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INTRODUCTION

This paper studies the following system of nonlinear difference-differential
equations: '

2(t) = —av(t)+ B i Xt - T) yult) + IL2), n

n=

n -1
Ya(t) = zlt) [z; zjm(t)] , 2y®
and
(1) = —uzp(t) + Bxj(t — ) x, (1), 3)

where 7, j, k = 1,2,..,7n, and B > 0. We will establish global limit and
oscillation theorems for the nonnegative solutions of (*) when (*) has any
fixed number of variables (n > 2) and r is any fixed nonnegative time lag.

(*) ariscs as an example of a nonstationary prediction theory, or learning
theory, whosc goal is to discuss the prediction of individual cvents, in a
fixed order, and at prescribed times ([1], [2]). In this theory, (*) describes
a machine M subjected to inputs C = (I, , I, ..., I,) by an experimenter E,
who records the outputs X = (¥, xy ,..., x,,) created thereby. E has only
the inputs C and outputs .\’ at his disposal with which to describe (%), and
in terms of these variables (*) takes the form

X(t) = —aX(t) + B(X,) X(t - 7) 4 C(1), 4)
where B(.Y,) is a matrix of nonlincar functionals of () cvaluated at all

past times w e [ --7, ] with entrics

B z;0) + B [} eix(v — 7) xi(v) do 6
“ Xt [5m(0) -+ B [ evix(v ~ 7) x,.(v) do] ,
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The machine M therefore obeys the functional-differential equations (4)-(5),
and B(\,) contains the “memory”™ of A1, Our global limit and oscillation
theorems for (*) can be interpreted as learning experiments performed by E
on M to study how M learns, remembers what it has learned, and reacts
to test inputs in recall experiments. In particular, (*) can learn a spatial
pattern in “black and white” of arbitrary size and complexity (sce [3]).  °

The prediction theory in [1] introduces infinitely many nonlinear systems.
Each system is characterized by an n X n “cocfficient” matrix P = || p;; ||
which is semistochastic; that is, p; =20 and 37 _ pim =0 or 1. (*) is
charactcrized by the stochastic matrix with entries p;; = (1/n). This matrix
can be realized as a probabilistic network G [4], and (*) can be interpreted
as a cross-correlated flow over G [5] in the following way.

G consists of n vertices V = {v;:{ = 1,2,..., n} and n® directed edges
E={e:j,k=12.,n} where e;; has v; as its initial vertex and v, as
its terminal vertex. The coefficient matrix P assigns the weight p;,, = (1/n)
to e;, . Since every vertex v; is connected to cvery other vertex v; with equal
weight, the graph G is complete. Since v; is also connected to itself, G is a
complete graph with loops. We illustrate this graph in the case n = 3 in
Fig. 1.

Fic. 1

We describe (*) as a flow over this complete graph with loops in the
following way. At cvery time ¢, x,,(¢) is the state of a process going on at
vertex o, , and y,,,(f) is the state of a process going on .at the arrowhead
ofe,;,i,m =1,2,..,n Atevery timew = — r, a quantity Bx, () flows,
or is “transmitted,” from o, along e,,; at a finite velocity and rcaches the
arrowhead of ¢,,; at time w + = = ¢t. This quantity instantancously activates
the y,,(t) process in the arrowhead, and a total magnitude

Brn(t — 7) ymil?) (6)

is released from the arrowhead and reaches v; at time ¢. This is true for
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every m == 1,2 n. The total input to ¢; from all vertices v, at time ¢
is the sum
n
B Z .\',,,(f - T)ynu‘(t) T (7)
m=1

of the inputs (6). By (1), x,(f) changes at a rate equal to the sum of this total
input, of a “spontancous decay” term —av{t), and of the input I{f)
controlled by E.

Since 3°7_; ¥,.:(t) = | whenever the initial data of (*) is positivé [1], the
total output from v,, reaching all vertices v; at time ¢ is simply

n
ﬂ Zl .Y.‘,,,([ - T) ymi(t) = me(t - T)' (8)
im

We call the flow which (*) describes a “cross-correlated” flow because of
the following interpretation of the functions z,(t) in (3). At every time ¢,
the quantity Bxj(t — 7) reaches the arrowhead of ;. from v;. Also the
arrowhead of ¢, impinges on v, whosc process has the magnitude x.(¢)
at time 2. 2;,(t) “cross-correlates” the two quantitics Bx;(t — 7) and x (1)
impinging on the arrowhead by changing at a rate equal to Bx(t — 7) x,(f)
minus a spontaneous decay term —uz;(t).

The term y;,(t) which actually controls the size of the input. 8x,(t — 1) y;,.(f)
from z; to z, is formed from z;(¢f) normalized by the sum of all z,,(f)
corresponding to edges e;,, leading away from v;, m = 1, 2,..., n, as in (2).
This normalization of cross-correlating functions has a profound effect on
the behavior of (*) that is due, for example, to the fact that the total output
from v, is indcpendent of all cross-correlating functions, as (8) shows.

2. A ProsasiLisTic EQuAaTION

Our main results concerning (*) describe the global limiting and oscillatory
behavior of the ratios

yilt)  =t) { Z -";'m(‘)]
m=1
and the correspondingly defined ratios
Xi(t) = xi(2) [ Y x,,,(t)]
m=1

as t — oo when is any nonncgative time lag and #u is any positive integer,
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which we take greater than | to avoid trivialitics. The special case r =0
and n = 2 is studied in [2]. We will investigate these ratios only when the
initial data of (*) is continuous and nonnegative in [—, 0], since only such
initial data has a prediction theoretical interpretation [1]. It is then readily
shown [1] that the solution of (*) exists and is unique, continuously
diffcrentiable, and nonnegative in (0, ). We also suppose for convenience
that " _, x,,(v) > 0,7 € [—7, 0], and that 2;,(0) > 0,7,k = I, 2,..., n. Then

" %u(t) > 0and z;(t) > Oforalls 2= 0. Thesets {y;,(t) : m = |, 2,..., n}
and {X,,(t) : m = 1, 2,..., n} of ratios therefore form probability distributions
foreveryt = 0.

We will find conditions under which desirable limiting properties of
these probabilities become easier to guarantce as = increases. Moreover,
scveral of these probabilities oscillite no more than once as ¢t — =0 no
matter how large 7 is taken. These results fall into two general cases
corresponding to special choices of the inputs [; . In the first case, no inputs
whatsoever perturb (*); that is, (*) is input-free. In the second case, inputs
of the special form I(t) = 0,I(t), where {8, : m = 1, 2,..., n} is an arbitrary
probability distribution, do perturb (*) and continue to do so at arbitrarily
large times. These cases can be treated because (*) can be transformed
into a more tractable system of integro-difference-differential equations for
the probabilitics X(f) and y;(t) themselves. In this new system, the sums
I=3%" .1 and x =35 _, x, play a significant role.

Prorosition 1. The probabilities X; and y;; obey the following cquations.

) = A@) ‘Z Xt — lywlt) X)) + B()[6:(2) — Xi(2)], (9)

and
irlt) = CLOIXi(t) — D)), (10)
where
A(t) = é‘_(:_(_t.;_’_) an
B = 3, 12
0(1) = ’,_g)’ (13)
and

5 L 50+ | X —n)es(e =)o) do]  (14)
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Proor ‘To derive (9), diffcrentiate X; = (v,/x). Then

\-. 1 . A'l')
A= =Xy X; —})-
¢ x(' Px

To evaluate this cquation, note that summing over § = [, 2,..., nin (1) and
invoking positivity shows that x is a positive solution of the linear equation

#(t) = —ax(t) + Bs(t — 7) -+ 1(0) (15)
When (1) and (15) arc applicd, we find

X = % [~rx.\',- + B i m(t = 7) Youi + 15 — x.‘( _— Bx(t -:t'r) + I)]

= g [(i Xt — 7)Y ﬂ(t_\__'_’i) + (Ii B %L)]

m=1

B =) (3 Lo
U= (S Xalt = )omi = X) +100 = X

=1

= A i Xt = TN Yms — Xi] + B X)),

m=1

which provcs” (9). To prove (10), differentiate y;. = [z;/2""], where

29 =3 n _ 2, . Then
] 1 20
e =z [i-‘;k — Zjk ?(F] (16)
To cvaluate (27/z9) in (16), sum over &k = 1,2,...,, 7 in (3) to find that
N = —uz 4 Bx(t — 1) X, (17

Substitute (3) and (17) into (16). Then
/.3~_"f_(£_'_f);“)]

Yo Zov [ ugy -k Bt - T) X - T ( —u )

Bt _7) [’\.k _ _z_&..v]

= S0

gt - hs (Xe -yl

~(1)
b

BNt )t -T)x

=0

Ne = 2l
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Lettin
BN — 7t = )

Gile) = =

it remains only to show that C; can be written as in (14). This is easily
scen when 29 is written in integral form as

sU(t) = e [z“’(O) + B f: Xz —7)e*'s(v — 1) x(v) dv].

Remark.  The only unknowns in (9)«(13) are .\ and y;;, since v obeys
(15) whosc solution depends only on the known input I and initial data.

3. Tue INruT-Free Graru

In this section, we study (9) and (10) when all inputs J; are identically
zero. Then (9) becomes

Xe= A3 Xnlt = 7)ymi — X (18)

m=1

Our main result concerning (10) and (18) discusses the limits and oscillations
of X, rclative to the functions

y: min{y,;:m=1,2,.,n}
and

Y; =max{y,;:m =1,2,.,n}.
The limiting behavior of (10) and (18) depends on the time lag = only through
the constant ofr) = u + 2s(r), where s(7) is the largest real part of the
zerds of the characteristic exponential polynomial of

H(t) = —ax(t) + px(t — 7), (19)
which is
R(s) =5+ o — Bes,

Turorem 1. For any n = 2 and any v > 0 with o(r) > 0, let (10) and
(18) have arbitrary nonncgative and continuous tnitial data. Then

(1) (imiting behavior) the limits

Q: = lim X(t) and Py = lim y,(t)
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exist and satisfy the equations
P, O,, 4j=12..,n
Moreozer, Q, € [m; , M,], where
m; == min{X(0), y{0)}  and M, <= max{.X(0), Y,(O)}

(2) (oscillatory behavior) the functions y;, Y;, X; —y;, and X; — Yi
change sign at most once and not at all if y,(0) < X(0) < Y(0). (Derizvatives
of y: or Y, at times when two or more y,; intersect are defined as right or
left-handed dertvatives in any systematic way.)

We will prove the thcorem in a serics of lemmas. We begin with a lemma
concerning the oscillations described in (2), since these do not depend on
the sign of o(r). Then we usc (2) along with some facts about the sum
¥ = 3 %1% to establish the assertions in (1) concerning limits when

;7(7') > 0.

Lemma 1. For arbitrary nonnegative and continuous initial data, and any
o(t), the functions y;, Y;, X; — y,;, and X; — Y, change sign at most once,
and not at all if y,(0) << X(0) <X Y,(0). Moreover X(t), yi(t), and Y (t)
lie in [m, M) for all t = 0.

Proor. The following facts are obvious by an inspection of (10) and (18)
using the positivity of 4, X;,and C;,j = 1,2,...,n.

Case 1. I, for any o, X,(t)) € [ydt,), Yi(ty)), then X(1) € [yd2), Y(0)]
for all ¢ > 1,, where y(t) is monotone increasing and Y (t) is monotonc
decreasing for all ¢ > ¢,

Case 2. If X(0) > Y(0), then X(f) is monotone decreasing and all
Yii(t) are monotone increasing until the first time ¢ = t; > 0 at which
X{t) = Y(1). Thereafter ¥ (¢) is monotone decreasing and y,(t) is monotone
increasing by Case 1, so that Y ,(¢) changes sign at most once and y,(t) is
always monotonc increasing. '

Case 3. If X(0) -2 y0), then X(f) is monotone increasing and all
Yri(£) are monotone decreasing until the first time ¢ == £, > 0 at which
Xi(2) == y(t). Thercafter y,(f) is monotone increasing by Case [, so that
Fi(t) changes sign at most once, and Y (t) is always monotone decreasing,
These alternatives are illustrated in Fig. 2.

Since Cases (1), (2), and (3) exhaust all possibilitics, the assertions of the
lemma are now evident.

NONLINEAR PREDICTION AND LEARNING 497

The remainder of the proof requires estimates of the positive coefficients
A(t) and C,(t).in (10) and (18), as well as of A(t) and Cy(t), as ¢t — 0. In
providing these estimates, we always assume for convenicnce that all z;,(0)
are positive and that 37}, _, x,,(v) is positive for all v € [—r, 0]. The remaining

Him]

Fic. 2

cases with nonncgative initial data are casily trecated. The basic fact from
which these estimates arise is that the sum x = Y% _, x,, obeys the linear
differcnce-differential equation

2(t)  —ox(t) +Bx(t 1), (19)

which is indepcndent of the probabilities y;. . (19) is proved by simply
summing over { = 1, 2,...,n in (1) and invoking positivity of all z,(¢) for
t=0.

Equation (19) has been thoroughly studied [6]. In the present account, we
merely list the known facts we will need concerning (19) and derive some
straightforward consequences from them. We will always work with the cases
7 > 0. The case + = 0 is obvious. Our first lemma concerns itself with the
zcros of the characteristic exponential polynomial R,(s) = s 4- a — Be~"* of

(19).
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Lesia 2. For any fixed v - 0, the zero sy(r) of largest real part of
R(s) = s+ a—Be=" is real; that is, sy(r) = s(r). Morcover only finitely
many zeros have a nonnecgative real part.

Proor. Let s = x + iy be a zero of R,(s). Then

x4+ a—pBe"costy =0 (20)
and
¥y + Pe~sinry = 0. 20

Write (20) in the form y(x) = z4(x), where p(x) = ¥, zo(x) = —a + Be—=,
and 0 == cos ry € [~1, 1]. For cach fixed 0 € [—1, 1], we consider the graphs
of y(x) and z4(x) as functions of x. Every root of (20) must lic at the intersec-
tion of these graphs for some @€ [—1, 1]. For example, if a > 8 > 0 we
find Fig. 3.

2,(x) y(x)
zo(x T\"—_
AR
/s

z_,(x}

Fig. 3

It is clear from this diagram that the root ¥, of y(x) = z,(x) is a simple
root and is the root with largest real part among all roots of the equations
Yx) = z(x), Oe[—1,1). When 0 =1, cos 7y = | and sinry = 0. Thus
by (21), the imaginary part y, corresponding to x, isy, = —fesiny, = 0.
The zero of largest real part of R, (s) is thercfore a real and simple zero
of R (s). .

Since R.(s) is a nontrivial entire function of s, only finitely many zcros of
R (5) can occur in any finite region of the s planc. For any zero §, == xp + iy,
with nonncgative real part x,, we have by (21) the inequality
[¥ei " Be-mx|sinry, | -2 B, which along with Fig. 3 shows that at most
finitely many zcros of R, (s) have a nonnegative real part.

The next Lemma deseribes a representation for solutions of (19).

Lemya 30 Let x he a solution of (19) with positive and eontinuously
differentiable initial data in [0, 7). Then x can be written in the form

x(t) = e*Mey - emHI(1)), (22)

where k and ¢ are positive and IT is bounded,
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Rentark.  If the initial data of (19) is merely continuous in [-—7, 0], then
the solution of (19) is continuously differentiable in (0, 7], so that dif-
ferentiability is not a restrictive assumption.

Proor. The proof depends on the following standard representation
theorem for the solutions of (19) ([6], p. 109)..

Let e%p,(1) denote the residuce of the function et*p(s)[R,(s)] ! at a zero s,
of R,(s), where

p(s) = x(r) e 4+ (s + o) r x(v) e~ dv.

Let {5} be the sequence of zeros of R,(s) arranged in order of decreasing
rcal parts. Then the solution v of (19) can be written in the infinite series

o
x(t) =Y pft)ext for t>r.
k=1
This series converges uniformly for ¢ in any finite interval [1,, t;] where
ty > 7. Morcover if Res, < ¢ <0 for all £ =1,2,..., then the serics
converges uniformly for t € [t,, 20), where t;, > 7.
All the zcros of R,(s) are simple zeros, since a nonsimple zero arises
only when 1 = —Brexp(l +ar) < 0. In this case, the residue of

PN RA)] at s, is e!p(si)[Ri(s:)]~ and so

a(t) = i et (23)

k=1

where ¢ = p(s,)[R(s;)]™". ¢, can be written in a simplified form as follows.
Since
R(s) =+« Be =0,

P(si) can be written in the form

psi) = e [.1.‘(1') +B f; x(v) e~ di:]

Noting also that
R(s) = + Bre—*
we find
e~"u[x(7) + B f; X(z) e~"% dy)
Cx = 1 + BT(.’"'*
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and in particular, by Lemma Proor. The first limit is obvious by (11) and (22). The second limit
- dily follow: d
e x(r) + B |7 3(0) e-#H) o] o readily follows from the first because

C ==
1 T+ B.re—fsf-r) ! . Bx(t - T) (t - 7) x(t)
A = (1) Wt =7 t(l)]

which is positive since the initial data of x-is positive.

Also by Lemma |, we know that only finitcly many zeros of R (s) have which becomes by (19)
nonnegative real parts. (23) can therefore be written in the form . Bix(t — 1) (a(t —27)  x(t — 1)
A(t) = d
x(t) = "¢, + F(t) + G(t)] (25) x(t)  lx(t —7) (1)

Lemma 5. C; is bounded from above and beloze by positive constants

where ™ F(t) is the finite sum 3}, c,e™* over the terms c.e™, k > 2, C, | is bounded.

with Res; 2 0, and e*"G(t) is the infinite sum Y7, c,e™ over the

terms ¢,e™¢ with Re s, << 0. Sinces(r) > Res,, &k > 1, each of the suminands Proor. The first assertion depends on Lemmas 1 and 3. By (14)
in F(t) = 33, c et and in G(t) = Z,__m+lcke"*"‘*”‘ has a negative
real part. \\c will use this fact to write (25) in the form 150 Xt — 1) et — 7) x(2) '
d + [' X (v — ) e**x(v — 1) x(v) do
x(t) = e, 4 e~ tH(1)), (22) 0
where

where & > 0 and H is bounded. d, _1 T 2n(0) > 0

We prove (22) by writing F and G separately as a product of an cxpo- B .z, Zim ‘
nentially decreasing term and a bounded function and then adding. Thus
we write F(t) = et==*[(1), where I(t) == YT, ¢, is obviously By Lemma 1, X; = m; > 0. Moreover, X; < Thus
bounded. In a similar fashion, we write G(t) as G(t) = e'®2=*"¢ J(1), where
J() = 32 e €72t It remains only to show that J is bounded. This cl) < e"ix(t — 7) x(t)
fact is an immediate consequence of the following asymptotic formula for d, + m; f e*'x(v — 1) x(v) do
the zeros of R (s) ([6], p. 416): By Lemma 3,

. . log —ﬁ—-r— + o(l) x([ — 1.) .\(t) — ezslﬂl[CIEe—TS(T) + e—ktl\’(t)]
- 2k
| T v where K(#) is nonnegative and bounded, so that
anc

y.= E(Zk 53 &) + o(l)’ x(t — T) x([) < 62.!(1')1[‘-128—1'-1(7) + K]'
2 3
where K == sup{K(?) : t > 0}. Now readily follows the inequality

where k& is any large integer. ¢! therefore has the asymptotic form
ey ”[r Ba—raf=] | h--|

. (1) = — i
et = | el Br ) o 0 TOMI i 0.0 il
2 e
For sufhiciently large ¢, J(#) can therefore be shown to be bounded by from which it is clear that C;(t) is bounded from above.
comparison with the serics 3, (1/k%). This completes the proof of Temma 3. The second asscrtion follows from similar estimates. Since m X =

We are now ready to estimate 4, A, C;, and (,",- as { - o,
. petta{f — <) aliy
) == - { — L

Lemaia 4 bim, . A(r) = Be=" and lim, ., A(1) =0 T, I- f;f_'l{_ ‘Jx[_1F
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Thus
. € e THnIeotrit
C) () —— G S e
'.fl . [I_ll__... ...Jh"" =
aiT)

Since ofr) > 0, letting

2 -rélr)
ﬁghmin{m, f=1,2,.., 0
completes the second assertion, with Ci(t) = 6 >- 0 for large ¢.
The third assertion is proved in just the same way.
We will need one more lemma before studying the limiting behavior of
(10) and (18). This result is an elementary fact about real-valued functions,
which we prove for the sake of completeness. :

Lemaia 6. Suppose f(1) -2 < 00 as t — oo and [ is bounded. Then
ft)~0ast— 0. .

Proor. Suppose not. Then for some € > 0, there exists a sequence {¢,)

with lim,_, ¢, = oo such that |f(s,)] = ¢ for all n. We can suppose
f(t,) = e for all n without loss of generality. Since £ is bounded, these cxists
a & such that f > (¢/2) on infinitely many nonoverlapping intervals
I, =[U,, U, + 8] of length §, where lim,,_, U, = . Thus

A +8) =) >3

for all #, and f - A < o0, which is a contradiction.
We can now complete the proof of Theorem 1 using Lemmas 1-6

4  Proor of THEOREM
By emma  the following three cases exhaust all possibilities
Case 1. X, - ¥, for ¢ 0. Then by Lemma |, X, is monotonc
decreasing and all y,, are monotone increasing. Henee all limits Q, and
Py exist and O, .2 P, . It is also readily shown using Lemmas 4 and 5
that .\, is bounded, so that by Lemma 6, lim, |, .\",-(I) .- 0. Letting £ -» o
in (18) and invoking Lemma 4, we now find

S 0P, ©) O

mo\
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Since Q; " Py, for all k=1, 2,..., n, ecither Oy =0 or P, =0, for all
k- 12,..,nSinccQ, >:m, ~>0by Lemmal, P, - :Q;forallk = 1,2,..., n

Case 2. X, <<y, for all 1 > 0. The proof is the same as for Case
with all inequalitics reversed.

Case 3. N e[ydr), Y{r)] for all £ >: ¢,. By Lemma 1, ¥, decreases
monotonically and y, increases monotonically for ¢ >: f,. Thus the limits
Yi(oo) == lim,,, Yi(¢) and y{(20) = lim,,, () exist. If Y, (20) == y,(c0),
we arc done since then all Q; and Py, exist and equal y(). The only
remaining case is €; = Y(20) — y{2c) > 0. We now show that this case
cannot arise.

Consider v(t). We write y,(f) as’ y;(y.{t) to explicitly display the
indey & = k() of that y,(t) which equals y(f) at every £. We know that
lim,., yi.(t) exists and wish to conclude that lim,., Y. {t) = 0 by
Lemma 6. By Lemma 5, each y,(f) is bounded, and so the boundedness
of Jin.dt) follows from the boundedness of all the §,,(t), which in turn
is also a conscquence of Lemma 5.

Since lim 3 (£) == 0, (10) implies

l‘_{‘; Ceo(t) 1 XLt)  yrw.ft) = 0. (29)

By Lemma 4, cach C,(t) is bounded from below by a positive constant.
Thus (29) implies

im(X(1) — 3(t) = 0. (30)
Similarly,
lim(X(1) — Y1) O, @

and by (30) and (31) together
lm(Y(e) = y41)) = 0

ore¢; 0, which completes the proof,

S, Stasinity Prorertiis arRe Gradep IN THE Time Lac 7

We consider now the case of Theorem 1 which has a prediction theoretic
interpretation; namely, we require that for each = 3: 0 the outputs x,(t) — 0
as t — o0 if no inputs occur. This casc is characterized by the inequalities
a>p >0



504 GROSSBERG
ProrosiTioN 2. If « > B = 0, then o(r) is monotone increasing in
720, and o(0) = ¢ = u + 2(8 — a).

Proor. By Lemma 2, for any ficed r > 0, the zero s(r) of largest real
part of R (s} =s &« — Be~"" is real. The proof of Lemma 2 shows also
that s(r) << 0 whenever « >~ 8 - 0. Thus

—| (7)) + a = Bemist, (32)
Suppose any two nonnegative valucs 7, and , of r are given such that
[ s(ma)! > 1 s(r)l = 0.
‘I'hen by (32),
B(emsistrot er2lstradl) oo | g(7,)| s{ry))l > 0.

Since B > 0,
enlatrl ~, prlatr2)l
and thus
Tl s(m) > 7yl s(rg)] > 0. (33)
In particular, 7, > 0. Since 7, > 0 and | s(r,)| > sl
T s(ra)l > 7y { s(my)l. (34)

(34) along with (33) implies

Tl s(ra)l > 7p | s(my)]
Since | s(r,)| > 0,
T > T
We have hereby shown that =, <, implies I s(rai << ] s(r))i. Since
ofr) = u + 25(v) = u — 2{s(s), n, <7, implics o(ry) < ofry). ofr) is
therefore a monotone increasing function of =, for » >: 0.
5(0) satisfics the equation

Ryis) =s+a~8=0.
Thus 5(0) = 8 — « and
o(0) = u — 2 5(0)

=y—2|B—a
=4 —2a—p)
—u 28—

Proposition 2 shows that if « > B8 - 0 and o(r,) - 0 for some 7, = 0,
then Theorem 1 holds for all + = 1o and n 2= 2. We therefore say that the
stability propertics of (10) and (18) are graded in the time lag =. In particular,
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if u> 2« —pB) >0, then Theorem | holds for all + > 0 and »n = 2.
Thus the condition nceded to guarantce convergence of the probabilitics
X{(t) and y,(t) to the limiting cquations Q; = P,; as t — c becomes
weaker as T increascs if also the outputs x,(f) eventually decay to zero for
all - > 0. '

This gradation of stability propertics with respect to = can be heuristically
interpreted if we think of (10) and (18) as the description of a flow over
a graph as in the Introduction. Let cach edge e;; of the graph associated
with (10) and (18) have a length, which we take to be | for all edges. The
time lag 7 can then be interpreted as the inverse velocity /o of the flows
along all the edges. Theorem | says that if the probabilitics have limits of
the form Q; = P; when the flow velocity is 7, , then they have limits of
this form also for all smaller flow velocities. If we consider the limits
Q; = Py, to be the “stable” or “equilibrium” phase of (10) and (18), and
regard the velocity of the flow as an indicator of the “strength” of the
interaction between vertices, then Proposition 2 says it gets harder to
euarantee the stability of this flow as the interaction strength gets stronger.
This fact is intuitively plausible.

The fact that we can guarantce stability for all flow velocities if
u > 2(a — B) > 0 has the following interpretation. The paramcters «, 8,
and # can be thought of as characterizing the materials which go into the
construction of cach scparate vertex and each separate edge of (10) and (18).
From this point of vicw, the paramcters «, 8, and « are “local” quantities,
since -they do not take into consideration the various ways in which the
vertices and edges can interact. In constructing these vertices and edges,
it is natural to ask the following question: can we choose our materials
once and for all in such a way that (*) will eventually be stable no matter
how strongly the vertices and edges interact 2 Theorem | and Proposition 2
guarantee that the answer to this question is “yes” because o(0) is independent
of r = 0.

6. Tue Cast o(r) < 0

The condition ofr) = 0 is not superfluous to guaranteeing the limiting
equations Q; = P,; of Theorem 1. We illustrate this fact in the case 7 = 0
for simplicity. '

Prorosition 3 Suppose ¢ < 0. Then

Yilt) ¥ (0) < 2log (1 -+ TUB!\%)’)(O_)

forall ¢ 0.
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We can thus make the deviation of Py, from y;,(0) as small as we please
by choosing o < 0 and | o | sufficiently large. In particular, if

| RYI
0wl 2o (14 ‘«761\“:(?"_(0) =+ laﬁ\~(m}0)

then the equations Qp = Py and Q, == Py cannot be simultancously
fulfitled.
The proof of this Proposition is contained in [2].

7 PrEDICTION AND LEARNING THEORETIC REMARKS

By Theorem 1, X(0) = 9,0) = Y,0) implics .X(t) = y,(t) = V(1)
constant for all ¢ >: 0, and in any case .X(f) and all y,{1) lic in [m,- , M
for all + .- 0. In the former situation, we say that the complete graph with
loops “remembers” its initial data with perfect accuracy, and in the latter
casc that it remembers its initial data within an crror of M, — m, .

These facts are direct analogs of a property found in an outstar with an
input-free border [1]; namely, the outstar probabilitics

yli(') = z!i(f) [i zlm(’)]-

m=2

and

X(0) = x() | 3 )],

m=2

i == 2,..,n, arc constant for all ¢ > 0 if X(0) = 3,/(0), and in any casc
they always lic in the smallest interval that contains X,(0) and y,,(0).

This analogy hetween the memory of an input-free complete graph with
loops and of an input-free outstar is not, however, complete. For example,
in the complete graph with lm)ps the limiting cquations Q; -~ P,; cannot
be guaranteed unless o(7) = 0, whereas the analogous limiting equations
Q. - P in an outstar held f()r alt values of of7). T'he analogy breaks down
still further, as our next theorem will show,

This theorem studies the following question: given any  probability
distribution {0, : / b, 2,... ), can inputs be found which in finite time
bring .X'(1), v,(), and Y1) within an interval of prescribed smallness
enclosing 1,2 “T'hat is, can the experimenter £ find an experiment which
in finite time “teaches” the machine M the probabilitics 0, to within an
arbitrarily small crror? The answer is “yves.” Once the inputs ceasc,
Theorem | guarantees that 3/ remembers the probabilitics to within the
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same crror for all future times just so long as no new inputs occur. This
experiment is analogous to the experiment performed on an outstar which
teaches Yy(f) and y,(#) the probabilitics #,, {:=2,...,n, to within an
arbitrarily small error. ‘

The analogy between complete graphs with loops and outstars breaks
down in “recall” cxperiments in which  presents a test input to onc vertex

conly and measures the output produced thercby to test the memory of E.

In an outstar, such a recall experiment does not alter the accuracy of M's
memory of earlier teaching experiments. In a complete graph with loops,
the very act of recall helps to destroy the memory of earlier teaching
experiments. The complete graph with loops must thercfore be regularly
retaught after recall experiments, whereas the outstar need never be retaught.

A previous paper 2] studied a complete graph without loops which differs
from both the graphs previously discussed in that it forgets its initial data
even when o > 0. These three examples illustrate the profound effect which
the cocfficient matrix P—that is, the “geometry” of the graph—has on flow
dynamics, and in particular on the “memory” of 3.

8 Grarus waict are Not EvenrtuaLLy IneuT-FReE

We now define inputs which can teach A any probability distribution
to a fixed degree of accuracy within finite time. Our result discusses the
global limits of X; and y;; , and the oscillations of .\, relative to the functions
Y. = max(Y,, 6} and y, 4 = min{y,, 0,).

Tueorem 2. Let (*) be given with any fived n = 2 and any v 22 0 such
that 5(r) -2 0 and oy(7) ~= u + s(r) = 0. Define the inputs
I = 0,1,

where {0,:7 = 1,2,.,n) is a fived, but arbitrary, probability distribution,
and I is any hounded, continuous, and nonncgative function for which positive
constants k and T, exist such that

[Certeydi ko T,. (36)

Then for arbitrary continuous and nonncgative initial data

(1) (limeting hehavicr) the lmits

0, ltilyl i) and P, lim yalt)
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extst and satisfy the equations
Qi =P, =0, (37)
L,h=12..,n
(2) (oscillatory behacior) the functions y, 4, Y4, X; — = Yio and X; — Y, ¢
change sign at most once and not at all if y/0) < X(0) X Y {0).

As in Theorem |, the assertions concerning oscillations do not depend
on the sign of oy(r) or s(+).

Lemma 7. For any values of "1("') and s(r), the functions 9,4, Y4,
Xi —yie, and X; — Y, change sign at most once, and not at all if

¥40) < X(0) < Y.(O)

Proor. Let X[ = X, —8,, ¥ =y, —6, y® =y, —0;, and
Y{® = ¥, — 0;. Then (9) and (10) become

XP =4y X (- - X®]  BYO, 9)
m=1

and
(9) — C(\’((I] J;J(;:)) (lo)

From these cquations and the nonnegativity of 4, B, and C;, the following
alternatives are apparent by inspection.

Cast 1. I X1(1,) > 0and 3(t) > 0, then XO(f) = 0 and y(r) > 0
for ¢t > ty. If morcover X[”(t)) =7 ¥{P(1,), then X)) -1 ¥t) and
Y{°(t) is monotone dccreasing for t=1ty. On the other hand, if
X{(ty) > ¥Y{P(t,), then X{P(f) is monotone decreasing and all y9(¢) are
monotone increasing until the first time ¢ = #;, at which X(¢) = Y{(¢).
If no such time exists, all limits Q; and Py, ckist and Q; = P,; > 6,. If
such a time does exist, the preceding case holds for all ¢ > ¢, .

Case 2. If X{”(t,) = 0 and Y{®(t,) < 0, then the arguments of Case 1
go through with incqualitics reversed, and y!? and Y{® interchanged. Thus
cither all limits Q; and Py, exist, or there is a #;, such that y?(¢) << X{%(¢)
for ¢ > ¢,.

Cast 3. If ¥(0) 2= 0 = 3™(0) and Y®(0) > y™(0), then cither
YO 32 0 = () and }"”(I) = y1%(¢) for all ¢ = 0, or we eventually
enter either Case 1 or Case 2. Supposc that the former alternative occurs;
If morcover X{7(0) ¢ [»(0), ¥(0)], then XP(t) and all y®(f) are
monotonic until the first time ¢ = ¢, at which X{®(¢) e [»"(2), Y"(1)].
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Thereafter, X{?(¢) e [y{”(t), Y*(t)] and Y/®(t) is monotone decreasing
whereas y{”(¢) is monotone increasing. Both limits ¥ (%0) = lim,,, Yi(t)
and y(o0) = lim, ., y,(t) thercfore exist. If Y (o0) = y(=0), all limits Q,
and P;; exist and are equal.

Case [-3 exhaust all alternatives, and thus the asscrtions of the Lemma
are apparent.

Lemma 7 suffices to prove Theorem 2 when all 8; are positive once the
following information concerning x = Y'7_, x, is made available.

Lemma 8 There exist positive constants A, , i = 1,2, 3,4, such that for
t > T

t
A+ f eI (v) dv < x(t) e S Ny + Ay e(z) dv. (38)

Proor. Since x obeys (15), we can apply the following representation
theorem ([6], pp. 73-75): for t > 0,

x(t) = x(0) k(t) + J: [#(v) + ax(2)] A(t  ©)dv + f: I(v) k(t — v} dv, (39)

where k(1) is the unique function satisfying
(a) &) =0, t <O,
(b) &(0) =1,
(c) k(t) is continuous on [0, o0},
(d) A(¢) satisfies the equation

k() = —ak(t) + BK(t — 7).
By Lemma 3, A(¢) can be written in the form
k(t) = e*™Mc + et H(1)] (40)

for t > 7, where ¢ and m are positive and H is bounded and nonnegative.
The proof is completed by substituting (40) into (39), rearranging terms,
and using the nonncgativity of all quantitics to make the now obvious
estimates.

Remark. The limits Q; = P, = 0, can be derived from Lemmas 7
and 8 just as in Theorem | if all #, are positive. This is because essentially
the same boundedness estimates can be made on the coefficients 4, B, C;,
and their derivatives in Theorem 2 as we m.de on 4 and C; in Theorem 1.
For example, by Lemma 7

X0 = min{X(0), v,(0), 8.},
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which is positive if 0, is positive except possibly for a finitc amount of time
if A;(0) = 0. This fact allows us to bound ¢, and ; C;} from above and
below by positive constants, as in the proof of Theorem 1.

Even when at least one 0; = 0, Lemma 8 allows us to conclude that
Q; = P, == 0, in several cases. For example, consider the subcase of Case |
for which Q,; =» Py, = 0, . If Q, = 0,, we are donc. Suppose not. “Then

by (9) there is a T such that ¢ > T implics
| Xd0)l = YQ. — 0) B().
Thus by Lemma §,

Je stn}

IRV () NI (eF ‘9t))‘.1 TNy e 7 de

. d ¢ —3s(r)n
2, (Q: —6) 7 log ()\3 + A, f I(v) e d'u)

which in integral form is

A+ A [HI(w) e do )

1
ST = X (0. — 8.
XdT) = X(t) + 2, (Q: —6;) log ( A A LT [(v) e~ do

since | Xy(¢)] = —X,(t)fort = T.
By the hypothesis that s(r) << 0,
@ — | ) = fer >0,
or « > | s(r)!. Thus by (36),

i
[ ewe-orw) o > [ et=2u(z) do
>k

fort > T,, and

3 doodl A helal=]
XAT) = X(t) — (0O, —8)1lo Sl A o =
A1) 2 Xl 5 (0= ) log ( T T
for t 2= T. Since Q,; > 6;, lim_, X{!) == —o0, which contradicts the
nonnegativity of .\, so that 0, =, = P,,. The corresponding subcase

of Case 2 is treated analogously, and the subcase of Case 3 for which
Y (o) = y, () is alrcady proved. All the following estimates are aimed at
treating the remaining subeases for probability distributions with at least
one zero entry.

NONLINEAR PREDICTION AND LEARNING

Throughout the remainder of the proof, we will consider only Case |,
since Cases 2 and 3 can be treated by obvious modifications. We will need
the following estimates of .\{® from below and above.

Lemva 9. If X{%ty) = 0 and y{(t,) O, then there exists a positive
constant £° such that

Xﬁ‘”(l) :} §;‘”e”"” t > ,ll (41)

Ay
Proor. The proof consists in showing that the solution w{” of the
following system is a minorante for X{” whent > ¢,.

% = A(e” —wf) x(={" =) Buw® (42)
and
B0 = C (! — ovf®), (43)
where
= 53

w(ty) = X{"(ty), and v{(t,) = y®(t,). The cocflicients 4, B, and C;
have their usual meaning.

By Lemma 7, X{®(t) >0 and y!”(t) > 0 for ¢ > t,. Moreover all
X,(t =~ 7) are always nonncgative. Thus for ¢t > ¢, ,

XP=4F X, —-0»8-x" BxP

ma=1
> Ay - Xy — Bx®
= Ay — X" x(»® - X — BXP. (44)

It readily follows that X[”(¢) 2z w{®(¢) for t = t, by comparing (44) with
(42), and noting that a decrease in 2{” can only cause a decrease in o!®,

Consider (43). 1f 2{%(t,) < w!(t,), then ©@ increases until the first time
t =T -1, at which «{”(f) = @!®(). If no such T exists, then for all
Ly, o

‘\'(;!l(t) u.(il.v)(t) Tz ‘L“i"’(’) .. 'i‘:.“’(/") L vgf))(,‘)) cx(r)(l-l,,)’
which completes the proof in this case. 1f such a 7" does cxist, then

T =0 whereas  @{M(7 ~B(Tyw!™(T 0.
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Hence

x(@(t)  w!™() =0, 2T,

so that

wiP(t) = -B(t) wo(t), t>T.
As in the previous Remark, we therefore find
w™t) > wlo(T) el Bav

P (TYA, + A [T I(v) e do)
A + A [t I(9) e~ dp

Since I sup{I(t) : ¢t > 0} is finite,

w(9(t) > 7O(t) estont
where

w (YA + A [T ) e=11* dn)

7] .-f—f = 7
) N g gl ’_ SLed '!'I I
["'t (7] ] £ si7)|

Since 7{” is positive and has a positive limit as ¢ — oo, the proof is complete

Lemma 10. Suppose YO(t,) = XO(t,) = 0 and v°(t,) > 0, where we
can choose ty >> Ty without loss of generality. Then there exists a pe 0, 1)
and a Ty, = T\(n) such that

XOu) 5 (1 —p) - Ty (46)
Jor every t = t, -+ T, .

Proor. Procceding as in Lemma 9, we define for ¢ = 1, a majorante
I
: 4 . 0 ]
W% of XI” by the cquation

W = (v — w®) - piy®, (47)

where A, B, and Y{" have their usual meaning, and IV/%(r,) = X(s,)

NONLINEAR PREDICTION AND LEARNING
Integrating (47) in [ty , #] yields
IV“”(t t,) = U(e)(t t) + V(m({ t,)
where
U, 1) = WO(t) Z7 (e 1),

Vi) = 27 ) | ¥0dZe, 1) do,

i

and
t
Z(t, t,) = exp [ [ LA+B duw).
Since W{(t,) < Y1) for ¢, > t,, (49) implics

Ui, 1) < YOu) 27, 1.

To evaluate (50) recall that

A+ B = Bx(t — 'r) +
d .
7 log v + ~
and so
_ X)e!
Z(t, t,) x(t,) et

(50) can now be written as
L .
/{9) _— ’_(9’ xer’ d
v 6) = f Y 4xer de
and since 0 X Y{(v) -7 Y{%(¢t) forv > ¢,

) <) R )
wher

|

Rt 1) = ones

J. Aver? dv

513

(48)

(49)

(50)

(51)

{52)

(53)
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Recalling that () = [Bx(r — 7)/x(z)], we find

R(1, 1) == ' [ A CONE S WAL
1

x(t) et
and since
Bx(r  T)ev (% b ax — )

d " x U
p (ver") — Iev®,

R, t) = —Z-(t, 1)) — Wf;—;‘ J, T do. (54)

We now combine (48), (52), (53), and (54) to find that

X < w(n) L Y1) P, 1), (55)
where
Pt 1) = % [ 1o (56)
’ LU R N
By (36) and (38),
1
) e o e{é—v)
P < g I(v) de.

It remains only to estimate f: eU=2](z) dv. By (36),
1

St
k< J ext-v(¢) do /é

T

for t = T,. In particular, for t = £, (=T,),
¢ ¢

J' et~ [(v) dv 3= k — j e~ -0(z) do
4 k4

k — _I_ e alt -}
[s 4 !

A

and there surcly exists a 73 such that for ¢ ;7

. k
e - () dv =
Jll @dv 5

Thus for ¢ T,
L, 1) —
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where p == [£/2(\; + A Jo"1)], which along with (55) complctes the proof.
The fast lemma which we will need represents y! in integral form.

({2}

Lemma 1L 32 can be expressed in integral form as

o IR0 + A [t X0 — 1) XPv) N(v) do

7
ik L - k; [} Xi(v — 7) N(v) dv (57)

where k; 1[BY % 1 2;,(0) and

N(v) = e"’s(z — 1) x(z).
Proor. Integrate (10). Then
t t v
yalt) = efoctn [3,0) + [ XyCpelicine do]. (58)
0

Write (14) in the form
d €
Ci(t) = 3 log [/z,. + j X(» 1) N() dv]
and substitute into (58). Then

¥i(0) + &; I :) Xj(v — 7) Xi(v) N(v) dv
1+ k_j J':) Xi(v — ) N(v) dv

ya(t) =

Subtract 8, and find (57).

9. Proor ofF THEOREM 2

We consider only Case 1, so that X{”(£) > 0 and y''(t) > 0 for t > t,.
We assyme that X;7(¢£) << Y(¢) for t > t,, since otherwise all limits exist
and have the correct distribution. We also let ¢, = T, = 0 for convenience
of cxposition. Then by (10), Y{”(f) is monotone dccreasing, the limit
V() == lim,.,, Y(f) exists, and Y?(20) = 0. If ¥'(c0) = 0, then all
limits Q; and P, exist and cqual 0;. It remains only to consider the case
¥Y{™(o0) = 0. The proof proceeds by showing first that in this case the
limit lim, ., X{?() exists and equals Y®(o0) :> 0. This fact is then used
to show that all limits lim, ., yi7(f) exist and also equal Y{”(20). Then
we can draw the contradiction that lim, ., X!”(f) = 0, from which we
conclude that V{”() -= 0 after all in Case 1, and thus that Q; = P, = 6,
in this Case. Analogous arguments are then readily seen to hold in Cases 2
and 3.
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(I) We now prove that limg., X{7(f) = Y{®(c0), where we suppose
Y{%() - 0. Let K(#) be that integer such that Y{(t) = y{};, (¢). Suppose
that K(t) takes on the values r;,7,,..,7, ,.. in the intcrvals [0, Ty),
[Ty, To)seeos [Ty » )., respectively. Then by (57),

Y2 0) + &, [t X, (v — 1) XP(v) N(v) dv
L+ &, [t X, (v—7)N@)do

v =

for te[T,_y, T,). Since Y{® is monotone decreasing and ¥{¥(c0) > 0,
Y (o0) [1 ke, X, (v —7) N() d-v]
¥ (0) + &, j X, (0 7)XP) N) do. (59)

Again by the monotone decrease of Y{? to Y?(0), we can find for every
e > 0 a ¢, such that Y{®(t) < Y{?(0) + € for t > t,. We will consider
in particular only €'s with 0 < € < (u/l — p) Y{#(00), where p is defined
in Lemma 10. We now estimate the integral in the right-hand side of (59)
in terms of any such e and the functions

@ _ it YP%) <8
H.s0) if X"(v) >> 8,

and J{% = | — II{%, which we define for every fixed § >> 0
By Lemma 10 we find that for every ¢t >t T},

I T t
< [T X0 — 1) XO(0) N(v) do + 8 [ Xefo =015 N@) do
0 te+T,
t
(1 ,z)f X, (v )]0 YO - 1)) N@w) do
te+Ty

Since Y?(v-T,) Y!™(0) + eforv-T) > ¢t,,and e -3 (g/l - p) Y% (0)

[ N
[ X 9PN 8] X, 0)U%0) N de
tet Ty

te+Ty

+ ¥¥on) J X, (v - 1) Ji%0) Nv) do. (60)

te+Ty
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Substituting (60) into (59) and rearranging terms, we find for any fixed ¢
in (0, (/1 — ) Y¥(o0) that

J' "X ) HO) Nw)do

te+Ty

."-'| I [, o) :
A = ¥ I~ i) o . )
|: } 1) o . ;"'I N 'L_'I,__ | X ,.m('l' - 1‘) .\’,- (Z‘) iV('(") d1

i o) ¥ )} o R

and thus

-Y (Oi(w)

¢
f X (v THONE) dv <
te+T, 3

[k J:frl' N(v) dv]. (61)

where & = minfk;: j = 1,2,...,n} > 0.

We now consider the intervals on which I1{} = 1. By (36), (38), and the
boundedness of I(t), it is easily seen from (9) that | X | is bounded. Thus
for cvery 8 > 0 which is ever smaller thun X{®, there is an Ly > 0 such
that H{®, = | on intcrvals of at lcast length L. If no such & exists, then
X = 0, and we arc done. For any such 8, we can write the integral on
the left-hand side of (61) as a sum of integrals

J' X, (v — ) N(v) dv (62)
M‘”'

]

over a sequence of Ny(t) nonoverlapping intervals M({®, M,..., My,
whose length is at least Ly . We now cstimate the size of the integrals in (62)
If0, >0, then by Lemma 7 therc exists ay, > 0 such that X, (2) =y,
for all” t > 0. 1f 6, =0, then cither such a y, > 0 again exists, or else
we enter Case | of Lemma 7 for all large t. In this situation, Lemma 9
applics and thus X{?(t) ;= £ for all large ¢ and hence for all ¢ > 0 with
perhaps a change in €. In all cases, therefore, X{(f) = ¢%e¢ for all
t = 0, and the integral in (62) excecds

gimg=rat) J e N(2) do (63)

8
1"!:

By (36) and (38) we can, in turn, find a positive constant w{” such tha
(63) exceeds

1]

zL-‘."’J entre (64
M( ]
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where oy(7) = % + s(r) > 0, so that the integral in (64) exceeds 0L, . We
have therefore shown, by (61), that

P
Ny(t) << ;",7‘5,“— 2
where
-(» .
© — Vi () tedTy .
2i5. = Y “”(oo) [k N(v) (11;]

In particular, Ny(#) is finite for every ¢ > ¢, -+ T, and there cxists a time
Sy such that X{"(t) > 8 for all t > S, . This is truc for every 8 which is
ever smaller than X{” and Y!®(0). Since X eventually exceeds all
such &s and X{”(#) X Y!”(t) for all £ >¢,, we conclude that lim,..,
Y{O)(t) — Y“”(oo-)
(II) We can now show that lim,, y"”(t) == Y{®(oo) forallk = 1, 2,..

First express yy;’ in integral form as in (57). Subtracting Y{?(c0) from both
sides gives

YRty ¥P(w) = 420 + BE(),

where
A1) :
+ k. [, Xi(v — 1) N(v) do
(9)( £y = ky f,', Xi(v — -r)[Xf”(v) — Y,“”(oo)] N(v) do

1 + k&, f Xi(v — 7) N(v) dv

By familiar arguments using o,(r) > 0, lim, ,, 4\2(¢) = 0. It remains only
to show that lim, ., B = 0. Clearly

(8) ATl e
0= B;‘;?(I)l < ki f(tl ‘Yk(vt 7) L:"(v) N(z) dv ‘
1 + &, [o Xio — 1) N(v) dv

where L{"(t) = | X{(t) — Y{"(c0)] — 0 as t — 0. Thus for every € > 0
there is a T, such that t > T, implies L{”(¢) < € and hence

ek, [£. Xi(v — 1) N(v) dv

Tk - Xo @y ae | D s el

| B2 <

which completes the proof.
(ITI) We now use the fact that

lim X(1) = lim »17(¢) = ¥?(c0) >0

NONLINEAR PREDICTION AND LEARNING 519

to draw the contradiction that lim,,, X{”(t) = 0, and thus to show that
Y{"(o0) == 0 after all. This follows immediatcly if we write X!(f) in integral
form as

. "‘ r
Xt(e)(t) _ e—f;ﬂdw [‘Y,(G)(O) + ri('l)) (’Io”""’ d‘l,v]'

where I'(t) = Z,,_l Xt — [y — X!”] converges to 0 as ¢ — o0, and
then estimate efy24" from above and below by expressions of the form
Ae!s"1! X constant, using (36) and (38). We have hereby shown that the limits
Q: and P, always exist in Casc | and have the values Q; = Py, = 0,.
An identical argument can be carried out in Case 2 with all inequalitics
reversed, and y;” and ¥{” interchanged. In Case 3 we need deal only with the
situation in which y‘f"’(t) < X < Y1) and y(t) < 0 < Y1) for
all t 21y, and Y{"(c0) > y{”(0). We need only then apply a straight-
forward variant of Lemma 10 to show that X{®'(f) must lic too close to
both Y{®'(0) and y{”(c0) to permit these limits to differ. Theorem 2 is
hereby completely proved.

CorotLary 1 (Stability is graded in 7). If o > B and (36) holds, then
Theorem 2 is true for all n = 2 and all * = 7 if oy(ry) > 0. In particular,
if u > o« — B > 0 and (36) holds, then Theorem 2 is true for all n > 2 and
= 0.

PROOF. a > B implies s(+) < O for all + > 0.

CoroLLArY 2. If a > B, o(r,) > 0, and (36) is true, then both Theorem
and Theorem 2 hold for all n = 2 and v > =, .

PROOF.  oy(7y) > afry) if &« > B

10. LEARNING TurortTicAL REMARKS ON THEOREM 2

(a) Practice Makes Perfect

Theorem 2 describes a learning experiment performed on a machine M
in which the experimenter E tries to teach A the probability distribution
{0;:5 -1,2,..,n} by perturbing M with inputs I(r) = 6,I(t). This
experiment takes infinitely long to carry out since I(t) is positive for arbitrarily
large valucs of . We denote such an experiment by the symbol G, Since
no realistic experiment takes infinitely long to perform, we replace G by
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ascquence G, G'9,..., G'™,.__ of finitc experiments which are “truncations
of G That is, (1) the inputs of G'™ are

IN = G0ty x(t — U(N)),

J = 12,...,n, where U(N) is a monotone increasing and positive function
of N = 1 such that lim,_, U(N) = oo; and (2) the initial data of GV is
the same as that of G'*). Denoting the functions of G'» by superscripts
“(N)' (eg ¥y is ¥i)"), we immediately find the following corollary of
Theorems 1 and 2. '

CoroLLARY 3. Given any sequence GV, G®,..., G'M'  of truncations of a
G such that « > B, o(r) > 0, and

f ety do >k, 1> T,
then
(1) for every N > 1, the limits Q™ = lim,,, X'V'(t) and PV =
lim, ., yi¥(t) exist and are equal,

(2) for every N > 1 and t = U(N), the functions X(t) and yuit) lie in
the interval [m{™, M), where '

m®™ = min{XM(U@NY), y (TN},

MY = max{ XM(UN)), YU,
and

lim ™  lim M™ = ¢
N-owm N~

t,hk=12..,nlIn particular,

lim QY = lim P = ¢,
Nax N-owo

t,h=12..n

(3) for every N > | and t >0, the functions Y, 3%, XV _ y¥,
and X{*' — %) change sign at most once and not at all if ¥¥M(0) < XM(0) -2
YIM(0). The 0s can be erased for t > U(N).

Corollary 3 says that as F increases the “practice time” U(N) for learning
the probabilitics ; , he can guarantec that the maximal deviation M — m!™
of .X{"(t) and y{(¢) from 0, when practicc ends at ¢ = U(V) can be made
as small as he pleases. That is, “practice makes perfect.”
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(b) dn Isolated Machine Does Not Forget

If nothing more is taught in (L(V), ©0), then M “remembers’” the proba-
bilities 6, with at least the same accuracy M) — m!™ at all future times.
(c) The Memory of an Isolated Machine Spontaneously

Improzves after Sufficient Practice

CoroLrArY 4 (Crispening). For N sufficiently large and t >= U(N), one
of the following cases holds:

() YI™() = XM(t) > 8, and Y N(1) is monotone decreasing;
(2) 8: = XM(t) = yi™(t) and yN'(t) is monotone increasing,

(3) YIV(2) = 8, = y™(t), XV(t)e [vM(t), YIM(1)], Y{O(t) is monotone
decreasing, and y{¥(t) is monotone increasing.

Proor. These cases correspond to Cases 1-3 of Lemma 7. For example,
consider the case 8, = 0. Then only (1) is possible and we show that it
arises as follows.

If X{M(0) > Y™(0) then X¥)(f) decreases and Y{™(t) increases for
te [0, U(N)] until the first £ = ¢{" at which X{™(¢) = YV(t). Such a ¢,
must exist for all sufficiently large N, or else X!V(2) = YV(0) >> 0 and
limy_, Q!"? 3£ 0. For such values of N, Y{™(t) > XM(1) for ¢t > ¥,
and thus Y{" is monotone decreasing.

Corollary 4 shows that after a vertex v; has reccived enough practice,
the maximal deviations Y™, or y!™, or both, from the intended value 8,
can only decrease after practice ceases. This “crispening” or “spontaneous
improvement’”’ effect also occurs in outstars [1].

(d) An Isolated Machine Remembers without Overtly Practicing

The condition « > B which we need in learning experiments (Theorem 2)
is equivalent to the assumption that all outputs x!"'(¢) approach zero
exponentially in (U(:V), o0) as ¢ — oo for all » > 0. Or speaking heuristically,
it describes the case for which outputs are produced only in response to
inputs. Since for times ¢ 3> U(N), the outputs from M are negligible, E has
no evidence available that .M remembers the weights 6, . It is plausible to
suppose that as the effect of inputs on outputs wears off, M forgets the
information contained in these outputs. This is, however, false, as Remark 10b
illustrates. Thus M remembers without “‘overtly” practicing.

. (¢) The Machine Forgets Its Past as It is Called upon to Reproduce It

To test at times t 3> U(N) whether M does indeed remember his
probabilitics 0,, E perturbs a vertex v, and observes whether 8, of the
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output thercby produced comes from z;. The following corollary shows
that £ cannot produce the fraction 6; from z; on a long sequence of “recall”
experiments of this kind without substantially destroying the memory of 0,
in 3, unless §; = §,;. .

CoroLLary 5 (recall experiments). Let a« > B, o(r) > 0, and

I(t) = 01t) x(t — T) -+ 85 I¥(1) x(T — ),
where

.t
J et-0[2)(2) dy > k, t=>T4+7T,,
T

and T > 0. ThenQ, = Py, = §,, .

Thus, no matter what M learns in [0, 7] and no matter how large T is,
if only v, is perturbed in frequent recall experiments in (T, ), then M
will eventually forget all prior learning in place of the new probabilitics
8; . Whenever 6; 7 §,, for some fixed 4, retraining experiments must be
interspersed among recall experiments or all memory of prior learning will
eventually be washed away. By contrast, the memory of an outstar is not
damaged by recall experiments [1].

(f) ANl Errors Can Be Corrected

The previous remark is a special case of the fact that a machine trained
on onc sct of probabilities 0! for a finitc amount of time can always be
retrained on an arbitrary new set of probabilities 6/®. This is because
Theorems 1 and 2 hold for all nonnegative initial data; i.e., because our
limit thecorems hold globally. '
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