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(1) Introduction.—This note lists some psychological, physiological, and bio-
chemical predictions that have been derived from simple psychological postulates.
These psychological postulates have been used to derive a new learning theory, -3
which is called the theory of embedding fields. The mathematical variables of
the theory have natural psychological labels—such as “presentation of a letter or
spatial pattern at time #,” “guess of a letter at time &,” “stimulus trace,”
““associational strength,” etc.—due to the fact that the theory is derived on a
psychological basis. Given the psychologically derived theory, one then observes
that its mathematical variables are already in a form that suggests a neuro-
physiological, anatomiecal, and in some cases biochemical labeling for these
variables. TFor example, the theory contains geometrical objects which are
readily identified with cell bodies, axons, synaptic knobs, and synapses. It
also contains, associated with the geometrical objects, dynamical variables that
readily call to mind membrane potentials, spiking frequencies, transmitter sub-
stances, various ions, and the like. Once the mathematical variables are labeled
with these suggestive physiological and anatomical labels, the psychologically
derived laws of the theory thereupon imply functional relationships between
these empirical variables, as well as a psychological rationale for the existence of
these relationships in terms of how the brain might learn, remember, and recall
what it has learned.

Naturally the leap from mathematical to neural variables cannot be justified
in a deductive way. It is.governed, as is inevitable, merely by rules of prudence
and the dictates of intuition. Fortunately, the simplest neural labeling seems
often to yield functional relationships which represent, at least qualitatively,
known and nontrivial neural data. In other cases, the functional relationships
seem never to have been measured, and therefore stand as new predictions. The
strength of such predictions is, of course, no greater than the correctness of the
neural labeling, and an assessment of this requires a close scrutiny of the theory’s
development.!—3

We have also begun a rigorous mathematical analysis of the learning, memory,
and recall capacities of the theoretical equations in various experimental situ-
ations.4—10 '

(2) Some Qualitative Results.—(a) The equations reduce in a special case to
the Hartline-Ratliff equation for lateral inhibition in the Limulus retina.l!
Theoretical formulas for the empirical coefficients in the H-R equation are found,
‘and various transients can be readily studied. A new phenomenon of “enhance-
ment of associations” or “‘spontaneous improvement of memory,”’ closely related
to “‘contour enhancement” due to lateral inhibition, is found.2 It shares many
properties with the Ward-Hovland phenomenon, or “reminiscence.”’? The
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““accumulation of inhibition” postulated by Hull®? to explain bowing in serial
verbal learning is identified with lateral inhibition.?- 13

(b) A unified formal explanation is given of various serial learning phe-
nomena,'® such as backward learning, bowing, anchoring, chunking, response
oscillation, All-or-None versus Gradualist learning, and Gestalt versus Pe-
ripheralist learning.

(c) A unified formal explanation of the decrease of reaction time with in-
creased learning and of spatiotemporal masking is found.

(d) The level of excitatory transmitter production is controlled jointly by
presynaptic and postsynaptic levels of membrane excitation.

(¢) Learning needs suggest the interaction of no fewer than two pairs of
antagonistic ions, say (Na+, K+) and (Cat+, Mg++).

(f) Nat and Ca*+ are bound as synergistic cofactors on the intracellular
sites, or enzymes, which activate the production of excitatory transmitter, say
acetylcholine.

(9) There exists a spiking threshold, greater than the cell body equilibrium
potential, above which average spiking frequency is proportional to cell body
membrane potential (after excitatory transients subside and before saturation
sets in).

(h) Presynaptic spiking both mobilizes and depletes transmitter. Whereas
the steady-state mobilized transmitter that is released per unit time increases as a
function of steady-state spiking frequency and saturates at a finite value, the
total steady-state mobilized transmitter decreases as a function of spiking fre-’
quency.

(?) A slowly varying form of post-tetanic potentiation occurs in the synaptic
knobs.

() An excitatory transient in transmifter release occurs when presynaptic
spiking is resumed after a rest interval.

(k) The amount of intracellular acetylcholine is regulated in part by a feed-
back inhibition within the synaptic knob of transmitter onto a previous stage of
transmitter production. This inhibition affects an intermediate or terminal
stage of transmitter production, rather than an initial stage.

() X+ is more likely to be found in unbound form within the synaptic knob
than are Na* and Ca*+,

(m) The ionic movements suggested by learning needs are compatible with
some data concerning the pattern of ion translocation in the mitochondrion, and
with the assumption that these movements make adenosine 5’-triphosphate
available for production of acetyl-Co A, and thereupon acetylcholine, under the
guidance of choline acetylase in the synaptic vesicles (see, e.g., ref. 14).

(n) A mechanism is found which makes plausible the distribution of synaptic
vesicles and mitochondria near the synapse of the synaptic knob, rather than
(say) uniformly distributed throughout the knob.

(o) In response to excitatory transmitter, there exists an inward flow of \m+
through the cell membrane which is coupled at suprathreshold values to an out-
ward flow of K+.

(p) In response to inhibitory transmitter, there exists an outward flow of X+
through the cell membrane.
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(¢) Acetylcholine release from synaptic knobs is coupled to the intracellular
K+ concentration.

(r) The sensitivity of RNA activation to Mg*+ concentration is compatible
with the need to guarantee control by membrane excitation of intracellular
production levels, say of proteins, and thus

(s) membrane excitation due to learning experiments causes systematic
variations in nuclear RNA, although individual RNA strands do not encode
entire behavioral memories, which are spread over many cells.

(t) Learning needs suggest a cell nucleus which is localized in the cell body,
rather than being spread throughout the cell. More generally, various functions
performed by nerves as learning mechanisms seem to determine their shape, at
least qualitatively.

(w) A system of intracellular tubules, such as in endoplasmic reticulum, is
compatible with the need to carry chemicals used in learning between cell body
membrane and nucleus and from the nucleus along the axon and to the synaptic
knobs. ‘

(v) In an idealized nerve cell (say without dendrites), cell body membrane
area is proportional to nuclear volume and to the membrane area of axon and end-
bulbs. This is a special case of the general property of spatiotemporal self-
similarity, which is apparent in many biological shapes and interactions (e.g.,
shape of leaves, proportionality of axon diameter, and velocity of spike along the
axon).

(w) The size of a cell in a given idealized cell type can, in principle, be con-
trolled by a single gene whose activity is sensitive to the average total membrane
excitation.

The theory can also be used to illustrate in various cases how particular
anatomical cell distributions and multiple somatotopic representations might be
used to perform particular tasks of learning and performance, such as in the
sensory-motor cortex, cerebellum, and retina.

(3) Postulates and Equations.—The psychological postulates that lead to the
equations which describe our learning machines M are quite simple. The
following discussion heuristically describes these postulates in the case of learning
a list of “‘simple” letters or events, such as the alphabet ABC. . . Z.

(a) The letter A is never decomposed into two or more parts in daily speech
and listening. It is a “simple” behavioral unit. Thus we assign to every simple
behavioral unit r, a single abstract point v, in M, 5 = L,2,...,n (Asthetheory
becomes more microscopie, even simple events create a space-time trajectory of
excitation and inhibition that includes many points, which are ultimately
“blown up” and identified as caricatures of nerves.)

(b) M must react to presentation of behavioral units at specified times.
Hence a real-valued function of time x,(t) is assigned to each point v,. The
value of z(f) at any time describes how recently 7, has been presented to M.

(¢) Consider M’s response to presentation of 4, then B, and then C at a speed
w. If wissmall (say w £ 2 sec), then the influence of A and B on A’s response
to C is substantial. As o increases, the influence of A and B on M’s response
gradually changes and ultimately becomes negligible. Since the effects of prior
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presentations of events wear off gradually, each z,(f) is continuous. Since our
theory describes the macroscopic behavior of M, we can also readily assume that
each z,(t) is differentiable.

(d) Ifr,is never presented to M, then z,(¢) remains at a fixed equilibrium value,
which is (initially) set equal to zero. If r;is presented to M at time ¢ = ¢, then
z;(t) must at least temporarily assume nonequilibrium values once ¢t > ¢, We
assume that z;(f) becomes positive after ¢ = ¢;, by convention. Since the effect
of an event ultimately wears off, z,(t) eventually decays towards zero. (The
choice of a zero equilibrium value tacitly assumes that all z,(f)’s values are
observable to a psychological experimenter. This assumption must ultimately be
abandoned, for reasons that soon become clear.)

(e) After M has learned the list AB, a presentation of A to M at time ¢, gives
rise to the guess B by A a little while later, say at time ¢, 4+ 7,5, where 7,45 is
positive. Thus a signal travels from v, to v at finite velocity along a pathway
€4p.

(f) Before M has learned the list AB, other responses than B to A must exist,
or else B would already be the only response to A. Thus a function z,5(f)
exists which can distinguish the presentation or nonpresentation of AB and lets
only B occur in response to 4 after AB has been learned. Since z,5(¢) grows
only if A and then B are presented to 11, z,45(¢) correlates (prescribed) past values
of z, with z5(f). z45(t) therefore occurs at the only position at which past =,
and present zp values exist, namely, at the end of the pathway leading from
vy 1O V3. ‘ !

(¢9) The list AB is not the same as the list BA. Thuse s 5% ez, and z,5(¢) =
zpa(t). esp is drawn as an arrow from vy to vg with arrowhead N, 5. By (f),
245(t) occurs in N 4 5. :

(k) If C is not said, then AB can be learned in first approximation inde-
pendently of CB. Thus the signals received by B combine independently.

When the postulates (a)-(h) are translated into mathematical terms, the
following equations are found as, perhaps, their simplest realization.

x,(t) = —Olmi(t) + BZm=1n-Um(t - Tmi)pmizmt(t) + Ii(t)) (1)
Ea() = —uzn(t) + Bpuz,(t — Tw)T(0), ’ o (2

where 7,7, k = 1,2, ..., n; a, B, and u are positive; all 7, are positive; all p;
are nonnegative; and all initial data are nonnegative and continuous. The non-
negative and continuous inputs I,(¢) often have the form

L) = Zk:lxi']i(t — ;®), 3)

where ¢;® is the kth onset time of », and J;(f) is a given nonnegative and con-
tinuous function that is positive in a finite interval of the form (0,\;).
Equations (1) and (2) can be given a qualitative neural interpretation that
includes cell bodies, axons, synaptic knobs, synapses, membrane potentials,
spiking frequencies, and transmitter production and release.! These equations
are not totally satisfactory because of the hypothesis (d) of observability. By
including the following additional postulate, they can be improved without
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violating (d) in the special case that all reaction times 74 have the same value r.

(?) M can learn AB perfectly by practicing AB sufficiently often. This
postulate is achieved by implementing the following property. Increasing the
strength of the choice B, given an isolated presentation of A, decreases the
strength of the choices C, D, E, ..., etc. In other words, a ‘“‘set of response
alternatives” to isolated presentations of 4 exists, and these alternatives compele

with one another. This property has the effect of reducing behaviorally irrele-
vant background noise.

Then (1) and (2) are replaced by |

() = —ax(t) + Bl na"Tn(t — Tymi(t) + L(®, (4)
Yu() = pazun(®) [ona"Dimzm(t)] ™, (5)
au(t) = —uzp(t) + Bpuxs(t — 7)2p(t). (6)

Both equations (4)-(6) and (1) and (2) can be described as cross-correlated flows
on networks in a manner that has been previously described in this journal.4
Bounded. versions of both (4)-(6) and (1) and (2) can readily be given.

(4) Lateral Inhibition and Thresholds.—Equations (4)~(6) improve the learn-
ing of (1) and (2) formally, but introduce a conceptual difficulty; namely, by
(5), the value 2,,(t) at the arrowhead N, of e, instantaneously jumps to the
arrowhead N, where y;(t) is computed. This “virtual” interaction must be
replaced by a finite-rate and local interaction with the same qualitative proper-
ties. Since yu,(f) > 0 and 2 ,"ym(@® = 0 or 1, the mapping from p 2, (£) to
¥x(8) by which (4) replaces (1) describes an inhibition between the associations
Ym(®), m = 1,2, ..., n. The finite-rate analogue of this “virtual’” inhibition
requires the introduction of lateral inhibitory interactions and thresholds.®
The finite-rate analogue, in the unbounded case, is given by

#2(l) = at[Py— z()]Y aTlz() Pt
+JH) JoO F+ L) L@ )
and
Bl untQn 2217 — up"len(®) — Qul*
+ Bt vatpatl,(t — 7at) — Tat]to(®)  Act]H @®)
where
Jt(l) = LnaBnT[Zn(t = Tmi™) — Tt 4Pt omi(t) — Qi1 9)
Ji=() = Znat"Bn [En(t — Tmi™) — T~ *pmi™, (10)

I;*(f) and I,~(t) are known excitatory and inhibitory inputs, respectively, and
the notation |w]* denotes

| 0]t = max (0,0),
whereby various thresholds are described. P, is the equilibrium value (or

“potential”’) of z,(), and Qy is the equilibrium value of z;(f). The “spiking
threshold” T';; and the equilibrium value P, satisfy 'y, > P;. Similarly, ,+ >
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Qi and A;* > P, Equations (7)-(10) can be given a neural interpretation
which is substantially more quantitative than that of (1) and (2).2 For ex-
ample, consider (7)-(10) under steady-state excitatory inputs and let all inter-

actions be inhibitory. Then (7) reduces in the steady state to the Hartline-
Ratliff equation

re = €5 — 2 um"Kylry — 0]t

for lateral inhibition in the Limulus retina if

M 131 _
I{{j = + _ ji
pyTe
and
r®  w (T~ — Ty,

when u,*[z,(t) — T';+]* is the output from the retina to higher neural centers.
(5) Symmetry-Breaking by Na+* and K +,—The bounded analogue of (7) is

£(0) = (M, —2d0) (vt + T+ + L)

| — a; (@) — m) (v~ + J @) + I,-(1)), (12)
where m; < z,(t) < M, for all t > 0. There exists an obvious symmetry be-
tween the excitatory and inhibitory terms in (12). This symmetry can be made
explicit by replacing (12) with equations for a pair of variables z;*(f) and z,~(f)
which are positively and negatively “polarized,” respectively. This sym-
metrization procedure must not, however, destroy the “excitatory bias” within
(7)-(10) that makes learning possible. The result is, in first approximation,
2,+(1) = e, (M z,O) (vt + Jt-i-}:*-(t) + 1,++(t)) o

T — ot Tyt (2, (@) — m,T),(13)
%~(t) = oy~ Fty,m Y M — 27(@1)) [

;" ~(@ () —m) (v T+ T () + I (@),

and

X([Zn*(®)  Tm* 71D Bn* ~l2n*(E) Twt ~1*
Bm_ -[Pmi— + xm—(t) ]+) = 07

where
JFEHO)  na"Bat tEat(t mt ) Tt ] past Tlowt HQ)
— Qe+ ]
Jm () YomatBnt T[ZntE Tmi™ ) T 71 Pmi o ()
VP
and

Sl, w>0
}0, w < 0.

x(w)
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Equations (13)-(17) can be interpreted to yield the “symmetry-breaking”
properties (0) and (p) of section (2). The condition (15) is merely of qualitative
interest, and will be made more quantitive in a later paper, along a pathway that
is suggested in reference 2.

(6) Transmitter Production and Release.—In first approximation, the bounded

equation for excitatory transmitter production z,;+ *(¢f) in the collection of syn-
aptic knobs N+ tis

gt () = (My*t+ — 2y () Uyt ++ + vyt T, HORK()

— Uyttt @yt () — myt?), (18)
where

Fyt*(t) = B+ *zt(t — vyt +) — Tyt t]rpyt (19)

Ri@t) = [z,8) — A7) (20)
The inequalities
mytt < 2yt () < Myt
hold for all £ > 0. All learning within (18) is due to the term
Yt T Myt T = 2yt HO)F st HOR). (21)

The spiking frequency term F,;* +(f) is interpreted as an antagonistic coupling
between Na* and K+ at suprathreshold values, whereas E,(f) is interpreted as
an antagonistic coupling between Cat* and Mg*++. Nat and Cat* act
synergistically in (21) to activate z,;+ +(¢).

It is readily seen that the coupling between F;* *(¢) and

Gyt (@) = layt () — QT

in (16) describes a transmitter release process in which the depleted transmitter
is instantaneously replenished. The finite-rate analogue of this coupling is
given by the pair of equations

th+ +(t) = >\tj+(5ijzij+ "'(t)1 - Zi.1+ +(t)) - >\ij—Fij+ +(t) [Zij+_+(t) - Uu+ +]+
(22)
and
Zy* +(t) = 0yt (@t Q) = Zit () — Ny Fug® (O (2440 — Uyt 41+
‘ — wy” |2yt H(E) — Vit ], (23)
with
Uytt = 8,0u5++> Vit e

and
0 < Zyt+(t) < Zy+ ().

+(t) = the total amount of excitatory transmitter in the synaptic knobs
N+ + at time t,
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Z;*+(2) = the total amount of mobilized transmitter at time t,
2yt () = the total number of active transmitter-producing sites at time ¢.

A simple physical interpretation of (22) and (23) yields properties (), (z), (5),
(k), and (g) of section (2). Equations (22) and (23) can be solved explicitly for
the transient responses of Z;;*+ +(t) and Z,;*+ *(¢) when (say) Fy+ +(t) is a steady-
state spiking frequency F for ¢t > 0, A;+* = w;~, and U,++ = Vyt+t = 0.
Then, ignoring slow variations of z;;++(t),

04524 +(0)wﬁ+

wi;” + wyt

Zyt () = [BXP ( Qut + 2y~ F))

I.:I"a-'_li-i-

a0 e Guwteaeon| e

and the amount of mobilized transmitter which is released from N 4Tt at time ¢
isN\y;=FZ;++(t), as (22) and (23) show.
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