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Abstract

A neural network recognition and tracking system is proposed for classification of radar
pulses in autonomous Electronic Support Measure systems. Radar type information is combined
with position-specific information from active emitters in a scene. Type-specific parameters of
the input pulse stream are fed to a neural network classifier trained on samples of data collected
in the field. Meanwhile, a clustering algorithm is used to separate pulses from different emitters
according to position-specific parameters of the input pulse stream. Classifier responses corre-
sponding to different emitters are separated into tracks, or trajectories, one per active emitter,
allowing for more accurate identification of radar types based on multiple views of emitter data
along each emitter trajectory. Such a What-and-Where fusion strategy is motivated by a similar
subdivision of labor in the brain.

The fuzzy ARTMAP neural network is used to classify streams of pulses according to radar
type using their functional parameters. Simulation results obtained with a radar pulse data
set indicate that fuzzy ARTMAP compares favorably to several other approaches when per-
formance is measured in terms of accuracy and computational complexity. Incorporation into
fuzzy ARTMAP of negative match tracking (from ARTMAP-IC) facilitated convergence dur-
ing training with this data set. Other modifications improved classification of data that include
missing input pattern components and missing training classes. Fuzzy ARTMAP was combined
with a bank of Kalman filters to group pulses transmitted from different emitters based on their
position-specific parameters, and with a module to accumulate evidence from fuzzy ARTMAP
responses corresponding to the track defined for each emitter. Simulation results demonstrate
that the system provides a high level of performance on complex, incomplete and overlapping
radar data.



1 Introduction

Radar Electronic Support Measures (ESM) involve the search for, interception, location, anal-
ysis and identification of radiated electromagnetic energy for military purposes. ESM hereby
provide valuable information for real-time situation awareness, threat detection, threat avoid-
ance, and for timely deployment of counter-measures (Browns, 1998; Davies and Hollands,
1982; Grant and Collins, 1982; Schleher, 1986; Schleher, 1999; Sciortino, 1997; Tsui, 1986;
Wiley, 1993).

A critical function of radar ESM is the real-time identification of the radar type associated
with each pulse train that is intercepted. Current approaches typically involve sorting incom-
ing radar pulses into individual pulse trains, then comparing the pulse train characterizations
with a library of parametric descriptions, which yields a list of likely radar types. This task is
challenging owing to increases in environment density (e.g., pulse Doppler radars that transmit
hundreds of thousands of pulses per second); dynamically changing environments; multiplica-
tion and dispersion of the modes for military radars; agility in parameters like pulse repetition
interval, radio frequency and scan; unknown and reserve modes for which no ESM library entry
exists; overlaps between the parameters of different radar types in the ESM library; and noise
and propagation effects that lead to erroneous or incomplete signal characterization. These
aspects of the problem place severe stress on current ESM systems.

It this paper, an alternative approach is examined. A new recognition system combines
diverse sources of information in order to predict the most likely radar type for each intercepted
pulse. Type-specific parameters of the input pulse stream are used to classify pulses according
to radar type, while environment-specific parameters are used to separate pulses corresponding
to active emitters. Such separation allows the system to accumulate the classifier’s responses for
each emitter, and therefore to predict an emitter’s identity based on one or multiple responses.

A key component of the new recognition system is a neural network classifier that is trained
to determine the types of radar emitters present in the environment. The system learns au-
tonomously, directly from data collected in the field, to identify pulse parametric ranges corre-
sponding to specific radar types. Aside from avoiding some of the pulse sorting, training on data
from the actual environment to approximate an unknown mapping function may deliver greater
predictive accuracy. Furthermore, the need for by-hand construction of an emitter library is
obviated.

From an ESM standpoint, training a system directly on radar data is a radical departure
from current practice. At present, data are collected, analyzed, combined with prior informa-
tion, and distilled into ESM libraries off-line by skilled analysts. New libraries, containing
explicit radar type descriptions, are disseminated to the field as needed. One inconvenience of
the conventional approach is that it is very complex, time-consuming, and does not allow for
rapid modifications of ESM libraries upon discovery of new radar modes in the field. Using a
neural network able to learn incrementally offers a framework for refining familiar, or adding
unfamiliar, radar type descriptions on the fly.

In a particular realization of the recognition system, fuzzy ARTMAP (Carpenter et al.,
1991a, 1992) is considered for neural network classification of pulses from their type-specific
parameters, whereas nearest-neighbor matching with a bank of Kalman filters (Bar-Shalom
and Li, 1993; Blackman, 1986) is considered for separation of pulses from their environment-
specific parameters. The features of the system include: (1) By virtue of the fast-learning capa-
bilities of ARTMAP neural networks (Carpenter et al., 1991a, 1991b, 1992), new information



from familiar or unfamiliar radar type classes can be learned incrementally without retraining
on the whole data set. (2) Classification decisions can be made on the basis of single pulses or,
for greater accuracy, on the basis of streams of pulses that have been determined to come from a
given emitter. This determination is performed either by a time-of-arrival (TOA) deinterleaver
or, when TOA deinterleaving is not practical, by a Kalman filter that tracks the bearing and
amplitude of the pulses. The system is thus an example of a neural system combining temporal
— When — and positional — Where — information with featural — What — information to
arrive at its decision. It is well-known that the mammalian brain also divides What and Where
computations into separate, but mutually interacting, cortical processing streams. Our What-
and-Where model shows how this strategy can generate higher accuracy in identifying radar
emitters. (3) The “familiarity discrimination” extension of fuzzy ARTMAP, called ARTMAP-
FD (Carpenter et al., 1997a, 1997b), allows the system not only to detect pulses from unfamiliar
radar type classes (not presented during training), but to determine the threshold for rejection
based on all of the training data, without the need for holding back a portion for a validation set.
This ability to determine the reject threshold on-line makes possible on-line learning of pulses
from unfamiliar classes (LUC) (Granger et al., 2000). (4) New extensions to fuzzy ARTMAP
permit both training and testing on data with missing components, and the use of unlabeled
training data (Granger et al., 2000).

Conventional approaches to, and challenges of, radar type identification in radar ESM sys-
tems are reviewed in the next section. A system-level overview of our novel neural network
recognition system is provided in Section 3. A radar pulse data set used for proof-of-concept
simulations is presented in Section 4. The three main components that form a specific imple-
mentation of the recognition system are described in Sections 5 through 7. In Section 5, the
fuzzy ARTMAP neural network is applied to the classification of pulses according to radar type
from functional, type-specific parameters. Then, aspects of this network for dealing with incom-
plete radar data are proposed and tested. In Section 6, a module for clustering incoming pulses
by emitter based on environment-specific parameters is described. In Section 7, a module that
accumulates evidence from fuzzy ARTMAP responses corresponding to the tracked emitters is
proposed. Finally, these three components are connected, and global simulation results using
this particular realization of the entire recognition system are presented and discussed.

2 Radar Electronic Support Measures

2.1 Overview. The basic functionality of current radar ESM approaches can be decom-
posed into three tasks: reception of radar signals, grouping of pulses according to emitter, and
identification of corresponding radar types.

Radar signals are passively intercepted by the receiver portion of the ESM system. In typi-
cal theaters of operation, intercepted signals are a mixture of electromagnetic pulses transmitted
from, typically, several sources. Simultaneous illumination by these sources causes overlap and
interleaving of the received pulses. Upon detection of a radar pulse, most receivers measure
the pulse amplitude (PA), pulse width (PW), radio frequency of the carrier wave (RF) and time-
of-arrival (TOA). Direction-finding receivers also measure the bearing (Brg), while advanced
receivers also measure the modulation on pulse (MOP). Once parameter values have been mea-
sured for a pulse, they are digitized and assembled into a data structure called a Pulse Descriptor
Word (PDW). For the reader’s convenience, a list of the radar ESM abbreviations used in this



Table 1: List of abbreviations

Abbreviations | Definition

Brg bearing

ESM electronic support measures
EW electronic warfare
MOP modulation on pulse
PA pulse amplitude

PDW pulse descriptor word
PPI pulse-to-pulse interval
PRI pulse repetition interval
PW pulse width

RF radio frequency

TOA time of arrival

paper is given in Table 1.

The stream of successive PDWs is fed to a grouping module, which performs either TOA
deinterleaving, or sorting, or both. In short, this module seeks to recover pulse trains and their
inter-pulse structure prior to further analysis. This involves progressively grouping pulses that
appear to have been transmitted from the same emitter. An emitter is an instance of a radar type,
and it is not uncommon to observe several emitters of a same type all being active in a theater
of operation. A single type of radar can also operate under several different modes to perform
various functions. To each group of pulses is associated a track. A track consists of statistical
PDW parameters, plus other parameters that are derived from the sequence of grouped PDWs,
like the pulse repetition interval (PRI).

Pulse grouping techniques either exploit the difference in TOA between pulses, or the actual
parameters in the PDWSs. Parametric ranges are associated with tracks, and updated to reflect
changes in the emitter’s characteristics over time. TOA deinterleaving attempts to discover con-
sistent patterns in the TOA of pulses using techniques such as TOA difference histogramming
(Davies and Hollands, 1982; Mardia, 1989; Wiley, 1993). If TOA consistencies are found, and
these correlate with radar definitions compiled in an ESM library, then the corresponding pulses
are grouped based on PRI, and stripped away from the input stream of PDWSs. Sorting attempts
to group pulses based on the likeliness of their PDW parameters such as RF, PW and Brg. Gat-
ing (Chandra et al., 1988; Davies and Hollands, 1982; Rogers, 1985) or clustering (Anderberg,
1973; Dubes and Jain, 1988; Wilkinson and Watson, 1985) techniques are commonly used to
this end.

Identification makes use of an ESM library where are stored the parametric descriptions of
known radar types, and attempts to assign a single radar type to each track. Incidentally, the
parametric ranges of various types can overlap in the library, and multiple candidates can appear
plausible for the same track, a situation known as an “ambiguity.” Therefore, a list of likely radar
types is often displayed and monitored over time for every track, along with a confidence rating,
threat level, latest bearings, and so on. Further analysis can assist an ESM operator in revealing



mode changes in emitters, links between emitters, and inferred platforms.

2.2 Challenges. Pulse grouping and radar type recognition keep evolving in response to the
following defense trends: radar signals are more agile; power management and low probability
of intercept waveforms in advanced threats reduce response time; ESM libraries are expensive
to maintain; and unmanned platforms require autonomous ESM. These trends motivate this
work, and call for more powerful ESM approaches.

The multiplication of radar modes is the result of computer control and the ease with which
parameters such as RF and PRI can be changed. From an ESM standpoint, this means libraries
that grow larger and more complex. Agility in parameters like RF and PRI can make pulse
grouping very difficult.

A shorter response time requires faster pulse grouping, as well as identification using fewer
pulses. In addition, the occurrence of low power waveforms implies that pulses near the receiver
detection threshold may be dropped, and hence that pulse grouping must work satisfactorily on
sparse data. Response time is critical if threats are to be avoided, or self-protection measures
such as chaff dispensing, maneuvering, or electronic jamming, are to be successful.

It is difficult and expensive to maintain comprehensive ESM libraries that accurately re-
flect each specific operational environment. Library construction requires explicit modeling of
known radar systems, based on prior information and data that is not necessarily extracted from
the local environment. This task is complex, tedious, and prone to error because some radar
types are difficult to describe. Owing to the multiplication of modes, it is not uncommon for a
library to be incomplete and to contain erroneous data. In addition, threats could deliberately
reserve some of their modes for use during war time. Radar type identification must therefore be
tolerant to such shortcomings. For instance, classical parametric approaches to pattern classifi-
cation (Duda and Hart, 1973; Fukunaga, 1990) are generally less effective when the underlying
radar type class distributions are incomplete and/or uncertain.

Personnel reduction in the Armed Forces, as well as the deployment of ESM on autonomous
platforms such as unmanned aerial vehicles raises the expectations for ESM. Without an oper-
ator to interpret ESM output and provide discernment, ESM systems must achieve enhanced
accuracy and reliability. In light of these trends, alternative approaches are sought for pulse
grouping and radar type identification.

3 A Neural Network for Radar Type Identification

3.1 Adaptive Learning and ESM. In this section, a new approach is described for
radar type recognition. When collection platforms are brought into a theater of operations prior
to military interventions, data from radars of interest can be collected and analyzed. Collection
platforms include in-theater tactical aircraft and ships, unmanned aerial vehicles, and stand-
off assets like electronic warfare (EW) aircraft. Data collected prior to, or during, the conflict
and analyzed either on-line (e.g., on a ship) or off-line from electronic intelligence readings.
Whereas the data are normally combined with prior information from other environments, and
distilled by analysts into library entries, this paper explores their use for training an artificial
neural network recognition system. Once trained on the data, the network can classify the pulses
without the grouping process, thereby making use of a priori information early in the processing
chain. As discussed in the following, this approach offers several potential advantages.



Firstly, training on real data gathered in the field may yield higher classification accuracy.
Adaptive learning algorithms used to train neural network classifiers constitute an interesting
alternative to the explicit modeling currently employed in ESM libraries, since they can esti-
mate unknown input-to-class mapping functions directly from the training set. Their supervised
learning process involves a prescription to combine some prior assumptions (i.e., a set of pos-
sible mapping functions) with the training data set, to approximate an unknown mapping func-
tion. This mapping is then used to generalize, that is, predict output classes (radar types) for
unlabeled input patterns (pulses).

Secondly, an attractive feature of neural networks is the convenience of handling incomplete
radar type descriptions and incomplete data. Since it is impossible to have an exhaustive data set
to train a network, recognition of new radar types encountered during operations is important.
Neural network classifiers that allow on-line incremental learning provide a consistent frame-
work for automatically refining the description of familiar radar types, as well as for detecting
unfamiliar radar types and learning their description as operations unfold.

Lastly, although it is not the focus of this paper, the massively parallel architecture of neural
networks, when implemented on appropriate hardware, can provide extremely fast and fault
tolerant processing of PDWSs. Such a response would also be somewhat tolerant to incomplete
and noisy data, yielding graceful performance degradation. The on-line nature of the networks
also eliminates the need to collect batches of pulses prior to processing, as in current approaches.

Neural network techniques have previously been applied to several aspects of radar ESM
processing (Sciortino, 1997; Self and Bourassa, 1991), including parameter measurement (Self
and Bourassa, 1991), PDW sorting (Anderson et al., 1990; Kamgar-Parsi et al., 1996; Meiler
and van Wezenbeek, 1990; Pape et al., 1997; Wang and Thompson, 1991), and radar type
recognition (Macedo Filho and Griffiths, 1994; Maloney and Specht, 1989; Roe and Roe, 1994;
Specht, 1989). A new neural network recognition and tracking system for classification of radar
pulses is described next.

3.2 Overview of ESM M odél. One possible embodiment of a neural network recognition
system into an ESM system is depicted in Figure 1. First a TOA deinterleaver uncovers period-
icities in the TOA of input PDWSs. Whenever grouping pulses is straightforward, it forms tracks
and assigns a track number and a PRI to each grouped pulse. TOA deinterleaving continues to
play an important role in ESM since it suffices to group the pulses of emitters having simple
PRI patterns, like many high duty cycle Pulse Doppler radars. Besides, the PRI parameters
themselves are useful for classification of pulses according to radar type.

The neural network recognition system receives all the PDWs, some of which have track
numbers and PRI parameters. It has already been trained off-line on data from known radar
types. The neural network weights replace the ESM library, and can be periodically updated by
learning from radar data collected during operations. The neural network outputs a prediction
of the radar type for every PDW, and assigns a track number to the PDWs that did not get one
from the TOA deinterleaver. Track assignment is autonomous, and takes place regardless of the
radar type classification. The radar type classification does, however, take into account track
assignment.

The remaining module in Figure 1 is a signal separator, which receives all the PDWs along
with their track numbers, radar types, and, whenever available, PRI parameters. The signal
separator is responsible for the final track assignment and for distilling the stream of PDWs
into emitter reports that are periodically updated. The final assignment takes into account the
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Figure 1: High level block diagram of a radar ESM system that uses a neural network recogni-
tion system. Brackets indicate that the corresponding field may be empty for some pulses.

radar type recognition previously performed by the neural network. Emitter reports contain, for
instance, the type of each emitter with its latest bearing.

3.3 What-and-Where M odel Architecture.

3.3.1 What and Where data streams. The PDW stream may be partitioned into two data
streams called What and Where. This division is motivated by a similar subdivision of parallel
processing in the primate cerebral cortex into a What stream for recognizing objects, and a
Where stream for localizing their position in space. See Grossberg (2000) for a theoretical
discussion of these processing streams. Here the What data stream consists of parameters that
characterize the functional aspects of radar systems. Such parameters include RF, PW and
PRI. Since these parameters correspond to data typically compiled in ESM libraries, they are
directly useful for radar type recognition. The Where data stream consists of context-specific
parameters. This stream is defined by parameters, such as Brg and PA, that indicate the status
(e.g., position) of specific emitters in the environment. These parameters are less useful than
What parameters for radar type recognition, but are important for grouping pulses into tracks,
or trajectories. The definition of Where parameters can be extended to include emitter specific
parameters that cannot be recorded a priori due to practical or physical considerations. Such
parameters may prove effective for pulse grouping, irrespective of their value for radar type
recognition. Some MOP parameters could, for example, be assigned to this processing stream.

3.3.2 Distinct What and Wheredata processing. The internal architecture of a neural network
recognition system is shown in Figure 2. It is composed of three subsystems: neural network
classification, clustering and evidence accumulation. These subsystems cooperate to predict the
most likely radar type for each incoming pulse.

Prior to on-line operation, the neural network classification module is trained, via supervised
learning, using a data set of radar pulses collected in the field, and labeled with their respective
radar type. Only What parameters are employed for training. PRI may be supplied if it is
available.

During on-line operation, the recognition system accepts the stream of PDWs corresponding
to intercepted radar pulses, as well as the track number and PRI of each pulse grouped by the
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Figure 2: Internal architecture of the neural network recognition system.

TOA deinterleaver. Since each PDW is composed of predefined What and Where parameters,
these can be automatically separated and fed to the neural network classification and clustering
subsystems, respectively.

For each pulse, the neural network classification subsystem accepts What parameters, in-
cluding PRI when available, and yields a prediction of the radar type. This prediction takes
the form of a response pattern denoted by y2 (refer to Figure 2). Meanwhile, the clustering
subsystem attempts to group pulses into tracks based on Where parameters. If a track number
is supplied by the TOA deinterleaver, then the output of this subsystem is bypassed. Whether
the subsystem produces the track number itself, or receives it from the TOA deinterleaver, it
maintains an up-to-date picture of the number and activity of radar emitters illuminating the
ESM system.

3.3.3 Evidence accumulation. In conventional radar ESM systems, Where information is
employed early in the processing chain (i.e., during track formation) to reduce data and sub-
sequent computational costs. The neural network recognition system embodies an alternative
approach that integrates both What and Where information streams for better recognition prior
to the data reduction. Fusion of responses from the classification subsystem and the cluster-
ing subsystem is accomplished via evidence accumulation, which emulates the brain process
of working memory; e.g., Bradski et al. (1994), and Bradski and Grossberg (1995). Response
patterns y2 obtained from classification are hereby accumulated over time according to tracks,
that is, groupings determined from Where data.

Track numbers obtained from the clustering module dictate the emitters to which PDWs are
associated, and drive the evidence accumulation. This evidence accumulation is implemented as
a set of evidence accumulation fields, with each field K corresponding toatrack h=1,2,....R.
Assignment of a track h = H to a PDW activates an evidence accumulation field F§ that accu-
mulates the classification module’s response pattern y2. Such accumulation produces a radar
type response pattern for each PDW, denoted by y® (see Figure 2), which is obtained from one
or more responses y2. As discussed in Section 7, exploiting both What and Where information



sources can thereby enhance the system’s classification accuracy.

4 Radar Pulse Data

The data set used for the computer simulation contains approximately 100,000 consecutive radar
pulses gathered over 16 seconds by the Defense Research Establishment Ottawa during a field
trial. After the trial, an ESM analyst manually separated trains of pulses coming from different
emitters. Each pulse was then tagged with two labels: a radar type number and a mode number.
Since ESM trials are complex and never totally controlled, not all pulses could be tagged and a
sizable residue was obtained. Residue pulses were discarded for this study.

The parameters used are Brg, PA, PRI, PW and RF (refer to Table 1). From this point on, a
PDW is denoted by (a;b). Patterns in the What and Where data streams are defined by a= (PRI,
PW, RF) and b = (Brg, PA), respectively. The two Where parameters, Brg and PA, are specific
to the environment, and thus are not employed for training the neural network classification
module.

Brg, PA, PW and RF are automatically produced by the receiver on each individual pulse,
whereas PRI is derived from the difference in time-of-arrival (TOA) between pulses from the
same emitter. For simplicity, it is assumed that, as a part of the preprocessing, a simple TOA
deinterleaver has grouped the pulses belonging to each active emitter mode, and then com-
puted their respective PRI values. Note that, since at least two successive pulses are required to
compute a PRI value, the first pattern from each active emitter mode was omitted from the sim-
ulations. Also, owing to the circular scanning action of some radar emitters, pulses are recorded
in bursts. The first pulse of each scan (or burst) was also omitted. Finally, the parameters were
linearly normalized so that a;,bj € [0,1], fori=1,2,3and j =1,2.

Once tagged and deinterleaved, the data used to train and test the neural network recognition
system contain 52,192 radar pulses from 34 modes, each one belonging to one of 15 different
radar types. The data feature bursts of high pulse densities, multiple emitters of the same type,
modes with overlapping parametric ranges, radars transmitting at different pulse rates, and emit-
ters switching modes. The sophistication of the radar types range from simple (constant RF and
PRI) to fairly complex (pulse-to-pulse agility in RF and PRI). Figures ?? and ?? displays a 0.5
second sample of the radar pulse data set used for simulations. This particular example con-
tains 1123 pulses from 8 emitters belonging to 7 different radar types, with agility and overlap
of parameters, and an emitter switching modes.

5 An ARTMAP Neural Network for Classification

An enhanced ARTMAP neural network is used to classify incoming radar pulses according to
radar type from parameters in the What data stream. ARTMAP refers to a family of neural
network architectures capable of fast, stable, on-line, unsupervised or supervised, incremental
learning, classification, and prediction (Carpenter etal., 1991b, 1992). ARTMAP networks have
several attractive features for applications such as electronic support measures (ESM). Because
they can perform fast, stable, on-line, incremental learning, they can learn from novel events
encountered in the field. Neural network classifiers such as the popular Multilayer Perceptron
(MLP) (Rumelhart et al., 1986) and Radial Basis Function (RBF) (Chen et al., 1991) require
off-line retraining on the whole data set, through a lengthy iterative slow-learning procedure,



(a) What parameters (RF and PW) vs TOA. (b) Where parameters (Brg and PA) vs TOA.

Figure 3: A sample of the radar pulse data set used for simulations.

to learn new patterns from existing radar type classes or a new radar type class. ARTMAP
networks can also perform familiarity discrimination to avoid meaningless guesses on patterns
from unfamiliar radar types classes (Carpenter et al., 1997a, 1997b; Granger et al., 1999a). Fur-
thermore, they can represent radar type classes using one or more prototypes, which appears
desirable for handling radar types having several modes of operation. The k-Nearest-Neighbor
(KNN) (Cover and Hart, 1967) and Probabilistic Neural Network (PNN) (Specht, 1990) classi-
fiers would usually require greater computational resources to store all the training set patterns,
and to yield on-line predictions. Finally, ARTMAP networks lend themselves well to high speed
parallel processing, which is critical for real-time identification.

5.1 Fuzzy ARTMAP. ARTMAP is often applied using the simplified version shown in
Figure 4. It is obtained by combining an ART unsupervised neural network (Carpenter and
Grossberg, 1987) with a map field. Fuzzy ARTMAP (Carpenter et al., 1992) can process both
analog and binary-valued input patterns by employing fuzzy ART (Carpenter et al., 1991a) as
the ART network.

The fuzzy ART neural network consists of two fully connected layers of nodes: an M node
input layer, F1, and an N node competitive layer, F,. A set of real-valued weights W = {w;j €
[0,1]:i=1,2,....M; j=1,2,...,N} is associated with the F;-to-F, layer connections. Each
node j represents a recognition category that learns a prototype vector wj = (wyj, Wsj,...,Wwmj).
The F, layer is connected, through learned associative links, to an L node map field F2, where
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Figure 4: An ARTMAP neural network architecture specialized for pattern classification.

L is the number of classes in the output space. A set of binary weights W& = {vv‘jafg €{0,1}:
j=1,2,...,N;k=1,2,...,L} is associated with the F,-to-F@ connections. The vector W?b =
(vv‘jalf,w‘jag, .., WeD) links F, node j to one of the L output classes.

During training, ARTMAP classifiers perform supervised learning of the mapping between
training set vectors a= (ay,ay, ...,am) and output labels t = (t1,t, ...,t. ), where tx = 1 if K is the
target class label for a, and zero elsewhere. The following algorithm describes fuzzy ARTMAP
learning:

1. Initialization. Initially, all the F, nodes are uncommitted, all weight values w;; are
initialized to 1, and all weight values W?E are set to 0. An F node becomes committed when it

is selected to code an input vector a, and is then linked to an F2 node. Values of the learning
rate B € [0, 1], the choice o. > 0, and the baseline vigilance p € [0, 1] parameters are set.

2. Input pattern coding. When a training pair (a,t) is presented to the network, a un-
dergoes a transformation called complement coding, which doubles its number of components.
The complement-coded input pattern has M = 2m dimensions and is defined by A = (a,a®) =
(a1,a,...,am; af,as,...,a5), where a® = (1 —g;), and & € [0,1]. The vigilance parameter p is
reset to its baseline value p.

3. Prototype selection. Pattern A activates layer F; and is propagated through weighted
connections W to layer F,. Activation of each node j in the F, layer is determined by the \Weber
law choice function:

|A /\Wj|
ot |wy]

Ti(A)

where |- | is the norm operator, |wj| = XM, |wij|, A is the fuzzy AND operator, (A Aw;j); =
min(Ai,wij), and o is the user-defined choice parameter. The F, layer produces a binary,
winner-take-all pattern of activity y = (y1,Ys, ..., yn) such that only the node j = J with the great-
est activation value J=argmax{T; : j =1,2,...,N} remains active; thusy; =1andy; =0, j # J.
If more than one T; is maximal, the node j with the smallest index is chosen. Node J propa-
gates its top-down expectation, or prototype vector wj, back onto F; and the vigilance test is
performed. This test compares the degree of match between w; and A against the dimensionless

(1)

10



vigilance parameter p:

|A /\WJ|

Vi (2)
If the test is passed, then node J remains active and resonance is said to occur. Otherwise, the
network inhibits the active F, node (i.e., T; is set to 0 until the network is presented with the
next training pair (a,t)) and searches for another node J that passes the vigilance test. If such
a node does not exist, an uncommitted F, node becomes active and undergoes learning. The
depth of search before an uncommitted node is selected is determined by the choice parameter
Q.

4. Class prediction. Pattern t is fed directly to the map field F2, while the F, category y
learns to activate the map field via associative weights Wa. The F2 layer produces a binary
pattern of activity y® = (y2P,y8P, ..., y®) in which the most active F node K yields the class
prediction (K = k(J)). If node K constitutes an incorrect class prediction, then a match tracking
signal raises the vigilance parameter p just enough to induce another search among F, nodes in
Step 3. This search continues until either an uncommitted F, node becomes active (and learning
directly ensues in Step 5), or a node J that has previously learned the correct class prediction K
becomes active.

5. Learning. Learning input a involves updating prototype vector w3, and, if J corresponds
to a newly-committed node, creating an associative link to F 2. The prototype vector of F, node
J is updated according to:

W) = B(AAW;) + (1 B)wy €)

where [ is a fixed learning rate parameter. The algorithm can be set to slow learning with
0 < B < 1, or to fast learning with B = 1. With complement coding and fast learning, fuzzy
ART represents category j as an m-dimensional hyperrectangle R; that is just large enough to
enclose the cluster of training set patterns a to which it has been assigned. A new association
between F» node J and F2 node K (k(J) = K) is learned by setting vvf]‘E = 1 for k=K, where
K is the target class label for a, and O otherwise. Once the weights W have converged for
the training set patterns, ARTMAP can predict a class label for an input pattern by performing
Steps 2, 3 and 4 without any vigilance or match tests. During testing, a pattern a that activates
node J is predicted to belong to class K = k(J).

5.2 Comparative Simulations. Fuzzy ARTMAP and three other ARTMAP neural
networks — ART-EMAP (Stage 1) (Carpenter and Ross, 1995), ARTMAP-IC (Carpenter and
Markuzon, 1998) and Gaussian ARTMAP (Williamson, 1996, 1997) — have been compared
using computer simulations. The KNN and RBF classifiers were included for non-parametric,
and semi-parametric (Bishop, 1995) reference, respectively.

Prior to each simulation trial, the radar pulse data described in Section 4 was partitioned
into training and test subsets. 50% of the data from each radar type was selected at random to
form the training subset. Then, the training vectors a, along with their radar types labels t, were
repeatedly presented, until convergence. The same random order was used across presentations.
Emitter mode labels were ignored since this paper concerns the classification of pulses accord-
ing to radar type. Convergence was reached when the sum-squared-fractional-change (SSFC)
of prototype weights W was less than 0.001 for two successive epochs. An epoch is defined
as a presentation of the training subset to a classifier in TOA order. The RBF classifier used in
this comparison selects training subset patterns one by one to encode hidden layer nodes (Chen
et al.,, 1991). Convergence was reached when the sum-squared-error between actual outputs
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(resulting from training set patterns) and target outputs fell below 0.01. After convergence, the
test subset was presented to the trained classifier for prediction. Throughout this paper, aver-
age results are obtained from several independent simulation trials, each one with a different
random selection of the training data.

The What patterns consist of 3 parameters: a = (PW, PPI, RF). It is assumed that a TOA
deinterleaver has correctly grouped the ny pulses belonging to each active emitter mode k, and
then computed the pulse-to-pulse intervals: PPl (i) = TOAk(i) - TOAk(i—1) fori=2,3,..., .
Using the PPI to estimate the PRI allows for simple training and testing of neural network
classifiers without concern for the PRI agility of some emitters.

The performance of each classifier was assessed in terms of both the amount of resources
required and predictive accuracy. The amount of resources allocated during training is mea-
sured in the 3 following ways. Compression refers to the average ratio of training patterns to
committed F, layer nodes. Memory is the number of normalized registers needed to store the
set of learned prototype vectors, a normalized register being a fixed-size register whose number
of bits suffices to store the classifier’s real values such as a;, wij;, p, and so on. Convergence
time is the number of epochs required for the classifier to converge. The predictive accuracy on
the test subset is measured using the classification rate— the ratio of correctly classified patterns
over all test patterns.

Average results from 20 simulation trials of fuzzy ARTMAP are given in Table 2, along
with the standard error of the sample mean (in parentheses). Parameter settings were selected
through trial and error to achieve the best classification rate for the least memory and conver-
gence time during training. Results indicate that fuzzy ARTMAP and Gaussian ARTMAP
consistently achieve the highest average classification rates, followed by ARTMAP-IC and
ART-EMAP (Stage 1). The classification rates of fuzzy ARTMAP and Gaussian ARTMAP are
comparable to those obtained using the kNN and RBF classifiers. ART-EMAP, ARTMAP-IC
and fuzzy ARTMARP attain their classification rates with greater compression (and thus require
less physical memory to store prototype vectors, and deliver faster fielded performance) than
the other classifiers, and take fewer training epochs to converge than Gaussian ARTMAP and
RBF. Overall, fuzzy ARTMAP performs at least as well as the other classifiers in both accuracy
and computational complexity, and better than each of them in at least one of these aspects of
performance. The reader is referred to Appendix A and to Granger et al. (1999b) for further
details of these simulations and the classifiers used.

5.3 Convergence and Negative Match Tracking. A convergence problem occurs
with the above fuzzy ARTMAP algorithm whenever the training subset contains identical pat-
terns that belong to different classes. In the present application, this corresponds to radar pulses
in a same resolution cell that belong to different radar types. The problem is aggravated because
ARTMAP tends to segment the overlapping parts of classes into several tiny, often minimum-
sized prototypes. The consequence is a proliferation of identical prototypes for certain training
set patterns.

12



(0=d't=¢'1000=0",-0T =3)
(To)ge (zem) ey, | (09) zeTe (%T0°0) %95 66 -LIN YIm dv N LYY Azzny
(z0)6'S (0=9d'g200"=4"'¢ 0T =23)
1e paddols (721) v'egsTt | (2T) 166 (%T0°0) %69 66 1dVIN1YY uessnes
(To)oe (0=d't=¢'1000=0",-0T =3)
Je paddos (z61)962. | (6'9) S'LTC (%20°0) %95 66 1dVINLYY Azzny
(0=dT1=9¢'1000=0", 0T =3)
(To)se Sy vieL | (9v) OvTe (%06°T) %S9°€8 JI-dVIN1YY
(To)oe (0=d't=¢'1000=0",-0T =3)
Je paddos (6'sT) z60L | (2°9) 6222 (%S9°T) %828 (T 9be1S) | dVINT-1HV
(S0°0 = [auJaX gy Jo pealds)
(T'T) 9°€ete (€€) 6°29€9 ToTY (%T0°0) %8966 Juoipungsiseq feipey
("PFEp T =)
VIN (0) TT€08 (0o)oT (%10°0) %V9'66 JoqybeN-1S3 JeaN -
(P T =)
VIN (0) TTE08 (00 0T (%T0°0) %966 loqybeN-1S3 JeaN -
awl aousb JeAuo) Alows N uossa . dwo) || ared uolreolsse|D
S901N0S9y Aoe 1ndoy BIsse|D
(10440 PIS) BIL1LID UoITeneA]

('ueaw ajdures ay Jo 10413 pJepuels ay) aJe sasayualed Ul SIaquINN) ‘[ell yoes
uo 18s Bulurest ay1 Joj 8619AU0D 0 8|GEUN SEA JBIHISSE[O 8] 1ey) SeIedlpul |, 8YL "elep Jepes syl Joj S}Nsal uoneolIsse|o abelany :Z ajdelL

13



Consider the following example. Assume that in the first training epoch, fuzzy ARTMAP
learns two completely overlapping, minimum-sized prototypes, wa 1 (linked to class A) and
wg_1 (linked to class B), for two identical pulse patterns, a; and a,. In a subsequent epoch, wa 1
is initially selected to learn ay, since Ta1 = Tg.1 and wa 1 was created prior to wg 1 (index A.1 is
smaller than B.1). Since wa 1 is not linked to class B, mismatch raises the vigilance parameter
p to (JA2 Awa1|/M)+e, where |[A; Awp1| = |A2 Awg1|. As a result, wg 1 can no longer
pass the vigilance test required to become selected for a,, and fuzzy ARTMAP creates another
minimum-sized prototype wg» = wg 1. From epoch to epoch, the same phenomenon repeats
itself, yielding ever more identical prototypes wgn = wg.1 forn = 3,4, ..., .

This phenomenon was observed while training fuzzy ARTMAP, ART-EMAP and Gaussian
ARTMAP on the radar data set. Results in Table 2 were obtained through manual termination
by: (1) detecting, from epoch to epoch, the repeated creation of identical prototypes for the
same training patterns, (2) pruning non-unique prototypes from memory, and (3) defining the
convergence time as the number of epochs leading to the creation of non-duplicate prototypes
only.

ARTMAP-IC converged incrementally, by itself, on the radar data. The feature of ARTMAP-
IC that circumvents the convergence problem is called negative match tracking, denoted MT-,
which consists of using a negative € value (Carpenter and Markuzon, 1998). In the above ex-
ample, mismatch raises p but wg 1 would still pass the vigilance test. This allows learning of
fully overlapping non-unique prototypes for training set patterns that belong to different classes.
As shown in Table 2, fuzzy ARTMAP with MT- performs as well, to within standard error,
as without MT-, yet circumvents the convergence problem. As pointed out by Carpenter and
Markuzon (1998), MT- is a better algorithmic approximation to the continuous-time version of
fuzzy ARTMAP.

5.4 Classification of Incomplete Data. A neural network classifier applied to radar
ESM may be subjected to data, either during training or testing, that is incomplete in one or
more of the following ways (Granger et al., 2000):

1. Limited number of training cases. Collecting and analyzing ESM data from the field of
operation to train a neural network can be a costly undertaking. Yet, if the number of training
cases is insufficient, the classifier may not achieve good generalization during operations. It is
therefore of interest to know how the performance of the classifier declines as the amount of
training data is decreased, so that, e.g., more training data may be gathered, if necessary, before
the classifier is fielded. The effect on fuzzy ARTMAP performance of reducing the amount of
training data from each radar type was characterized by Granger et al. (2000). Overall, fuzzy
ARTMAP achieves a high level of accuracy when training with very few pulses from each radar
type.

2. Missing components of the input patterns. The information in the different components
of the PDW comes from a number of sources. Absence of components in radar ESM processing
arises due to sensor limitations and/or delay in deriving parameters (e.g., PRI). This implies that
the classifier may encounter partial input patterns. A strategy is presented later in this section
that allows fuzzy ARTMAP to effectively process partial input patterns during both training and
testing.

3. Missing class labels during training. The task of analyzing radar ESM data collected in
the field can be difficult owing to the complexity and lack of control of the environment. Exper-
tise and experience are required for manual separation and labeling of pulse trains transmitted
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by different emitters. This problem raises the question of whether the classifier may benefit
from training on data with missing class labels. Training on such data is referred to as “semi-
supervised learning” (Demiriz et al., 1999) or “partially supervised clustering” (Bensaid, 1996;
Pedrycz, 1985).

To assess the effect on performance of training fuzzy ARTMAP using data with missing
class labels, the network was trained in two phases (Granger et al., 2000). During the first
phase, involving supervised learning, the network was trained as usual until convergence with a
fixed amount of labeled training data from each radar type. During the second phase, involving
unsupervised learning, the network was presented with a varying percentage of unlabeled data
from each radar type until the weights W converged once again. Using fuzzy ARTMAP without
the class prediction (i.e., without Step 4 of the fuzzy ARTMAP algorithm), plus other modifica-
tions discussed by Granger et al. (2000), the network associated each unlabeled training pattern
with one of the already-existing F, category nodes and adjusted the corresponding prototype
vectors through slow learning (0 < 3 < 1). In all simulations with the radar data, the classifica-
tion rates observed were never greater than those achieved by simply discarding all unlabeled
data (Granger et al., 2000). Such an approach is most effective to the extent that clusters of data
from different emitters are separable and well clustered, which is not necessarily the case for
radar ESM data.

4. Missing classes during training. New radar types (not represented in the training set)
may be encountered during operations. When the classifier receives a pattern transmitted by
an new radar type, it would be desirable to “flag” the pattern as unfamiliar, rather than make a
meaningless guess as to its class label. This may be implemented by familiarity discrimination
(Carpenter et al., 1997a; Parra et al., 1996). The importance in radar ESM of familiarity dis-
crimination during operations is evident: radar emitters can exhibit new modes at any time. The
ability to learn unfamiliar classes is anticipated to be just as important. Presently, the task of
providing training data to a neural network classifier requires time from an ESM analyst, so it
cannot be expected that more than a small fraction of the large amount of available data would
be labeled for training. Furthermore, it cannot be assumed that all of the unlabeled training
data belongs to one of the radar types identified by the ESM analyst. (Although not explored
here, this would involve performing familiarity discrimination during semi-supervised training
on unlabeled data.) The modifications presented later in this section enable fuzzy ARTMAP to
mitigate performance degradation due to missing class labels, while allowing it to benefit from
learning information hidden in unlabeled data about as-yet unfamiliar classes.

Modifications to fuzzy ARTMAP with MT- are now introduced for dealing with miss-
ing components of the input pattern (Section 5.5), and missing classes during training (Sec-
tions 5.6 and 5.7). Performance obtained with these modifications is assessed via computer
simulation using the methodology, evaluation criteria and radar pulse data described in Sec-
tions 4 and 5.1.

5.5 Indicator Vector Strategy for Missing Components. A strategy to ad-
dress missing components in the input patterns consists in using indicator vectors (Ghahra-
mani and Jordan, 1994; Granger et al., 2000; Little and Rubin, 1987). An indicator vector
0 = (81,92, ...,0m) informs the fuzzy ARTMAP network about the presence or absence of each
component in an input pattern: 8; = 1 if component i is present, and ¢; = 0 if component i is
missing, with 8j = §; fori =1,...,m. Unlike strategies that involve replacement by “0” or by
“1” (Granger et al., 2000), the indicator vector strategy modifies the prototype vectors as well
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Table 3: Algorithmic modifications to fuzzy ARTMAP required for implementation of the in-
dicator vector strategy. (Refer to fuzzy ARTMAP equations in Table A.1.)

Algorithmic step fuzzy ARTMAP fuzzy ARTMAP with indicator vector
Prototype selection:
. : wjAA Wi AAAD
— choice function Ti(A) = Wi AA Ti(A,8) = Wi AAND
o+ |wj| o+ [WjAJ|
— vigilance test Wi AA|>plA] Wi AANS| > plANAG|
L earning:

— prototype update | Wi =B(AAW))+(1—-B)wy | Wj=B((AVE)AW)+ (1-PB)wy

as the input pattern in response to missing components. This approach circumvents a bias in the
order of prototype selections by F, nodes. The adjustments to the fuzzy ARTMAP algorithm
that realized the indicator vector strategy are summarized in Table 3.

To verify the effectiveness of this strategy, fuzzy ARTMAP with MT- and indicator vector
was trained using a randomly-selected 0.5% of the available training set from each radar type
class. (Recall from Section 5.2 that the available training subset consists of a random selection
of 50% of the pulses from each class. The remaining data forms the test set.) For each class in
the training set, a variable percentage, between 0% and 70%, of the components were randomly
removed from the patterns and declared to be “missing” (although, if a particular choice of
missing components would have left the pattern with no components, another random choice
was made). The classification rate and compression are shown in Figure 5 for the indicator
vector strategy, as well as for replacement by “1” and replacement by “0.” Also shown are
the results obtained when components are removed from the test set. Whether components are
missing during training or testing, the indicator vector strategy provides a simple and effective
means of handling the absence of components, as its performance degrades gracefully as a
function of the percentage of missing data.

Also noteworthy are the results obtained when there are no missing components. With a
randomly-selected 0.5% of the available training data from each class (about 130 pulses total),
the classification rate on the test set is 91.4%, compared to 99.6% when all the training data
(about 26000 pulses total) are used. The slow decline in accuracy is in part due to the uneven
distribution of pulses among radar type classes in the data set.

5.6 Familiarity Discrimination. An extension to fuzzy ARTMAP that allows for detec-
tion of patterns from unfamiliar classes is called ARTMAP-FD. The ARTMAP-FD algorithm
has been shown to effectively perform familiarity discrimination on simulated radar range pro-
files (Carpenter et al., 1997a), and radar pulse data (Granger et al., 1999a). In addition to the
classification rate on patterns from familiar classes, the performance of the classifier can be
measured in terms of a hit rate (H) — fraction of familiar-class test patterns correctly predicted
to belong to one of the familiar classes — and a false alarmrate (F) — fraction of unfamiliar-
class test patterns incorrectly predicted as familiar by the classifier.

5.6.1 ARTMAP-FD algorithm. With complement coding and fast learning ( = 1), the M-
dimensional prototype vector wj = (Wj1,Wj2, ...,Wjm) associated with F, layer category node |
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Figure 5: Average performance of fuzzy ARTMAP with MT-, over 20 simulation trials, using
strategies to manage input patterns with missing input components. (Error bars are standard
error of the sample mean.)

of fuzzy ARTMAP defines a hyperrectangle in the m-dimensional space of input pattern com-
ponents, with edges parallel to the coordinate axes. Such a hyperrectangle records the largest
and smallest component value of the training set patterns assigned category j. A pattern that is
associated with an F, node during testing is “completely familiar” if it falls within the hyper-
rectangle, and “less-than-completely familiar” to the extent that it falls outside. This notion can
be quantified by the familiarity measure:

TJ(A) |A/\WJ |
A pu— pu—
¢( ) TJmax |WJ |

(4)

where TN —| w; | /(a+ | wy |). The maximal value of Ty = TJ"@ is attained for an input a
if it lies inside the hyperrectangle associated with node J, for then | A Awj |=| wy |. In other
words, an input a that is assigned category J during testing has the maximum familiarity value
¢&(A) = 1if and only if a lies within hyperrectangle R;.

ARTMAP-FD is identical to fuzzy ARTMAP during training. During testing, ¢(A) is com-
puted for each input pattern a after fuzzy ARTMAP has selected node J, and tentatively pre-
dicted class K = k(J). An input a is declared to belong to a familiar class if the value of the
familiarity measure ¢(A) is greater than a decision threshold v. In this case, ARTMAP-FD out-
puts the prediction of class K for a. Otherwise (¢(A) <), input a is flagged as belonging to an
unfamiliar class, and ARTMAP-FD makes no prediction.

5.6.2 Familiarity threshold selection. The choice of a particular familiarity threshold y=T for
use during operations depends upon the relative cost of errors due to misses (patterns belonging
to familiar classes that the network flags as unfamiliar) and false alarms. Since familiarity dis-
crimination involves placing an input into one of two sets, familiar or unfamiliar, the Receiver
Operating Characteristic (ROC) formalism (Helstrom, 1995) can be used to measure the effec-
tiveness of ARTMAP-FD. Optimizing I" corresponds to choosing a point on the parameterized
ROC curve that is close to the upper left-hand corner of the unit square. This maximizes correct
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selection of familiar patterns (H) while minimizing incorrect selection of unfamiliar patterns
(F). Two methods for predicting a familiarity threshold I" value are described in (Carpenter et
al., 1997b). A variant of the “on-line threshold determination” method has been chosen for this
work and is now described.

During the first ARTMAP-FD training epoch, every time a category node J wins the com-
petition for a pattern a, fast learning expands R; just enough to enclose a. Before learning takes
place, ¢(A) is be computed, and can have a value less than one. The degree to which ¢(A) is
less than 1 reflects the distance from the training pattern to Rj. A training pattern successfully
coded by a category node (without reset) is taken to be representative of familiar test-set pat-
terns. The corresponding familiarity measure ¢(A) contributes to the generation of a training
hit rate curve, where H(y) equals the fraction of training inputs with ¢(A) > v. In contrast, a
reset event during the first training epoch resembles the arrival of an unfamiliar pattern during
testing, where reset occurs when a category node J that predicts class K wins the competition
for a pattern that actually belongs to a different class k, k # K. The set of ¢(A) values cor-
responding to these events are used to generate a training false-alarm rate curve, where F(y)
equals the fraction of match-tracking inputs with ¢(A) > v.

After training, the predicted familiarity threshold is given by I' = argmaxy{H (y) — F(v)}.
Predictive accuracy is improved by use of a reduced set of ¢(A) values in the training-set ROC
curve construction process; namely, training patterns that fall inside a hyperrectangle (¢(A) =
1), are not used because these exemplars tend to distort the miss-rate curve. In addition, the
first incorrect response to a training input is the best predictor of the network’s response to an
unfamiliar testing input, since sequential search will not be available during testing. Finally,
giving more weight to events occurring later in the training process improves accuracy. In this
paper, this is accomplished by computing the training curves H(7y) and F(y), and predicting the
threshold T, from the data presented only after the system has created a number of category
nodes equal to L (the number of training set classes). Note that this threshold determination
method requires storage of all of the training patterns, so as to obtain H(7y) and F () and thereby
predict T. For the sake of computational efficiency, it should be possible to approximate H ()
and F(y) from a reduced set of ¢(A) values which would be updated incrementally as new data
are obtained.

5.7 Learning of Unfamiliar Classes. With Learning of Unfamiliar Classes (LUC),
a classifier continues during the testing phase to adjust its weights via semi-supervised learn-
ing. The criteria for familiarity discrimination is also adjusted on-line, and when a test pattern
is flagged as unfamiliar, the classifier defines a new class. Subsequent test patterns may be
declared by the classifier to be “familiar” and classified as belonging either to classes encoun-
tered during training (i.e., training-set classes) or to the “newly-minted” classes; or they may
be declared to be “unfamiliar,” in which case another new class is defined. The hit rate for an
LUC classifier (H*) can be defined as the fraction of test patterns from training-set classes that
are correctly declared to belong to one of the training-set classes. The false alarm rate for an
LUC classifier (F*) is the fraction of unfamiliar-class (i.e., not encountered during the training
phase) test patterns not either flagged as unfamiliar nor assigned to a “new” class defined during
testing. An additional figure of merit for an LUC classifier is a “purity measure,” such as the
Rand clustering score (Hubert and Arabie, 1985), which rewards the classifier for learning the
right number of unfamiliar classes, and correctly assigning them to unfamiliar patterns.

The algorithm for fuzzy ARTMAP was modified as follows to incorporate LUC. First, in
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order to focus on the effects of LUC (as opposed to learning with missing class labels), the
weights associated with F, category nodes allocated during the training phase (training classes)
are kept at fixed values during testing. Only “new” F, category nodes created during the test
phase are allowed to change through slow learning (0 < B < 1).

In addition, to prevent the generation of an excessive number of new F, nodes, patterns that
are declared to be unfamiliar are given a “second chance” to be associated with an already-
existing new F, node before defining a new class. Specifically, a pattern a declared unfamiliar
by the network is subjected to a vigilance test at each of the new nodes. If it passes the test for
one or more of these nodes, it is associated with the node j,., among these new nodes which
has the strongest activation Tj,,,. If the pattern cannot in this way be associated with an already-
existing new node, and the node J to which the pattern was tentatively assigned is not a new
node, then a coactivation test is performed. If the activation level T; of node J is not stronger
than the activation level T;,, for all of the new nodes j.., by a sufficient amount — that is,
if Ty —Tj,,, < €co — then the pattern is associated with the node j,., for which T; — T, is
smallest. If either of these two tests is passed, then no weight adjustment takes place for wj,,,.
Only if neither of these options for association with an already-existing new node succeeds is a
new class defined.

When a new class is defined, a new F, category node J,.,, is allocated to encode the input
(wy,, < A), and linked to a new Fab map node K, through wﬁ‘n‘zw. Slow semi-supervised
learning subsequently adjusts the prototype weights of new F, nodes upon their assignment to
familiar patterns. Notice that newly-defined classes are interpreted differently: each new F; or
Fa node represents a fragment of data from an emitter mode that belongs to an unfamiliar radar
type.

Finally, fuzzy ARTMAP-LUC extends the on-line method to allow for enhancement of the
familiarity threshold I" from test-set patterns. If pattern a is declared familiar, ¢(A) is added
to the {¢} values used to generate the training set hit rate curve H*(y); otherwise ¢(A) is
added to the {¢} values used to generate the false alarm rate curve F*(7y). The threshold T =
argmaxy{H*(y) — F*(y)} is recomputed following each input pattern assignment. For faster
execution, it is possible to adjusts I" every time a pattern is assigned a new F, node; that is,
when W is modified.

5.8 Simulations with Familiarity Discrimination and Unfamiliar Classes.
In computer simulations, 13 out of the 15 radar types were declared to be familiar (thus train-
ing classes). Familiar class selection was performed at random, with the restriction that an
insufficient number of unfamiliar-class data patterns (less than a thousand) was not allowed.
A randomly-selected 50% of the data from each of the 13 training classes were presented to
the network during the training phase. The familiarity threshold I" was determined during the
training phase using the on-line method described in Section 5.6.2. Patterns remaining from the
13 training classes, plus all the patterns from the 2 unfamiliar radar type classes formed the test
set.

Average results obtained for fuzzy ARTMAP with FD (pure ARTMAP-FD) and for fuzzy
ARTMAP with FD and LUC are shown in Table 4. Overall results indicate that fuzzy ARTMAP
with FD has a high hit rate (99.60%), but only marginal performance with regards to avoiding
false alarms: 14.33% of patterns belonging to unfamiliar classes are mistakenly assigned fa-
miliar training classes. This is a consequence of the overlap, scattering, and uneven mixture of
pulses from different radar types. By defining new classes and assigning them to unfamiliar-
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Table 4: Average results, over the same 20 simulation trials, using ARTMAP-FD with and
without LUC. (Numbers in parentheses are the standard error of the sample mean.)

Evaluation criteria fuzzy ARTMAP with FD | fuzzy ARTMAP with FD and LUC
Hit rate 99.60% (0.07%) 99.63% (0.05%)
False alarm rate 14.33% (8.89%) 7.46% (4.25%)
Classification rate 99.51% (0.05%) 99.49% (0.05%)
Memory 806.2 (40.1) 931.1 (41.4)
Rand clustering score N/A 0.7640 (0.0597)

class patterns, LUC reduces this false alarm rate by about half, to 7.46%, without loss of accu-
racy.

On average, fuzzy ARTMAP with FD and LUC requires an additional 124.9 registers to
store the prototype vectors, and thus about 21 new F» (plus F2°) nodes to represent the different
emitter modes from the 2 unfamiliar classes. Despite the creation of these additional nodes, the
network’s predictive accuracy on data from familiar classes is not significantly degraded. The
moderate Rand score, 0.7640, indicates the ability of LUC to recover some of the true cluster
structure in data from the 2 unfamiliar classes.

6 Pattern Clustering

The objective of pattern clustering in the What-and-Where recognition architecture shown in
Figure 2 is to group patterns from the Where data stream into tracks. Impinging signals contain
information about emitter status, which may change in time. Desirable features for such on-line
clustering include the ability to initialize new tracks whenever new emitters are detected, to
adjust tracks in response to emitter maneuvers, and to delete tracks as emitters leave or stop
transmitting.

Several techniques can perform on-line sequential clustering. For instance, adaptive vec-
tor quantization (Gray, 1984) algorithms may be used if parameter values vary slowly. More
sophisticated tracking algorithms (Bar-Shalom and Li, 1993; Blackman, 1986) are needed to
update tracks for parameters that exhibit rapid linear or nonlinear variations. In this section,
on-line clustering of Brg and PA parameters is implemented by combining nearest-neighbor
matching with linear Kalman filtering. A breakdown of the recursive processing required for
on-line clustering is given in Figure 6. The three basic functions — data association, track
maintenance, and filtering and prediction — are now examined.

6.1 Data Association. An incoming pattern b from the Where data stream is initially
considered for association with existing tracks. This association involves computing a match
sh(b) between input b and the next predicted position of every track (h = 1,2,...,R) in the
Where environment. Assume that track positions are drawn independently and identically from
a mixture of Gaussian distributions, in which one distribution is associated with each track.
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Figure 6: Pattern clustering system based on nearest-neighbor matching and Kalman filtering.

Then, the match can be taken to be a probability, and written:

(b) = cexp{—3 (b0 AT (b~ %) ®)

(21)% |An|2

where M is the number of dimensions in the Where space, and X, and Ap, are, respectively, the
predicted position and covariance matrix for track h. Assuming that all tracks have equal prior
probabilities, the track h = H that maximizes Equation 5 is associated with b:

H :argmﬁx{sh(b):h:1,2,...,R}. (6)

Kalman filtering (Bar-Shalom and Li, 1993; Blackman, 1986) is employed to predict the
next position Xn, and covariance matrix Ay of each track h. Recall from Section 3 that the
usual clustering is bypassed when b corresponds to a PDW that has been assigned a previously-
established track through TOA deinterleaving. In this case, b retains its track, and does not
perform data association, nor track maintenance. Kalman filtering and prediction are however
still performed in order to sustain a consistent description of all active emitters in the environ-
ment.

6.2 Track Maintenance. Once associated with pattern b, track H undergoes two tests. In
the first, the match sy (b) is compared to a threshold & that regulates the creation of new tracks,
dc € [0,1]. If sy(b) > &, then the test is passed. In the second test, the cumulative average of

match value S4 is computed: )
2 SH
SH o (7)
where Qy is the number of patterns to which track H was assigned. Sy is compared to another
threshold &4, that regulates the overall quality of existing tracks, 84 € [3¢,1]. If S4 > &g, then
the test is passed. If both tests are passed, then track H is assigned to b.

If either test is failed, then a new track is initiated for pattern b. When a new track H is
initiated, sy (b) = 1, Xy is set equal to b and Ay is set equal to o?lm, where ly is the identity
matrix, and ¢ = (c1,62,...,0Mm) represents the resolution of Where parameter measurements.
Furthermore, if the second test is failed (i.e., S4 < dq), then the previously-established track H
is deleted.

After assignment of H to either an existing or newly-initiated track, any track h that has not
been assigned to an input pattern for a time greater than an ageout parameter t > 0 is deleted.
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That is, a track is deleted if:
TOA(b) — TOAL > T, (8)

where TOAy, is the time at which track h was last assigned to an input. Deleting a track frees
up resources, and reduces the chances of future miss-assignments. The track number H is the
output from track maintenance.

A high quality track is one that is assigned pulses transmitted, to a large extent, from the
same emitter. To ensure high quality tracks, new tracks are initiated rapidly by setting 6. close
to 1, whereas poor quality tracks are deleted more slowly (as Sy progressively declines). This
reduces ambiguity during track assignment, but may lead to the initiation of a greater number
of tracks, and thus predictions K€ based on the accumulation of short sequences of pulses.

6.3 Kalman Filtering and Prediction. Kalman filtering and prediction is implemented
with a bank of standard Kalman filters, one per track. Every track his associated with a Kalman
filter, and is represented by a unimodal Gaussian distribution. Upon the assignment of a track
H to b, the filter of H is employed to predict its next position and covariance matrix.

7 Sequential Evidence Accumulation

Sequential evidence accumulation exploits Where information by combining the responses of
pattern clustering with neural network classification. In short, the classifier’s responses are
accumulated according to track, thus offering predictions from multiple views of an emitter.

7.1 Fusion of What and Wher e information. As mentioned in Section 6, clustering
produces a track number h = H for each pattern b from the Where data stream. The track
number indicates the specific emitter assigned to b.

Sequential evidence accumulation is implemented by means of identical evidence accumu-
lation fields Ff, F5, ..., F§, where each field Ff is connected to a track h, and replicates the neural
network classifier’s output field, that is, contains L nodes, one per radar type class. The classi-
fier’s output nodes are linked to their respective nodes in all fields F7, h=1,2,...,R Each field
F< incorporates a short-term memory capable of accumulating its input patterns. The memory
for K¢ is characterized by a field accumulation pattern Tf = (15, T,%,...., T ) -

Upon initiation of a track h, T} is set equal to 0. When track h = H is assigned to pat-
tern b, FS becomes active. The activity pattern y output by the classifier accumulates onto FS
according to:

(TR) =Ta+y™®. 9)

Accumulation of activity patterns in F,¥ continues until track h is deleted.
For a given input PDW, the activity pattern y© output from evidence accumulation is equal
to TF,. The radar type is predicted to be:

K€ = arg mkgx{Tﬁke k®=1,2,....L} (10)

Besides discrete prediction, evidence accumulation fields can be used to feed an emitter table
in the signal separator of Figure 1. The fields can also describe multiple radar types associated
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with same Where features, for instance the same location, which can assist in linking emitters
to platforms.

7.2 Prediction from multiple views. Sequential evidence accumulation may improve
the overall classification rate of the recognition system, since the accumulated prediction K¢
is tolerant to errors committed by the neural network classifier (prediction K). The concept of
predicting classes from multiple “views” of a source, that are accumulated through time, has
been successfully developed in a number of neural network architectures (Baloch and Wax-
man, 1991; Bradski and Grossberg, 1995; Carpenter and Ross, 1995). In the present case,
information on the origin of input patterns is provided through clustering of the Where data.
The effectiveness of evidence accumulation here depends on the quality of the tracks that are
computed as in Section 6.

7.3 Simulations with Evidence Accumulation. This section summarizes simula-
tions of how the entire What-and-Where system performs on the radar pulse data set. Software
was written in the Matlab language to implement the neural network classification, clustering
and evidence accumulation modules, as well as their integration. The parameter settings used
for clustering were 6. = 0.98, 84 = 0+ 0.01, and T = 10 ms. The neural network classifier was
fuzzy ARTMAP with negative match tracking (MT—), indicator vector strategy (IVS), famil-
iarity discrimination (FD) and learning of unfamiliar classes (LUC), as described in Section 5.
The vigilance and coactivation parameters used for associating unfamiliar patterns with already-
existing new nodes in LUC were p = 0.8 and ¢, = 0.05. A learning rate of § = 0.5 was used
for semi-supervised adjustment of prototype weights for new nodes.

Patterns presented to the fuzzy ARTMAP classifier contained 3 What parameters — namely
PRI, PW and RF — whereas patterns presented to the clustering module contained 2 Where
parameters — namely Brg and PA. The system normally receives the track number and PRI
value for PDWs to which a track was assigned by the TOA deinterleaver. TOA deinterleaving
is a difficult task due to the agility (jitter, stagger, etc.) of the PRI in modern radar systems. For
simulation purposes, it was assumed that TOA deinterleaving can, during on-line operation, be
reliably achieved only for constant PRIs. Approximately 30,000 pulses from the data set belong
to constant PRI emitters, and the rest (about 22,000 pulses) belong to complex PRI emitters.

During fuzzy ARTMARP training, all What patterns had a PRI component. For emitters with
complex PRI patterns, the PRI values were computed as in Section 5. During testing, the PRI
components were declared missing from test-set patterns that belonged to emitters with complex
PRI patterns. In addition, a randomly-selected 10% of the What components from each emitter
mode were also declared missing. The IVVS was used by fuzzy ARTMAP to deal with missing
components.

For emitters with constant PRI, the PRI values used for both training and testing were mean
PRI values, estimated using a moving average that accounts for dropped pulses. Assume that
the TOA deinterleaver has correctly sorted the ny pulses belonging to emitter mode k, and
computed the PPIy(i) and q(i) values for i = 2,3, ..., n,, where g(i) is the closest multiple of
the nominal PRIy value (taken from a PRI table for emitter mode k) to the PPIy(i) value; namely
Ok(i) = argming{q: |q- PRIk —PPI(i)| : q=1,2,3...}. The moving average is:

PRI - 3 , 1)
m=i—(1+1
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where A is the number of pulses in the moving average window. Observing the PPl of pulses
inside a window defined by the last 5 consecutive PRIs is consistent with the clustering param-
eter T = 10ms, which corresponds to 5 times the longest nominal PRI value that is expected. If
the PPI elapsed for a pulse goes beyond this window, the pulse is assumed to belong to the next
burst of pulses from the emitter.

To account for the chronological evolution of the environment, the training set was formed
by selecting the first 0.5% of data encountered from each emitter mode in TOA order. Further-
more, this training data was taken only from the emitter modes corresponding to 13 of the 15
radar types selected at random, and declared to be familiar. In practice, this could correspond
to training the neural network classifier on the first few bursts of pulses intercepted from each
familiar-class emitter. After training, all the remaining data from the 13 familiar classes (99.5%
from each emitter mode), plus all the patterns from the 2 unfamiliar classes, were presented
to the recognition system in TOA order for prediction. To deal with missing classes during
training, FD and LUC (as described in Section 5) were used. When applied with the 1VS, the
familiarity measure of Equation 4 becomes:

| AAWIAS |
When using fuzzy ARTMAP with FD alone, evidence accumulation of responses y2 onto field
R$ occurs only if the input a is declared familiar. Using fuzzy ARTMAP with FD and LUC, ev-
idence accumulation always occurs since new classes are defined for unfamiliar-class patterns.
To support the ability to accumulate unfamiliar-class patterns, whenever a new class is defined,
a new node is initialized within each evidence accumulation field F°, h=1,2,...,R as well as
in the > and F20 layers.

The performance of the What-and-Where system as a function of the amount of data used
for training is summarized in Figure 7. The amount of data is a randomly-selected percentage
of patterns from each emitter mode in the training subset. This percentage was varied between
10% and 100% of the training data (between 0.05% and 0.5% of the entire data set). Results
obtained with the fuzzy ARTMAP with MT- and IVS, and with KNN classifiers, are included
for comparison. When components are missing, test-set patterns are classified with kNN on the
basis of parameters that are present.

Figure 7(a) indicates that the What-and-Where system, and thus the fusion of What and
Where information, significantly improves the classification rate of fuzzy ARTMAP with MT-
/IVS on familiar-class patterns by about 2%. The system achieves a classification rate of about
98% with a training set consisting of as little as 0.15% of the whole data set, or about 80 pulses.
This level of performance is attained along with a capability for detecting and learning patterns
from unfamiliar classes. When trained on just 0.5% of the data per familiar class, the recognition
system vyields an average hit rate of H* = 96.9% and a false alarm rate of F* = 12.9% on the
test subset.

The notion that additional training examples beyond a certain point become “redundant” is
borne out of Figure 7(b), which shows memory growing as the number of training patterns is
increased. The figure also shows memory cost due to defining new classes during testing. When
trained on 0.5% of the data per familiar-class emitter modes, the system creates on average 5
new nodes on F», F&, and all F° layers. The Rand clustering quality score of the unfamiliar-
class patterns assigned to these nodes is on average 0.73. This is a slight improvement to the
score of 0.70 obtained with fuzzy ARTMAP with MT-/FD/LUC.
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Figure 7: Average performance, over 20 simulation trials, of the What-and-Where system. (Er-
ror bars are standard error of the sample mean.) (a) (b) Memory requirements during training.

8 Conclusions

A novel What-and-Where architecture has been proposed for recognition and tracking of radar
emitters for Electronic Support Measures (ESM). This architecture combines a neural network
classifier, an on-line clustering algorithm, and an evidence accumulation module. Once trained
on samples of data gathered in the field of operation, the neural network classifier can predict
the radar type of intercepted pulses based on their What parameters. Meanwhile, the clustering
algorithm separates these pulses according to emitter based on their Where parameters. The evi-
dence accumulation module permits fusion of the classifier’s What responses with the clustering
algorithm’s Where estimates, and thus allows prediction of the radar type from classifications
along an entire emitter trajectory. For proof-of-concept computer simulations using a radar data
set, a particular realization of the recognition system has been considered. It consists in using
a variant of fuzzy ARTMAP for classification, and nearest-neighbor matching with a bank of
Kalman filters for on-line clustering.

Simulations results show that fuzzy ARTMAP with negative match tracking (MT-), a core
concept of the ARTMAP-IC algorithm (Carpenter and Markuzon, 1998), consistently delivers
a high level of accuracy and compression on the radar pulse data set, even when the amount of
training data is limited. Compared to several other ARTMAP variants, as well as the reference
RBF and kNN classifiers, it yields one of the best classification rates, yet requires among the
least resources (shortest convergence time and least storage for prototypes) and computational
complexity for on-line predictions. The MT- feature allows fuzzy ARTMAP to converge nat-
urally, by circumventing a node proliferation problem that can arise when identical or nearly-
identical input patterns in the training data correspond to different classes. Modifications of
fuzzy ARTMAP with MT- have also been introduced for dealing with missing components
of the input pattern, and missing classes during training. The indicator vector strategy (IVS)
provides an effective means of processing partial input patterns, whenever components of the
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data set are missing during training or testing. Familiarity discrimination (FD) allows fuzzy
ARTMAP to detect patterns belonging to unfamiliar classes during training and testing, and
enables learning of unfamiliar classes (LUC) to take place during testing.

Computer simulations that test the entire What-and-Where system improve accuracy Sig-
nificantly over those obtained with fuzzy ARTMAP with MT- and IVS, and with kNN, while
also detecting and learning patterns from unfamiliar classes. These results support the gen-
eral approach of integrating What and Where information via evidence accumulation, and offer
promise for application in autonomous ESM systems which may be subjected to complex, in-
complete, and overlapping radar data.
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A Appendix A

A.1 ARTMAP Neural Network Classifiers. ART-EMAP (Stage 1) and ARTMAP-
IC extend fuzzy ARTMAP to produce a distributed activation of coded F, nodes during testing.
Furthermore, ARTMAP-IC biases distributed test set predictions according to the number of
times F, nodes are assigned to training set patterns. It also uses negative match tracking (i.e.,
negative € values), to address the problem of inconsistent cases, whereby identical training set
patterns correspond to different classes labels. After an incorrect prediction during training, the
vigilance parameter is raised just enough to induce a search for another internal category node
J, and then lowered by a small amount € > 0.

Gaussian ARTMAP represents each category j as a separable Gaussian density function,
defined by its mean pj = (Hj1,Hj2,---,Hjm) and its standard deviation 6; = (6j1,0j2,...,0jm)
vectors. During training, the number of committed F, nodes, N; grows. All committed F,
nodes that pass the vigilance test for pattern a activate, and distribute a pattern of activity
y = (Y1,¥2,---,Yn.). Match tracking and learning are performed according to the relative activa-
tion over the “ensemble” Ex of F, nodes linked to the predicted Fa node K. The relative acti-
vation over E is defined by the distributed pattern y* = (y1, Y5, ---, Yy, ), Where yi = Yi/ Ziee Vi
only if j € Ex, and yj = 0 otherwise. Finally, the learning rate of category j is gradually de-
creased according to y’j*/nj. Table 5 highlights the main algorithmic differences between fuzzy
ARTMAP and Gaussian ARTMAP.

A.2 Distributing and Biasing Test Set Activation. Simulation trials showed that
the Q-max rule (Carpenter and Markuzon, 1998) for distributing F, layer activation in the ART-
EMAP (Stage 1) and ARTMAP-IC classifiers gives better results than either power or threshold
rules (Carpenter and Ross, 1995) with the radar data. The following choice of Q was found to
give good results: Q = min{[N¢/2L],2L}, where L is the number of classes (15 in this study)
and N is the number of committed F, nodes. In particular, bounding Q to be below 2L reduces
performance fluctuations.

Regardless of distributed activation, fuzzy ARTMAP performs better than its two exten-
sions, ART-EMAP (Stage 1) and ARTMAP-IC, on the radar data; see Table 5. Distributed
activation of the test patterns (in ART-EMAP, for example) yields more prediction errors be-
cause radar types in the data set can be dispersed, fragmented, and overlap one another. These
data properties work against class predictions that are based on the distribution of strongly ac-
tivated F» nodes among radar types, rather than on the most active F» node. Indeed, an F2
class node k that receives a very strong activation from one F, node may have weaker overall
activation than an F2 class node h that receives a moderately strong activation from several
F nodes. Perhaps this explains why KNN gives its best performance for k = 1, and degrades
slowly as K is increased. For example, its classification rate is 0.992 for k =9 and dsioc-

Gaussian ARTMAP (Table 5) involves training and testing with a distributed pattern of
activity. F layer activation is distributed among nodes that pass the vigilance test. When
training, each category j € Ex learns according to its relative activation for a. The learning rate
of each category j is also gradually decreased as a function of nj. F, nodes learn a Gaussian
mixture model of the input space. Although computationally intensive, this learning strategy
allows Gaussian ARTMAP to achieve high classification rates.
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ARTMAP-IC and Gaussian ARTMAP accumulate weighting factors that depend on the
quantity of training subset patterns assigned to each F, node. This frequency information is
used to bias predictions towards classes assigned the most training patterns. This is a problem
in radar ESM since some critical radars transmit very few pulses, while others transmit hundreds
of thousands of pulses per second. Biasing prototype choices according to patterns in the TOA
of pulses would, for instance, be more appropriate.

Fuzzy ARTMAP with MT- breaks ties (during prototype selection) by choosing the F, node
with the smallest index. Even though it is not necessarily appropriate in our context, it may be
useful on other data sets for fuzzy ARTMAP with MT- to use instance-weighted outputs only
in the case where winning nodes are “inconsistent-case siblings,” since in this case a basis on
which to choose one of the winning nodes over another may be the frequency with which they
were winning nodes during training. When using fuzzy ARTMAP with “limited instance count-
ing,” instances are still counted for all F, nodes. However, it distributes activation weighted by
the instance counts if and only if nodes J are a set that code for the same test pattern but map
to different classes. Limited IC does not harm accuracy on the radar data set (Granger et al.,
1999b).

A.3 Prototype representations. Given the quantization of parameter measurements,
intercepted radar pulses fall into resolution cells. The measurement uncertainty of the three
parameters used (RF, PRI and PW) is uncorrelated, therefore the radar type definitions are
essentially rectangular. ART-EMAP, ARTMAP-IC and fuzzy ARTMAP use hyperrectangles
to represent prototypes in the input space, and appear to be a better match for this type of
data. Gaussian ARTMAP and RBF, on the other hand, represent prototypes with Gaussian
density functions. This results in substantial fragmentation of radar type classes, and in low
compression for these two classifiers.
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