outcomes, and how model double-opponent, filling-in and boundary segmentation mechanisms in V4
interact to generate surface brightness percepts in which filling-in of enhanced brightness and darkness can
occur before the net brightness distribution is computed by double-opponent interactions.

Keywords: Brightness, Illusory contours, Lateral geniculate nucleus, Visual cortex, Neural networks,
Adaptive resonance theory

Introduction

This article describes a previously unsuspected linkage between
the mechanisms of binocular vision, illusory contour formation,
and brightness perception that was first reported in Gove et al.
(1994). The binocular vision mechanisms include corticogenic-
ulate feedback pathways, one of whose functional roles is hy-
pothesized to be the selection of monocular LGN cells whose
activation is consistent with that of cortical cells that are acti-
vated during binocular and monocular viewing (Grossberg,
1976, 1980; Murphy&Sillito, 1987; Singer, 1979). We propose
that this feedback from cortical area VI to the LGN has test-
able effects on the brightness percepts that are generated along

with certain illusory contours. A neural model of these LGN- VI
interactions is developed and used, as part of a larger theory,
to simulate the illusory brightening and darkening effects that
are generated along with illusory contours in response to Ehren-
stein, Kanizsa, Glass, and cafe wall input patterns. In some of
these patterns (the single contrast patterns), all of the inducing
image elements have the same sign with respect to the image
background. In other patterns (the mixed contrast and reverse
contrast patterns), some inducing elements have opposite con-
trasts with respect to the background. Correlated changes in
brightness and contour percepts in response to both types of
patterns are simulated using the model.

We have selected this particular set of data for analysis be-
cause it presents conceptual challenges to all models of visual
perception. For example, how are curved, even circular, illu-
sory contours generated from just a few image contrasts, none
of which is colinear with the contour (Fig. IA)? How are illusory
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Fig. 1. (A) Ehrenstein illusion: The circular illusory
contour encloses a disk of enhanced brightness. The
different brightnesses inside and outside the circle ren-
der the disk visible. (8) A vertical illusory contour is
readily recognized even though it is not "seen" in the
sense of separating two regions of different brightness
and color.
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contours recognized even if they do not separate an image into
two regions of visibly different brightness or color (Fig. 18)?
How do illusory contours sometimes separate an image with
constant background luminance into two regions of different
brightness or color (Fig. lA)? How is the relative brightnesses
of the two regions determined? All of these questions illustrate
more general issues concerning how the visual system generates
boundary and surface representations, of which illusory con-
tours and brightness percepts provide particularly compelling
examples. For a review of the functional significance of illu-
sory contours and brightness percepts in the broader scheme
of visual boundary and surface representation, see Grossberg
(1994) and Grossberg et al. (1989).

make the Ehrenstein disk appear darker, rather than brighter.
than its surround.

To see why this is so, assume as in Fig. 28 that the thin line
is black (low luminance) and surrounded by a white (high lumi-
nance) background. Since OFF cells respond best to low lumi-
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Fig. 2. Retinal center-surround cells and their optimal stimuli (A). The
ON cell, on the left, responds best to a high luminance disk surrounded
by a low luminance annulus. The OFF cell, on the right, responds best
to a low luminance disk surrounded by a high luminance annulus (8).
OFF cells respond to the inside of a black line. The OFF cell centered
at the line end responds more strongly than the OFF cell centered in
the middle, because the surround region of the former cell is closer to
optimal. In (C) ON cells respond to the white background just outside
the black line. The amount of overlap of each ON cell's surround with
the black line affects the strength of the cell's response. As seen in the
ON cell's optimal stimulus (C), the more of the surround that is stimu-
lated by a black region, the better the ON cell will respond. Thus, an
ON cell centered just outside the side of the line will respond better than
a cell centered just outside the end of the line.

The perception of "brightness buttons" at line ends

The interior of the Ehrenstein disk that is surrounded by the illu-
sory contour in Fig. lA is brighter than its exterior. This appar-
ently simple percept has attracted a great deal of attention from
vision scientists because one could imagine many reasons why
no brightness difference or the reverse brightness difference
might have been seen instead (Lesher, in press). Kennedy (1979)
has attempted to explain this percept by positing that "bright-
ness buttons" occur at the ends of dark (low luminance) lines.
Other authors have used terms such as "dissimilation" or "line
end contrast" to describe this perceptual phenomena, which has
long been thought to be distinct from classical "area" contrast,
whereby the luminance that engenders perceptual contrast in
a target region completely encloses its area (Frisby & Clatworthy,
1975; Day & Jory, 1978; Halpern, 1981). Thetextbookmecha-
nism for explaining brightness (area) contrast has, in turn, for
decades been an appeal to the on-center, off-surround recep-
tive fields of early visual processing.

An analysis of how such cells respond to dark lines shows,
however, that they cannot, by themselves, explain brightness
buttons. More generally, neither on-center off-surround cells
(called ON cells below) nor off-center on-surround cells (called
OFF cells below) can explain this phenomenon. We interpret
this to mean that the ON and OFF cells that occur in the LON
(Schiller, 1992), and that are the source of cortical brightness
percepts (De Yoe & van Essen, 1988) cannot, without further
processing, explain brightness buttons. Fig. 2 shows that what-
ever contribution to area contrast is generated at the ends of
thin lines by ON or OFF cells must be less in magnitude than
that generated along their sides. As explained below, this should
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nance in their receptive-field center and high luminance in their
surround, OFF cells whose centers lie inside the line will be acti-
vated. Furthermore, OFF cells near the line end (but still inside
the line) will be more strongly activated then OFF cells in the
middle of the line, because the line end is more like a black
disk surrounded by a white background than the line middle
is (Fig. 2B). That is, an OFF cell whose center lies in the line
end receives less inhibition from its surround than does a cell
centered in the middle of the line, because a larger area of the
former cell's surround lies in the white background.

A similar analysis can be applied to the ON cells. An ON
cell is excited by high luminance in the center of its receptive
field and low luminance in its surround. The ON cells that are
active, then, are those centered outside the bar. An ON cell
whose center is just outside the side of the line will respond more
strongly than an ON cell centered just outside the end of the
line (Fig. 2C).

Given that LGN ON and OFF cells, by themselves, cannot
explain brightness buttons, it still remains to explain how a
brighter Ehrenstein disk could be generated were brightness but-
tons to obtain. Clues were provided by Kennedy (1979), who
analyzed a number of illusory contour stimuli. He argued that
the effect of brightness buttons could often go unnoticed for
isolated line segments, but could somehow be pooled and ampli-
fied in perceptual salience when several brightness buttons oc-
curred in proximity or within a figurally complete region (see
Fig. 3). Grossberg and Mingolla (19850) presented an analysis
and interpretation of Kennedy's remarks through their devel-
opment of a neural model of visual boundary and surface rep-
resentation. In their model, the crucial mechanistic support for
perceptually noticeable brightness buttons is a boundary seg-
mentation that separates the region containing the buttons from
other regions of a scene. Such a boundary segmentation may
be generated by image edges, textures, or shading, and may
give rise ~o illusory contours. Boundary segmentation within the
model is'accomplished by the filtering, competitive, and coop-
erative interactions of a grouping network called the Bound-
ary Contour System, or BCS.

The boundaries within the BCS do not carry a perceptually
visible signal. As explained in greater detail below, BCS out-
puts are rendered insensitive to contrast polarity by pooling
boundary signals that are sensitive to opposite contrast polari-
ties. Visible brightness and color percepts are assumed to emerge
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Fig. 3. Brightness buttons lie outside thin lines. When the induced
boundary contour (denoted by the dashed line) lies on one side of the
buttons, their perceptual effect is enhanced. If the induced boundary
instead divided the brightness buttons, they would have less of a per-
ceptual effect.

in a surface representation system that is called the Feature Con-
tour System, or FCS. Output signals from the BCS form com-
partments within the FCS, within which LGN inputs to the FCS
initiate a diffusive filling-in process that generates a surface rep-
resentation, including a percept of brightness:ln the complete
binocular BCS/FCS model (Grossberg, 1994), this surface rep-
resentation emerges only after several stages of BCS and FCS
interaction occur. The model simulated herein has been simpli-
fied to focus upon the targeted data base.

The full BCS models aspects of the interblob cortical pro-
cessing stream from area VI to V4, and the FCS models the blob
processing stream (see Grossberg, 1994, for a review). Many
brightness data have been simulated within this modeling frame-
work (Andreou & Boahen, 1991; Arrington, 1994; Cohen &
Grossberg, 1984; Grossberg & Todorovic, 1988; Pessoa et al.,
1994). Lacking in these accounts, however, was a mechanism
for generating the distribution of brightness inputs that could
underlie the perceptual phenomena associated with brightness
buttons. In particular, previous versions of the BCS/FCS model
incorrectly predicted that the Ehrenstein disk should look darker
than its surround. Given that so many brightness data had
been correctly predicted by the model, including data collected
after its publication (Arrington, 1994; Paradiso & Nakayama,
1991; Watanabe & Sato, 1989; Watanabe & Takeichi, 1990), the
question arose of how the model's description was incomplete
or incorrect. Such an account is developed in the present work,
which shows how the addition of the corticogeniculate feedback
loop helps to explajn brightness buttons without disturbing the
model's previous explanations of other brightness phenomena.

The gist of the present model can be summarized as follows.
Brightness buttons are by definition an effect of an oriented
structure (such as a line, or more generally a corner or sharp
bend in a contour) on perceived featural quality (brightness).
Within the prior versions of the BCS and FCS model equations,
the computations of the FCS were unoriented, in the sense that
they were mediated either by cells with circularly symmetric ker-
nels governing their processing of inputs from a prior stage, or
by an isotropic diffusion. How then could the effects of ori-
ented filtering be used to modulate the inputs to the FCS that
produce brightness buttons? Indeed, oriented filtering alone
could not suffice. Interactions must exist among the oriented
filters to determine the location of the ends of the lines, at which
the brightness buttons occur. A natural candidate for the lat-
ter interactions is the endstopping process that converts corti-
cal complex cells into endstopped complex, or hypercomplex,
cells (Hubel & Wiesel, 1977). Where should the results of this
endstopped processing have their effect on inputs to the FCS?

Having come this far, it is plausible to propose that the cor-
tex influences LGN cells via top-down feedback, which it is well
known to do (Guillery, 1967). It is not plausible, however, that
this massive feedback pathway exists just to make Ehrenstein
disks appear bright. Grossberg (1976, 1980) suggested that cor-
ticogeniculate feedback exists for a potentially important func-
tional reason; namely, to enhance the activity of LGN cells that
support the activity of presently active cortical cells, and to sup-
press the activity of LGN cells that do not. In addition, bottom-
up retinal input, by itself, was hypothesized to supraliminally
activate LGN cells, but top-down corticogeniculate feedback,
by itself, was not.

These rules realize a type of matching that has been proposed
in Adaptive Resonance Theory, or ART; see Carpenter and
Grossberg (1991,1993) for reviews. In this theory, matched
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bottom-up and top-down thalamocortical signal exchanges
coherently bind and synchronize the activities of cells whose fea-
tures code the same object part or other unitized event. Once
coherence or resonance is achieved, learning of new tuning
curves or associations is triggered. The reciprocal matching inter-
actions between LON and cortex were thereby proposed to con-
trol and stabilize adaptive synaptic changes in response to the
flood of visual experience. As noted below, Sillito et al. (1994)
have reported neurophysiological LON data that are consistent
with these model predictions. The following sections describe
how this feedback pathway can also subserve the formation of
brightness buttons, as an epiphenomenon of its posited primary
functional role. Said another way, this analysis predicts that a
weakening of top-down feedback could generate dark Ehren-
stein disks while removing oriented influences on LON cells and
destabilizing the adaptive tuning of binocular cortical cells,
assuming that the rest of the cortex is still functional.

Brightness button signals can, in fact, be generated in two
ways that are consistent with reported physiology: (I) Excitatory
feedback from cortical ends topped cells can enhance LON cell
activity near line ends. (2) Net inhibitory feedback from long-
field cells, modulated by LON interneurons, can suppress activ-
ity in LON cells coding the sides of lines, making brightness
contrast at line ends relatively stronger. A combination of the
two mechanisms would have the same properties. Data avail-
able at present favor the first hypothesis, and that is the one
investigated in the present work.
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Fig. 5. LGN model diagram. (A) In Version I, feedback signals origi-
nate in cortical endstopped cells and enter a center-surround competi-
tion within the LGN. (8) In Version II, the feedback from cortical
endstopped cells directly excites LGN relay cells (solid line), and also
activates LGN interneurons, which inhibit nearby relay cells (dashed
lines). Versions I and II are functionally equivalent. Versions II was used

for simulations.

Model LGN circuit

The model LGN ON and OFF cells receive input from retinal
ON and OFF cells. (See Schiller, 1992, for a review.) Because
these ON and OFF cells have antagonistic surrounds and obey
shunting, or membrane, equations (see the Appendix), they help
to discount the illuminant, normalize image activities, and ex-
trac~ ratio contrasts from an image (Grossberg, 1983). These
image preprocessing properties are needed to simulate even the
most basic brightness percepts (Grossberg & Todorovic, 1988).
As a result of these mechanisms, ON and OFF cells process line
ends in the manner summarized in Fig. 2. Other properties of
the LGN, such as the existence of M and P channels and of
lagged cells, are not needed to explain the targeted data, and
so are omitted for simplicity.

The LGN model also receives feedback from model corti-
cal cells, and this feedback can cause the resultant LGN activ-
ity to differ under certain circumstances from that caused solely
by its retinal input. For instance, the feedback signals increase
both ON and OFF activity near line ends and other areas of
sharp boundary discontinuity (Fig. 4). This increase in activity
of ON and OFF relay cells is effectively an increase in ON-
OFF contrast, which is manifested after filling-in within the FCS
as an increase in brightness contrast. This is the model analog
of "brightness buttons" (Kennedy, 1979) and of "line end con-
trast" (Day & Jory, 1978). The increased LGN activity at the
line end can also better activate cortical simple cells located at
the line end, resulting in stronger boundary formation perpen-
dicular to the line end, as in the circular illusory contour of
Fig. lA, than would otherwise be the case.

In the model, cortical feedback to LGN cells derives from a
population of endstopped cells; namely, from the outputs of the
first hypercomplex (endstopped) cell stage of the BCS (Fig. SA).
These cells excite relay cells in the LGN whose receptive-field
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centers are topographically aligned with their corresponding cor-
tical cells. Nearby relay cells are inhibited by the activity of LON
interneurons. An alternative model implementation is slightly
more complicated and reflects more closely the corticogenicu-
late feedback seen in the cat (Fig. 6). Here, model feedback is
sent to both relay cells and LON interneurons (Dubin & Cleland,
1977; Weber et al., 1989). Both feedback streams are excitatory;
however, the interneurons, which become more active due to
the feedback, inhibit nearby relay cells (Fig. sB). The circuit
in Fig. 58 achieves the same functional result as that in Fig. SA,
but also obeys Dale's principle that all synaptic targets of a given
cell be either excitatory or inhibitory, but not both.

Since endstopped cells respond best to line ends and short
line segments, the activity of LON relay celIs near line ends is
increased by feedback to these areas. The feedback also acti-
vates topographicalIy corresponding interneurons in the LON,
which inhibit relay celIs in a local neighborhood. In all, the feed-
back instantiates a center-surround competition. The inhibitory
surround can depress LON signals in areas away from the line
ends, such as along the line sides (Fig. 48). Since ON and OFF
channels are segregated in the LON (SchilIer, 1992), the feed-
back is applied to the ON and OFF layers separately.

Neurophysiological LGN data

The LGN model is supported by a variety of anatomical and
physiological data from studies of the cat and monkey. The
LGN is often thought of as a visual relay station between the
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retina and visual cortex. However, the LGN also has an intri-
cate local circuitry that is much more complex than a mere relay
station would require. There are two basic cell types in the LGN:
relay cells and interneurons. For present purposes, extrinsic
interneurons located in the perigeniculate nucleus can also be
considered LGN interneurons. Retinal ganglion cells project
directly to both types of cells (Dubin & Cleland, 1977). While
relay cells in turn project to visual cortex, the axons of inter-
neurons remain in the LGN. Unlike relay cells, interneurons
stain positively for GABA (Montero & Zempel, 1985) and are
therefore believed to have an inhibitory effect on the relay cells
they contact (Sillito & Kemp, 1983).

Both LGN cell types receive feedback from layer 6 pyrami-
dal cells in striate cortex (Guillery, 1967). This corticogenicu-
late feedback is massive, with more fibers going from cortex
to LGN than vice versa. Of all of the synapses in the LGN, about
50% originate in cortex, compared to only 20% that originate
in the retina (Robson, 1983). The feedback, which comes from
cells that are binocular and orientation selective (Gilbert & Kelly,
1975), is also topographic, with a strict correspondence between
the locations of the visual fields of the bottom-up and top-down
signals converging on a LGN cell (Updyke, 1975). If the LGN
were just a relay station, there would be no need for the preci-
sion or amount of feedback that is seen.

From neurochemical evidence the feedback is believed to be
excitatory (Montero, 1990), but since it directly activates both
relay cells (Dubin & Cleland, 1977) and interneurons (Weber
et al., 1989), the overall effect of feedback on the LGN is hard
to predict from the known anatomy (see Fig. 6). Neurophysi-
ologists have also had difficulty in assessing the function of the
corticogeniculate feedback. Researchers trying to measure the
effect'of feedback on LGN transmission of retinal signals have
met with inconsistent results. Some studies have found excit-
atory effects (e.g. Kalil & Chase, 1970), while others have found
inhibitory effects (e.g. Hull, 1968), and still others found mixed
excitatory and inhibitory effects (Marrocco & McClurkin, 1985).

The modulation of cat LGN by cortical feedback changes
with arousal level and brain-stem activity (Funke & Eysel, 1992).
The feedback can serve as a gain control mechanism for the
entire thalamus, boosting the gain of signals from one modal-
ity while suppressing signals from other modalities. This can-
not be the only purpose, however, as it would not justify such
a large and complex feedback system; a global arousal signal
would suffice.

, Corticogeniculate feedback is also involved in cortical bin-

ocular processing (Grossberg, 1976, 1980; Singer, 1977; Varela
& Singer, 1987). As noted above, Grossberg (1976,1980) sug-
gested that the feedback pathway realizes a top-down pattern
matching process that helps to selectively amplify activities of
monocular LGN cells that support the activities of binocular
cortical cells, and to suppress the activities of LGN cells that
do not, via positive corticogeniculate feedback linked to inter-
nal LGN opponent processes. Topographic correspondence is
necessary to carry out such a matching process. A similar mod-
ulatory role for top-down feedback is assumed to be active dur-
ing monocular viewing.

This role for corticogeniculate feedback was hypothesized
to be part of a more general and ubiquitous model of top-down
feedback in stabilizing adaptive synapses in thalamocortical and
corticocortical circuits, while also regulating the gain of these
circuits. In this more general Adaptive Resonance Theory, or
ART, modeling framework, bottom-up processing in the ab-

Fig. 6. Schematic diagram of the VI-LGN local circuit. All VI-LGN
pathways are excitatory, but some synapse directly on dendrites of relay
cells, while others synapse on inhibitory interneurons, at a site distinct
from the "F-profile," which receives input from retinal ganglion cells.
Adapted with permission from Weber et al. (1989).
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sence of top-down processing can activate its target circuits, top-
down processing represents a form of hypothesis testing that
can subliminally prime these circuits, and a combination of
bottom-up and top-down processing can select those bottom-
up activations that are consistent with top-down feedback and
suppress those that are not. This more general role for top-down
processing is consistent with the fact that corticogeniculate feed-
back is present in all parts of the visual field, not just the por-
tion with binocular overlap, and the feedback is also present
in species with little or no binocular overlap (Koch, 1987).

In striking support of this ART prediction, Sillito et al. (1994)
reported that "cortically induced correlation of relay cell activ-
ity produces coherent firing in those groups of relay cells with
receptive-field alignments appropriate to signal the particular
orientation of the moving contour to the cortex. ..this increases
the gain of the input for feature-linked events detected by the
cortex. ..the cortico-thalamic input is only strong enough to
exert an effect on those dLGN cells that are additionally polar-
ized by their retinal input. ..the feedback circuit searches for
correlations that support the 'hypothesis' represented by a par-
ticular pattern of cortical activity" (pp. 479-482).

Because corticogeniculate feedback has both excitatory and
inhibitory (via interneurons) components, the cortex can selec-
tively suppress or enhance particular features of an image. One
feature known to be affected is stimulus length. Murphy and
Sillito (1987) showed that cortical feedback causes significant
length-tuning in cat LGN cells. As in cortical endstopping, the
response to a line grows rapidly as a function of line length and
then abruptly declines for longer lines. The response to long lines
is hereby depressed. Redies et al. (1986) found that cat dorsal
LGN cells and strongly endstopped cortical complex cells re-
sponded best at line ends, both for single lines and for a set of
parallel lines shifted to form a perpendicular illusory contour,
as in Fig. 7A. In other words, the response of the LGN cells
to line ends was enhanced relative to the response to line sides.
Computer simulations described below show that the model cor-
ticogeniculate feedback is also length-tuned and enhances line
ends, as seen in the data of Redies et al. (1986) and Murphy
and Sillito (1987).

c

Fig. 7. Some examples of the effects of line end shape on boundary
completion strength and brightness. (A) Very thin lines do not induce
strong completions. (8) Completions are best when they are aligned with
the contour of the line end. (C) Thin line ends can produce a "glow"
that is predicted by the LGN model. Patterned after Kennedy (1988)..

and figure-ground separation (Gillam & Goodenough, 1994;
Grossberg, 1994).

A thin line is predicted to produce brightness buttons, even
if it does not produce strong endcuts, since the LGN relay cells
near the line end will be excited by feedback, as in Fig. 7C. How-
ever, because the formation of illusory contours to contain the
enhanced brightness signals is suboptimal for thin line ends, any
noticeable brightness difference may be diffuse rather than
sharp. Kennedy (1988) has studied these various effects of line
ends on illusory contours and brightness, and his results are con-
sistent with the analysis outlined above.

A unified explanation of illusory contour
and brightness properties

Fig. 8 summarizes the macrocircuit of the LGN-cortical model
that is simulated herein. The model includes ON and OFF reti-
nal and LGN cells; cortical simple, complex, hypercomplex,
higher-order hypercomplex, and bipole cells of the cortical inter-
blob processing stream; and ON and OFF opponent and double-
opponent filling-in cells of the cortical blob processing stream.
Using this model system, a set of simulations was carried out
with a fixed set of parameters to illustrate how the model emu-
lates a wide range of illusory contour and brightness percepts.

LGN stage predictions

By enhancing LON responses at line ends, model corticogenic-
ulate feedback also increases the input to model cortical sim-
ple cells whose preferred orientations are perpendicular to the
line end. These perpendicular activations, called endcuts, help
to initiate the formation of illusory contours in an orientation
that is perpendicular to the line ends, as in Fig. IA. Computer
simulations have shown that the width and orientation of the
line end are important parameters for determining illusory con-
tour and brightness strength. If a line end is too thin, then
enhanced LON contrast at the line end is not sufficient to acti-
vate a cortical simple cell oriented perpendicular to the line, and
thus boundaries induced by very thin lines should be weakened,
as illustrated in Fig. 7 A.

The orientation of a line end need not be perpendicular to
the line, and the model predicts that, other things equal, bound-
ary completion should occur preferentially along the contour
of the line end, as in Fig. 7B, because that is the orientation
of the maximally activated simple cell. The general preference
for perpendicular completion is a local effect that may be over-
ridden by global cues for three-dimensional surface formation
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.1g. 8. (A) Model macrocircuit. BCS stages are designated by octago-
nal boxes, FCS stages by rectangular boxes. (B) Model stages schema-
tized by cell icons and intercellular circuits. While most of the terms
used are self-explanatory or explained in the text, "spatial impenetra-
bility" refers to the need to prevent the cooperative bipole cells from
forming spurious or inappropriate groupings where local evidence over-
rules long-range coalignments, and "reset" refers to the temporal aspects
of formation, persistence, and dissolution of perceptual segmentations.
Note that the "four leaf clover" icon in the diagram is not drawn to
scale, but represents competition among long-range bipoles, such as the
one partially depicted at the top of the CC Loop. See text for details.
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Figs. 9-15 summarize simulations of the Ehrenstein disk, the
reverse-contrast Ehrenstein disk, the Kanizsa square, the mixed-
contrast Kanizsa square, the Glass pattern, the mixed-contrast
Glass pattern, and the cafe wall illusion, respectively. In each
figure, panel (A) represents the input image, panel (B) the LGN
activation pattern, panel (C) the boundary segmentation, and
panel (0) the filled-in surface representation. To comment fur-
ther about the simulations, the model stages depicted in Fig. 8
and their functional role will be described qualitatively, includ-
ing a description of how the present version of the model refines
previous versions. Then some key properties of the simulated
percepts will be further discussed. The model is described math-
ematically in the Appendix, along with details of how the com-
puter simulations were carried out.

by the model retinal and LON ON and OFF cells as shown in
Fig. 17. Note that the representations of LON activity in panel
(B) of Figs. 9-15 indicate both ON and OFF activity, as in
Fig. 17, but with a middle gray placed in locations having no
circle in Fig. 17. '

The LON cell outputs activate the first stage of cortical BCS
processing, the simple cells (see Fig. 8) whose oriented recep-
tive fields respond to a prescribed contrast polarity, or direction-
of-contrast. The model LON cells input to pairs of like-oriented
simple cells that are sensitive to opposite directions-of-contrast.
The simple cell pairs, in turn, send their rectified output sig-
nals to like~oriented complex cells. By pooling outputs from
oppositely polarized simple cells, complex cells are rendered
insensitive to direction-of-contrast, as are all subsequent BCS
cell types in the model.

Complex cells activate hypercomplex cells through an on-
center off-surround network, or spatial competition, whose off-
surround carries out an endstopping operation (see Fig. 18B).
In this way, complex cells excite hypercomplex cells of the same
orientation and position, while inhibiting hypercomplex cells
of the same orientation at nearby positions. One role of this
spatial competition is to spatially sharpen the neural responses

Model overview

We illustrate model dynamics by tracing how different model-
ing stages respond to two black horizontal bars on a light back-
ground delivered to the model retina. In Fig. 16, the small circles
represent small luminances, the large circles large luminances,
at the corresponding image pixels. This image is transformed

A "'

C

Fig. 9. (A) The Ehrenstein figure. (B) The LON stage response. Both ON and OFF activities are coded as rectified deflections
from a neutral gray. Note the brightness buttons at the line ends. (C) The equilibrium BCS boundaries. (0) In the filled-in
result, the central circle contains stronger FCS signals than the background, corresponding to the perception of increased bright-
ness. Note that in this and subsequent figures displaying BCS output (including Figs. 9-14), the representation of boundaries
at multiple orientations are superimposed. Photographic reduction prohibits inspection of responses of individual orientations,
as is apparent in Fig. 18.
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A

D

Fig. 10. Inverse Ehrenstein figure. (A) The input image has the luminance values of the original Ehrenstein figure reversed.
(8) The LGN stage response. Note that the "brightness" buttons at the line ends are darker than the background; they are
"darkness buttons." (C) The equilibrium BCS boundaries are the same as for the standard Ehrenstein figure. (D) In the filled-
in result'the central circle contains weaker FCS signals than the background. Thus the model correctly predicts that the circle
will appear darker than the background.

determine which orientation is receiving the largest amount of
cooperative support (see Figs. 8 and 18E). The next stage of
competition takes place across nearby locations to select the best
spatial location of the emerging boundary (see Fig. 18F). These
competitive interactions are needed to select and sharpen the
best boundary grouping because the bipole cell receptive fields
are themselves rather broad. Broad bipole receptive fields are
needed because, in many situations, neither the image contrasts
to be grouped nor the cortical cells that group them are pre-
cisely aligned across space. Broad receptive fields allow the
grouping to get started and the competitive interactions shar-
pen and deform it. Hypercomplex cells that receive the most
cooperative support from bipole grouping after cooperative-
competitive feedback acts further to excite the corresponding
bipole cells.

This cycle of bottom-up and top-down interaction between
hypercomplex cells and bipole cells rapidly converges to a final
boundary segmentation (see Fig. 180). Feedback among bipole
cells and hypercomplex cells hereby drives a resonant coopera-
tive-competitive decision process that completes the statistically
most favored boundaries, suppresses less favored boundaries,
and coherently binds together appropriate feature combinations

to oriented luminance edges. Another role is to initiate the pro-
cess, called end cutting, whereby boundaries are formed that
abut a line end at orientation perpendicular or oblique to the
orientation of the line itself, as in Fig. 9C; ..,;;;i,

The hypercomplex cells input to a competition across orien-
tations at each position among hypercomplex cells (see Fig. 18C).
This competition acts to sharpen up orientational responses at
each position. Output from the higher-order hypercomplex cells
feed into bipole cells that initiate long-range boundary group-
ing and completion (see Fig. 180). Bipole cells have two ori-
ented receptive fields. Their cell bodies fire only if both of their
receptive fields are sufficiently activated by appropriately ori-
ented hypercomplex cell inputs. Bipole cells act like a type of
statistical and-gate that controls long-range cooperation among
the outputs of active higher-order hypercomplex cells. For exam-
ple, a horizontal bipole cell is excited by activation of horizon-
tal hypercomplex cells that input to its horizontally oriented
receptive fields. A horizontal bipole cell is also inhibited by acti-
vation of vertical hypercomplex cells.

Output signals from bipole cells feed back to the hypercom-
plex cells after undergoing two stages of competitive process-
ing. First, bipole cell outputs compete across orientation to
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A

Fig. ...(A) The Kanizsa square. (B) The LON stage response. (C) The equilibrium BCS boundaries. (0) In the filled-in result
the square contains stronger FCS signals than the background, corresponding to the perception of increased brightness.

Ehrenstein figure simulations

The first simulation (Fig. 9) shows the completions that occur
between line segments arranged around a circle in a radial con-
figuration (Ehrenstein, 1941). The input image is shown in
Fig. 9A.Fig. 9B shows brightness buttons in the model LGN
cell activations. The complex cell responses (see Fig. 8) are stron-
gest at the ends of the line segments, reflecting the effects of
the LGN stage. These line end responses are strong enough to
induce completions perpendicular to the lines, thereby form-
ing the circular illusory contour (Fig. 9C). Due to the bright-
ness buttons in Fig. 9B, the filled-in surface representation of
the central disc in Fig. 9D has stronger activation than the back-
ground, which is consistent with the percept generated by this
figure in humans (see Fig. IA).

The results computed by the individual ON and OFF filling-
in domains in Fig. 8 are shown in Fig. 20. Some "leakage" across
boundaries occurs in the individual ON and OFF filling-in do-
mains, but its effects are effectively cancelled by subtracting the
combined output, as shown in Fig. 9D. This combination of ON
(on-center off-surround) and OFF (off-center on-surround) cell
processing followed by opponent subtraction generates a type
of double-opponent receptive field. Grossberg and Wyse (1991)
analyzed how double-opponent interactions can cancel leakage

in the image. The equilibrium boundary segmentations shown
in panel (C) of Figs. 9-15 are all recorded at the higher-order
hypercomplex cells.

Each BCS boundary segmentation generates topographic
output signals to the ON and OFF Filling-In DOmains, or
FIOOs (see Fig. 8). These FIOOs also receive inputs from the
ON and OFF LGN cells, respectively. The LGN inputs activate
their target cells, which allow activation to diffuse rapidly across
gap j4nctions to neighboringFIOO cells. This diffusive filling-
in process is restricted to the compartments derived from the
BCS boundaries, which create barriers to filling-in by decreas-
ing the permeability of their target gap junctions. The filled-in
OFF activities are subtracted from the ON activities at double-
opponent cells, whose activities represent the surface brightness
of each percept (see Fig. 8). This double-opponent representa-
tion is shown in panel (D) of Figs. 9-15 and Fig. 19.

The model in Fig. 8 is simplified relative to known cortical
architecture and to known models thereof. It is a single-scale,
monocular model. For generalizations to. multiple-scale and
binocular model interactions, see Grossberg (1994), Grossberg
et al. (1994b), and Pessoa et al. (1994). The simulations in
Figs. 9-14 are only shown at equilibrium. For simulations of
temporal network dynamics, see Arrington (1994), Francis and
Grossberg (1994, 1995) and Francis et al. (1994).
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c D

I-lg. 12. (A) The "!ixed contrast Kanizsa square. (B) The LGN stage response. (C) The equilibrium BCS boundaries. (0) The
filled-in square contains FCS signals similar to those in the background.

I """C ~,

due to filling-in across weak or incomplete boundaries. Some
examples of brightness assimilation may be understood as effects
of such spreading that, due to figural asymmetries, are not can-
celled by subsequent ON/OFF interactions.

, ,

The Ehrenstein illusion is also simulated with white lines on
a dark background. In such a reverse-contrast Ehrenstein fig-
ure (Fig. lOA), a circular boundary is generated as in the stan-
dard Ehrenstein figure (Fig. 10C), but the interior of the circle
appears darker than the background (Fig. 100). This simula-
tion shows that the mechanisms that generated brightness but-
tons can also generate "darkness buttons" under appropriate
conditions (Fig. lOB). The enhanced darkness spreads in the
FCS during filling-in to produce a dark circle.

In the mixed-contrast Kanizsa square (Fig. 12A), pairs of
pac man figures have opposite contrast with respect to the back-
ground. Under suitable viewing conditions, most subjects rec-
ognize the ""ompleted outline of a square in the center of this
figure, as in Fig.12C, although any visible brightness enhance-
ment on one side of the square boundary is greatly reduced, as
in Fig. 120. This illusion is important for at least two reasons.
First, it illustrates in a particularly vivid setting that long-range
boundary completion (and thus illusory contours) can occur
betw.een elements of opposite contrast. Second, the figure pro-
duces an illusory contour but not a strong brightness effect. In
Fig. 120, the square is filled-in with approximately the same
brightness level as that in the background. Human percepts are
consistent with this simulation.

A mixed-contrast Kanizsa square can generate an illusory
square that can be recognized (Fig. 12C) without necessarily gen-
erating a brightness difference within that square that can be
seen (Fig. 120). This fact has historically caused a great deal
of controversy as the distinction between seeing and thinking,
or the related distinction between modal and amodal percep-
tion (Coren & Harland, 1993; Epstein, 1993; Gregory, 1993;
Kanizsa, 1979; Kellman & Shipley, 1991; Michotte et al., 1964).
Within the present theory, this property follows from the fact
that boundaries within the BCS carry no perceptual sign -"all
boundaries are invisible" -because the outputs of the BCS pool

Kanizsa square simulations ..

Fig. II shows the simulation of a Kanizsa square. The LON
stage generates "brightness corners" at the interior corner of
each pac man figure that are enhanced relative to the complex
cell output computed in absence of the LON stage (not shown).
The boundaries of the square are completed by cooperative-
competitive feedback among the hypercomplex and bipole cells
in response to the pac man boundaries (Fig. IIC). The enhanced
brightness of the square (Fig. II D) is caused by filling-in of the
brightness corners in Fig. liB within the square boundary.
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c
Fig. 13. Glass pattern. (A) The input image is a Stevens (1978) style
Glass pattern. Note the circular organization characteristic of Glass pat-
terns. (B) The complex cell stage output shown here ingray-scale for-
mat captures some of the circular impression. (C) The strong circular
groupings become much more apparent after processing by the CC
Loop, as seen in the equilibrium output of Competition 2.

Fig. 14. Reverse contrast Glass pattern. (A) The input image isa reverse
contrast Stevens-style Glass pattern. The circular organization is much
less apparent in this case. (B) The OC Filter output shown here in gray-
scale format does not give a circular impression at all, nor does the CC
Loop output (C), which has completions that are predominately radial.

BCS signals to the ORS are interpreted to come from extrastri-
ate cortical area V4 (Desimone et al.. 1985; Zeki, 1983a,b) and
the ORS is interpreted to include inferotemporal cortex (Mish-
kin, 1982; Mishkin & Appenzeller. 1987; Schwartz et al., 1983),
among other areas. These proposed BCS ...ORS interactions
are described in greater detail in Grossberg (1994) and Gross-
berg et al. (1994a).

opposite contrast polarities and are, in this sense, insensitive to
contrast polarity, or direction-of-contrast. The theory predicts
that boundaries are seen only if a filled-in brightness or color
difference is generated on either side of the boundary positions
within the surface representations of the FCS.

Boundaries may nonetheless be recognized by direct output
signals from the BCS to an Object Recognition System (ORS)
(Grossberg, 19870, 1994; Grossberg & Mingolla, 1985b). Thus,
one can "know" or "think about" a BCS input to the ORS even
if the same BCS input to the FCS does not cause a difference
in filled-in FCS activities that one can "see," as in Fig. lB. The

Glass pattern simulations

The model's ability to generate boundary segmentations in
response to statistically derived images is illustrated in Figs. 13



Brightness, contours, and corticogeniculate feedback 1039

1\

I
L-nJ

...~IB

i,
j

--". --'.--~-~-.

I i! ,
I ., I

L~".~J

'1T'~~f
,.-.

~.

f~-1

i I!,: 
i Fig. 16. The example input figure (above) is a 56 x 60 pixel image con-

sisting of two low luminance bars on a high luminance background.
The discrete representation (below) of the figure shows the magnitude
of the simulated luminance at each pixel, as indicated by the size of
each circle.
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.
Fig. 15. (A) A small segment of the cafe wall image. (B) Complex cell
responses to the segment are straight. (C) The CC Loop adds bound-
aries between the bricks, skewing them in the same directions as the
perceptual effect.

can preferentially respond to the pairs of dots in Fig. 13A,
because the dots have the same contrast relative to the back-
ground. These colinear correlations are passed onto the com-
plex cells (Fig. 13B). The complex cell responses are then passed
through the hypercomplex cells before being linked together by
bipole-hypercomplex cooperative-competitive feedback, the out-
put of which is shown in Fig. 13C. Thus, although bipole cell
receptive fields can pool image contrasts with opposite direction-
of-contrast, their segmentations can become sensitive to
direction-of-contrast through the prior action of simple cells.

The strong circular component of the boundary completions
is both long-range and sharp. The oriented filtering is responsi-
ble for some of the circular appearance of the BCS boundaries,
but the boundary completion definitely adds to the impression.
To quantify this fact, the orientations of all of the nodes in the
complex cell output were compared to the angle of the tangent

"
and 14 with the Glass pattern and mixed-contrast Glass pattern
simulations. A Glass pattern may be constructed by superimpos-
ing a slightly rotated copy of a random field of dots onto the
original. For a large range of viewing distances, this gives the
impression of a circular structure (Glass, 1969). The impression
can be strengthened by placing the original dots on a randomly
perturbed grid and setting a constant rotation distance, so that
for every pair of corresponding dots, the distance between them
is fixed (Stevens, 1978). This construction method was used to
generate the Glass pattern input figure shown in Fig. 13A.

The model suggests that this percept is due to the combina-
tion of short-range correlations detected by the simple cells and
long-range correlations detected by the bipole cells. Recall that
simple cells are sensitive to contrast polarity. As a result, they
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What makes the mixed-contrast Glass pattern percept dif-
ferent from the Glass pattern percept? The key model differ-
ence concerns the response of simple cells. Because model simple
cells are sensitive to a definite direction-of-contrast, they are
not optimally activated in a direction parallel to the dot-pair
orientations of Fig. 14A. The bipole groupings are thus also dif-
ferent. This basic property of the model has been misunderstood
by some investigators (e.g. Elder & Zucker, 1993), who have
mistakenly inferred, because output cells of the BCS pool
both directions-of-contrast, that BCS boundary segmentations
are insensitive to image direction-of-contrast. Comparison of
Figs. 13C and 14C shows that this is not correct.

Another difference between the simulations of like-contrast
and mixed-contrast percepts is worth emphasizing. In Figs. 13
and 14, the switch to mixed image contrasts changes the bound-
ary segmentation. In Figs. II and 12, it does not. Why is this?
As noted in Grossberg and Mingolla (1985b), the difference lies
in the simple cell response. In the case of the Glass pattern, the
switch to mixed contrasts changes the orientations of the max-
imally activated simple cells from being colinear to the dot pairs
towards being perpendicular to the bisector of the dot pairs.
This difference in simple cell responses changes the long-range
bipole-mediated boundary groupings from a circular to a radial
tendency.

In the case of the Kanizsa square, the switch to mixed con-
trasts does not alter the orientations of maximally activated
simple cells. Each pac man element of a Kanizsa square presents
a consistent contour to the simple cells, whether its contrast is
light-to-dark or dark-to-light. The bipole cells then generate a
Kanizsa square in both cases by colinearly completing the pac
man boundaries. In summary, the simple cell carries out a short-
range grouping and the bipole cell a long-range grouping. The
global patterning of contrasts in the image mayor may not alter
the way in which these two grouping scales interact. See Gross-
berg (1994) for other examples of this theme, particularly in
explanations of how occluding and occluded contours, depth,
and transparency interact.

B

Fig. 17. Activation of the retinal and LGN networks. Unfilled circles
represent the ON channel output; filled circles code the OFF response.
Note the redistribution of activation in LqN (B) compared to the reti-
nal pattern (A). The strongest signals in both the LGN ON and OFF
channels are near the line end, whereas in the retinal stage output the
strongest signals are found along the sides of the line.

at each node's location to a circle centered in the middle of the
Glass pattern. If a node's activity is greater than 10070 of the
maximum activity and the node's orientation is within "lr/8 radi-
ans of the true tangent, then that node is considered "quasi-
tangent." In the complex cell output (Fig. 13B), 27.9070 of the
nodes are quasi-tangent, as compared to 50.2070 for the full BCS
output (Fig. 13C). Thus, by the constructed measure, bound-
ary completion contributes significantly to the circular appear-
ance of the simulated Glass pattern.

In the mixed-contrast Glass pattern, dot pairs consist of one
dot of positive contrast and a second of negative contrast rela-
tive to the background (Fig. 14A). The circular organization
present in the original Glass pattern is much weaker in the
reverse-contrast version. This is reflected in the model's com-
plex cell (Fig. 14B) and hypercomplex cell (Fig. 14C) responses.
The measure defined above quantifies this percept. In th~ com-
plex cell output, 13.5070 of the nodes are quasi-tangent. In the
full BCS output, even fewer nodes, 4.0070, are quasi-tangent.

The cafe wall illusion

Additional evidence that these short-range and long-range
grouping mechanisms exist and interact as modeled can be seen
in the cafe wall illusion. The cafe wall image (Fig. 15A) con-
sists of only horizontal and vertical edges, yet is appears to have
strong oblique components. The rectangle elements, or "bricks,"
appear to be trapezoids. The BCS simulation suggests that diag-
onal groupings between bricks are responsible for this percept.
In the BCS output shown in Fig. 15C, the once horizontal com-
plex cell boundaries of the central brick in Fig. 15B have been
deformed so that the bricks now appears trapezoidal. A simu-
lation on a smaller scale was presented in Grossberg and Min-
golla (1985b). Morgan and Moulden (1986) have presented a
similar explanation of this phenomenon.

Note that, in the cafe wall illusion, the simple and complex
cells track the local image contrasts but the bipole cell group-
ings do not. For the mixed-contrast Glass pattern, the simple
and complex cells do not track the local image contrasts and
the bipole cell groupings follow suit. The cafe wall illusion
hereby emphasizes that the long-range bipole grouping mecha-
nism can generate nonveridical segmentations, even if its short-
range inputs are veridical, in its effort to reconcile all of the
statistical correlations that it senses on a larger spatial scale.
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Fig. 18. (A) Rectified outputs of simple cells of opposite contrast polar-
ity are pooled to form complex cell responses. (8) Feedforward output
of hypercomplex cells. (C) Feedforward output of higher-order hyper-
complex cells. (0) Feedforward bipole cell output. (E) Feedforward out-
put of feedback orientational competition. (F) Feedforward output of
feedback spatial competition. (0) Equilibrium output of higher-order
hypercomplex cells shows the completions due to feedback. These
boundaries are used to contain the filling-in of FCS signals.D
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How do cortical simple cells respond preferentially
to luminance discontinuities?

The mathematical equations that define the !"1lodel depicted in
Fig. 8 are given in the Appendix. This and the next section high-
light two key features of the model to further clarify how its
LGN and cortical mechanisms work together to simulate the
above data properties.

The first feature concerns the design of cortical simple cells.
How do simple cells integrate LGN signals from ON and OFF
cells in such a way that true luminance discontinuities are
favored, say, above ramps of equal net contrast? Fig. 21 depicts
a model circuit in which ON cells turn on one-half of a simple
cell receptive field and OFF cells turn on the other half. This
is done for pairs of simple cells that are sensitive to opposite
direction-of-contrast, or contrast polarity. Then the two cells
inhibit one another before generating a rectified net output sig-
nal. This type of simple cell interaction has been reported exper-
imentally (Ferster, 1988; Liu et al., 1992). The ON and OFF
terms work together to ensure that simple cells favor regions
between adjacent ON and OFF activity, where true luminance
discontinuities occur. Although computing visual features such
as edges is not a difficult problem in simple images, in process-
ing complex images the combination of ON, OFF, and oppo-
nent inhibition plays a critical role in attenuating spurious image
contrasts (Cruthirds et al., 1992; Grossberg et al., 1994b; Pessoa
et al., 1994).

How does cortical cooperation generate curved
illusory boundaries?

The next cortical feature worth emphasizing is the shape of the
bipole cell receptive fields that carry out cooperative boundary
completion. Model bipole cells have a pair of colinear oriented
receptive fields that must both be activated to complete an inter-
vening illusory contour. Bipole cells were predicted to exist in
Cohen and Grossberg (1984) and Grossberg (1984) shortly
before cortical cells with similar properties were reported by von
der Heydt et al. (1984). At around the time of the von der Heydt
et al. report, Grossberg and Mingolla (1985a,b) used bipole cell
properties to simulate and explain a variety of data about illu-

Fig. 19. The filled-in result which is the model analog of the visual per-
cept. The result more closely reSembles the visual percept when presented
as a gray-scale image (below). Zero-valued nodes correspond to medium
gray pixels in this image.

A

Fig. 20. The filled-in ON (A) and OFF (8) syncytia before being combined. Note that in (8), higher activity in the OFF channel
is coded by brighter pixels, unlike the representation in Figs. 9-15 of net LGN activity.
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Fig. 22. The top and bottom images depict relatable contours. the mid-
dle case is not. See text for details.
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Fig. 21. Circuitry for LGN ON and OFF cell inputs to cortical simple
cells. The table illustrates how ON. OFF, and inhibitory signals work

together.

Unlike the original bipole cell (e.g. Grossberg & Mingolla,
1985b) in which the optimal orientation for any filter location
was radial (i.e. pointing toward the cell's origin), the optimal
orientation for a point (p,q) in the new bipole filter is tangent
to the circle C centered on the y-axis that passes through (p, q)
and the origin (0,0) of the receptive field (Fig. 23). Note that
the circle is different for different filter locations. As in previous
versions of the model, the actual filter values fall off exponen-
tially as their orientations deviate from the optimal orientation
determined by the tangent line. As seen in Fig. 23, the tangent
line forms a larger angle than a line between (p,q) and the ori-
gin would, so that the new bipole receptive field satisfies the
relatability condition most of the time. In certain circumstances,
such as two parallel edges that are almost colinear, a comple-
tion can occur in the model that mathematically violates the
Kellman and Shipley-(1991) formulation of spatial relatability
but is within a perceptually acceptable error range. That is,
humans as well as the model at times perform completions that
technically violate the relatability formula.

Filter values are further modulated by the slope of their tan-
gent (small slopes are preferred to large slopes) and by their dis-
tance from the origin. A similar bipole filter with optimal
orientations determined by parabolic equations was used to
carry out BCS boundary segmentations of synthetic aperture
radar images (Cruthirds et al., 1992). The overall shape of both
filters is similar to the original bipole cell of Grossberg and Min-
golla (1985b) and to the "association field" ofField et al. (1993).

After the bipole cells compute how much evidence for a
boundary exists in each orientation, cells compete across ori-
entation with other cells at the same position (see Fig. 8). This
process selects the best orientation(s) for cells that receive coop-
erative feedback. Several orientations rnay be active at points
receiving cooperative feedback. The competition selects at each
position the best orientation, or orientations (at a corner), in
order to produce completions that are as smooth as possible.
This is especially important when the boundary being completed
is not a straight contour, as occurs is the Ehrenstein figure
(Figs. lA and 9).

sory contour formation, neon color spreading, and texture seg-
regation. Later reports extended this analysis to data sets about
hyperacui~y, shape-from-shading, depth perception, binocular
rivalry, ~nd the McCollough effect, among others (Gross!,erg,
1987a,b; Grossberg & Mingolla. 1987). This ever broadening
explanatory range has allowed the accumulating weight of exper-
imental evidence to refine model receptive fields, including
bipole cell fields.

A persistent question about bipole cells has been: How can
cells with such large and elongated receptive fields generate
curved and sharp boundaries. such as those seen in all of the
above simulations? The nonlinear cooperative-competitive feed-
back between hypercomplex cells and bipole cells controls
boundary sharpness. Bipole receptive-field shape determines the
ability to track curved boundaries.

The present version of the model uses a bipole filter whose
receptive-field shape has properties consistent with Kellman and
Shipley's (1991) "spatial relatability" condition. This condition
constrains the circumstances under which boundary completion
should be allowed to occur. Two boundaries are relatable, or
can support a completion between them, when their extensions
intersect in an obtuse or right angle. To see part of the motiva-
tion for this. consider two parallel line segments separated by
a gap (Fig. 22). When the segments lie on the same line, the com-
pletion is straightforward. When the segments are offset. the
extensions do not intersect. Thus the relatability condition is
violated in this case. Note that the only possible smooth com-
pletion has an inflection point. The bottom of Fig. 22 also shows
a case in which the segments are not parallel. These segments
are relatable because their extensions do intersect an form an
obtuse angle. Here the completion has no inflection point.

Concluding remarks

The neural model in this article suggests how reciprocal LGN-
VI and striate-extrastriate circuits may work together to gen-
erate emergent boundary segmentations and filled-in surface
brightness properties that match a challenging set of psycho-
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physical data. The LGN-VI circuit suggests how endstopped
top-down VI-+ LGN feedback can select LGN signals that are
consistent with the tuning curves of their VI targets, and thereby
induce the brightness buttons that lead to perception of en-
hanced brightness in Ehrenstein disks. This enhancement also
helps to synchronize the firing of LGN signals and to strengthen
boundary signals at line ends.

Model cortical processing takes place in two parallel but
interacting streams that simulate aspects of the parvocellular
blob stream (FCS) and the interblob stream (BCS). The BCS
models interactions between simple, complex, hypercomplex,
higher-order hypercomplex, and bipole cells that communicate
with each other via feed forward and feedback pathways. Pre-
vious articles (e.g. Francis et al., 1994; Grossberg, 1987 b, 1994)
have reviewed experimental evidence supporting the existence
of each of these processing stages. Other studies have reviewed
experimental evidence supporting the existence of FCS pro-
cesses, particularly experiments about brightness, color, and
depth perception and the temporal dynamics of filling-in (Ar-
rington, 1994; Cohen & Grossberg, 1984; Grossberg, 1994;
Grossberg & Todorovic, 1988; Paradiso & Nakayama, 1991;
Pessoa et al., 1995). In addition, the present model satisfies a
test that few biologically derived models have heretofore passed:
it works. The model has proven itself capable of processing com-
plex imagery (Cruthirds et al., 1992; Grossberg et al., 1994b;
Waxman et al., 1993), and thus has demonstrated the type of
computational power that is needed to function in the real
world.
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the text. Additional modifications from equations employed for
previously published simulations are also included, including
ON and OFF LGN cells, and improved cortical bipole cell re-
ceptive fields and hypercomplex-bipole feedback interactions
(Cruthirds et al., 1992; Grossberg & Wyse, 1991). The struc-
ture of the improved model, as shown in Fig. 8, includes an
OFF channel, an LGN stage, and feedback from the cortex to
the LGN stage.

In addition to the mathematical description of each stage,
convolution filters are displayed graphically, and the output
of each stage is shown for an image of sufficient simplicity to
allow a detailed inspection of the effects of each stage (Fig. 16).
Parameter values are also listed for each stage. These values are
used for all the simulations in this article.

ON and OFF retinal shunting networks

This first stage of processing involves two parallel center-
surround networks. These networks compensate for variable
illumination ("discount the illuminant") while suppressing noise
and computing contrasts in the image. In the ON channel, the
center is excitatory while the surround is inhibitory (Fig. 24A),
whereas in the OFF channel, the center is inhibitory and the
surround is excitatory (Fig. 248). The cells in each channel
obey membrane, or shunting, equations coupled by distance-
dependent interactions (Grossberg, 1983), whereby inputs Ipq
at position (p,q) are filtered by convolution filters that are
defined by isotropic two-dimensional Gaussians. The ON and
OFF channels thus have activities Xu and Xi}' re~pectively, at
cell positions (i,j) that satisfy the following equations:

On retinal cells

~ Xi] = -DXi] + (U -Xi])}::; Cpqijlpq
dt p,q

-(Xi] + L) }::; SpqijI~
p,q

(1)

and
OFF retinal cells

d-x"7 = -Dx."7 + (u -x"7 ) ~ S I
dt I} /} I} £..I pql} pq

p,q

-(Xi) + L) b Cpqijlpq
.p,q

(2)

where U and L are the upper and lower bounds of the activities
x+ and x-,

Cpq;j = Cg2(p,q,i,j,uc)' Spqij = Sg2(P,Q,;,j,Us) (3)

and the two-dimensional Gaussian function g2 is defined as

g2(p,q,i,j,u) = ~ exp(-~ «p -i)2 + (q _j)2)} (4)
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At equilibrium the ON channel activity is defined by

(5)

Appendix: An improved neural model of boundary
completion and surface filling-in

This section describes the revised BCS and FCS equations after
incorporation of the enhancements and revisions discussed in
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Fig. 24. DOG filters for the ON (A) and OFF (B)
channel retinal output cell. Unfilled circles code pos-
itive values, filled circles represent negative values.
Both filters have a 3-by-3 center and a l5-by-15 sur-
round. (C) Discrete Gabor filter for a horizontal sim-
ple cell. (D) Filter for Competition 1. (E) Cooperative
bipole filter. (F) Filter for Competition 1 F.
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and the OFF channel activity is defined by The parameters C and Sin eqn. (3) were chosen so that when
the two Gaussian functions are combined into a DOG filter,
the positive- and negative-valued filter elements both have an
absolute sum of I. Thus C = 1.19 and S = 1.20. The input image
I in this simulation has values in the range [0.1, I]. The interior
regions of the bars have pixel value 0.1, while the background
pixels all have value 1.0.

(6)

A threshold-linear. or half-wave rectified, output function T(x)
is applied to the ON and OFF activities of this stage, where

T(x) = max(O,x) (7) LON circuit

In the model, LGN relay cells r receive excitatory signals T
from retina, excitatory signals E from cortical endstopped cells
and inhibitory signals M from LON interneurons, which are also
activated by feedback. The model equations for ON and OFF
relay cells are given by

LON ON relay cells

This function is also used in other stages.
The input image (Fig. 16) consists of two parallel bars of

low luminance on a high luminance background. The output
of the retinal stage is shown in Fig. 17 A. The parameter val-
ues for eqns. (2)-(4) are D = I, U = I, L = I, ac = 0.58, and
as = 2.90. As a result, Xi; + Xi} = O. Therefore, it is possible
to display both outputs in a single image. In Fig. 17 A, open cir-
cles key ON channel values, and filled circles key OFF channel
values. As illustrated in Fig. 2, the ON channel responds near
the outside of the bars, and the OFF channel cells respond to
the interior of the bars. Far from the bars the input pattern is
uniform, so neither channel responds.

(8)-(rt + L) L Spq;jMpq
P.q
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and
LON OFF relay cells

where Cpqij = Cg2(p,q,;,j,uc) and Spqij = Sg2(P,q,;,j,us) are
on-center and off-surround Gaussian kernels, respectively, and
U and L are the upper and lower bounds, respectively, of r's
activity. The feedback to this stage is computed by summing
over orientation the activity of cortical cells from the outputs
E of endstopped hypercomplex cells:

Simple and complex cell layers

The oriented cells used here are odd-symmetric Gabor filters
(Daugman, 1980; Marcelja, 1980). Including even Gabor
cells may improve the system's boundary detection capabilities
(Cruthirds et al., 1992; Pollen & Ronner, 1981; Spitzer & Hoch-
stein, 1985), but adequate results were here obtained without
them.

Each odd cell has two subregions, A and B, that are sym-
metric about the cell's long axis (Fig. 24C). Region A is excited
by net ON channel signals while region B is excited by net OFF
channel signals. For each of the K discrete orientations used in
the model, there are two simple cells of opposite polarity. Thus
there are 2K simple cells, whose activities are half-wave recti-
fied and combined pairwise to activate K complex cells (Gross-
berg & Mingolla, 1985b).

Each simple cell subregion computes the net ON minus OFF
(or OFF minus ON) response for the entire subregion:(10)

A;jk = 2.; (T(r;j) -T(r~»T(G~&)
p,q

(14)The activity of Wijk is defined by eqns. (21)-(24). The inter-
neuron activity M is similarly defined by

and

M- TI) - (II) Bijk = ~ (T(rpq) -T(rp~»T(-G~:b)
p,q

(15)

where the oriented Gabor filters G~~Jj, with orientation k, are
rotated versions of the horizontal filter with orientation k = 0
and frequency w, that is defined by

G~~~j = G sin(27rw(q -j»exp( -! «(p -i)/Uh>.2

+ «q -j)/Uv)2)} (16)

For this and all anisotropic filters used in the model, the equa-
tion for the horizontal filter is given. Computation of filter
orientations other than horizontal is done by first rotating the
filter plane to align the filter's long axis with the x-axis, and then
calculating each filter value by applying the equation for the
horizontal filter. For a filter with orientation index k, for exam-
ple, location (p,q) is first rotated by (Jk = -k?r/Kto give new

coordinates (p',q') defined by

Note that in the excitatory terms of eqns. (8) and (9) the
feedback is gated by the bottom-up signal Xi}' As a result,
the feedback can only enhance the activity of cells that already
receive retinal input. In the inhibitory terms the feedback does
not interact with the bottom-up input. Both terms are consis-
tent with the discussion of LGN circuitry in cat by Weber et al.
(1989). Although bottom-up retinal input, by itself, can acti-
vate model LGN cells, top-down corticogeniculate feedback can-
not, by Itself, activate model LGN cells. When both bottom-up
and top-down inputs are active, a match between bottom-up
retinal input with top-down cortical input can enhance LGN
processing, while LGN processing of bottom-up retinal inputs
that have no top-down support is suppressed.

The result of processing the bar image with the LGN stage
is shown in Fig. 17B. The output LGN output has stronger sig-
nals at the ends of the bars rather than at its sides. These are
the model analog of brightness buttons.; ..,

By eqns. (8) and (9), at equilibrium, the ON and OFF cell
activities of the LGN stage obey the equations

p' =PCOS(Ok) -qsin(Ok) (17)

and

q' =pSin('(Jk) + qCOS«(Jk) (18)UT(x;j> + UT(x;j> }::; Cpq;jEpq -1. }::; Spq;jMpq
p,q p,q+-r.. -

Ii (12)

and

,"7 =
11 (13)

D + T(x;j) + T(x;j) }::: Cpq;jEpq + }::: Spq;jMpq
p,q p,q

Then the equation for the horizontal filter at (p,q) is applied
to (p',q'). In this way, filter values are computed for filters
of every orientation.

The simple cell receptive field is designed so that its activity
Sijk is largest when a correctly oriented net ON signal occurs
in one half of the cell's receptive field and on equal net OFF
signal occurs in the other half. This property is captured by the
equation

Simple cells

Sjjk = T(Ajjk + Bjjk -alAjjk -Bjjkl> (19)Default parameters for eqns. (\2) and (\3) of the LON stage
are D = \, U = \, L = \, C = \00, Uc = \.0, S = 10, Us = 3.0,
W = 0.\6. (Subscripts on parameters such as U, L, C, and S
are omitted in their several uses for simplicity.)

The first two terms compute the net ON and OFF activity of
the two subregions, which can be positive or negative. The sum

-(';] + L) }::; Spq;jMpq (9)
p,q
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while the inhibitory convolution filter includes nearby orienta.
tions as well:

S (r,k) S ( " ) ( k )pqij = g2 p,q,l,j,fJs gl T, ,fJr
(23)

where g. is a one-dimensional Gaussian

gJ(r,k,a) = (27ra2)-J/2exp[-

(see Fig. 24D). This form of inhibition prevents non-dominant
orientations from producing undesired effects. In particular,
if competition were strictly among cells of identical orientations,
then cells of the preferred orientation in a given region could
inhibit one another, while a single, or small number, of "noise"
cells of a nearby orientation could have its activity (relatively)
enhanced for lack of competitors. At equilibrium, the activi-
ties of the first competitive stage are thus defined by

A;jk + B;jk in eqn. (19) can be interpreted as the net effect of
two operations. In the first operation, ON cells turn on one-
half of a simple cell's receptive field, as in term T(r~)O(~j),

and OFF cells turn on the other half, as in term T(r;j)t( -0;':&).
This is done for pairs of simple cells that are sensitive to op-
posite direction-of-contrast. Then the two cells inhibit one an-
other before generating a net output signal, as diagrammed
in Fig. 21. The remaining term -aIA;jk -B;jkl in eqn. (19)
reduces the simple cell response when the subregions are not
equally activated, with the parameter a determining the strength
of the "penalty." These terms work together to ensure that sim-
ple cells favor regions between adjacent ON and OFF activity,
where true luminance discontinuities typically occur.

The complex cell activity C;jk is the sum of half-wave recti-
fied signals from pairs of like-oriented simple cells of opposite

contrast-polarity:
Complex cells

for 0 oS k < KCjjk = Sjjk + Sjj(k+K) (20)

Wijk =

(25)

The original simple and complex cell layer equation in Grossberg
and Mingolla (19850) combined area normalization (in the de-
nominator) with oriented filtering. Because the input to the new
version is already normalized with respect to area by the reti-
nal stage, normalization is not needed here, and is omitted for
simplicity.

Parameter values for the simple cell stage are", = 0.2,
(]h = 1.833, (]v = 0.833, IX = 1.3, and K = 12. Parameter G in
eqn. (16) was chosen so that the absolute sum of the positive
and of the negative values in the Gabor filter is I. Because of
pixel sampling differences for different orientations, the value
of G varied slightly with orientation. In the horizontal (k = 0)
case, G = 0.556. The output of the complex cell layer for the

, -..,
two-bar simulati'!n is'~hown in Fig. 18A. .

which generalizes the first competitive stage of Grossberg and
Mingolla (1987). As in that model, the difference of Gaussians
term in the numerator of eqn. (25) intensifies the competition
between nearby cells of the same orientation so that it is possi-
ble to drive a losing cell's activity down to zero. When the
input to the competition has boundaries that are several pixels
wide, the thickness of the boundaries can be reduced to one
or two pixels.

As in Grossberg and Mingolla (1985b, 1987), this stage also
performs endstopping. The convolution filter has a center-
surround structure so that a line that fits within the central
region will produce a stronger response than a line that also
extends into the surround. Because the input to this stage is ori-
ented, the isotropic convolution filter can appear to favor lines
of a certain length at a specific orientation. The enhancement
of the line ends (and the relative weakening of the line sides)
can be seen in the output of this stage (Fig. 18B). Parameter
values for eqn. (25) are D = 1, U = 1, L = I, J = 0.01, and
F = 0.03. Filter parameters in eqns. (22) and (23) are C = 1.0,
Ur = 1.0, S = 1.0, Us = 3.5, and u, = 2.0.

Hypercomplex cells: Spatial competition

This stage uses competition across space, or an endstopping
operation, among like-oriented cells to convert output signals
from model complex cells into input signals to the first pop-
ulation of model hypercomplex cells, which is called the first
competitive stage, or Competition 1. The output of the first
competitive stage is used as feedback to the LON stage, as in
eqns. (10) and (11), as well as input to the higher-order hyper-
complex cells. Competition 1 takes the form of a standard shunt-
ing equation, with two additional terms, a tonic input J and
feedback v that derives from a later stage in the cooperative-
competitive grouping network, or CC Loop:

Higher-order hypercomplex cells: Orientational competition

This competition takes place across the orientation dimension.
At each spatial position, cells compete with other cells that
have same position but different orientation. The result is ori-
entational sharpening at image locations where no single ori-
entation is the clear winner. The other effect of this stage is
disinhibition of signals perpendicular to those that were inhib-
ited below the tonic level J in Competition 1. This can cause
new signals to appear that flank and are perpendicular to exist-
ing boundaries. These new end cut signals help to generate
boundaries, such as the Ehrenstein circle of Figs. lA and 9, that
are perpendicular or obliquely oriented with respect to line ends
(Grossberg & Mingolla, 1985b, 1987). Cell activity for Com-
petition 2 hypercomplex cells is governed by

~ W;jk = -DW;jk + (U- W;jk) (~Cpq;jCpqk + FT(V;jk) + J)

-(W;jk + L) ~ St;q;J> cpqr (21)
p,q,r

The excitatory convolution filter is a two-dimensional Gauss-
ian across space:

Cpqij = Cg2(p,q,i,j,u,,) (22)
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where

Dpq;j = "(p -;)2 + (q -j)2
(35)

d .
dt Yijk = -DYijk + (U -Yijk) ~ CrkT( Wijr)

-(Yijk + L) ~ SrkT( Wijr) (26)
r

where interaction between cells at orientations k and r is defined
by one-dimensional Gaussian kernels g2:

and

( p-i )-I .
Fpqij=tan S-(q-j) s*q-j (36)

Crt = Cg1(r,k,u,,) (27)
Variable s in eqn. (36) is given by

8'k = 8g.(r,k,us) (28)
(p -;)2 + (q _j)2At equilibrium, s= (37)

2(q -j)

The first term in the exponential of eqn. (34) modulates filter
values based on their distance Dpq;j from the bipole's center,
where p is the optimal distance from the center. The second
term computes the slope of the tangent at (p,q) of the circle
centered at (O,s) which passes through (0,0) (the bipole cell's
origin) and (p, q); see Fig. 23. This circle has equation

Yijk =
(29)D + ~ (Crk + Srk)T(w;jr)

The output of Competition 2 is displayed in Fig. 18C. Be-
cause the output of Competition 1 has orientationally sharp
responses for the example input, the sharpening of Competi-
tion 2 is not obvious. In addition, the endcuts in this example
merely strengthen the direct filter responses at the (thick) line
end. Parameter choices for eqn. (29) are D = I, U = I, and
L = 1. Filter parameter for eqns. (27) and (28) are C = 4.323.
a.. = 1.208, S = 4.323, and as = 1.932.

p2 + (q -S)2 = S2 (38)

and by implicit differentiation its tangent is

~=-E-
dp s -q (39)

Note that the radius s will vary from point to point. The sec-
ond term in the exponential penalizes orientations in the filter
that have large tangent values. The most favorable orientations
(for this term) are those similar to the bipole's main axis. The
third term of eqn. (34) measures the similarity of the orientation
of point (p, q, r) and the angle formed by the tangent at that
point. The tangent defines the optimal orientation for that point.
Filter element orientations closer to this optimal value will have
greater strength than those at larger angular separations.

At equilibrium, the unthresholded bipole cell activity is, by
eqns. (30)-(33),

Bipole cells: Long-range cooperation

The cooperative stage sums input from two lobes of a bipole
cell filter (Fig. 24E) that is activated by boundary signals from
the previous hypercomplex cell stage. If there is sufficient acti-
vation in both lobes, feedback signals are generated that ini-
tiate bo,undary completion. The equation for this stage is

(30)

where

T(x)f(x) = E + T(x) (31)

A;jk = }::; (T(Yijr) -T(Y;jR»T(Z'/q;J»

p,q,r
(40)(32)

and

Bijk = ~ (T(Yijr) -T(YijR»T( -Z<;qiJ)
p,q,r

(33)

In eqns. (31) and (32), R is the orientation perpendicular to r.
The new bipole filter is defined by

The new filter is consistent with the data of Field et al. (1993)
and of Kellman and Shipley (1991). The new equation is also
more easily modified and scaled than the original of Grossberg
and Mingolla (1985b) because all of the terms are contained
within a single exponential function. A similar bipole cell equa-
tion, based on parabolas instead of circles, was used by Cruthirds
et al. (1992). The change to circles simplifies the equation as
much as possible.

The output for this stage (Fig. 180) shows where boundary
enhancement and completion take place. The boundaries of the
long (horizontal) side of the bars are long enough to stimulate
horizontal bipole cells, as well as some oblique angle bipoles.
In addition, the short, vertical boundaries of the bars are able
to stimulate vertical bipole cells that lie in the gap between the
lines. These vertical activations will ultimately give rise to two

z(r,O)pqij =Zsgn(p-i)( ("If )2 \ X exp -(Dpqij2- p)2 -~ -K -Fpqij

2u. 2U2 2

2 2uJ )
(34)
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each orientation. The feedback signals are spatially sharpened
in this stage before being added back into the loop, as in

boundaries connecting the lines at their ends. Parameter values
for eqns. (31) and (34) are E= 0.15, Z = I, (11 = 4.0, p = 10.0,
(12 = 0.3, and (13 = 0.1.

In an image processing application of BCS/FCS mecha-
nisms, Grossberg et al. (1994b) employed a variation in the
bipole weighting function where p = 0, resulting in the stron-
gest "weights" at locations near the bipole center. Such an ar-
rangement allows bipole activity to remain strong from interiors
of segments right up to endpoints, while still preventing out-
ward completion beyond inducers.

-(Vijk + L) L S~~&T(Upqk)
p,q,r

where

C Ia) C ( .. )pqij = g3 p,q,l,j,Uc,UgTop-down orientation competition

This stage is homologous to Competition 2. It is called Com-
petition 2F, with the 'F' indicating that the competition is in the
feedback portion of the CC Loop. This stage, which was not
included in the original BCS, sharpens boundary completions
that have components from several orientations by enhancing
the orientations at each point that are most highly favored by
the cooperation. The equation for this stage is given by

8(0)
8 ( ..pqij = g3 p,q,l,j,U..,Uh)

and g3 is defined by

g3(p,q,i,j,C1I,C12)

= (27ru) U2)-
[ 1 (( P-i )2 ( q_j )2)Jexp -2 -;;;- + ~ (49)

When ag :#: ac: or ah :#: as the filters are anisotropic, taking an
elliptical shape, as in Fig. 24F. When this is the case, rotated
versions of the filters are applied within each orientation. This
filter responds well to a line of activity while at the same time
limiting the thickness of the line. At equilibrium,

-(U;jk + L) LSrkH(Z;jr:
r

(41)

where

Crk = Cg\(r,k,u(") (42)

Srt = Sg.(r,k,us) (43)

H(z) = HT(z -J) (44)
The output of this stage (Fig. 18F) is a sharper version of its
input wherein many of the flanking pixels in Fig. 18E have dis-
appeared or been substantially weakened. Parameter values for
eqn. (46) are D = I, U = I, and L = I. Filter parameters for
eqns. (47) and (48) are C = 47.6, Uc = 0.95, Ug = 1.0, S = 120.0,
Us = 1.0, and Uh = 1.0.

The signal function H(z) determines whether a cooperative
bipole cell is activated enough by both of its receptive fields
to generate output signals that participate in the competition.
At equilibrium,

~ (UCrk -LSrk)H(Z;jr)
r

(45)Uijk =
D + L (Crk + Srk)H(Zijr)

r

Boundary completion

The output of Competition IF is fed back into Competition I
[eqn. (21)] to close the CC Loop. Cooperative boundaries are
added to the bottom-up boundaries in Competition I, and the
circuit computes the completed boundaries, including illusory
contour boundaries, of the input image. The output of the CC
Loop is the equilibrium activation of Competition 2 (Fig. 180).
These completed boundaries are sharply localized at the cor-
rect spatial positions. They are used in the FCS to contain the
spreading of brightness signals.

The output of Competition 2F is shown in Fig. 18E. Normally
this competition reduces the orientational spread of the coop-
erative signals, as in the complex imagery processed in Gross-
berg et al. (1994b). In the present example, however, most of
the input signals are already orientationally as sharp as possi-
ble. The effects of sharpening can be seen by examining the pix-
els in the middle of each bar. Parameter values for eqns. (41)
and (44) are D = I, U = I, L = I, H = I, and J = 1.2. Filter
parameters in eqns. (42) and (43) are C = 4.95, U" = 0.865,
S = 4.95, and Us = 1.385.

Filling-in

The brightness signals that fill-in this stage are derived from the
ON and OFF channels of the LGN stage. As noted in Co-
hen and Grossberg (1984) and Grossberg & Todorovic (1988),
filling-in uses the ON and OFF signals to recover a surface
reconstruction that is relatively uncontaminated by variations
in illumination. Filling-in occurs separately via nearest-neighbor

Top-down spatial competition

This feedback stage is bomologous Competition I, hence it is
called Competition IF, in that it occur across position within
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r + -J ij = Sij -Sij (57)

Default parameter values for the filling-in eqns. (51) and (53)
are D = 0.001, {) = 1000, and 'Y = 10000.

diffusion in ON and OFF filling-in domains, or FIOOs. The
final output is the difference of the ON and OFF FlOO acti-
vations at each location, hence a double-opponent response
(Grossberg, 1987b; Grossberg & Wyse, 1991). The FIOOs are
two-dimensional isotropic networks, so that filling-in proceeds
equally in all directions until i~ is blocked by a boundary or
attenuated with distance.

Cell activity in each syncytium is described by a diffusion
equation

d
di Sij = -Dsij + T(rij) +

L (spq -S;j)Ppq;j
p,qeNij

(51)

in which a FillO cell Sij receives input from LGN cell activ-
ity 'if. as defined by eqn. (12), and from FIDO cells in the
neighborhood

N;j(i,j-l),(i- ,j),(i + I,j),(i,j + I») (52)

The conductance coefficient Ppqij between two neighboring
cells depends on the strength of the boundary between them:

(53)

where the equilibrium BCS boundaries from Competition 2
of eqn. (29) are summed over orientation:

(54)

The equilibrium ON and OFF syncytial activities are the solu-
tions to the sets of simultaneous equations defined, respec-
tively, by

(55)

and

(56)

Computer implementation

The computer implementation of the BCS/FCS model is writ-
ten in C and runs on a Silicon Graphics Iris 4D/280S machine.
The equilibrium equations for each stage are used. The LGN
feedback loop is computed by cycling once through the rele-
vant stages, giving the following order of processing: Retinal
stage, LGN stage with no feedback, Complex Cells, Competi-
tion I, LGN stage with feedback, Complex Cells, CC Loop,

Filling-in.
The CC Loop is computed by cycling multiple times through

the equilibrium equations for Competition I, Competition 2,

Cooperation, Competition 2F, and Competition I F, in that
order. The cycle ends when there is no significant change in the
values of Competition I from the previous cycle. Five cycles
are often sufficient, translating to a runtime of about 5 min for
a 128 x 128 image.

The accuracy of the CC Loop approximation was checked
by integrating the dynamic equation for Competition I (while
solving the other stages at steady state) using the LSODA soft-
ware integration package (Petzold, 1983). At convergence, the
results were indistinguishable from those obtained by the iter-
ative method described above. A similar test of the LGN stage

yielded equally good results. In both cases, integration takes
much longer than the respective approximations.

In order to achieve a better discrete approximation of filter
functions than could be obtained by evaluation at a single pixel,
several subpixel calculations were used. For example, the ker-
nels of eqn. 3 centered at location (p, q) were evaluated in the
range p -0.5 to p + 0.5 in increments of 0.1, and similarly
for q values. The average of all these evaluations was used to
compute ON and OFF cell responses.

Index variables rand k, used to denote orientational tun-
ing, are implicitly modular. Their values "wrap around" at the
number of discrete orientations used in the simulations. Thus,
to compute cross-orientation competition for 12 orientations,
values of r-k must always be between -5 and 5. If r-k is not
in this range, 12 is added or subtracted, as necessary.

For the sake of visual clarity, the display of the simulated
output of eqns. 21-25, shown in Fig. 18B, does not show activity
in locations whose only positive input is that of the tonic exci-
tation, J.

The final filled-in double-opponent ciutputjij' shown in Fig. 19,
is calculated by subtracting the OFF channel output from the
ON channel output:


