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SOME NONliNEAR NETWORKS CAP ABLE OF LEARNING
A SPATIAL PATTERN OF ARBITRARY COMPLEXITY.
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MASSACHUSETrS INSTITUTE OF TECHNOLOGY

Communicated by C, C, Lin, Dece1nber 15, 1967

(1) Introduction,-This note describes some nonlinear net\vorks ,vhich caD
learn a spatial pattern, in "black and white," of arbitrary size and complexity.
These networks are a special case of a collection of learning machines ~ which
were introduced in reference 1, where a machine capable of learxung a list of
"letters" or "events" was described, We list in heuristic terminology some of
the properties which arise in the learning of patterns:

(a) "Practice makes perfect": Given a "black and white" pattern of arbitral'y
size and complexity, a nonlinear network fit can be found \vhich learns this
pattern to any prescribed degree of accuracy,

(b) An isolated machine never forgets: If the pattern is leal'ned to a fixed
degree of accuracy by 3Tl:, then fit will remember the pattern to at least this
degree of accuracy until a new pattern is imposed upon fit.

(c) Overt practice is unnecessary: fit remembers the pattern without prac-
ticing it overtly,

(d) Contour enhancement: If fit learns the pattern to a "moderate" degree of
accuracy, then fit's memory of the pa~tern spontaneously improves after prac-
tices ceases, As a result, when fit recalls the pattern, its contours are enhanced
in the sense that "darks get darker" and "lights get lighter."

(e) A new pattern can always be learned: Even if 3Tl: kno\vs one pattern to
an arbitrary degree of accuracy, this pattern can be replaced by any other
pattern by a sufficient amount of practice.

(2) The Machine,-The nonlinear network which describes fit is defined as
follows for any fixed number n ?:. 1 of states and any reaction time l' ?:. O.

Xt(t) = -axt(t) + .B~_l"Xm(t -1')Ymt(t) + It(t), (1)

(*)
YiA;(t) = ZiA;(t) [~m-l"Zim(t) ]-1, (2)

and

::~:f;.~;::I~';'i.

~~,;~~~t.,~~,:

Zjk,(t) = -UZjk,(t) + ,BXAt -7")Xk,(t) , (3)

where i,j,/c = 1,2,... ,no (*) describes the following process.
Let G be a graph with vertices V = {v,:i = 1,2,.. .,n} and dll'ected edges

E = {ejk,:j,k = 1,2,...,n}. Each v, is drawn as a point and ejk, is drawn as an
arrow facing from Vj to Vk,' x,(t) describes a process going on at v" and Yjk,(t)
describes a process going on at the arrowhead N j~ of ej~' Equation (1) has the
following interpretation. At time t -7", each Vm emits a signal of size ,Bxm(t -7")
into em" This signal travels along em, at finite velocity until it reaches N m' at
time t. The signal thereupon activates the process Ym,(t), and a quantity
,Bxm(t -7" )Ym,(t) is instantaneously transmitted from N m' to v" and thereby
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changes the rate of growth x I( t) of Xj(t). Since this is true for every nl, = 1,2,...,
n, the total signal received by Vj from all Vm at time tis .B};m-lnXm(t -T)Ymj(t).
x~(t) also spontaneously decays at the rate -CXXj(t). I j(t) is the input signal to
VI created by the pattern.

Yjk(t) in (2) is the ratio of functions ZJm(t) \vhich, ag (3) sho\vs, cross-correlale
the signal.Bxj(t -T) received by N jm from Vj at time t with the value xm(t) of the
contiguous vertex Vm at time t.

These equatioIlS can be derived from simple psychological postulates andl have
a suggestive neural interpretation. 2 They are studied mathematically in
reference 3, and are extended to more realistic neural equations in refere][lce 4,
which, for example, contain the Hartline-Ratliff equation5 ag a special case.
The "contour enhancement" in property (d) above will thereupon be seen as an
extension of contour enhancement as it is usually discussed in terms of 1:1teral
inhibition.

(3) Spatial Patlerns.-For purposes of learning a spatial pattern, arran~~e the
vertices VI in a rectangular grid. Not all inputs I j(t) in (1) represent spatial
patterns. For example, the pattern "A" does not depend on the abEiolute
"blackness" of its lines, but only on their relative blackness as compared to the
surround. A palle1'n is therefore defined as an input I I(t) of the form

I,(t)=8,I(t), i=1,2,...,n, (4)

\\"here the 8t's al.e arbitrary, but fixed, nollllegative numbers \\"hu~e sum cun be
taken equal to 1 \vithout loss of generality. The pattern «A" is the same
\vhether or not \ve vie\v it ill steady light or flickering light. I(t) can therefore
oscillate quite \vildly without changing the pattern described by the 8j's. In
fact the following theorem holds, which describes the way in \vhich the proba-
bilities YJk(t) = ZJk(t) [};m-1nZjm(t) ]-1 and the correspondingly defined proba-
bilities Xk(t) = Xk(t) [};m-l nXm(t) ] -1 learn an arbitrary pattern. Other fact:; and

generalizations concerning this learning process are contained in reference 3.
THEOREM 1. Suppose u > 2(a -/3) > 0 and /3 > O. Let n be any (LXed nu,mber

of states and let T be any fixed nonnegative reaction ti1rl.e. Let I Jt) = 8,I(t) b,~ any
pattern with I(t) nonnegative, continuous, and bounded, and such that positive
constants k and To exist for u'hich

it eUVI(v)dv ~ keat, t ~ 7'0. (5)

Then for arbitrary nonnegative and continuous initial data i'n (*), the l-imits c2, =
lim X J t) and P JA: = lim Y Jk (t) exist, and obey the equations
t-w t-w

Pit = Qt = 8t, i,j = 1,2,... ,no (6)

Equation (6) says that the probability X t(t) of Vt and the correlations Yit(t) of
all N it touching Vt learn the relative weight 8t of the pattern, just so long as the
absolute intensity I(t) of the pattern is not "too small" in the sense of (5). I(t)
can in fact oscillate very wildly without violating (5). A pattern can therefore
be learned to arbitrary accuracy if oruy it is presented sufficiently often. In
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order to learn ever more subtle gradations of shading in the pattern, it suffices to
take the number n of vertices in the rectangular grid ever larger.

Equation (5) requires that ](t) take on positive values at arbitrarily large
values of t. We now describe what happens if a ('truncated" pattern] l(tD)(t) =
8J(tD)(t) is presented, where ]<1D)(t) = ](t), 0 :$ t < 10, and ](ID)(t) = 0, t ~ 10.
That is, ffi'l is exposed to the pattern only in the time interval [0,10).

THEOREM 2. Suppose u > 2(a -.8) > 0 and .8 > O. Let n ~ 2 (to avoid
trivialities) and 1" ~ O. Let] l(t) = O,t ~ 10, Jor all i = 1,2,. ..,no ThenJor arbi-
trary nonnegative and continuous data in [w -1",10], the limits Qt and Pit e.'ri.~t and
lie in the interval [ml(w),M I(W)], where

ml(10) = min{XI(W)'Ykl(10): k = 1,2,...,n}

rn, arrange the
;>resent spatial
1 the absolute
Impared to the
.rm

(4)

Mt(10) = max{Xt(10),Ykt(10): k = 1,2,.. .n}.

Denoting the functions of (*) which are exposed to I t(ID)(t) by superscriptR
"(w)" (for example, Xt(t) becomes Xt(ID)(t», we find the follo,ving corollary.

COROLLARY 1.

lim lim Xt(ID)(t) = lim lim Yit(ID)(t) = OJ, i,j = 1,2,.. .,n. (7)
-~t-~ "'-~t-~

Proof: By Theorem 1, lim ntj(w) = lim M t(w) = 8t.
-~ j-~

These theorems say that if the pattern is exposed to al1: during [O,u,) and if w
is taken sufficiently large, then al1: will learn the pattern to an arbitrary degree of
accuracy and will remember the pattern to at least this degree of accuracy there-
after. al1: does this without "practicing overtly" because the outputs Xj(t) from
al1: decay exponentially to 0 for t ~ 10 whenever a > (:J > O.

Contour enhancement occurs in al1: because of the follo,ving corollary, which
describes the "envelope"

Yt(t) = max {Ytt(t): k = 1,2,...,n}
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Yt(t) = min {Ykt(t): k = 1,2,.. .,n}

of correlations whose arrowheads N k! touch Vt.
COROLLARY 2. For w sufficiently large, one of the follolving alternatives holds

foreachi = 1,2,...,n: .

(a) Y t(ID)(t) ~ X t(ID)(t) ~ 8t, Yt(ID)(t) ~ 8t, and Y t(ID)(t) is monotone decreasing for
t ~ w; or
, (b) 8t ~ Xt(ID)(t) ~ Yt(tD)(t), 8t ~ Y t(lD) (t), and Yt(ID)(t) i.~ monotone increasing for

t.~ w; or .

(c) Y t(fD)(t) ~ 8t ~ Yt(ID)(t), Y t(tD)(t) ~ X t(ID)(t) ~ Yt(tD)(t),Y;tD)(t) is monotone
decreasing, and Yt(tD)(t) is monotone increasing for t ? 10. .

In other words, after a sufficient amount of exposure to the pattern, the
envelope of correlations "spontaneously" approaches the pattern probabilities 8t.
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XI(t) ~ -CXXI(t) + I(t), t E [W,W + T],

where I(t) represents the speck of light shined on VI. Thus a signal is emit.t{~
from VI t,o all points VI' By Theorem 2, Ylf(t) ~ 8f for t E [W, W + T], and thus

Xt(t) ~ -CXXt(t) + .BXI(t -.,.)8f. (8)

Suppose .,. is so large that. XI(t) has a chance to decay back to\vard zero before it
receives the signal \vhich it hM created in ell. Then by (8),

e""Xl(V -T)dv,
~.

.:'~"""~"::="'.;:;""-:-':~~~

for all i = 1,2,

:!;~::i:,""'~;~f:,i::~'<'~'?i::~~ ;~::"i.:;:;j;.,#.~,
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interval [T -T,T] can be viewed a.s the initial data for (*) in the interval (T, Q).
Since these values are nonnegative and continuous, and Theorems 1 and 2 hold
for all nonnegative and continuous initial data, our contention is proved.
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