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Embedding Fields: A Theory of Learning with
Physiological Implicationst

STEPHEN GROSSBERG

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

A learning theory in continuous time is derived hcrein from simple psychological
postulates. The theory has an anatomical and neurophysiological interpretation in
terms of nerve cell bodies, axons, synaptic knobs, membrane potentials, spiking
frequencies, transmitter production and release, etc. In particular, a new hypothesis
concerning transmitter production is presented. Backward learning, a connection
between reaction times and learning speeds, learning without neural reverberation, and
the variation through time of contexts in response to shifting cnvironmental demands
are discussed. Some qualitative connections with the work of Guthrie, Hull, Pavlov,
and the Gestaltists are noted. Linear vs nonlinear, as well as Markovian vs non-
Markovian properties of the theory’s mathematical formalism are mentioned.

1. INTRODUCTION

Some recent papers (Grossberg, 1967, 1968a-e, 1969a-h) have introduced a new the-
- ory of learning in a rigorous setting. In its simplest form, this theory provides a mathe-
matical description of the following kind of experiment. An experimenter E, confronted
by a machine (or learning subject) M, presents M with a list of “letters” or “events”
to be learned. Suppose, for example, that E wishes to teach M the list of letters 4 B, or
to predict the event B given the event 4. E does this by presenting 4 and then B to M
several times at prescribed instants of time. To find out if M has learned the list as a
result of these list presentations, the letter 4 alone is then presented to M. If M
responds with the letter B, and M does this whenever A4 alone is said, then we have
good evidence that M has indeed learned the list AB.

Our learning theory thus concerns itself with a description of the stimuli and
responses of an individual subject through time. Tt is a deterministic theory, and not a
statistical one.

Surely the construction of machines which “learn’ in a sufficiently naive sense is not
a diflicult task. On the other hand, the machines which we have discussed can be
derived from plausible psychological axioms, and once derived exhibit some interesting
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properties of learning. For example, our simplest machine (Grossberg, 1967, 1968a, b)

has, among others, the following properties: ‘

(1) Practice Makes Perfect. ‘The more often xt‘.lB is practiced, Jhe better is the
machine’s prediction of B given A at a prescribed later time, and the prediction
becomes as good as we please after a sufficient amount of practice. Orie can modify the
machine in a trivial way to guarantee that the learrjing of a short list such as 4B seems
to occur in an “all-or-none” fashion. Practice is by respondant conditioning.

(2) An Isolated Machine Suffers No Memory Loss. Once learning trials end, our
simplest machine remembers what it has been taught without any memory loss. This
is not true of all our machines. Some of them spontaneously forget at an approximately
exponential rate if they do not practice continuously. These various machines all obey
the same laws, however. They differ only in the way in which their several com-
ponents are interconnected. We are led to a study of the “geometry of learning,”
namely, a study of how to interconnect the components of our machines to guarantee
that they learn and remember special tasks in the best possible way.

(3) An Isolated Machine Remembers Without Practicing Owvertlv.| After learning
trials cease, our simplest machine also stops producing gpuesses for the experimenter,
Even when the machine produces no overt behavior after learning, its memory of the
preceding experiment remains unimpaired.

(4) The Memory of an Isolated Machine Sometimes Improves Spontaneously Without
Practice. - After the simplest machine receives a moderate amount of practice, and
shortly after practice ceases, we find that its memury is better onoa recall trial than it
was at the instant practice stopped. The magnitude of this improvement depends on
the degree to which practice is massed or distributed when the learning trials cease.
This effect strikingly resembles the experitnental phenomenon of “reminiscence,”
otherwise known as the Ward-Hovland phenomenon (Osgood, 1953).

(5) All Errors Can Be Corrected. If a list such as A8 is learned to an arbitrary
degree of accuracy, we can nonetheless teach the machine the new list AC.

(6) Response Interference Sometimes Occurs.  The rate with a hst AC can be taught
to replace a previously learned list 4B depends on the degree to which 48 lad been
learned, as well as on the number of other response alternatives, However, this is not
true of error correction in long lists. One can change # long list in its middle after the
first few learning trials without substantially delaying the rate with which the new
items are learned. The effect of other responsc alternatives also depends on list length,
on list position, on the rate of list presentatinn, and on the degree of learning at any
time.

These properties do not exhaust the list of mathematical effects which arise in our
machines, and one can find formal analogs of such familiar empirical phenomena as
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backward learning, bowing, chaining, and chunking (Jensen, 1962; Miller, 1956;
Osgood, 1953). It is also possible to interpret the mathematical variables of the ma-
chines in a way that permits us to comparc them with known neural facks! Geonetrical
objects exist in them that readily call to mind nerve cell bodies, avons,| endbulbs, and
synapses (Crosby, 1962). Processes occur within these objects that remind one of the
generation of cellular potentials in cell bodics, of the fluctuation of spiking frequencies
in axons, of transmitter production and release at the endbulbs, and of various trophic
and plastic effects (De Robertis, 1964; Eccles, 1957, 1964). I

Our machines, thercfore, provide a single mathematical picture within which at
least formal analogs of both psychological and neural phenomena of sothe interest can
be discussed. All of these phenomena, or at least their formal analogy, are a conse-
quence of a rather simple mathematical mechanism. Since these machines do Jearn
and can, at least roughly, be interpreted in a neural way, they embbdy a definite
proposal concerning the manner in which real neural structurcs might lparn. '

Because of these various facts, it scems desirable to try to analyze the psychological
principles which give rise to these machines. This paper aims at such an analysis and,
in particular, at a description that is as intuitive and nontechnical as possible to
emphasize the simplicity of the basic ideas. We begin by discussing in a rather philo-
sophical way some psychological facts known to all of us from daily life, and then
gradually translate these facts into definite mathematical terms until we ’mve explored
enough facts to construct a well-defined mathematical system. We cannot, of course,
hope by such a one-sweep procedure to “construct a brain,” teeming with represen-
tations of countless macromolecules and jons interwined in exotic combinations of
variable duration and strength. Nor should we want to, since such a representation
would blind the unprepared beholder with complexities. Three later papers
(Grossberg, 1968e, 1969b, c) will continue this task by successive approximation.

2. THE EXISTENCE OF BEHAVIORAL ATOMS

LANGUAGE SEEMS TO B SPATIO-TEMPORALLY DisCRriTE

Consider the vocabulary of a standard English-speaking adult. ThiF vocabulary
contains 26 letters and no more than several thousand words of various sdrts, of which
only several hundred are most frequently used in daily discourse. (‘onsﬁder the way
in which we hear and say the simplest verbal units of daily discourse, shich as single
letters like A. An obvious feature of this usage is that we never try to ecompose A
into two or more finer subparts, as for example we can with a word consi ting of more
than one syllable. Yet even complicated words may be decomposed into o more than
finitely many simple parts, and clearly there are only a finite number of imple pieces
in any one person’s vocabulary.
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If we wish to understand our usage of such simple verbal units as A, we must take
seriously our impression that 4 is a single unit that is never decomposed in actual
speech. We do this by assuming that 4 is represented in M by a single state. That is, we
assign to 4 asingle point p . in M. We also assign a point py to B, p- to C, and so on. In
more mathematical terminology, given any n simple behavioral units 7, , § = L2,...,n
we define n points p; in M, 1 = |, 2,..., m, to stand for these units, as in Fig. 1,

M

ey,
.p,

A ————— @ pp

Fic. 1

‘The reader interested primarily in our mathematical postuldtes can proceed to the
next section, but we will linger momentarily to discuss our impressions of simple
behavioral units, since these reveal a rather deep property thatiany theory of learning
might profitably have, and which the present theory has.

When a standard English speaking adult hears a word spoken or speaks a word
himself, the word seems to occur at a single instant in time. That is, we can say either
that the word has, or has not, been said at a given time in a perfectly definite way.
Moreover, no more than a finite number of words are spoken inja lifetime. Thus, both
“spatially” (the number of verbal units) and “temporally” (the number of time
instants at which verbal units occur), language seems to have many properties of a
finite, or discrete, phenomenon.

THe REPRESENTATION OF SENSORY CONTINUA BY DISCRETE SyMBOLS

One of the most vital uses of language is to report our sensory experiences, such as
variations in tactile pressure, light intensity, loudness, taste; etc. Many of these
sensory impressions seem to vary in a continuous way both in: space and in time. A
basic characteristic of much sensory experience is that it seems to be spatio-temporally
continuous.

Yet we successfully use language, which seems to be quite spatio-temporally
discrete, to express—or to represent—sensory experience, which seems to be spatio-
temporally continuous. The representation by language of sensations requires that
the two kinds of phenomena interact, and so, mathematically speaking, we must
envisage the interaction of spatio-temporally discrete and continuous processes of
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such a kind that the relatively discrete process provides an adequate representation of
the relatively continuous process. Moreover, although ecach sensory modality seems
to provide us with essentially different varieties of experience, the very same
language tools are adequate for describing at least the rudiments of all of these various
modalities. Thus, the discrete representation of continuous processes must be a
universal representation of some kind. For this rcason, we expect conclusions about
the dynamics of language behavior to generalize to many other psychological
phenomena.

|

LEARNING AS A BRIDGE FROM CONTINUITY TO DISCRETENESS

The centrality of the connection between relatively discrete and continuous phenom-
ena in behavior is better understood by considering several simple examples. Con-
sider the phenomenon of walking for specificity. When a child begins to learn how to
walk, he must concentrate much effort on the endeavor, and must attend continually
to his efforts. An observer is struck by the many motions of the child that are inessen-
tial to the walking process, and by the total absorption of the child in the process. In an
adult, walking takes on a different appearance. A first step is automatically followed hy a
second, the second by a third, etc. Once the decision to walk is made, the walk
essentially takes itself, and one can pay attention to other matters so long as a minimal
amount of obstacle avoidance is accomplished. After walking to one's destinatiqn, one
“decides” to stop walking and the walk comes to an end. Whereas a child must
continuously attend to the walking process until he has mastered it, the adult attends
essentially only to starting and stopping the walk, and the mechanics of walkihg are
entirely automatic. Starting and stopping are “on”-"‘off” responscs, which are discrete.
Thus, walking requires continuous attention before its mechanism is mastered, but only
discrete attention thereafter. The very process of learning how to walk invdlves a
passage from a relatively continuous representation of voluntary efforts at walking to
a relatively discrete representation of these efforts.

A comparable example can be found in language learning. When a young child first
begins to learn a letter such as 4, an observer is aware of the relatively slow and
seemingly continuous juxtaposition of complicated lip, tongue, and associated motions
governing pronunciation of the letter. Once A4 is learned, A can be emitted rapidly and
in a seemingly simple integrated motion occurring at a given instant of time. Saying
the letter 4 becomes after learning a simple and discrete act. This situation is analo-
gous to the example of walking, where again an initial state that is continuous both in
space and time converges (or contracts) to an asymptotic state, approximately discrete
both in space and time. Examples can be drawn from many varieties of learning
experience. The fundamental conclusion is that learning often involves a passage from
continuous representations of the control of a given act to a more discrete representa-
tion of this control.
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"I'he intuitive significance of such a passage is easy to see. Onpe the saying of a verbal
unit seems to the performer to be a simple act rather than a tremendously complicated
juxtaposition of delicately poised muscular motions, he can proceed to integrate
several of these units into more complicated composite units constructed from se-
quences of seemingly simple acts. After these composite units falso seem to be simple,
the composite units themselves can be organized into still more domplicated composites,
and so on. Without the reduction of continuous (and complicated) acts to discrete (and
simple) acts, the integration of more complicated behavior based on these acts would
seem hopelessly complicated. We would be doomed to paying pttention day and night
to walking and other menial endeavors. The passage from initially continuous represen-
tations of behavioral controls to asymptotically discrete representations is thus no
casual event. It makes possible the emergence of new organized| behavior patterns, and
is a prercquisite for cffective learning.

THE CoNTINUOUS AND DiIscRETE PictUREs COEXIST

Since different behavioral sequences in different stages of learning can often coexist,
all intermediates between continuity and discreteness can in
tirne.

The pervasiveness of the coexistence of discrete and continudus representations can
be scen from the following ¢xample. When a single letter, such as 4, is said to a
standard English speaking adult, his impression is that A i presented at a single
instant of time and that 4 scemns to be a simple behavioral unit. Nonetheless, if scalp
clectrodes are placed on his head when A is presented, there will ensue a temporally
prolonged and spatially widespread alteration in his brain wav (Walter, 1953). Thus
the impression that [ is spatio-temporally discrete must be reconciled with the fact
that A’s presentation simultaneously causes spatio-temporally continuous alterations
in neural potentials. This conclusion is not surprising if only because of the represen-
tation of the sound of .4 as it travels through the air as a complidated series of waves.

Propertics of discreteness and continuity coexist at every stage of learning. The
continuous background is never wholly eliminated. We must study how certain
processes superimposed on this background become increasingly discrete relative to
an initially prescribed standard of continuity, and will have at our disposal at least
two different levels of dynamical graining such that the degree o continuity of one level
takes on meaning only relative to the degree of continuity of the other.

To postulate that 4 is represented by a single point p, in M amounts to the hypo-
thesis that 4, as a simple behavioral unit, has already been learned by M. We therefore
enter the learning process in the middle, and seek to know how known simple be-
havioral units are integrated into more complicated units, such as the alphabet

rinciple coexist-at any
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ABC...Z. Once we see how new units are formed from old, whether we call gur
original points p4, pg,..., etc., or by another name will scem irrelevant. '

3. THE TIME SCALE OF THE MACROSCOPIC WORLD SEEMS C()NTINU()*JS

ot
ily
experience as possible, we too will suppose that both £ and A have a continuous time
scale £.

A theory constructed in continuous time has the substantial formal advantage|of
being able to consider arbitrary input spacing without ad foc changes in parameter
values. For example, suppose that E tries to teach A7 the alphabet ABC...Z by present-
ing the letters with an intratrial interval of w. As w approaches 0 or 0, the list becomes
impossible to learn, whereas the list can more readily be learned at some intermediate
value of w. The explanation of even this fact can be cumbersome when discussed|in
terms of a model in discrete time, but it is trivial in the continuous time theory to be
discribed.

The inipression from daily experience that time flows continuously is taken
granted in all physical theories. Since we wish to maintain as close a contact to d

4. THE EXISTENCE OF CONTINUOUSLY DIFFERENTIABLE STATE FUNCTI()NS

The word *‘see’” and the letter “C”’ sound alike in daily discourse. If I say “sce”|to
someone, he might well reply, “See what "’ But if I say “ABC” to him, it is far more
likely that he will reply by saying “D.” .

To make this latter assertion with confidence, we must specify the rate w at which
then B, and then C are said. If w is a few seconds, then 1) is certainly a likely reply|to
ABC. If w is 24 hours, then “See what?"’ is a more likely reply. And as w varjes
smoothly from seconds to hours, the effect of the “context” A B gradually wears off|/in
the determination of a reply to (. This is only one example of many where the cffects
of prior events linger and then gradually fade away.

We must be able to represent in M that an event such as 4 has occurred ata recent
time. The point p 4 alone does not suffice to do this, since there is no time variation|in
P4 - There must exist some function, or functions, of time ¢ that do this for M. Since
we have, in Sec. 2, emphasized that 4 seems simple in daily experience, we should try
to restrict ourselves to just one function of time at p, . We denote this function by
x4(f). Thus to every simple bchavioral unit 7, , we postulate the existence in M of a
point p, , and a function x,(t) representing a process taking place at p, , ¢ == 1,2,...,
We now discuss several propertics of x(#).

x,(t) is continuously differentiable. x(t) was introduced to represent within M the
occurrence and gradual fading away through time of the event r; presented to M at a
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given time. This is a question about the rate of change of x,(t) through time, or about

%) - dx(f)/dt). Since the effect of an event wears off gradually, we assume that
x,(t) is continuous. ‘

x,(t) is Nonnegative (M is Observable). The data available to a psychological
experimenter k is of two kinds: either a stimulus or response does not occur at a given
time, or it does. We are predisposed to express the occurrence of “nothing” by a
statement that somc quantity is zero. Thus, if 4 is never presented to M, we set
x4(t) =. 0. Suppuse 4 is presented to M for the first time at ¢ = £, Then surely
x4(t) = 0, for t <~ t'4). But x ,(t) cannot remain zero for all ¢ > ¢4, since x 4(t) was,
after all, introduced to represent the occurrence of 4. When something occurs, we
arc predisposed to assign a positive weight to the quantity representing the event, and
therefore we suppose that x 4(t) becomes positive when ¢ > ¢4,

As tincreases, the effect of A’s occurrence at time ¢ = 4 gradually wears off. Thus
% 4(t) must gradually return to the level signifying that 4 has not recently occurred,
namely zero. The graph of x4(t), given exactly one occurrence of 4 at time ¢ = #4,
thus takes on approximately the form described in Fig. 2.

e

XA “)

1(A)

Fig. 2

In particular x,(f) is nonnegative for all ¢. (By a change in our sign conventions, we
could have just as well assumed that x ,(¢) is nonpositive for all ¢.)

To express Fig. 2 mathematically, we need a way to translate the occurrence of 4
at time ¢ = ¢4 into mathematical terms. There is a standard mathematical way of
doing this. That is, let an input 1 (t) perturb x ,(t) at time ¢ = #4, x ,(t) grows most
quickly when 1 ,(t) is large, and decays towards zero when I (t) is zero. The simplest
mathematical way of saying this is

Zq(t) = —ax (t) + L), m

where a is a positive constant, and the initial data of x, , say x,4(0), is nonnegative.

We can readily determine some of the basic properties of I,,(t) from (1) and our
previous remarks. Since both x () and #,(t) are continuous,|(1) implies that I ,(¢) is
also continuous. x 4(t) is nonnegative to represent the effect on M of the occurrence or
nonocurrence of A. Since I,(t) is E’s way of presenting A4 to| M, (1) shows that I (t)
should be nonnegative. In the present example, I ,(¢) stands|for the presentation of
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A to M at time t = ¢4, Thus, I 4(2) becomes positive once ¢ exceeds #4). Since this
presentation takes only a finite amount of time to occur, I 4(t) becomes zero once
again after a finite amount of time. We summarize these conclusions about I,(¢) in

Fig. 3.

N

A OCCURS AT It}
TIME t =¢(A) — L %‘
f

RIS t

Fic. 3

Equation 1 describes a machine in which x 4(2) can become as large as we please if
1,(2) is taken sufficiently large. In a machine within which x4(1) has a fixed maximum
M, (1) is replaced by

Eq(t) = —ax(t) + (M, — x42)) L2), (1)

where 0 << x,(0) << M. It is obvious that x A(t) < M, for all t > 0 no matter how
large I,(t) becomes. That is, x,(r) saturates at M 4 - Throughout the following dis-
cussion, we will always consider (1) for specificity, but all our conclusions apply to
(1') as well with obvious modifications.

Let us consider experiments in which E presents A to M at more than one time
instant. Suppose that 4 occurs at the times £{*, t{), .., 1), where t{0 < ¢{4)
i=1,2,.,N,— 1 Our previous discussion of 1 ,(2) can be extended to this situation
if we suppose that I,(t) becomes large momentarily at all the times ¢ — tih)
t=1,2,.,N,, as we show in Fig. 4.

A OCCURS AT I (')l
TIMES 114 A

e
i=l,2..... NA o}.__&*&é__—*
ROECUN TN 1
Fic. 4
Figure 4 can be expressed mathematically in the following way. Let J(t) be a fixed

nonnegative and continuous function which is positive in an interval of the form
(0,4,), A4 > 0. Then Fig. 4 can be expressed as

Ny
L) =Y Jt 12 )
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. \
that is, as a succession of input pulses | At — 1) at the times t = £{*. The waveform
described by a particular choice of Ja(t) is the “signature’ of th: given event 4 in M.
The above remarks are true for all simple behavioral units 1,8 =1,2,....n and
not merely 4. We can therefore generalize (1) and (2) by writing

xT(t) = —'A(x‘xi(t) + It(t)) i = l’ 2"“1 n, (3)
where

N;
Ift) = kz Jdt — 6,
|

and each J(t) is a nonnegative continuous function that is pt
(0, ;), A; > 0. Equation 3 translates the occurrence of any sequen
fromr, ,r,,..., r, , and occurring at any times 1)) into a defi
delivered to M.
Having defined the input 1(t) to p; , we remark in passing that the output O(2) from
p; will ultimately be given by

O4(2) = max{x,(t) H(t) — T, , 0}, D |

where I'; is a positive “response threshold” and A
i p

H(t) = -+ k-1 Vi) In, X ()
’ In, n

with
n

X0 = 50| % sut0]

m=1

The mathematical properties of this definition are discussed in G:ossberg (1968b). In
brief these propertics are as follows. H(t) is closely related to the familiar entropy
function of probability theory, which is defined for any probability distribution
P15 Pz o by

H(py oy pp) = — Z PiIny py,
k1

since

) = 1 - HOS0 Xl X,(0)
ny n
|
It is well known (Khinchin, 1957) that (i) H achieves its maximum of In, 7 if and only
if all p; = 1/n; (ii) H achieves its minimum of O if and only if. for some fixed g
pi==1andall p; =0, j + ¢; and (it1) H is a continuous function. Therefore, (i) H(t)
approximates its minimum of 0 if and only if all stimulus traces x{t) are approximately
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equal; and (ii') H(t) approximates its maximum of | if and only if one stimulus trace
x;(t) is much larger than all other stimulus traces.

By (i), it is clear that all outputs Oy(t) equal 0 if all stimulus traces are approyi-
mately equal. That is, if there exists no preference within the machine for any symbpl
at time ¢, then no guess is made at time 7. In this sense, cqual stimulus traces, no
matter how large, inhibit cach other away before an output can be gencerated by them.
By contrast if, as in (it'), only one stimulus trace x(t) is large at time ¢, then

Odr) 2 max((t) — 1, 0)
wiereas

0 =0, ji

Thus, no output will arise from the weak stimulus traces *{1), j # . An output will
arise from the strong stimulus trace x(1) just so long as x,(t) > I'y ; that is, if p; has
been excited recently by a sufficiently large input that the output threshold TI'; is
achieved. The onset of a positive output at time ¢ from v; is translated as the occurrence
of the guess ; by the machine at time ¢. The input pulses J(z) which create these
outputs are fixed once and for all in a given machine before an experiment begins,
Many of our qualitative conclusions hold for any choice of continuous Jit) with a
single maximum and a duration less than 7, as Grossberg (1968¢) shows,

The function H(r) expresses a kind of mutual inhibition of associations in the
production of outputs, whereas the constants T'; describe output thresholds, Grossberg
(1969b) shows how to improve these inhibitory and threshold effects using a simple
formal argument, and thereby derive equations which agree, at least formally, wit
empirically measured physiological mechanisms of lateral inhibition (Ratliff, 1965) and
spiking thresholds (Eccles, 1957). The empirical Hartline-Ratliff equation for lateral
inhibition is also derived as a special case. The main heuristic point of these deduc-
tions is that the physiological mechanisms can then, at lcast formally, be discussed as
provisions needed to make perfect learning and efficient guessing possible. ]

The discussion above shows that Oy(t) reduces essentially to x,(t) minus a constant
threshold shift I, if only a couple of stimulus traces are large at time ¢. Since our
thought experiments in this paper involve only a couple of x(t) functions at a time,

the assumption that the output from p; is x,(1) is quite satisfactory.

5. THE PRODUCTION OF OUTPUTS
BY INPUTS AFTER LEARNING HAS OCCURRED

Our remarks to now have discussed only how the presentation of an r, to M is
represented within M by suitable fluctuations of x(t)at p, ; thatis how M “recognizes”
or “perceives” these events. We have said nothing about how A learns. We now begin
to fill this gap.
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Consider M after it has learned the list AB. Suppose
times by E to M in the past. Since M now knows 4B, if
M must reply a short time later by saying B. We now as

The presentation of 4 to M at time ¢t = ¢'4) has bee
rence of an input [ (t — t'4) delivered by E to p 4 at time #4). Thus, M’s reply to E
a short time later should be an output delivered by py to E. This output arises from
pp at (say) time t = ¢4 4 1,5, where 745 is some positive reaction time. The 7 45 is
positive simply because responses to stimuli take some time to arise. Which function
at pp is the output? Only one function, namely xp(t), is associated with pp. We
suppose for simplicity that xp(z) is the desired output. In summary, after AB has been
learned, an input to p, at time ¢ = t'4) gives rise to an output from py at
time t = 4 4 1,5.

An input to p4 at time t = 4’ creates a momentary increase in x4(¢f). Thus pre-
senting A to A at time 2 = 'Y and receiving B in reply at time ¢t = 4 4 7, has
the effect on M which we have diagrammed in Fig. 5.

xa (1) mel 1 A
S —— H . >
t

B has been presented many
presents A alone to M, then
how this can happen.

conceptualized as the occur-

A..' t - i !
HA) l ‘[ A+ 70
° °
Pa Pg
Fic. §

E causes only the increase in x4(t). The mechanism of M itself must cause the
increase in xg(t) 7,45 time units later. Figure 5 shows, however, that the only possible
cause of this increase in x4(#) is the prior increase in x,(t). A signal from p , is thus
carried to py with a delay of 745 time units, and this must be true whenever x () is
large after AB has been learned. Since the signal reaching pp from p, is large at time ¢
if and only if x(t — 745) is large, we suppose for simplicity that the signal is propor-
tional to x(f — 7,5), and choose positive proportionality constants 8 and p 5 such
that the signal equals Bp 4pva(t — 7.48).

To write this conclusion in mathematical terms, we need only observe that the
signal from p, to pp is an input to pg, just as Ig(t) is an input to py . We therefore
replace the equation

ip(t) = —oxp(t) + In(t),
by the slightly more complicated equation

£p(t) = —axp(t) + Ip(t) + Bpapx 4t — 7.2),
which also takes into account the signal from p 4 to pp.




EMBEDDING FIELDS 221

The previous argument must hold when the list AB is replaced by any list 7.7,
which M can learn. Thus, after M learns r;7; ,

%(t) = axj(t) + Ij(t) 4 Bpidt — 7yy), G

where, just as in the special case r; = 4 and r; == B, p,; and r,; are positive constants.
How is the signal from p, to pp carried to pp? We will envisage some pathway
over which the signal travels without decrement at a finite velocity so as not to reach
P until 7 4p time units after it is emitted by p, . We denote this pathway by e . Since
the list AB is not the same list as the list BA, e, -/ ¢p, . That is, e,y is a directed
pathway from p, to p, . We denote it by an arrow facing from p, to py. Thus, for
every list r,7; which M can lcarn, an arrow e;; will face from p, to p; in order to carry
the signal Bp;x,(t — 7;;) after r;7; has been learned. Figure 6 diagrams this situation.

xilt-7jj) === Bpjj xj(t~1jj) ———= xj (1)
[ »> @
Pi €j Pj
Fre

If it is émpossible for M to learn r,7;, then no signal can reach p; from p;, and we set

pi; = 0.

6. THE MECHANISM OF LEARNING

Equation 4 holds for any sequence r,r; which has alrcady been learned by 3, say
AB. Before learning AB, on the other hand, there must exist other possible lists
AC, AD, etc., which M could learn instead of AB, for if B were the only possible
reply to A, then by definition, AB would have already been learned. This means that
P4 must be able to send signals to all points pg, p¢, pp ,-.., which stand for possible
successors of 4, or else no possible connection between p 4 and these dlternatives could
ever be established. In particular, the points p;,j = B, C, D,..., could never possibly
satisfy (4).

We are thrown, therefore, into the following dilemma: After learning occurs, we
want p, to send a signal such as (4) only to the correct point pg so that a presentation
of A to M creates the reply B. Before learning occurs, p 4 must be able to send signals
to all the points p; which correspond to symbols #; that might be learned. The process
of learning thus eliminates the signals from p 4 to all incorrect points pe, pp ,..., at the
same time that it preserves and strengthens the signal from p, to pg.

IEE@W%%HWEHI- AL ol LA AR 1 = s
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This can happen in essentially only one way in the picture we have thus far con-
structed. The only effect on M of saying AB several times, say at a rate w, is to make
both x (¢ — w) and x4(¢) large during and shortly after the times 7 (¢ — w) and I »(t)
are large, respectively. Saying AB more often ensurej that x (¢ — w) and x4(t) are
both large more often. If AC were said instead, « 4(t —|w) would sometimes be large,
but x(t) would always remain small. If only B were sgid, xp(t) would sometimes be
large, but x ,(t -~ w) would always remain small. If notling were said to M, then both
x4(t -~ w) and xp(t) would always remain small. Thus, the learning of 4B occurs if
and only if the product

x4(t — w) xp(t), ©)

is often large, and all other products x4t — w) x,-(t)L Jj = C, D,..., remain small,
where w >> 0 is some “reasonable” learning rate.

In order for M to be capable of learning, a mechanism exists in M which
computes these products, or else M would have no way bf distinguishing one ordering
of inputs from another. Therefore, we postulate the gxistence of a process z,5(t)
somewhere in M which grows only if x,(t — w) x,(2) lis large. 2,5(f) can only take
place at some position in M where both the values x, (t — w) and xp(?) are simul-
tancously present, but there is only one place in Fig. 6 at which past x, values (such
as x4(t — w)) and present x4(?) values are simultaneousl present. This place is at the
arrowhead N 45 of € 45 , since only here is the signal Bp 4pxli(t — 7,,5) from p , contiguous
with the xp(?) value of p, . We therefore replace the progluct (5) by the product

Bpapxa(t — 745) x5(2), (6)
and say that z (5(t) grows if and only if (6) is large. The simplest way to express this

mathematically is to say that z,p(¢) grows at a rate e?ual to (6), minus perhaps a
spontaneous decay (or *‘forgetting’’) term uz,p(t). That is, we let

Zap(t) = —uzap(t) + Bbasxa(t — an) xp(t).
In the same way, we can define a 2,,(¢) function at the arfpwhead N; of cach e,; by
2,(2) = —uzift) + Bpx 2 Ti}) x,(2), ¢

where 8 > 0,u > 0,p,; > 0,7,; >0, and 2,{0) > 0. Figure 6 now becomes Fig. 7.

Xi(t=7ij) ==+ Bpijxj (t-7jj) - } zij() xj(1)
°- — o
P &ij | Pi
Fic. 7
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If 2;; has a fixed finite maximum M;; , then we can replace (7) by
Ft)  —uz(t) 4 Bpil My — 2.(1)) x(t — 747) %(t), (7)

Just as we replaced (1) by (1'). In summary, the functions (/) exist at the arrowheads
because this is the only place where past signals from p, and present signals from b
coexist, and the past signal from ?: s needed so that an input to P will give rise after a
short pause to a correct output from p; once 7,7, has been learned.

We have defined functions such as 2 45(t) not only to record whether or not AR has
been frequently presented to M, but also to guarantee that after AB has been learned,
an output to p 4 generates an output ornly from Pp Tap time units later. To achieve this
mathematically, note the following heuristic requirements.

If A is said but AB has not been learned, then B will not be said in reply 15 time
units later. If 4 is not said, then B will not be said » 4p time units later even if AB has
been learned. And if A is not said and AB has not been learned, then surely B will not
be said in reply. Saying 4 amounts to momentarily increasing x 4(¢). Saying B in reply
amounts to momentarily increasing xp(? - 7 4p). And having learned 4B amounts to
keeping 2 ,p(w) large at least for @ chosen within the times that x ,(¢) and xg(t + 1.45)
are large. Since xg(t + 7 4p) Will become large in this situation only if the signal
received by py from p, is large, our heuristic requirements show that 2,4p(%w) must
influence the size of the signal Bpanx4(t) while it is being transferred through the
arrowhead N ,; from e, to Ps. This occurs at time w = ¢t T4p . Indeed, our
heuristic requirements imply that xx(t - 7,5) becomes large only if both Bp 4% ,(t) and
Z45(t + 74p) are large, or only if the product

BPapxa(t) 245(t + 7435),

is large. In terms of arbitrary indices 7 and j, this means that the input to p; from p; at
time ¢ is '

Bpixit 7)) 3,(2).
Equation 4 is therefore replaced by
() = oxi() +I) + Bpuxdt  7i5) (1), (8)
and Fig. 7 is replaced by Fig. 8.

ilterip ==+ 8o xilt-1ij === Bpy xilt- iyl
- . — LERLE
i
Pi i it P
Fic. 8
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7 THE INDEPENDENCE OF

Consider now a machine M in which the lists 4B and |CB can both be learned; that
18, pap > 0 and pcg > 0. We want to be able to learn 4 independently of C if C is
never said during the learning process, and to be able to learn CB independently of
A if 4 is never said. (We temporarily ignore higher order onditioning effects. Some of
these will be an automatic consequence of our consider: tions.) That is, we want the
two inputs Bp 5 4t — T4p) 545(f) and BbcpXc(t — 1cp Zcp(t) to combine indepen-
dently at pp . Mathematically speaking, combining two quantities in an independent
way means: add them. Thus, the total input received by g, from Psand peat time ¢ is

Blxalt — 74p) papzan(t) + %c(t — 7c) pepes(t)].
Or more generally, the total input received by 7; from all vk =1,2,..., n at time ? is

B Y x(t— Tks) Prs®ui(2),
k=1
and (8) is replaced by

#(f) = —axy(t) + B ki x(t — Tkj)Pki’4l(t) + 1(2) )]

for everyj = 1,2,.... n.

Equations 7and 9 together form a mathematically well defined proposal for a learn-
ing machine M. The next section shows how to modify such a machine slightly to
make it learn much better. This modification is suggested both by a heuristic oversight
in our derivation and by a corresponding formal difficulty. The modification is made
without observability, It then suggests a deeper set of equations with further physio-
logical implications in Grossberg (1969b).

8. THE NORMALIZATION OF pl,2,,

Consider the problem of learning AB vs AC once again. The letters B and C are
heuristically thought of as a “set of response alternatives” to 4, and the strengthening
of B as a reply to an isolated presentation of 4 carries with it the weakening of C as a
reply to A. Otherwise expressed, the choice of B as a r sponse to 4 is made only
relative to the strength of other response alternatives, or response alternatives compete
with one another.

We will show that by overlooking this rudimentary fagt, we have constructed a
system with some unpleasant formal properties. Then we will include the competition
between response alternatives in a simple way, and sim ltaneously, automatically
overcome the formal difficulties. Grossberg (1969h) studies a related case.

Consider the problem of learning 4B vs AC once again, and suppose for simplicity
that no other lists can be learned, so that only Papand p . are positive. We assume for
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simplicity that all 7 0, so that M has a well defined “reaction time” 7. Then‘(9)
becomes

%p(1) wxg(t)  Bea(t 1) panzan(t)  14(1),
and

ic(t) = —axc(t) + Bra(t — 7) paczaclt) I Ic(2). (10)
We assume that 4, B, and C have occurred at least once in the remote past of (10). By
(7), we can therefore suppose that 2 ,5(t) > 0 and Z4¢(t) > 0 for all the times ¢ whith
we will consider. In this setting, we reinvestigate the task of teaching 4B to M, and
_observe the following technical difficulties:

a) %4c Remains Too Large. 'When A occurs, the signal Bx (¢t — 1) p4c from p,
along e, grows. Since 2 ,4¢(t) > 0, a positive signal Bx ((t — 1) pac24c(t) reaches 2,
and causes, by (10), a momentary increase in the value of x¢(t). Consequently
Bpacx4(t — 7) x(t) also grows momentarily, and so, by (7), 24c(t) is momentarily
boosted in its value as well. Then the cycle repeats itself, with the net cffect that
saying A alone helps to keep 2 ,(t) from decaying at an exponential rate, even thoug
C'is never said. Of course, z,,5(t) grows much faster than z ac(t) during this time. W
can surely guarantee that z,45(f) > 2,,c(t) as a result of saying AB sufficiently ofte
but we cannot guarantee that only the flow from P4 10 pp eventually survives th
learning process. This is the main formal deficiency of the process (7) and (9).
related secondary difficulty is the following one:

(b) Instability of the Transformation from inputs to outputs. If AB has occurred ver
often in the recent past, then z ,p(f) can grow very large. Even a very small inpu
I(t) to p4 can therefore create a very large output xp(t 4- 7) from pp, because th
signal Bx(t) p4pz.ap(t + 7) from p, to pp will be large even though x ,(¢) is small. We
desire, however, an equation such as (4) after learning has occurred, in which an input
generates a correct output of comparable size.

These examples suggest that we replace the functions P:;%:5(t) which control the size
of the flow from p, to p; by new functions ¥:(t) which avoid the formal difficultics of

(2) and (b), and which express the intuitive idea that response alternatives compete.
Then (9) is replaced by

>

() = —ox(t) + B Y 5alt — ) yit) + I60), (1)

k=1
J=1,2,..., n. We now list several properties which ¥i; should have, and then exhibit
a simple function that realizes all of these properties.
Consider y,5(t) for specificity. y,5(t) should be a function only of p,pz,p(2),
DPaczac(t),-.., and p 72 ,,(t), since only these functions control the size of the flow
from p 4 to possible response points py, pc ,..., pz. Thatis,

Yan(t) = fap(Panzas(t) Pactac(t).. Pazaz(t))
for some as yet unknown f,p .
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Consider now a learning experiment in which only 4B occurs, and C, D,..., Z have
occurred only in the remote past. Then we should be able to Jump together the non-
occurring letters C, D,..., Z, since they are never distinguished one from the other by

any experimental operation. That is

Yap(t) = gan(Panan(t), Pactac(t) + = + pazzaz(t)), (12)

for some as yet unknown function g5 = g,p(, v) of u >

and v > 0. We now

itemize various desirable properties of g,p. g4p is nonnegative since the function

Pas%4p Which it replaces is nonnegative. To avoid the proble
that g 45 1s bounded from above. Since an as yet unspecified p
plies y 45 in (11), we can take this bound to be 1 without loss.of

O0<ger<s L

of (b) we also assume
itive constant 8 multi-
generality. That is,

(13)

As M learns AB better and better, we want p 4324 , and thus 3 45, to grow. That is,

2451, ¥) is monotone increasing in .

Similarly, if the incorrect alternatives p 4c24c + *** + PazZaz

then learning of AB is jeopardized and y 5 decreases. That is,

£.4p(1, v) is monotone decreasing in .

(14)

get to be learned better,

(15)

The difficulty in (a) shows that, at best, saying AB very often implies for  sufficiently

large that

Pap%as(t) > Pacac(t) + 4 pazaz(l).

We also want y,5(¢) to be very close to its maximum | at such

u > v implies g 4p(u, v) o2 1.

Similarly, if 4B has been very poorly learned, then
Pas2ap(t) K Packac(t) + == + pazzaz(

and also v 4»(t) is very close to its minimum 0. That is, i
u < vimplies g p(u, v) 2 0. ||
And certainly,
gas(t, v) is continuous in « and .

times. That is,

(16)

(18)

We now ask if a function satisfying all the conditions (12)—(1B) exists. The answer is

““yes” and perhaps the simplest such function is given by

Pan3aslt) |

Yas(t) =

That is, we need merely change p 2,45(t) into the ratio of

i

Pan%an(t) + Pacaclt) + = + PazBaz(t)

s2.4p(t) compared with
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all the functions p 4;2,4,(1) that control a flow from P4 toa possible response] point
Pi,i = 1,2,.., n This definition of y,4p(t) immediately generalizes to

Vilt) == pizi0) [ é ‘/),.,L.z,.‘.(t)]ul, ‘;

foralli,j —=1,2,...,n. This definition of Yil(t) clearly embodies the idea that the choice
of B given 4 is made only relative to other response alternatives. For example, if B and
C are the only response alternatives to Athenpezpap = papo-eres Paz =0, sp that

Panz.as(t)
t) = .
Yas(?) PasZan(t) | pacac(l)
and

yaclt) — | Packacl)

PasZan(t) - Pactac(t)” lH [

By nonnegativity of p 52 45(t) and Paczac(t), an increase in B given 4 (i-e., in ¥ 5(t))
implies a decrease in C given 4 (i-e., in y 4c(2)), and achieves this competition between
alternatives by “relativizing,” or dividing, p,z2,45(t) by the sum of Pap24p(t) and
Pacac(t). The conditions (12)-(18) can therefore be thought of as some formal
prerequisites for competitive choices among response alternatives to occur in our
machines. In Grossberg (1969b), this competition between choices is shown to be
closely related to the physiological process of lateral inhibition in much the same way
that the outputs O,(t) are. We have hereby derived the following system of nonlinear
difference-differential equations to describe M.

) = —an{®) + B Y ot — ) yot) + 1) lag

m=1

Tal) = Dt [ 5 P:'mza‘m(t)] z

m=1

and
Fp(t) = —uz;(t) + Bpixdt — 1) x,(2), (1)

for all 4, j, k = 1,2,..., n. This completes our derivation of the mathematical laws
governing the machines M. We now single out a particularly important collectign of
the machines that are currently undergoing a systematic mathematical analysis. If the
¥is's are not used, then the numerical parameters in gs. (7) and (9) must be care fully
chosen to avoid (a) and (b) (Grossberg 1969h).

9. LOCALLY UNBIASED MACHINES

Hp,—k = 0, then (21) becomes %;, = —UZ, OF Z5(t) == 2,,(0) e, and 3(t) defcays
to zero at an exponential rate. Since p;;, = 0 also implies that y,,(f) = 0, or that no
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flow whatsoever passes from p; to p, , we can for convenience set 2;; identically equal
to zero without changing M in any nontrivial way. We therefore replace (21) by
#,t) = ~ug;t) -+ Bl’ér”j(‘ - 7) x,(2), ii P:: : 8 @r)

and by the initial condition that 2;,(0) > 0 if and only if p;, > 0.

Our mathematical studies of these machines (Grossberg, 1967, 1968a-d, 1969a, d—f)
consider only cases where the positive values of p;, have the form

bix == ‘;: > 0. q

That is, the positive weights lcading from a fixed point to all ather points are the same.
We then call the geometry of M locally unbiased. In this case, (20) and (21) can be
simplified by letting Z,,(t) = A;z;(t) forallj, k == 1, 2,..., #,|and noting that

alt) = p,-kz,-ka)[i p,-mz,-.n(t)] " (20"

M=)

and

ey o VuZp() + Bx(t — ) % (), i pp >0 ”
7Z;t) == ‘ 0, if | py —=0. 21"
The main advantage of using Z;; instead of 2, is that the coeflicients p;,, now occur
only in (20’). Since all common factors can be divided out of the positive values among
bi1» Pia »--» and p;, which appear in (20'), we can assume without loss of generality
that :

Y pin=0 or I, §=1L2.,n

m=1

10. THE NEURON HYPOTHESIS

A considerable amount of anatomical and physiological investigation has gone into
the demonstration of the existence of nerve cell bodies, axons, endbulbs, synapses, and
the directed transmission of neural impulses from the nerve cell body towards the
synapse (Crosby, 1962; Eccles, 1957, 1964). These investigations show that membrane
potentials at the cell body give rise to spikes traveling down the axon in frequencies
that vary systematically with variations in membrane potential. Once these spikes
reach the endbulb they cause a release in transmitter that travels across the synaptic
cleft and influences the postsynaptic potential.

Striking analogs of all these processes exist in our machines M. Each point p, can
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roughly be thought of as a collection of cell bodies, each edgc e;; can roughly be thoJlght
of as the collection of axons leading from cells in p; to eells in p; | cach arrowhead Ny
as the endbulbs attached to these axons, and the gap between Nj; and p; as the cdrre-
sponding synapses. Given this obvious candidate for a ncural interpretation of| the
geometry of M, the following interpretation of the dynamical variables of M is readily
suggested. x,(t) roughly corresponds to the average membrane potential over |the
cells corresponding to p,, Bx(t) is the spiking frequency in the axons corresponding
to e;;, and y,(t) is the state of transmitter production in the endbulbs corresponding
to V;; . Once these identifications are made, then the flow of Bx(f) to N,; followed by
the input Bx,(f) y;,( -- 7) to p; reads: after the membrane potential generates a spike,
it travels along the axon to the endbulb, wherc it activates the transmitter conkrol
process at the endbulb and releases a quantity that increases both with increases of
spiking frequency and with the amount of available transmitter. This statement |has
a very familiar neurological ring to it. See Grossberg (1969b) for a more detajled
physiological account.

In a clear sense, therefore, we have been led, from purely psycholagical postulates to
some of the basic qualitative facts of the neuron hypothesis, in particular the existence
of directed transmissions along a network-likc structure, the existence of a process at
the network arrowheads, and the interaction of the transmissions and arrowhead
processes to produce inputs to the recipient “cell bodies.” These conclusions are
independent, morcover, of the detailed functional form of Eqgs. 19 21, They follow
quite readily from our remarks concerning the existence of reaction times, and the
places at which processes could possibly exist to distinguish one ordering of inputs
from another.

11. A POSSIBLE MECHANISM OF NEURAL LEARNING

We have also been led to a new idea of how learning occurs. Thus, the functiq&ns
2,4(t) grow only if both the presynaptic influence from p; via the signal Bp v (t ~ 1) and
the postsynaptic value x,(t) are large. That is, a coupling of both pre- and post-
synaptic influences is needed to increase the level of transmitter production and,
thereupon, the strength of the connection from p; to p; .

In forthcoming papers, we explore the possible physiological means whereby such
a “trophic” effect of postsynaptic influences on the endbulb can take place by replacing
the postulate of observability by a more realistic one (Grossberg, 1969,b c).

12. REACTION TIMES AND LEARNING RATES

In Sec. 3, we observe that a variation from 0 to o of the presentation rate w of a
long list takes us from an impossible learning task to a more tractable task, and b:fk
again to an impossible task. We now show that our machines also have this property.
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We begin with a locally unbiased machine M in a state of “maximal ignorance.”
Suppose, for example, that

pi={n—1" "° #J
0, =]

that M’s initial data satisfies x(v) = Y(v), ve[—r, 0], where y is continuous and
nonnegative, and that 2,,(0) == 3pjr where § >0, and ¢ Sk =1,2,.,;n Let us
present the list 7,,7,,...,r, to M at a rate w. Thus L(t) += J(t), (1) = Jit — w),
Iy(t) == J(t — 2w),..., and L(t) = Jit —(n — 1) w), where J() is some input pulse.
Suppose w = 0. Then I,(z) == Iy(t) = - = L (¢t), and by symmetry, x,(t) = x;(t) and
2i(t) = Zpn(t) foralli 54§, k m,and t > 0. Thus M remains in a state of maximal
ignorance for all ¢ 2= 0, and nothing is learned. Similarly, if|e is very small relative to
the duration of J(2), then again by symmetry, we will expett M to remain close to a
state of maximal ignoranc. '
Now suppose w = 7 3= 0. Then for any ¢ == 1,2,...,n — |, the signal created by
I; at p, rcaches p, ., at the same time that 1,1 becomes large|at Piva - This means that
the product x,(t - 7) %1(t) will become large relative to all the products
x(t — ) xft), j Z£ i+ 1. By (21), the function s, ,,, will he given a strong boost in
its values as compared to the functions: Zi, k% i+ 1. Thus Yi,e01 Will grow con-
siderably, whereas all y,., k47 4+ 1, will decay. Substantial learning - therefore
occurs. The same argument manifestly holds for values of 2 hich are of the order of r.
w7 >0, then the signal created by I; at p, reaches|p,,, long before 1;,, be-
comes large at p, ., . Since I, becomes zero long before I,,; occurs, the signal from
pi to p; also becomes very small before I j+1 becomes large. Thus, all the products
x(t — 1) x(t) are always either equal or very small, and so the function 3, ,,, grows
little more than the functions =, , k % 7 -+ 1. Al the functio 8 ¥ remain approxima-
tely equal, and little learning occurs.
This argument shows that the maximal learning rates in M are of the order of
magnitude of its reaction time 7. Once we decided that M'’s r ply to an input should be
delayed in time, we tacitly prescribed the places in M where functions 3;; could
possibly be computed, and thus in turn the relative timing of inputs which could lead
to efficient learning. Grossberg (1969b) describes machines which can effectively
predict items at a rate somewhat faster than the rate at whic they learned them.

13. STIMULUS TRACES, ASSOCIATIONAL S RENGTHS,
AND SPACE-TIME CONTEXTS

The functions y;; determine the strength of 3’s reply ; td an isolated presentation
of r; . We therefore call y,(t) the associational strength of r;r; at time t, by analogy with
classical theorizing, such as that of Hull (Hilgard, 1956). The associational strengths
Yii(t) collectively contain M’s memory of past experiments.

B
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The size of x,() determines how actively p; has been perturbed by recent i‘x puts,
including presentations of r, . () thus, in part, plays the role of a stimulus| trace
(Hilgard, 1956).

Equations 20 and 21 show that changes in associational strength are due to changes
in the stimulus traces. Equation 19 shows that changes in the associational strengths
alter the stimulus traces. Insofar as the stimulus traces arc “pereeptual” or “recogni-
tion” variables, and the associational strengths are “learning” variables, we see that
processes of learning and pereeption in M form g single unified process rather than
being two qualitatively different aspects of A’s experience.

Because of this strong binding between perception and learning in "M, we can see
how M automatically forms an appropriate “perceptual set,” or “learning set,” or
“‘space-time context” in response to particular experiences. For example, suppose that
only a small subsect of points p, are perturbed by inputs 7, during a time interval that is
long compared to the rate of decay of the x;’s. These vy's will grow as a result of the
inputs, and will send large signals only to the points x; whose y,; values are large, i.e.,
only to those states that are “contextually” related to the x;'s by past experiences. In
this way, a “spatial contextV is automatically created by the inputs. This context
changes continually as time goes on and new inputs I, perturb new points p; while
the previously perturbed x; values decay. That s, a “space-time context” s
automatically carved out by the inputs.

Suppose that a time interval exists that is long relative to the decay time of the x, in
which only a few points Pi are perturbed in rapid succession. Then only the y,; values
which connect these points to one another will grow, so that even as a spacc - time
context is being formed by the mere distribution of inputs, the “learned” contextual
associates of given points also change. Hence, the space- time context formed by the
very same distribution of inputs might well change if these inputs are repeated again
and again. }

These facts illustrate one way by which a machine which stores a very large vocs
lary can call upon small subsets of this vocabulary as experiences demand wit
activating all of its repertoire unnecessarily. The inputs automatically carve out t
channels in M which correspond to the experiences, and the remembrances of related
past experiences, that the inputs represent. These channels fluctuate through timg¢ as
the demands of experience do. '

14. MARKOVIAN AND NON-MARKOVIAN

The context which is formed at any time in M depends on the rate at which inputs
are presented. Suppose, for example, that ABCY) is presented ohce at rate , That is
L(t) = Ip(t + w) == Te(t + 2w) == It 4- 3u). If wis not large compared to + and|to
the rate of decay of the x,’s, then all of the point strengths x ,(2), x,(2), xc(t), and xp[t)
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will be large right after I is presented, x,(¢) will often be largest since D has just
occurred, and x () will often be smallest since A occurred some time before, but all
these point strengths will have some influence on the determination of the nodal
strengths y,,(t), the magnitude of their influence depending on their relative size at any
time. Events which occur prior to D (i.e., ABC) will influence the behavior of M after
D oceurs, and so the “past” affects the “future.” In the mathematical literature such
an effect is said to be “non-Markovian” (Kemeny and Snell, 1960).

Now let w increase. Suppose w is chosen far larger than both r and the decay time
of the point strengths x(t). Again let ABCD be presented at rate w, and consider M
shortly after D has occurred. Then each of x(1), x4(¢), and xc(t) will be very small
when x,(2) is large, because their inputs occurred so long ago that they have decayed
back to their resting position. Therefore, only D determines the future behavior of M
when 1) is presented to M, i.c., the “future” depends only on the “present.” Such a
dependence is mathematically called “Markovian.”

We see in this simple way that our systems can behave in both a Markovian or
non-Markovian fashion depending on the particular choices of inputs to which they
are exposed. This fact suggests that our Systems can also behave in an “all-or-none”
or “gradualist” - fashion, depending on the particular experiment, since all-or-none
learning is distinguished from gradual learning by different effects of past on future
events. In a later paper we show that this is the casc. See Grossberg (1969d), for
example,

15. LINEAR AND NONLINEAR

Our systems combine linear and nonlinear effects in an unusual way. For example,
consider (19)~(21) when Y1 Piw = 1 for all § — 1,2,...,n; ie. every point p; sends
an edge to some point p, . Then it is seen by summing over s = |, 2,...,7in (19) and
dividing by # that the average output x = (1/n) 3";_, x, is related to the average input

= (1/n) i_1, by a linear equation

) = —ax(t) + Bx(t — 7) 4 I(t),

even though the interaction of the x{t)’s along the edges €, is nonlinear. Thus our
systems are often “linear in the large” although they are “nonlinear in the small.”
‘This linear behavior in the large is independent of the Yir's, and thus of all learning
effects. :

Consider (19)~(21) when all associational strengths y,,(t) have approached limiting
values 6,; as a result of a learning experiment; that is, yi,(tgg 0y; for times t > T,
where T is some large time after practice has been going on for awhile. Then (19)
becomes ‘ '

()2 —ar() 4B Y wlt )0y +II)

s
.
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which is approximately a system of linear equations for the outputs a,(t) in terms of the
inputs I,(¢). If the inputs to M are sufficiently regular in time that Icarning occurs, then
M’s behavior automatically passes from a nonlincar phase to a linear phase. Since M’s
output will seem linear after a sufficient amount of practice has occurred in an experi-
ment, it is tempting to try to model M’s mechanism in a linear way. Nonctheless, the
learning mechanism of M is nonlinear, so that such an extrapolation will work well
only after M has already learned. 'Thus linearizing in the present situation destroys
the very mechanism of learning that we wish to study. This is proved rigorously in
Grossberg (1969¢).

16. GESTALT, GUTHRIE, AND PAVLOV

Consider a machine M before it has learned anything. Suppose that M is capable of
learning any list chosen fromr, , 7, ,..., 7, in which no symbol r; occurs more than once.
Suppose also that M is unbiased for specificity. Then

pu=i{n— P
0, ( = j.

Since M begins in a state of maximal ignorance, all x,(v) are equal, { = 1, 2,..., n, for
ve[—7, 0]. All 2;,(0) are also equal, j 5= &, and are positive. Now let any symbol be
presented to M, say r; . Then x, grows momentarily and large signals are transmitted
to all the other points p; , j 74 1. If r, then occurred, p, sends large signals to all the
other points p; , j 5% 2. And so on. Before learning occurs, therefore, the entire “field”
of points is influenced by an event at a single point, i.e., a kind of “Gestalt” effect
“in space” occurs (Hilgard, 1956).

Similarly, if the list 7,7,...r,, is presented to M at a rate w which is not large compared
to = and the decay rate of the point strengths, then several point strengths will deter-
mine together the alterations in nodal strength at that time, as pointed out in Sec. 14,
i.e., a Gestalt effect “in time’* occurs. In summary, if M begins in a state of ignorance,
then M exhibits Gestalt effects in space-time whenever it is exposed to a long and
rapidly occurring list of symbols.

Let us now consider M after it has learned the list 7,7,...r,, . Then, by definition,

Y1o(t) 22 ¥Yoolt) o yau(t) 22 v+ ¢ Ypo1alt) ==

for all times ¢ during which M knows the list, and all other y,(f) are approximately
zero. Thus, a chain of associational strengths leads from p; to p, , from p, to p, , and so
on until p,_, and p,, are reached. This chain has been embedded into the ficld of M’s
alternatives—hence the name “embedding fields” for our theory.
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We can now readily see that M’s behavior after learniné is qualitatively different
from its behavior before learning. After learning, an input to|p, creates a large signal +
time units later only at p,, and so only ps delivers a large putput to £ at this time.
Similarly a large input to p, creates a large signal = time unij: later only at p, , and so
only p; delivers a large output to E at this time. This is so for every p; and p,,; with
{=1,2,..,n—1,and the Gestalt effect in space—time has|been substantially elimi-
nated. It has been replaced by a simple succession of “stimuli”’|and “responses,” and the
response which occurs depends on the contiguity of the stimlulus in the list Pty .
This kind of behavior is often associated with the name of Guthrie (Hilgard, 1956).

We have, therefore, at our disposal a machine which would be a delight to the
Gestaltists before learning occurs and a discomfort to them after learning occurs. The
same machine would be a comfort to Guthrie after learni g and a stranger in his
house before.

Before learning occurs, M is a complicated network of transitions representing the
many possible alternative choices at M’s disposal. After learning occurs, M becomes a
simple chain, or circuit, in which no choices remain. That is,| M’s behavior is reduced
to a series of reflexes, or to a “Pavlovian circuit” (Hilgard, 19 6).

We wish to suggest by these examples that our machines cohtain within them formal
propertics that are highly suggestive of various theoretical mdvements drawn from the
history of psychology. As in the case of Gestalt vs Guthrie, these formal properties can
sometimes appear at different times during the very same experiment, and a learning
or perceptual mechanism which seems adequate to describe the effects of one kind
of experiment often seems hopelessly unsuitable for the escription of a closely
related experiment. We wish to suggest that this difficulty arises when theorizing is
done by tacitly or explicitly assuming. mathematical properties, such as linearity and
locality, which are simply not generally valid but which nonetheless work quite well for
specific kinds of experiments. Our machines also exhibit sonfe of these properties for
one kind of experiment (i.e., initial data and inputs) and |different properties for
another kind of experiment. It will be of interest to test whether these changes in
formal properties correspond, at least qualitatively, to solirces of controversy in
classical psychological theories.

I7. BACKWARD LEARNING

Consider an unbiased machine which can learn both 4B ahd B4, for example, the
machine M depicted in Fig. 9. Thus, pp = puc = pap = P84 = Poc = Prp =},
and all other p;; = 0. Let A7 begin in a state of “maximal ighorance’’ and “at rest.”
That is,

x4(v) = xp(v) xc(v)  xp(v) =0, ve’[ﬁr, 0],
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Fic. 9

and
245(0) = 2,4¢(0)  2,4p(0) = 254(0) 2pc(0) = 2gp(0).

We now show that teaching the machine AB at a speed w -= r automatically teaches
the machine B4, but to a lesser extent; i.e., backward learning occurs. Thus, learning
BA given only the occurrence of 4B follows from the mere possibility of learning BA
at alll The list B4 is certainly a short list. Grossberg (1969d) shows that this
conclusion must be substantially qualified in the casc of long lists. We now show how
BA is learned given only the occurrence of AB.

When 4 occurs at time ¢ == 0, x,(t) grows and equal signals are sent along
€4p, €ac , and e p towards pg, pe, and pp, respectively. As these signals reach the
arrowheads N p, Nyc,and Ny, at time ¢ == r, B occurs. po and p,, thereafter
receive only signals from N, and N5 . pp, on the other hand, receives a signal from
N ,p as well as an input Iy. Thus, 2,5 > 24 = 24p for all times after B occurs.
Consequently y,p > Y4c = y4p as well, and at least partial learning of AB has
occurred.

After B occurs, x5(t) sends out equal signals along e, , g, and g, to Pa,pc,and
Pp , respectively. These signals begin to reach their destination at time ¢ == 2. p , has,
however, also received the input I, 27 time units earlier. Although the effect of I, has
partially worn off by time ¢ = 27, x, is still larger than x(t) and x(?). After the signal
from pp arrives at p,, pc, and pp, therefore, yg4(t) > yac(t) = ¥5p(t), and thus at
least partial learning of the backward list B4 occurs. Whereas the overlap in time of the
signal from p 4 to pp and the input I5(2) to py is perfect, the signal from py to p , arrives
only after the effects of I(t) have partially worn off at p,. Thus we expect
Y45(t) > yp4(2), or learning in the forward direction is better than learning in the
backward direction,
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As the speed w of saying A8 is allowed w approach zero, the asymmetry between
the states oy and py due to differences in the tming of the inputs 7, and /, gradually
vamshes. Indeed, when e — 0, 3 ,4(t) = yau() forall ¢ = 0, by symmetry. Thus, the
relative advantage of forward learning over backward learning in M arises simply
because the relative timing of inputs from E to M and of signals within M fayors the
forward direction when the presentation speed w is sufficiently close to the optimal
learning speed .

If ABARB... is presented very often to M at a periodic speed e = 7, then elearly the
initial bias of saving A first will gradually wear off, and the difference v 45(t) — ya.(t)
will decrease as ¢ increases. By contrast, if ABC is presented o M, then the forward
association yge will competitively diminish the backward association y,, . so that the
! rudiments of a forward “arrow in time,”" namely, v 5 = vuy and vpe = veu, will be
established within A1,

18, LEARNING WITHOUT REVERHERATION

In his ¢lassic book, Hebb (1949) dizcugses the possibility that neural memories are
preserved by o funn of persistent reverberation within neural networks. We now
remark that reverberation is quite unnecessary for memories to be preserved in our
muchines, Indeed, reverberation is one of the processes most destructive of M's
memory that ean oeeur,

Reverberation in AY means that large a, signals pass cycheally between the points p;
Firstly, we show that M s memory is perfect if all the signals are maximally small; that
s, 1P all afn) are wWdentically zem.

Suppose (1) 0,4 Bl SRS n. Then by (21), i pp =0, then 8, = —uz,, or
2ilt) - 2u(0) e v Thus by (20),

p,,ﬁ_,.,\{]:lr s

yult) = -:;—m-l. 5. {u}‘, ul

.-.-n Jird

Piezad0)

Zm—: P_Im. |m{ﬂ}
i yal'm}'

"The associational strengths remain constant for all time, and M's memory is perfect,
Hence, reverberation 1s surely unnecessary for M to remember very well.
Reverberation harms M's memories because whenever too many x,'s have lazge
values, the values of many v, s will also change, just as in the formation of spatio-
temiparal contests. Changes of the v,,'s mean changes in M's memory.
Morcover, we want the values x () to become small whenever the inputs !,{t} are
gure over long time intervals, because these values, or at least a subset of them, are the
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outputs of M, and we would like M to be able to remember without persistently
spelling out its memories in large outputs to the outside world. Small outputs are often
desirable, and small outputs imply little reverberation and good memory within M.

19. BRAIN AND BEHAVIOR

We now have two ways by which we can, at least roughly, interpret our mathematical
variables: one psychological and one neurological. The point strength x(f) stands
both for a stimulus trace and for an average membrane potential. I'he nodal strength
¥5(t) stands both for an associational strength and for the average statc of transmitter
production in a collection of endbulbs. To the extent that our machines M are realistic
models of simple behavioral systems, we can now translatc a psychological fact into a
neural property, and conversely. We have at our disposal at least a partial proposal for
a language to suggest how “brains control behavior.”” "T'his translation table between
neural and psychological variables will be extended systematically in later papers of
this series.

20. M IS NOT ENTIRELY OBSERVABLE

We constructed M with nonnegative states x,(t) to try to guarantee that the states be
observable to E. Nonetheless the functions 2;,(t) cannot be directly measured by E,
and these functions contain the heart of M’s learning mcchanism. z;,(t) is a hidden or
intervening variable, and our mathematical papers prove rigorously that various
fundamental features of M’s behavior are not directly measurable by E, in spite of all
our efforts to maximize M’s observability to E. In particular, the protocol of M’s
stimuli and responses does not provide a complete picture of M’s learning mechanism.

21. INPUTS AND OUTPUTS VS STIMULI AND RESPONSES

Much psychological theorizing is based on the use of the concepts of stimulus and
of response to a stimulus. In complicated experimental situations, one is then some-
times forced to discuss stimuli which share some responsc propertics, and responses
which share some stimulus properties, the degree of sharing depending on the situation,
We believe that the stimulus-response terminology is often an inconvenient one
because it does not correspond in a simple way to the way in which we Iearn. This is
clear even in our simple machines M.

A stimulus r; to M is an input to p, . Then p, sends out signals to other p; . These
signals reach the p; as inputs also. Are these inputs stimuli to p;? Since p; can distin-

O 1 SN

e




W b i

238 GROSSBERG

guish only the size of an input and not its source, our answer must be “yes,” using the
“principle of sufficient reason.”” Thus a stimulus becomes|identical with any input
that a point receives. In a similar fashion, a response becomes identical with any
output that M emits. But this is certainly not the custo: ary way in which S-R
terminology is used.

It is well known that realistic behavioral systems benefit substantially from the
feedback created by their own behavior; for cxample, we [can organize our speech
better when we can hear our words. In M, this means that an output from a state
should create a subsequent input to that state via some form of feedback through the
physical medium surrounding M. By virtue of our previous remarks, this means that
every response also has stimulus properties. To avoid a ter inology which does not
clearly distinguish the process that decides how important the stimulus or response
aspects of an event are, we propose instead that one simply classify the inputs and
outputs which occur, and study systemically the mechanisnis that connect them.

REFERENCES

Crosay, E. C., Humenrey, T., aNp Lauer, E. W. Correlative anatomy of the nervous system.
New York: Macmillan, 1962.
De Ronertis, E. D. P. Histophysiology of synapses and neurosecretion. New York: Macmillan, 1964.

Eccuss, J. C. The physiology of nerve cells. Baltimare: Johns Hopkin
Eccigs, J. C. The physiology of synapses. New York: Academic Press
GrossBerG, S. Nonlinear difference-differential equations in pred
Proceedings of the National Academy of Sciences of the United S
1329-1334.

s Press, 1957.

, 1964,

iction and learning theory.
tates of America, 1967, 58,

GROSSBERG, 5. Global ratio limit theorems for some nonlinear functional-differential equations,
1, I1. Bulletin of The American Mathematical Society, 1968, 74, 95-105. (a)

Grosspera, S. A prediction theory for some nonlinear function
learning of lists. Journal of Mathematical Analysis and Applicati

al-differential equations. I.
ons, 1968, 21, 643-694. (b)

Grosssena, 5. A prediction theory for some nonlinear functional-differential equations. 1I.
learning of patterns. Journal of Mathematical Analysis and Applications, 1968, 22, 490-522. (c)
GRrossBERG, S. Some nonlinear networks capable of learning a spatial pattern of arbitrary com-

plexity. Proceedings of the National Academy of Sciences of the Uni
59, 368-372. (d)
GRrossBiERG, S. Some physiological and biochemical consequences

ted States of America, 1968,

of psychological postulates.

Proceedings of the National Academy of Sciences of the United States of America, 1968, 60,

758-765. (e)

GROSSBERG, S. On the global limits and oscillations of a system of nonlinear differential equations
describing a flow on a probabilistic network. Journal of Differential Equations, 1969, 5, 291. (a)

GROSSBERG, S. On learning, information, lateral inhibition, and

transmitters. Mathematical

A R R AR S 3

Biosciences, 1969, in press. (b)
GRrossBERG, S. On the production and release of chemical transmitters and related topics in
cellular control. Journal of Theoretical Biology, 1969, 22, 325. (c) ’
GROssBERG, S. On the serial learning of lists. Mathematical Biosciences, 1969, in press. (d)

-t ——— T A aR E R




EMBEDDING FIELDS 239

GRrossBerG, 8. On the variational systems of some nonlinear difference-differential equations.
Journal of Differential Lquations, 1969, in press. (e)

GRrOsSBERG, S. Some networks that can learn remember, and reproduce any number of com-
plicated space-time patterns, I. Journal of Mathematics and Mechanies, 1969, in press. (f)
Grossperag, 8. On learning of spatiotemporal patterns by networks with ordered sensory and
motor components, 1 — excitatory compenents of the cerebellum. Jorrnal of Mathematics and

Physics, 1969, in press. (g)

GRrOssBERG, S. Some networks that can learn, remember, end reproduce any number of com-
plicated space-time patterns, H. SIAM Journal of Appliecd Mathematics, 1969, submitted for
publication. (h) ’ '

Hesb, D. O. The organization of behavior. New York: Wiley, 1949,

HiLgarp, E. R. Theories of learning. New York: Appleton, Crofts, 1956.

JEnsEN, A. R. An empirical theory of the serial position effect. Journal of Psychulogy, 1962,
53, 127.

KemENy, J. G., anD SNELL, J. L. Finite Markov chains. Princeton, New Jersey: Van Nostrand,
1960.

KuincHIN, A. 1. Mathematical Joundations of information theory. New York: Dover, 1957

MiLLeR, G. A. The magic number seven, plus or minus two. Psychological Review, 1956, 63, §1.

Oscoob, C. E. Method and theory in experimenial psychology. New York: Oxford Univer, Press,
1953,

RatLier, F. Mach bands: quantitative studies on neural networks in the retina. San Francisco:
Holden-Day, 1965.

WALTER, W. G. The living brain. New York: Norton, 1953,

Receivep: November 10, 1967

PRINTED IN BRUGES, BELGIUM, BY THE ST. CATHERINE PRESS,

:ﬁi;g





