US 20080117220A1

a2y Patent Application Publication o) Pub. No.: US 2008/0117220 A1

a9 United States

Gorchetchnikov et al.

43) Pub. Date: May 22, 2008

(54) GRAPHIC PROCESSOR BASED
ACCELERATOR SYSTEM AND METHOD

Publication Classification

(51) Imt.CL
. . GO6T 1/20 (2006.01)
(75) Inventors: Anatoli Gorchetchnlkm.f, Belmont, GO6F 15/76 (2006.01)
MA (US); Heather Marie Ames, (52) US.Cl oo, 345/503; 345/522; 345/536
South Boston, MA (US);
Massimiliano Versace, South (57 ABSTRACT
Bost9n§ MA @S); ngrizio An accelerator system is implemented on an expansion card
Santini, Jamaica Plain, MA (US) comprising a printed circuit board having (a) one or more
graphics processing units (GPU), (b) two or more associated
Correspondence Address: memory banks (logically or physically partitioned), (c) a
HOUSTON ELISEEVA specialized controller, and (d) a local bus providing signal
4 MILITIA DRIVE, SUITE 4 coupling compatible with the PCI industry standards (this
LEXINGTON, MA 02421 includes but is not limited to PCI-Express, PCI-X, USB 2.0,
or functionally similar technologies). The controller handles
. . most of the primitive operations needed to set up and control
(73) Assignee: Neurala LLC, Boston, MA (US) GPU computation. As a result, the computer’s central pro-
cessing unit (CPU) is freed from this function and is dedicated
(21) Appl. No.: 11/860,254 to other tasks. In this case a few controls (simulation start and
stop signals from the CPU and the simulation completion
(22) Filed: Sep. 24,2007 signal back to CPU), GPU programs and input/output data are
the information exchanged between CPU and the expansion
S card. Moreover, since on every time step of the simulation the
Related U.S. Application Data results from the previous time step are used but not changed,
(60) Provisional application No. 60/826,892, filed on Sep. the results are preferably transferred back to CPU in parallel
25, 2006. with the computation.
140 200
v o 190 % 250
{ &
| o 210 Vi
DISK[K=—>) r
SHADER MEMORY 250a
BANK
280 @ 220
\ [/
120 0 250b
/ — - g,
- 2 5 {CONTROLLER @ TEXTURE
cruk= E K=>| B K= | MEMORY
5 7 £
7 g | BANK
a g ﬁ 250¢
130
& GPu [
RAM &=
L. N

240

May 22, 2008 Sheet 1 of 5 US 2008/0117220 A1

Patent Application Publication

170

FIG. 1

Patent Application Publication = May 22, 2008 Sheet 2 of 5 US 2008/0117220 A1

fan]
& T
. =Ko}
E =l
o o iLd i m & -
% g = 8 2
g : 3
2 I~ Q'\‘;\ f;‘{ﬁ
Y & /
% @ g ooon
SIS
© & z o~
2 3. >
% | poepeil {Od =
{ @
[§]
8 _
‘\j sSNg Yoo |
o
g ﬁ
N SNY WHLSAS

N\

140
DISK KG——>
120
CPU I
130

RAM K>

Patent Application Publication = May 22, 2008 Sheet 3 of 5 US 2008/0117220 A1

707 T }
CPU 120 Start :Expansion Card . =
: 304 : :

Data Ouipur ifsor lntaraction ECompuainngt .
Siream 301 : Siream 302 Stienni 308 .
308 307 : 320 :

X : Graphic User : Controller :
Disk 11O -
nitiglizati Interface : initialization -
initialization Initialization .
306 : "

Graphic User Interface : .

305 309 525 .

Input Parser Data . External input :

inteursi{ion Texture = P! textures from RAM to 4

Generator . texture memory bank :

310 : 326 :

Population Parser| Data Population shader :

Shader Generator| ‘ | binaries from RAM to .

and Compiler i shader memory bank :

: ;

311 ; .

Simulation . :

Initialization : :

: ;

: 1 330 :

312 l 316 : :

Progress Input Parser 3 5 B

: R Text Lo aiiia: X .

317 monitor G;egs)r . » Compu.tatlon Z

I i (see Fig. 4) .

Data output | gua; : .
to Disk " v 314 : :

: 3R Results Output Data Data + :

display < Accumulation |« s

in RAM - -

Last 318 K :
iteration? . k .
End 315 . -

Yes N Last B :
390 iteration?, 3 -

Yes 350 :

FIG 3

Patent Application Publication = May 22, 2008 Sheet 4 of 5 US 2008/0117220 A1

Expansion Card 4, 401
420
Simulation
start
Data Output Computationsa : {dats Input
Substream Sybstream : Sihatream
402 © 403 ;| 435 : 404

Input textures from
texture memory
bank to GPU

l 450

Shaders from
shader memory
bank to GPU

L T EE NET I THE T TRY ST Y BE W TRR R RN | PO TR)

L h

470 Shader GPU

execution 4G
Output texture
upload to texture
memory bank
440
New external input Data
textures from RAM tol«g
texture memory bank
430 ;455 T
Wait for swap Swap input Z Wait for swap
of inpul‘!output I S : and OUtPUt AN of input/output
texture pointers ; texture pointers : texture pointers
Last
Data Input textures from No . ;
P texture memory iteration?
bank to RAM
Yes

Wait for all three
streams of M
execution to finish

499
End

FIG 4

Patent Application Publication

May 22, 2008 Sheet 5 of 5

&
g

2

5
8

1

4
7

i ¢
oy
P
4 B
& 4

&

3

2

5
8

1

=t |0 =
IS
.
— 0

3

2
5
8

Bold lines show the packing of data into pixels with four color components.

US 2008/0117220 A1

US 2008/0117220 Al

GRAPHIC PROCESSOR BASED
ACCELERATOR SYSTEM AND METHOD

RELATED APPLICATIONS

[0001] This application claims the benefit under 35 USC
119(e) of U.S. Provisional Application No. 60/826,892, filed
onSep. 25, 2006, which is incorporated herein by reference in
its entirety.

BACKGROUND OF THE INVENTION

[0002] Graphics Processing Units (GPUs) are found in
video adapters (graphic cards) of most personal computers
(PCs), video game consoles, workstations, etc. and are con-
sidered highly parallel processors dedicated to fast computa-
tion of graphical content. With the advances of the computer
and console gaming industries, the need for efficient manipu-
lation and display of 3D graphics has accelerated the devel-
opment of GPUs.

[0003] In addition, manufacturers of GPUs have included
general purpose programmability into the GPU architecture
leading to the increased popularity of using GPUs for highly
parallelizable and computationally expensive algorithms out-
side of the computer graphics domain. When implemented on
conventional video card architectures, these general purpose
GPU (GPGPU) applications are not able to achieve optimal
performance, however. There is overhead for graphics-related
features and algorithms that are not necessary for these non-
video applications.

SUMMARY OF THE INVENTION

[0004] Numerical simulations, e.g., finite element analysis,
of large systems of similar elements (e.g. neural networks,
genetic algorithms, particle systems, mechanical systems) are
one example of an application that can benefit from GPGPU
computation. During numerical simulations, disk and user
input/output can be performed independently of computation
because these two processes require interactions with periph-
eral hardware (disk, screen, keyboard, mouse, etc) and put
relatively low load on the central processing unit/system
(CPU). Complete independence is not desirable, however;
user input might affect how the computation is performed and
even interrupt it if necessary. Furthermore, the user output
and the disk output are dependent on the results of the com-
putation. A reasonable solution would be to separate input/
output into threads, so that it is interacting with hardware
occurs in parallel with the computation. In this case whatever
CPU processing is required for input/output should be
designed so that it provides the synchronization with compu-
tation.

[0005] In the case of GPGPU, the computation itself is
performed outside of the CPU, so the complete system com-
prises three “peripheral” components: user interactive hard-
ware, disk hardware, and computational hardware. The cen-
tral processing unit (CPU) establishes communication and
synchronization between peripherals. Each of the peripherals
is preferably controlled by a dedicated thread that is executed
in parallel with minimal interactions and dependencies on the
other threads.

[0006] A GPU on a conventional video card is usually
controlled through OpenGL, DirectX, or similar graphic
application programming interfaces (APIs). Such APIs estab-
lish the context of graphic operations, within which all calls to
the GPU are made. This context only works when initialized

May 22, 2008

within the same thread of execution that uses it. As a result, in
a preferred embodiment, the context is initialized within a
computational thread. This creates complications, however,
in the interaction between the user interface thread that
changes parameters of simulations and the computational
thread that uses these parameters.

[0007] A solution as proposed here is an implementation of
the computational stream of execution in hardware, so that
thread and context initialization are replaced by hardware
initialization. This hardware implementation includes an
expansion card comprising a printed circuit board having (a)
one or more graphics processing units, (b) two or more asso-
ciated memory banks that are logically or physically parti-
tioned, (c) a specialized controller, and (d) a local bus pro-
viding signal coupling compatible with the PCI industry
standards (this includes but is not limited to PCI-Express,
PCI-X, USB 2.0, or functionally similar technologies). The
controller handles most of the primitive operations needed to
set up and control GPU computation. As a result, the CPU is
freed from this function and is dedicated to other tasks. In this
case a few controls (simulation start and stop signals from the
CPU and the simulation completion signal back to CPU),
GPU programs and input/output data are the information
exchanged between CPU and the expansion card. Moreover,
since on every time step of the simulation the results from the
previous time step are used but not changed, the results are
preferably transferred back to CPU in parallel with the com-
putation.

[0008] In general, according to one aspect, the invention
features a computer system. This system comprises a central
processing unit, main memory accessed by the central pro-
cessing unit, and a video system for driving a video monitor in
response to the central processing unit as is common. The
computer system further comprises an accelerator that uses
input data from and provides output data to the central pro-
cessing unit. This accelerator comprises at least one graphics
processing unit, accelerator memory for the graphic process-
ing unit, and an accelerator controller that moves the input
data into the at least one graphics processing unit and the
accelerator memory to generate the output data.

[0009] Inthe preferred, the central processing unit transfers
the input data for a simulation to the accelerator, after which
the accelerator executes simulation computations to generate
the output data, which is transferred to the central processing
unit. Preferably, the accelerator controller dictates an order of
execution of instructions to the at least one graphics process-
ing unit. The use of the separate controller enables data trans-
fer during execution such that the accelerator controller trans-
fers output data from the accelerator memory to main
memory of the central processing unit.

[0010] In the preferred embodiment, the accelerator con-
troller comprises an interface controller that enables the
accelerator to communicate over a bus of the computer sys-
tem with the central processing unit.

[0011] Ingeneral accordingto another aspect, the invention
also features an accelerator system for a computer system,
which comprises at least one graphics processing unit, accel-
erator memory for the graphic processing unit and an accel-
erator controller for moving data between the at least one
graphics processing unit and the accelerator memory.

[0012] Ingeneral accordingto another aspect, the invention
also features a method for performing numerical simulations
in a computer system. This method comprises a central pro-
cessing unit loading input data into an accelerator system

US 2008/0117220 Al

from main memory of the central processing unit and an
accelerator controller transferring the input data to a graphics
processing unit with instructions to be performed on the input
data. The accelerator controller then transfers output data
generated by the graphic processing unit to the central pro-
cessing unit as output data.

[0013] The above and other features of the invention
including various novel details of construction and combina-
tions of parts, and other advantages, will now be more par-
ticularly described with reference to the accompanying draw-
ings and pointed out in the claims. It will be understood that
the particular method and device embodying the invention are
shown by way of illustration and not as a limitation of the
invention. The principles and features of this invention may
be employed in various and numerous embodiments without
departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Intheaccompanying drawings, reference characters
refer to the same parts throughout the different views. The
drawings are not necessarily to scale; emphasis has instead
been placed upon illustrating the principles of the invention.
Of the drawings:

[0015] FIG. 1 is a schematic diagram illustrating a com-
puter system including the GPU accelerator according to an
embodiment of the present invention;

[0016] FIG.2 is block diagram illustrating the architecture
for the GPU accelerator according to an embodiment of the
present invention;

[0017] FIG. 3 is ablock/flow diagram illustrating an exem-
plary implementation of the top level control of the GPU
accelerator system;

[0018] FIG. 4 is a flow diagram illustrating an exemplary
implementation of the bottom level control of the CPU accel-
erator system that is used to execute the target computation;
and

[0019] FIG. 5 is an example population of nine computa-
tional elements arranged in a 3x3 square and a potential
packing scheme for texture pixels, according to an implemen-
tation of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED

EMBODIMENTS
[0020] The Hardware
[0021] FIG. 1 shows a computer system 100 that has been

constructed according to the principles of the present inven-
tion.

[0022] In more detail, the computer system 100 in one
example is a standard personal computer (PC). However, this
only serves as an example environment as computing envi-
ronment 100 does not necessarily depend on or require any
combination of the components that are illustrated and
described herein. In fact, there are many other suitable com-
puting environments for this invention, including, but not
limited to, workstations, server computers, supercomputers,
notebook computers, hand-held electronic devices such as
cell phones, mp3 players, or personal digital assistants
(PDAs), multiprocessor systems, programmable consumer
electronics, networks of any of the above-mentioned comput-
ing devices, and distributed computing environments that
including any of the above-mentioned computing devices.
[0023] In one implementation the GPU accelerator is
implemented as an expansion card 180 includes connections

May 22, 2008

with the motherboard 110, on which the one or more CPU’s
120 are installed along with main, or system memory 130 and
mass/non volatile data storage 140, such as hard drive or
redundant array of independent drives (RAID) array, for the
computer system 100. In the current example, the expansion
card 180 communicates to the motherboard 110 via a local
bus 190. This local bus 190 could be PCI, PCI Express,
PCI-X, or any other functionally similar technology (depend-
ing upon the availability on the motherboard 110). An exter-
nal version GPU accelerator is also a possible implementa-
tion. In this example, the external GPU accelerator is
connected to the motherboard 110 through USB-2.0, IEEE
1394 (Firewire), or similar external/peripheral device inter-
face.

[0024] The CPU 120 and the system memory 130 on the
motherboard 110 and the mass data storage system 140 are
preferably independent of the expansion card 180 and only
communicate with each other and the expansion card 180
through the system bus 200 located in the motherboard 110. A
system bus 200 in current generations of computers have
bandwidths from 3.2 GB/s (Pentium 4 with AGTL+, Athlon
XP with EV6) to around 15 GB/s (Xeon Woodcrest with
AGTL+, Athlon 64/Opteron with Hypertransport), while the
local bus has maximal peak data transfer rates ot 4 GB/s (PCI
Express 16) or 2 GB/s (PCI-X 2.0). Thus the local bus 190
becomes a bottleneck in the information exchange between
the system bus 200 and the expansion card 180. The design of
the expansion card and methods proposed herein minimizes
the data transfer through the local bus 190 to reduce the effect
of this bottleneck.

[0025] The system memory 130 is referred to as the main
random-access memory (RAM) in the description herein.
However, this is not intended to limit the system memory 130
to only RAM technology. Other possible computer storage
media include, but are not limited to ROM, EEPROM, flash
memory, or any other memory technology.

[0026] Inthe illustrated example, the GPU accelerator sys-
tem is implemented on an expansion card 180 on which the
one or more GPU’s 240 are mounted. It should be noted that
the GPU accelerator system GPU 240 is separate from and
independent of any GPU on the standard video card 150 or
other video driving hardware such as integrated graphics
systems. Thus the computations performed on the expansion
card 180 do not interfere with graphics display (including but
not limited to manipulation and rendering of images).
[0027] Various brand of GPU are relevant. Under current
technology, GPU’s based on the GeForce series from
NVIDIA Corporation or the Catalyst series from ATI/Ad-
vanced Micro Devices, Inc.

[0028] The output to a video monitor 170 is preferably
through the video card 150 and not the GPU accelerator
system 180. The video card 150 is dedicated to the transfer of
graphical information and connects to the motherboard 110
through a local bus 160 that is sometimes physically separate
from the local bus 190 that connects the expansion card 180 to
the motherboard 110.

[0029] FIG. 2 is a block diagram illustrating the general
architecture of the GPU accelerator system and specifically
the expansion card 180 in which at least one GPU 240 and
associated memories 210 and 250 are mounted. Electrical
(signal) and mechanical coupling with a local bus 190 pro-
vides signal coupling compatible with the PCI industry stan-
dards (this includes but is not limited to PCI, PCI-X, PCI
Express, or functionally similar technology).

US 2008/0117220 Al

[0030] The GPU accelerator further preferably comprises
one specifically designed accelerator controller 220. Depend-
ing upon the implementation, the accelerator controller 220 is
field programmable gate array (FPGA) logic, or custom built
application-specific (ASIC) chip mounted in the expansion
card 180, and in mechanical and signal coupling with the
GPU 240 and the associated memories 210 and 250. During
initial design, a controller can be partially or even fully imple-
mented in software, in one example.

[0031] The controller 220 commands the storage and
retrieval of arrays of data (on a conventional video card the
arrays of data are represented as textures, hence the term
‘texture’ in this document refers to a data array unless speci-
fied otherwise and each element of the texture is a pixel of
color information), execution of GPU programs (on a con-
ventional video card these programs are called shaders, hence
the term ‘shader’ in this document refers to a GPU program
unless specified otherwise), and data transfer between the
system bus 200 and the expansion card 180 through the local
bus 190 which allows communication between the main CPU
120, RAM 130, and disk 140.

[0032] Two memory banks 210 and 250 are mounted on the
expansion card 180. In some example, these memory banks
separated in the hardware, as shown, or alternatively imple-
mented as a single, logically partitioned memory component.
[0033] The reason to separate the memory into two parti-
tions 210 250 stems from the nature of the computations to
which the GPU accelerator system is applied. The elements of
computation (computational elements) are characterized by a
single output variable. Such computational elements often
include one or more equations. Computational elements are
same or similar within a large population and are computed in
parallel. An example of such a population is a layer of neurons
in an artificial neural network (ANN), where all neurons are
described by the same equation. As a result, some data and
most of the algorithms are common to all computational
elements within population, while most of the data and some
algorithms are specific for each equation. Thus, one memory,
the shader memory bank 210, is used to store the shaders
needed for the execution of the required computations and the
parameters that are common for all computational elements
and is coupled with the controller 220 only. The second
memory, the texture memory bank 250, is used to store all the
necessary data that are specific for every computational ele-
ment (including, but not limited to, input data, output data,
intermediate results, and parameters) and is coupled with
both the controller 220 and the GPU 240.

[0034] The texture memory bank 250 is preferably further
partitioned into four sections. The first partition 250a is
designed to hold the external input data patterns. The second
partition 25056 is designed to hold the data textures represent-
ing internal variables. The third partition 250c¢ is designed to
hold the data textures used as input at a particular computa-
tion step on the GPU 240. The fourth partition 2504 holds the
data textures used to accommodate the output of a particular
computational step on the GPU 240. This partitioning scheme
can be done logically, does not require hardware implemen-
tation. Also the partitioning scheme is also altered based on
new designs or needs of the algorithms being employed. The
reason for this partitioning is further explained in the Data
Organization section, below.

[0035] A local bus interface 230 on the controller 220
serves as a driver that allows the controller 220 to communi-
cate through the local bus 190 with the system bus 200 and

May 22, 2008

thus the CPU 120 and RAM 130. This local bus interface 230
is not intended to be limited to PCI related technology. Other
drivers can be used to interface with comparable technology
as a local bus 190.

[0036]

[0037] Each computational element discussed above has
output variables that affect the rest of the system. For example
in the case of a neural network it is the output of a neuron. A
computational element also usually has several internal vari-
ables that are used to compute output variables, but are not
exposed to the rest of the system, not even to other elements
of the same population, typically. Each of these variables is
represented as a texture. The important difference between
output variables and internal variables is their access.

[0038] Output variables are usually accessed by any ele-
ment in the system during every time step. The value of the
output variable that is accessed by other elements of the
system corresponds to the value computed on the previous,
not the current, time step. This is realized by dedicating two
textures to output variables—one holds the value computed
during the previous time step and is accessible to all compu-
tational elements during the current time step, another is not
accessible to other elements and is used to accumulate new
values for the variable computed during the current time step.
In-between time steps these two textures are switched, so that
newly accumulated values serve as accessible input during
the next time step, while the old input is replaced with new
values of the variable. This switch is implemented by swap-
ping the address pointers to respective textures as described in
the System and Framework section.

[0039] Internal variables are computed and used within the
same computational element. There is no chance of a race
condition in which the value is used before it is computed or
after it has already changed on the next time step because
within an element the processing is sequential. Therefore, it is
possible to render the new value of internal variable into the
same texture where the old was read from in the texture
memory bank. Rendering to more than one texture from a
single shader is not implemented in current GPU architec-
tures, so computational elements that track internal variables
would have to have one shader per variable. These shaders
can be executed in order with internal variables computed
first, followed by output variables.

[0040] Further savings of texture memory is achieved
through using multiple color components per pixel (texture
element) to hold data. Textures can have up to four color
components that are all processed in parallel on a GPU. Thus,
to maximize the use of GPU architecture it is desirable to pack
the data in such a way that all four components are used by the
algorithm. Even though each computational element can have
multiple variables, designating one texture pixel per element
is ineffective because internal variables require one texture
and output variables require two textures. Furthermore, dif-
ferent element types have different numbers of variables and
unless this number is precisely a multiple of four, texture
memory can be wasted.

[0041] A more reasonable packing scheme would be to
pack four computational elements into a pixel and have sepa-
rate textures for every variable associated with each compu-
tational element. In this case the packing scheme is identical
for all textures, and therefore can be accessed using the same
algorithm. Several ways to approach this packing scheme are
outlined here. An example population of nine computational

Data Organization

US 2008/0117220 Al

elements arranged in a 3x3 square (FIG. 5a) can be packed
by element (FIG. 5b), by row (FIG. 5¢), or by square (FIG.
5d).

[0042] Packing by element (FIG. 55) means that elements
1,2,3,4 go into first pixel; 5,6,7.8 go into second pixel; 9 goes
into third pixel. This is the most compact scheme, but not
convenient because the geometrical relationship is not pre-
served during packing and its extraction depends on the size
of the population.

[0043] Packing by row (column; FIG. 5¢) means that ele-
ments 1,2,3 go into pixel (1,1); 3,4,5 go into pixel (2,1),7,8,9
go into pixel (3,1). With this scheme the element’s y coordi-
nate in the population is the pixel’s y coordinate, while the
element’s x coordinate in the population is the pixel’s x coor-
dinate times four plus the index of color component. Five by
five populations in this case will use 2x5 texture, or 10 pixels.
Five of these pixels will only use one out of four components,
s0 it wastes 37.5% of this texture. 25x1 population will use
6x1 texture (six pixels) and will waste 12.5% of'it.

[0044] Packing by square (FIG. 54) means that elements
1,2,4,5 go into pixel (1,1); 3,6 go into pixel (1,2); 7.8 go into
pixel (2,1), and 9 goes into pixel (2,2). Both the row and the
column of the element are determined from the row (column)
of the pixel times two plus the second (first) bit of the color
component index. Five by five populations in this case will
use 3x3 texture, or 9 pixels. Four of these pixels will only use
two out of four components, and one will only use one com-
ponent, so it wastes 34.4% of this texture. This is more advan-
tageous than packing by row, since the texture is smaller and
the waste is also lower. 25x1 population on the other hand
will use 13x1 texture (thirteen pixels) and waste>50% of it,
which is much worse than packing by row.

[0045] Inorderto eliminate waste altogether the population
should have even dimensions in the square packing, and it
should have a number of columns divisible by four in row
packing. Theoretically, the chances are approximately
equivalent for both of these cases to occur, so the particular
task and data sizes should determine which packing scheme is
preferable in each individual case.

[0046] The System and Framework

[0047] FIG. 3 shows an exemplary implementation of the
top level system and method that is used to control the com-
putation. It is a representation of one of several ways in which
asystem and method for processing numerical techniques can
be implemented in the invention described herein and so the
implementation is not intended to be limited to the following
description and accompanying figure.

[0048] The method presented herein includes two execu-
tion streams that run on the CPU 120—User Interaction
Stream 302 and Data Output Stream 301. These two streams
preferably do not interact directly, but depend on the same
data accumulated during simulations. They can be imple-
mented as separate threads with shared memory access and
executed on different CPUs in the case of multi-CPU com-
puting environment. The third execution stream—Computa-
tional Stream 303—runs on the GPU accelerator of the
expansion card 180 and interacts with the User Interaction
Stream 302 through initialization routines and data exchange
in between simulations. The Computational Stream 303 inter-
acts with the User Interaction Stream and the Data Output
Stream through synchronization procedures during simula-
tions.

[0049] The crucial feature of the interaction between the
User Interaction Stream 302 and the Computational Stream

May 22, 2008

303 is the shift of priorities. Outside of the simulation, the
system 100 is driven by the user input, thus the User Interac-
tion Stream 302 has the priority and controls the data
exchange 304 between streams. After the user starts the simu-
lation, the Computational Stream 303 takes the priority and
controls the data exchange between streams until the simula-
tion is finished or interrupted 350.

[0050] The user starts 300 the framework through the
means of an operating system and interacts with the software
through the user interaction section 305 of the graphic user
interface 306 executed on the CPU 120. The start 300 of the
implementation begins with a user action that causes a GUI
initialization 307, Disk input/output initialization 308 on the
CPU 120, and controller initialization 320 of the GPU accel-
erator on the expansion card 180. GUI initialization includes
opening of the main application window and setting the inter-
face tools that allow the user to control the framework. Disk
1/O initialization can be performed at the start of the frame-
work, or at the start of each individual simulation.

[0051] The user interaction 305 controls the setting and
editing of the computational elements, parameters, and
sources of external inputs. It specifies which equations should
have their output saved to disk and/or displayed on the screen.
It allows the user to start and stop the simulation. And it
performs standard interface functions such as file loading and
saving, interactive help, general preferences and others.
[0052] The user interaction 305 directs the CPU 120 to
acquire the new external input textures needed (this includes
but is not limited to loading from disk 140 or receiving them
in real time from a recording device), parses them if necessary
309, and initializes their transfer to the expansion card 180,
where they are stored 325 in the texture memory bank 250 by
the controller 220. The user interaction 305 also directs the
CPU 120 to parse populations of elements that will be used in
the simulation, convert them to GPU programs (shaders),
compile them 310, and initializes their transfer to the expan-
sion card 180, where they are stored 326 in the shader
memory bank 210 by the controller 220. This operation is
accompanied by the upload 309 of the initial data into the
input partition of the texture memory bank 250, and stores the
shader order of execution in the controller 220. The user can
perform operations 309 and 310 as many times as necessary
prior to starting the simulation or between simulations.
[0053] The editing of the system between simulations is
difficult to accomplish without the hardware implementation
of the computational thread suggested herein. The system of
equations (computational elements) is represented by tex-
tures that track variables plus shaders that define processing
algorithms. As mentioned above, textures, shaders and other
graphics related constructs can only be initialized within the
rendering context, which is thread specific. Therefore tex-
tures and shaders can only be initialized in the computational
thread.

[0054] Network editing is a user-interactive process, which
according to the scheme suggested above happens in the User
Interaction Stream 302. The simulation software thus has to
take the new parameters from the User Interaction Stream
302, communicate them to the Computational Stream 303
and regenerate the necessary shaders and textures. This is
hard to accomplish without a hardware implementation of the
Computational Stream 303. The Computational Stream 303
is forked from the User Interaction Stream and it can access
the memory of the parent thread, but the reverse communica-
tion is harder to achieve. The controller 220 allows operations

US 2008/0117220 Al

309 and 310 to be performed as many times as necessary by
providing the necessary communication to the User Interac-
tion Stream 302.

[0055] After execution of the input parser texture genera-
tion 309 and population parser shader generator and compiler
310 are performed at least once, the user has the option to
initialize the simulation 311. During this initialization the
main control of the framework is transferred to the GPU
accelerator system’s accelerator controller 220 and computa-
tion 330 is started (see FIG. 4; 420). The user retains the
ability to interrupt the simulation, change the input, or to
change the display properties of the framework, but these
interactions are queued to be performed at times determined
by the controller-driven data exchange 314 and 316 to avoid
the corruption of the data.

[0056] The progress monitor 312 is not necessary for per-
formance, but adds convenience. It displays the percentage of
completed time steps of the simulation and allows the user to
plan the schedule using the estimates of the simulation wall
clock times. Controller-driven data exchange 314 updates the
display of the results 313. Online screen output for the user
selected population allows the user to monitor the activity and
evaluate the qualitative behavior of the network. Simulations
with unsatisfactory behavior can be terminated early to
change parameters and restart. Controller-driven data
exchange 314 also drives the output of the results to disk 317.
Data output to disk for convenience can be done on an ele-
ment per file basis. A suggested file format includes a leftmost
column that displays a simulated time for each of the simu-
lation steps and subsequent columns that display variable
values during this time step in all elements with identical
equations (e.g. all neurons in a layer of a neural network).
[0057] Controller-driven data exchange or input parser tex-
ture generator 316 allows the user to change input that is
generated on the fly during the simulation. This allows the
framework monitoring of the input that is coming from a
recording device (video camera, microphone, cell recording
electrode, etc) in real time. Similar to the initial input parser
309, it preprocesses the input into a universal format of the
data array suitable for texture generation and generates tex-
tures. Unlike the initial parser 309, here the textures are
transferred to hardware not whenever ready but upon the
request of the controller 220.

[0058] The controller 220 also drives the conditional test-
ing 315 and 318 informs the CPU-bound streams whether the
simulation is finished. If so, the control returns to the User
Interaction Stream. The user then can change parameters or
inputs (309 and 310), restart the simulation (311) or quit the
framework (390).

[0059] SANNDRA (Synchronous Artificial Neuronal Net-
work Distributed Runtime Algorithm; http://www.kinness.
net/Docs/SANNDRA/html) was developed to accelerate and
optimize processing of numerical integration of large non-
homogenous systems of differential equations. This library is
fully reworked in its version 2.x.x to support multiple com-
putational backends including those based on multicore
CPUs, GPUs and other processing systems. GPU based back-
end for SANNDRA-2.x.X can serve as an example practical
software implementation of the method and architecture
described above and pictorially represented in FIG. 3.
[0060] To use SANNDRA, the application should create a
TSimulator object either directly or through inheritance. This
object will handle global simulation properties and control
the User Interaction Stream, Data Output Stream, and Com-

May 22, 2008

putational Stream. Through TSimulator::timestep(), TSimu-
lator::outfilelnterval(), and TSimulator::outmode(), the
application can set the time step of the simulation, the time
step of disk output, and the mode of the disk output. The
external input pattern should be packed into a TPattern object
and bound to the simulation object through TSimulator::re-
setInputs() method. TSimulator::simLength() sets the length
of the simulation.

[0061] The second step is to create at least one population
of equations (TPopulation object). Population holds one
equation object TEquation. This object contains only a for-
mula and does not hold element-specific data, so all elements
of the population can share single TEquation.

[0062] The TEquation object is converted to a GPU pro-
gram before execution. GPU programs have to be executed
within a graphical context, which is stream specific. TSimu-
lator creates this context within a Computational Stream,
therefore all programs and data arrays that are necessary for
computation have to be initialized within Computational
Stream. Constructor of TPopulation is called from User Inter-
action Stream, so no GPU-related objects can be initialized in
this constructor.

[0063] TPopulation::fillElements() is a virtual method
designed to overcome this difficulty. It is called from within
the Computational Stream after TSimulator: :networkCreate(
) is called in the User Interaction Stream. A user has to
override TPopulation::fillElements() to create TEquation and
other computation related objects both element independent
and element-specific. Element independent objects include
subcomponents of TEquation and objects that describe how
to handle interdependencies between variables implemented
through derivatives of TGate class.

[0064] Element-specific data is held in TElement objects.
These objects hold references to TEquation and a set of TGate
objects. There is one TElement per population, but the size of
data arrays within this object corresponds to population size.
All TElement objects have to be added to the TSimulator list
of elements by calling TSimulator::addUnit() method from
TPopulation::fillElements().

[0065] Finally, TPopulation::fillElements() should contain
a set of TElement::add*Dependency() calls for each element.
Each ofthese calls sets a corresponding dependency for every
TGate object. Here TGate object holds element independent
part of dependency and TElement::add*Dependency() sets
element-specific details.

[0066] System provided TPopulation handles the output of
computational elements, both when they need to exchange
the data and when they need to output it to disk. User imple-
mentation of TPopulation derivative can add screen output.
[0067] Listing 1isanexample code ofthe user program that
uses a recurrent competitive field (RCF) equation:

uintl6_tw=3,h=3;

static float m__ compet = 0.5;

static float m_ persist = 1.0;

class TCablePopRCF : public TPopulation

TEq__RCF* m__equation;
TGate* m__gatel;

TGate* m__gate2;

void createGatingStructure()
{

m__gatel = new TGate(0);
m__gate2 = new TGate(1);

US 2008/0117220 Al

-continued

1

void createUnitStructure(TBasicUnit* u)

u—>addO20InputDependency(m_ gatel, 0., 0., 0.004, 0., 0, 0);
u—>addFullDependency (m__gate2, population());

¥
public: TCablePopRCF() : TPopulation(“compCPU__RCF”, w, h, true)
ik
~TCablePopRCF() {if(m__equation) delete m__equation;
if(m__gatel) delete m__gatel;
if(m__gate2) delete m__gate2;};
bool fillElements(TSimulator* sim);

b
bool TCablePopRCF::fillElements(TSimulatior* sim)

m__equation = new TEq_ RCF(this, m__compet, m_ persist);
createGatingStructure();
for(size__ti=0;1<xSize(); ++i)

for(size_tj =0;j < ySize(); ++j)

TElement* u = new TCPUElement(this, m_ equation, i, j);
sim->addUnit(u);
createUnitStructure(u);

)

return true;

int
main()

// Input pattern generation (309 in FIG. 3)

uint32_ t* pat = new uint32_ t[w*h];

TRandom<float> randGen (0);

for(uint32_ti=0;i<w*h; ++i)

pat[i] = randGen.random();

TPattern* p = new TPattern(pat, w, h);

// Setting up the simulation

TSimulator* cableSim = new TSimulator(“data”); /(308 and 320 in
FIG. 3)

cableSim—>timestep(0.05); /(320 in FIG. 3)
cableSim—>resetInputs(p); /(325 in FIG. 3)
cableSim—>outfileInterval (0.1); /(308 in FIG. 3)
cableSim—>outmode(SANNDRA::timefunc); /(308 in FIG. 3)
cableSim—>simLength(60.0); /(320 in FIG. 3)

// Preparing the population

TPopulation* cablePop = new TCablePopRCF(); /(310 in FIG. 3)
cableSim—>networkCreate(); /(326 in FIG. 3)

uintl6_t user= 1;

while(user)

if(!cableSim—>simulationStart(true, 1)) /(311 in FIG. 3)
exit(1);

std::cout<<“Repeat?\n”; /(305 in FIG. 3)
std::cin>>user; /(305 in FIG. 3)

if(user == 1)

cableSim—>networkReset(); /(305 in FIG. 3)

¥
if(cableSim)
delete cableSim; //Also deletes cablePop and its internals

exit(0);

Listing 1.

[0068] FIG.4isadetailed flow diagramillustrating a part of
an exemplary implementation of the bottom level system and
method performed during the computation on the GPU accel-
erator of the expansion card 180 and is a more detailed view
of the computational box 330 in FIG. 3. FIG. 4 is a represen-
tation of one of several ways in which a system and method
for processing numerical techniques can be implemented.

[0069] With systems of equations that have complex inter-
dependencies it is likely that the variable in some equation
from a previous time step has to be used by some other
equation after the new values of this variable are already

May 22, 2008

computed for new time step. To avoid data confusion, the new
values of variables should be rendered in a separate texture.
After the time step is completed for all equations, these new
values should be copied over old values so that they are used
as input during the next time step. Copying textures is an
expensive operation, computationally, but since the textures
are referred to by texture IDs (pointers), swapping these
pointers for input and output textures after each time step
achieves the same result at a much lesser cost.

[0070] Inthehardware solution suggested herein, ID swap-
ping is equivalent to swapping the base memory address for
two partitions of the texture memory bank 250. They are
swapped 485 during synchronization (485, 430, and 455) so
that data transfer 445 and the computation 435-487 proceeds
immediately and in parallel with data transfer as shown in
FIG. 4. A hardware solution allows this parallelism through
access of the controller 220 to the onboard texture memory
bank 250.

[0071] The main computation and data exchange are
executed by the controller 220. It runs three parallel streams
of execution: Computational Stream 303, Data Output
Stream 301, and Data Input Stream 302. These streams are
synchronized with each other during the swap of pointers 485
to the input and output texture memory partitions of the
texture memory bank 250 and the check for the last iteration
487. Algorithmically, these two operations are a single atomic
operation, but the block diagram shows them as two separate
blocks for clarity.

[0072] The Computational Stream 303 performs a compu-
tational cycle including a sequential execution of all shaders
that were stored in the shader memory bank 210 using the
appropriate input and output textures. To begin the simulation
the controller 220 initializes three execution streams 301,
302, 303. On every simulation step, the Computational
Stream 303 determines which textures the GPU 240 will need
to perform the computations and initiates the upload 435 of
them onto the GPU 240. The GPU 240 can communicate
directly with the texture memory bank 250 to upload the
appropriate texture to perform the computations. The control-
ler 220 also pulls the first shader (known by the stored order)
from the shader memory bank 210 and uploads 450 it onto the
GPU 240.

[0073] The GPU 240 executes the following operations in
this order: performs the computation (execution of the
shader) 470; tells the controller 220 that it is done with the
computations for the current shader; and after all shaders for
this particular equation are executed sends 480 the output
textures to the output portion of the texture memory bank 250.
This cycle continues through all of the equations based on the
branching step 482.

[0074] An example shader that performs fourth order
Runge-Kutta numerical integration is shown in Listing 2
using GLSL notation;

uniform sampler2DRect Variable;

uniform float integration__step;

float halfstep = integration_ step™0.5;

float f1__6step = integration__step/6.0;

vecd output = texture2DRect(Variable, gl TexCoord[0].st);
// define equation() here

vecd rungekuttad(vecsd x)

const vecd k1 = equation(x);

US 2008/0117220 Al

-continued

const vecd k2 = equation(x + halfstep*k1);
const vecd k3 = equation(x + halfstep*k2);
const vecd k4 = equation(x + integration_ step*k3);
return f1_ 6step* (k1 + 2.0*(k2 + k3) + k4);

void main(void)

output += rungekuttad(output);
gl_ FragColor = output;

Listing 2.

[0075] The shader in Listing 2 can be executed on conven-
tional video card. Using the controller 220 this code can be
further optimized, however. Since the integration step does
not change during the simulation, the step itself as well as the
halfstep and s of the step can be computed once per simula-
tion, and updated in all shaders by a shader update procedures
310, 326 discussed above.

[0076] After all of the equations in the computational cycle
are computed the main execution stream on the controller 220
can switch 485 the reference pointers of the input and output
portions of the texture memory bank 250.

[0077] The two other streams of execution on the controller
220 are waiting (blocks 430 and 455, respectively) for this
switch to begin their execution. The Data Input Stream 302 is
controlling 440 the input of additional data from the CPU
120. This is necessary in cases where the simulation is moni-
toring the changing input, for example input from a video
camera or other recording device in the real time. This stream
uploads new external input from the CPU 120 to the texture
memory bank 250 so it can be used by the main computational
stream on the next computational step and waits for the next
iteration 475. The Data Output Stream 445 controls the output
of simulation results to the CPU 120 if requested by the user.
This stream uploads the results of the previous step to the
main RAM 130 so that the CPU 120 can save them on disk
140 or show them on the results display 313 and waits for the
next iteration 460.

[0078] Since the Computational Stream determines the
timing of input 440 and output 445 data transfers, these data
transfers are driven by the controller 220. To further reduce
the data transfer overhead (and disk 140 overhead also) the
controller 220 initiates transfer only after selected computa-
tional steps. For example, if the experimental data that is
simulated was recorded every 10 milliseconds (msec) and the
simulation for better precision was computed every 1 msec,
then only every tenth result has to be transferred to match the
experimental frequency.

[0079] This solution stores two copies of output data, one in
the expansion card texture memory bank 250 and another in
the system RAM 130. The copy in the system RAM 130 is
accessed twice: for disk I/O and screen visualization 313. An
alternative solution would be to provide CPU 120 with a
direct read access to the onboard texture memory bank 250 by
mapping the memory of the hardware onto a global memory
space. The alternative solution will double the communica-
tion through the local bus 190. Since the goal discussed herein
is reducing the information transfer through the local bus 190,
the former solution is favored.

[0080] The main stream determines if this is the last itera-
tion 487. If it is the last iteration, the controller 220 waits for

May 22, 2008

the all of the execution streams to finish 490 and then returns
the control to the CPU 120, otherwise it begins the next
computational cycle.

[0081] This repeats through all of the computational cycles
of the simulation.

CONCLUSION

[0082] This GPU accelerator system offers the following
potential advantages:

[0083] 1.Limited computations on the CPU 120. The CPU
120 is only used for user input, sending information to the
controller 220, receiving output after each computational
cycle (or less frequently as defined by the user), writing this
output to disk 140, and displaying this output on the monitor
170. This frees the CPU 120 to execute other applications and
allows the expansion card to run at its full capacity without
being slowed down by extensive interactions with the CPU
120.

[0084] 2. Minimizing data transfer between the expansion
card 180 and the system bus 200. All of the information
needed to perform the simulations will be stored on the
expansion card 180 and all simulations will take place on it.
Furthermore, whatever data transfer remains necessary will
take place in parallel with the computation, thus reducing the
impact of this transfer on the performance.

[0085] 3. New way to execute GPU programs (shaders).
Previously, the CPU 120 had full control over the order of
shader’s execution and was required to produce specific com-
mands on every cycle to tell the GPU 240 which shader to use.
With the invention disclosed herein, shaders will initially be
stored on the shader memory bank 210 on the expansion card
180 and will be sent to the GPU 240 for execution by the
general purpose controller 220 located on the expansion card.
[0086] 4. Multiple parallelisms. The GPU 240 is inherently
parallel and is well suited to perform parallel computations.
In parallel with the GPU 240 performing the next calculation,
the controller 220 is uploading the data from the previous
calculation into main memory 130. Furthermore, the CPU
120 at the same time uses uploaded previous results to save
them onto disk 140 and to display them on the screen through
the system bus 200.

[0087] 5. Reuse of existing and affordable technology. All
hardware used in the invention and mentioned here-in are
based on currently available and reliable components. Further
advance of these components will provide straightforward
improvements of the invention.

[0088] While this invention has been particularly shown
and described with references to preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the scope of the invention encom-
passed by the appended claims.

What is claimed is:

1. A computer system, comprising:

a central processing unit;

main memory accessed by the central processing unit;

a video system for driving a video monitor in response to
the central processing unit; and

an accelerator receiving input data from and providing
output data to the central processing unit, the accelerator
comprising:
at least one graphics processing unit;
accelerator memory for the graphic processing unit; and

US 2008/0117220 Al

an accelerator controller for moving the input data into
the accelerator memory, moving output data from the
accelerator memory, and supervising data exchange
between the accelerator memory and at least one
graphic processing unit.

2. A computer system as claimed in claim 1, wherein the
central processing unit transfers the input data for a simula-
tion to the accelerator, after which the accelerator executes
simulation computations to generate the output data, which is
transferred to the central processing unit.

3. A computer system as claimed in claim 1, wherein the
accelerator controller dictates an order of execution of
instructions to the at least one graphics processing unit.

4. A computer system as claimed in claim 1, wherein the
accelerator controller sends instructions to the at least one
graphics processing unit, which executes the instructions on
data, and wherein during the execution of the instructions by
the at least one graphics processing unit, the accelerator con-
troller transfers output data from the accelerator memory to
main memory of the central processing unit.

5. A computer system as claimed in claim 1, wherein the
accelerator controller comprises an interface controller that
enables the accelerator to communicate over a bus of the
computer system with the central processing unit.

6. A computer system as claimed in claim 1, wherein the
accelerator memory comprises a texture memory bank for
storing simulation data and a shader memory bank for storing
operations to be performed on the simulation data by the at
least one graphic processing unit.

7. A computer system as claimed in claim 6, wherein the
texture memory is partitioned into sections in which a first
section holds input data patterns, a second section holds data
textures representing internal variables, a third section holds
data textures used as input at a particular computation step,
and a fourth section holds data textures used to store an output
of'a computational step on the at least one graphic processing
unit.

8. A computer system as claimed in claim 1, wherein the
accelerator controller inputs data into at least one graphic
processing unit and a series of instructions to the at least one
graphic processing unit, which then successively executes the
instructions on the data.

9. A computer system as claimed in claim 8, wherein the
accelerator controller performs successive iterations by feed-
ing output data generated by the at least one graphic process-
ing unit and input data for a next iteration into the at least one
graphic processing unit.

10. An accelerator system for a computer system, the accel-
erator system comprising:

at least one graphics processing unit;

accelerator memory for the graphic processing unit; and

an accelerator controller for moving data between the at

least one graphics processing unit and the accelerator
memory.

11. A computer system as claimed in claim 10, wherein the
accelerator controller dictates an order of execution of
instructions to the at least one graphics processing unit.

12. A computer system as claimed in claim 10, wherein the
accelerator controller sends instructions to the at least one
graphics processing unit, which executes the instructions on

May 22, 2008

data, and wherein during the execution of the instructions by
the at least one graphics processing unit, the accelerator con-
troller transfers output data from the accelerator system.

13. A computer system as claimed in claim 10, wherein the
accelerator memory comprises a texture memory bank for
storing simulation data and a shader memory bank for storing
operations to be performed on the simulation data by the at
least one graphic processing unit.

14. A computer system as claimed in claim 13, wherein the
texture memory is partitioned into sections in which a first
section holds input data patterns, a second section holds data
textures representing internal variables, a third section holds
data textures used as input at a particular computation step,
and a fourth section holds data textures used to store an output
of'a computational step on the at least one graphic processing
unit.

15. A computer system as claimed in claim 10, wherein the
accelerator controller inputs data into at least one graphic
processing unit and a series of instructions to the at least one
graphic processing unit, which then successively executes the
instructions on the data.

16. A computer system as claimed in claim 15, wherein the
accelerator controller performs successive iterations by feed-
ing output data generated by the at least one graphic process-
ing unit and input data for a next iteration into the at least one
graphic processing unit.

17. A method for performing numerical simulations in a
computer system, the method comprising:

a central processing unit loading input data into an accel-
erator system from main memory of the central process-
ing unit;

an accelerator controller transferring the input data to a
graphics processing unit with instructions to be per-
formed on the input data;

the accelerator controller transferring output data gener-
ated by the graphic processing unit to the central pro-
cessing unit as output data.

18. A method as claimed in claim 17, further comprising:

the accelerator controller sending instructions to the at
least one graphics processing unit, which executes the
instructions on data; and

during the execution of the instructions by the at least one
graphics processing unit, the accelerator controller
transferring output data from the accelerator memory to
main memory of the central processing unit.

19. A method as claimed in claim 17, further comprising:
partitioning accelerator memory of accelerator system a first
section holding input data patterns, a second section holding
data textures representing internal variables, a third section
holding data textures used as input at a particular computation
step, and a fourth section holding data textures used to store
an output of a computational step on the at least one graphic
processing unit.

20. A method as claimed in claim 17, further comprising
the accelerator controller performing successive iterations by
feeding output data generated by the at least one graphic
processing unit and input data for a next iteration into the at
least one graphic processing unit.

sk sk sk sk sk

