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1. Introduction. We study some systems of nonlinear functional-
differential equations of the form

(1) X() = AN + B(X)X( — 1) +CO, 120,

where X =(x1, - - -, xa) is nonnegative, B(X,) =HB.~,<(!)H is a matrix
of nonlinear functionals of X (w) evaluated at all past times w& [—7,t],
and C=(Cy, - - -, Ca) is a known nonnegative and continuous input

function. For appropriate 4, B, and C, these systems can be inter-
preted as a nonstationary prediction theory whose goal is to discuss
the prediction of individual events, in a fixed order, and at pre-
scribed times, or alternatively as a mathematical learning theory.
This interpretation is discussed in a special case in [1]. The systems
can also be interpreted as cross-correlated flows on networks, or as
deformations of probabhilistic graphs.

The mathematical content of these interpretations is contained in
assertions of the following kind: given arbitrary positive and continu-
ous initial data along with a suitable input C, the ratios yu(f)
= /5,;,(/)Whave limits as {— .

Our svstems are defined in the following way. Given any positive
integer n7; any real numbers «, u, 8>0, and 720; and any #Xn
semistochastic matrix P= }[).-,H (i.e., p; =0 and > pm=0o0r 1),
let

(2) #(l) = — ax(l) + 8 22wt — Dy + Cul0),
k=1
. n -1
(3) viell) = piezu(l) [ 2 f’imzjm(t)} )
m=1
and
(4) 2() = [—uza(t) + Br;(0 — Mxa()]6(p),
forall 4, j, k=1,2, - - -, n, where
0(p) =1 if p >0,
=0 ifp=0.

In order that our theorems hold, the initial data must always be non-
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negative. We also require it to be continuous and for convenience sup-
pose that 2;x(0) >0 iff p;>0.

2. Positivity and linear averages.

TrrorEM 1. With initial data chosen as above in [—7, 0], the solution
of (2)-(4) exists and is wunique, conlinuously differentiable, and non-
negative in (0, =). If moreover either x; or z; has positive inilial datu,
then it is alweys posttive.

The positivity of solutions implies a property of (2)-(4) that is
used repeatedly in proving our results. Define the sets S(r) and T'(r)
inductively by S(r) = {k: > s pri = 1} and

7'(r)=J/c: > [)k,-zﬂ}: r=1,..., 4k,
\l 1€S(r—-1)

where S(O)={1, 2, -, n} and k is the least integer such that
either S(B)= or S(k)=S(k—1). We also let x”= Z;es(,)xi and
CO= 2 iesmCi

CoroLLAary 1. The wvectors V=(x, .-, x*® D)y and W

=(C©®, - -+, C4 V) obey a lincar equalion
5) V() = —aV () + B8DV{ — 7) + W ()
if SMHNIT(r) =S5(0),r=1,2, - -+, k, where

010

00 0

D=
0 0 0 1
0 01

when S(k) = S(k—1), and

{0 0 -
0O 0 . .
|
00 0 1]
'm 0o - -0 oJ

when S(k) = . If moreover P is stochastic (i.e., S on L bin=1 forall 1),
then (5) redices to

1963 GLOBAL RATIO LIMIT THEOREMS. [ 97
.i"”"(l) — __'L.“.\'mu) +4- ﬁ_\,(mu _ ..) + C\U)U)_

3. A graph theoretic interpretation. The limiting behavior of (2)-
(4) depends cruciaily on its matrix P. Every P can be geometri-
cally realized as a directed probabilistic graph with vertices V
= {z.":vi= 1,2, - - -, n| anddirected cdges E = teanif k=12, - ,n},
where the weight pj. is assigned to the edge e If moreover x,(t) is
interpreted as the state of a process at v;, and y;:(¢) is interpreted as
the state of a process at the arrowhead of e, then (2)-(4) can readily
be thought of as a flow of the quantities x,(¢) over the probabilistic
graph P with flow velocity v=1/r. The coefhicients y;:(¢) in (2) con-
trol the size of the Bxi(¢t—7) flow from v, along ey which eventually
reaches v; by cross-correlating past Brr(w—71) and x;(w) values,
w& [—7, %], with an exponential weighting factor e=*(=* as in
z24(t) in (4), and comparing this weighted cross-correlation in (3) with
all other cross-correlations 2 (t) corresponding to any edge leading
from v, m=1, 2, - - -, n. (Sce [1] for further details.)

Alternatively, for every t=0, a probabilistic graph G({) with
weight y,(¢) assigned to edge ej: can be defined. Then (2)-(4) provides
4 mechanism for continuously deforming one graph G(f) into an-
other graph G(t), 41> te. A basic problem when C=0 is to study the
influence of the “geometry” P on the “limiting transition probabil-
ities” G(w)=lim,., G(t) when these exist.

4. Outstars. In this note, we annouce a result for the case
1 1 1 )
0 RN
P o= n—1 n—1 n—1

0

Then only edges ei;, j=2, 3, -+ -, n, have positive weights, which
equal 1/(n—1). This system is thercfore called an outstar with source
vertex vy, sinksv;, j=2, - - -, n, and border B= {v,-:j=2, e, n}.»

Our main result describes a sequence GV, G®, - -+, GW - - of
outstars with identical but otherwise arbitrary positive and continu-
ous initial data in [—7, 0], whose inputs are formed from the follow-
ing ingredients:

(a) let {0,—: =2, n} he a fixed but arbitrary probability
distribution;

(h) let f and g be bounded, nonnegative, and continuous functions
in [0, ) for which there exist positive constants k and T’ such that

t
f e—a(t—w)f(w) dw z_ k, H g TO)
o .
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and
t
f e U=e(oydw =k, t 2 T,
0

(¢) let Uh(V) and U(N)Y be any poesitive and monotone increasing
functions of V=1 such that
lim Lvl(‘\') = lim D’(LV) = o©;
N-—» N—=
(d) for every N=1, let 2y() be any nonnegative and continuous
function that is positive only in (I'(N), =); and

(e) let
x(G) =0 iw>0,
= 1 i{ w é 0'

N)

The input functions M of GV are defined in terms of (w)-(e) by

(N

©) W) = fONE = TV + I

and

(N)

) Ci () =0,;gDx(t = UN)).  j=2,---,n

Letting the functions of G® be denoted by supcrscripts “(N)”
(e.g., yij is written 3y, and defining the ratios XM =Wy 5 ¥

for every N landj=2, - - -, n, we can state the following theorem.

THEOREM 2. Let GV, G®, « .. GN ... have idenlical but other=
wise arbitrary positive and continuous initial duta, and any inpuls
chosen as in (6) and (7). Then

(A) for every Nz, the limils lim,.. ,Y,(N)(I) and i, }’(i?)(/)
exist und are equal, j=2, -+ -, n;

(B) for every Nz 1 and all 1> 1'(N), ij(/) and '_v(“)n(/) are mono-
tonic in opposite senses, and

im V() = T v (V) = 0,

N—= Nom

i=2, -, n [n particular, by (A) and (B),
. Ve SN . . (N) . )
Hm im X5 ) = lim limyy, () =0, j=12 , i
N—owo -+ Noa» (o=
(C) for every N21 and j=2,---, n, the functions \(S) ij
-:y'l‘;’)—.\’ﬁm, and C'jm:.\’j‘v) —0; change sign at most once und not at

1968] GLOBAL RATIO LIMIT THEOREMS. I 99

all if F™O)GP(0)z0. Moreover, FMO)GM(©0)>0 implies
FEYHCM () >0 for all t20.

(C) shows in particular that the functions ¥’ are quite insensitive
to fluctuations in the functions f and g, since y(sr) fluctuates no more
than once.

In prediction and learning theoretic applications, the following
situations are of particular interest.

CoroLLaRY 2. If XM 0) =y (0) and 6;=8,, j=2, - - -, n, then
v increases monotonically to 1 and v\ decreases monotonically to
sero, k=3, -+ -, n

Corovrary 3. The theorem is true if

()

) = 3 It — B + W) + T = AV

k=0
and

N-—-1
VW) =6 X Tult = w = kw + 1),

k=0

c;

j=2, -+ -, n, where J; is a continuous and nonnegalive function that is
positive in an interval of the form (0, \,), i=1, 2; w and W are nonnega-
tive numbers whose sum is positive; and

AN) > w+ (N = 1w+ W) + \,.

When also 0; =38, the G'™ of Corollary 3 can be interpreted as a
machine which is exposed to N periodic repetitions of a sequence 4 B
of events, followed by a presentation of 4 alone to test if the machine
can predict B in reply on the basis of its past experience [1]. The
theorem can be interpreted as saying that the machine eventually
“learns” the sequence AB if it is given sufficient practice. [1] dis-
cusses several other properties of this “learning” process, and [2]
will provide a detailed exposition.
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