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(1) Introduction.—This note describes some nonlinear networks which can
learn a spatial pattern, in “black and white,” of arbitrary size and complexity.
These networks are a special case of a collection of learning machines 917 which
were introduced in reference 1, where a machine capable of learning a list of
“letters’” or “events” was described. We list in heuristic terminology some of
the properties which arise in the learning of patterns:

(a) “Practice makes perfect”’: Given a “black and white’ pattern of arbitrary
size and complexity, a nonlinear network 91 can be found which learns this
pattern to any prescribed degree of accuracy. _

(b) An tsolated machine never forgets: If the pattern is learned to a fixed
degree of accuracy by 91, then 91 will remember the pattern to at least this
degree of accuracy until a new pattern is imposed upon 91.

(c) Overt practice s unnecessary: 9N remembers the pattern without prac-
ticing it overtly.

(d) Contour enhancement: If 91 learns the pattern to a “moderate’” degree of
accuracy, then 9’s memory of the pattern spontaneously improves after prac-
tices ceases. As a result, when 9N recalls the pattern, its contours are enhanced
in the sense that “darks get darker’” and “lights get lighter.”

(e) A new pattern can always be learned: Even if 9 knows one pattern to
an arbitrary degree of accuracy, this pattern can be replaced by any other
pattern by a sufficient amount of practice.

(2) The Machine—The nonlinear network which describes 91 is defined as
follows for any fixed number n > 1 of states and any reaction time r > 0.

£(1) = —azy(t) + BZmaa"Tm(t ~ T)yYmi() + 1.0, @
*
Yn(t) = 2p(t) [Zmaa"2zm ()17, (2)
and
Za(t) = —uzy(t) + Bz,(t — 7)1:(t), ®

where 4,7,k = 1,2,...,m. (*) describes the following process.

Let @ be a graph with vertices V = {#,:¢ = 1,2,...,n} and directed edges
E = {e,k:j,k = 1,2,.. .,n}. Each v, is drawn as a point and ey, is drawn as an
arrow facing from v, to v;. z,(f) describes a process going on at vy, and yu(t)
describes a process going on at the arrowhead Ny of es. Equation (1) has the
following interpretation. At time ¢ — 7, each v,, emits a signal of size 8z, (t — 7)
into ems. This signal travels along e at finite velocity until it reaches N, at
time ¢. The signal thereupon activates the process ym4(t), and a quantity
Bzm(t — 7)ymi(t) is instantaneously transmitted from Nn, to v, and thereby
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changes the rate of growth #,(8) of z,(t).  Sinee thizs is true for everym = 1.2, ..
n, the totul signal received by v; from all v, at time | js BZa™tn(l — )y (1)

xlt} alzo spontaneouely decays at the rate —az,(t). 7,00 is the input signal to
v, vreated by {he pattert,

i

yall) in (2) is the ratio of funetions ..t} which, gs () shows, cross-correlale
the signal gz (¢ — ) received by Ay from ¢ ot time ¢ with the valye Tnltl of the
contiguous vertex v, al time ¢,

These equations can be derived from simple psychological postulates anc have
a suggesiive neural interpretution.? They are studied mathematically in
reference 3, and are extended to more realistic neural equauiions in reference 4,
which, for example, contain the Huartline-BEatlif equation® as n special cose,
The “contour enhaneement” in property (d) above will thereupon be seen as an
extension of contour enhancement as it is usually discussed in terms of hiteral
inhibition.

(3} Spafial Patterns.—For purposes of lesgrning n spatial patiern, arrange the
vertices v in 8 rectangular grid.  Not all inputs 7,06 in (1) represent spatiul
patierns. For example, the pattern “A" does not depend on the ahuolute
“blackness” of its lines, bul only on their relative Blackness as compuared to the
sarround. A pablern is therefore defined as an input 7,000 of the form

Ty =8J(0, i=12._., mn (4}

where the 8% are arbitrary, bat fixed, nonnegative numbers whose sum st bo
taken equsl lo 1 without loss of genernlity, The pattern “A™ iz the same
whether or not we view it in steady light or flickering light. () ean therefore
oseillate quite wildly without ehunging the pettern described by the 85, In
fact the following theorem holds, which deseribes the way in which the probiu-
bilities y,(t) = 24(t)[Zoe™2,(1) ]! and the correspondingly defined proba-
bilities Xo(f) = 2t} [Ena"ze (i3] learn an arbitrary pattern.  Other facts and
generalizations coneerning this lenrning process are contained in reference 3.

Treonenm 1. Supposen > 2{a — 8) >Oand 8 > 0. Leln be any fired number
of stafes and lel v be any fired nonnegalive reaction time.  Let 108 = 8,1(8) b2 any
pattern with I{) nonnegalive, continuous, and bounded, and such thatl positive
conaltants b and Ty exdst for which

1
f; (e = ke, L= T, (5)

Then for arbitrary nonnegalive and continueus inditinl duta in (*), the limits 3, =
litn X!} and Py = limydt) cedst, and obey the equations
P [—+m

By Gyt o= 120050, (6)

Equation (6) suys that the probability X (1) of v, and the correlations y,,(t) of
all Ny, touching v, learn the relative weight &, of the pattern, just so long as the
absolute intensity J(t) of the pattern is oot “too small” in the sense of (5). I
van in faet oseillate very wildly without violating (5), A pattern can therefors
be learned to arbitrury aceuracy if only it is presented sufficiently often. In
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order to learn ever more subtle gradations of shading in the pattern, it suffices to
take the number n of vertices in the rectangular grid ever larger. ’

Equation (5) requires that I (t) take on positive values at arbitrarily large
values of £. We now describe what happens if a “truncated” pattern I, (f) =
0™ () is presented, where I'(f) = 1 ®,0<t<wand I @) =0,¢> w.
That is, 91 is exposed to the pattern only in the time interval [0,20). B

TrEOREM 2. Suppose u > 2(a — B)>0and8>0. Letn 2 2 (to avoid
trivialities) and r > 0. LetI,(t) = 0,t > 1, Joralli =12,  .n. Then Jor arbi-
lrary nonnegative and continuous data in [w — =), the imits Q. and P,, exist and
lie in the interval [m(w),M {(w) ], where

my(w) = min{X,(w),y(0): k 1,2,...n}

M,(w) = max{X,(w),y“('w): k=12, n}

Denoting the functions of (*) which are exposed to I,*)(t) by supersecripts

“(w)” (for example, X () becomes X {2(t)), we find the following corollary.
CoRroLLARY 1.

lim lim X, () = lim lim Y@ = 6, 1,5 =12,...n. )

W D [t D W ® (=D
Proof: By Theorem 1, lim m,(w) = lim M (w) = 6,
LWt O (2 1)

These theorems say that if the pattern is exposed to 9N during [0,w) and if w
is taken sufficiently large, then 91 will learn the pattern to an arbitrary degree of
accuracy and will remember the pattern to at least this degree of accuracy there-
after. 9N does this without “practicing overtly” because the outputs z,(£) from
9M decay exponentially to O for £ > w whenever a > 8>0.

Contour enhancement occurs in 9% because of the following corollary, which
describes the “envelope”

Y.(t) = max {yu(t): k=12,.. .,n}

9:(t) = min {y,“(t): k=12, . .,n}

of correlations whose arrowheads N, touch v,. .
CoroLLARY 2. For.w sufficiently large, one of the following alternatives holds
foreachi = 1,2,...,n: . . A .
(8) Y 2> X ™) > 6, y () > 6, and Y () is monotone decreasing for
t 2> w or '
. (b) 6, > X @(1) > Yy (8), 0, 2 Y (1), and y () is monotone increasing for
12w or
© Y0 2 6, 2 g0, Y () > X&) > y,(0),Y () is monotone
decreasing, and y*)(t) is monotone increasing for t > w.
In other words, after a sufficient amount of exposure to the pattern, the
envelope of correlations “spontaneously”” approaches the pattern probabilities 6,.
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Suppose, for example, that 6; = 0, which designates a “black” portion of the
pattern at statev,, Then case (a) holds, in which ¥, (t) decreases towards zero.
That is, “darks get darker.”

To see how 9N recalls a pattern, suppose that a pattern has been practiced
over a long time interval [0,w) and that the outputs z,(f) have decayed nearly to
zero in the subsequent interval [w,W]. We now show that if even a single speck
of light is thereupon shined on the machine at a given vertex (say v;), then =
time units later the pattern will reappear in all its glory at all the vertices vy if
the reaction time r is sufficiently large. Since all z(W) = 0, we find by (1) that

0 2 —am() + 1), te [W,W + 1],

where I(t) represents the speck of light shined on »,. Thus a signal is emitted
from v; to all points»,. By Theorem 2, Y1(t) = 6, for t ¢ [W,W + 7], and thus

2(t) = —az () + Bu(t — )0, ®

Suppose 7 is so large that z;(t) has a chance to decay back toward zero before it
receives the signal which it has created ine;;. Then by (8),

t
z(t) = BOe™ f s er(v — 1)dv,

forallf = 1,2,
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interval [T — 7,T'] can be viewed as the initial data for (*) in the interval (T, ).
Since these values are nonnegative and continuous, and Theorems 1 and 2 hold
for all nonnegative and continuous initial data, our contention is proved.

* The preparation of this work was supported in part by the National Science Foundation
(NSF GP-7477).
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