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210 GROSSBERG

properties of learning. For example, our simplest machine (Grossberg, 1967, 1968a, b)

has, among other~, the following properties: I

(I) Practice kla/~es Perfect. The more often kB is practiced, Jhe better is the

machine's prediction of IJ given A at a prescribed later time, and the prediction

becomes as good as wc please after a sufficient amount of practice. One can modify the

machine in a trivial way to guarantee that the lear1ing of a short list such as AB seems

to occur il1 an "all-or-nol1e" fashion. Practice is by respondant conditioning.

(2) An Isolated jWachine Suffers No jWemory Loss. Once learning, trials end, our

simplest machine remembers ",'hat it has been taught without any memory loss. This

is not true of all our machines. Some of theln spontaneously forget at an approximately

exponential rate if they do not practice continuously. These various machines all obey

the same laws, however. They differ only in the way in which their several com-

ponents are interconnected. We are led to a study of the "geome

t ry of learning," namely, a study of how to interconnect the components of our mach nes to guarantee

that they learn and remcmber special tasks in the best possible way.

(3) An Isolated Machine Remember.!. Without Practicing Overtly. After learning

trials cease, our simplest machine also stops producing guesses for t e experimenter.

Even when the machine produces no overt behavior after learning, i~ memory of the

preceding experiment remains unimpaired.

(4) 1'he Metllory of an Isolated Machine ..S'ometimes Improves Spontkneously Jflithout

Practice. After the simplest machine receives a moderate amount of practice, and

shortly after practice ceases, we find that its memory is better on a recall trial than it

was at the instant practice stopped. The magnitude of this improvelnent depends on

the degree to which practice is massed or distributed when the learliling trials cease.

This effect strikingly rescmbles the experimental phenomenon of "reminiscence,"

otherwisc known as the \\'ard-Hovland phenomenon (Osgood, 1953).

(5) .411 Errors Can Be Corrected. If a list such as AB is learnedj to an arbitrary

degree of accuracy, wc can J1onetheJess t.each the machine the new list A C.

(6) Response Interference ..S'ometimes Occurs. The rate \vith a list AIC can be taught

to replace a prcviously lcarncd list .4B depends on the dcgree to whith AB had been

learned, as ",.ell as on the number of other response alternatives. However, this is not

true of error correction in long lists. One can change a long list in its middle after the

first few learning trials without substantially delaying the rate with which the ne\v

items are learned. The effect of other response alternatives also depenc1ls on list length,

on list position, on the rate of list presentation, and on the degree of learning at any

time.
These properties do not exhaust the list of mathematical effects wfuich arise in our

machines, and one can find formal analogs of such familiar empirical phenomena a~
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backward learning, bowing, chaining, and chunking (Jensen, 1962; Miller, 1956;
Osgood, 1953). It is also possible to interpret the mathl'matical variahlt~s of the ma-
chines in a way that pt:rmits us to com part: them "ith kIlO\\'fi Ilt:ura[ fac~5: C;t:onletrical
objects exist in them that readily call to mind nerve cell hodieH, ax()ns,! l~ndhlllh~, arId

synaps~s (Crosby, 1962). Pr~ces,st:s occur ~\'ithin these objec~s that r~~ind Ollt: of t,ht:
generat~on of cellular potentials m cell bodlt:S, of the fluctuatloll of splk\l1g frt:411t:llcles
in axons, of transmitter production and release at the endbulbs, and of various trophic
and plastic effects (De Robertis, 1964; Eccles, 1957, 1964), !

Our machines, thertfort:, pro\'idt: a ~iI1glt: mathl'm:ltit:al pit:turl~ w tllil) wllic::h at
least formal analogs of both psychological and neural pht:nomella of SOl e interest can
be discussed. All of these phenomena, or at least their formal analog, are a const:-
quence of a rather simple mathematical mechanism. Since these mac ines do learn
and can, at least roughly, be interpreted in a neural way, thl~y t:mb Jdy a definite

proposal concerning the manner in which real neural struc::tures might I 'am.
Because of these various facts, it seems desirable to try to analyzt tht psyclJofogical

principles which give rise to these machines. This paper aims at such an analysis and,
in particular, at a description that is as intuitive and nontechllical as possible to

emphasize the simplicity of the basic ideas. We begin by discussing in a rath(~r philo-
sophical way some psychological facts known to all of us .from daily lift, and then
gradually translate these facts into definite mathematical ttrms IIntil Wt '1ave t.xplorl:d
enough facts to construct a w(~II-dcfined mathematical syst(~m. We cannot, of cour~t:,
hope by such a one-sweep procedurt: to "construct a brain," teeming with represeIJ-
tations of countless macromolecules and ions interwineu in exotic comhinations of
variable duration and strength. Nor should we want to, since sUl~h a reprt:sentation
would blind the unprepared beholder with complexities. Threc latcr paper~

(Grossberg, 1968e, 1969b, c) will continue this task by successive approximation.

2. THE EXISTENCE OF BEHAVIORAl, ATOMS

LANGUAGE SEEMS TO B/, SPAT/O- TI,MPOR,\I.LY D/Ht:RI,TE

Consider the vocabulary of a standard English-spcaking adult. Th~ vocabulary
contains 26 letters and no more than several thousand words of various sqrts, of which
only several hundred are most frequently used in daily discourse. L'on4der the way
in which we hear and say trye simplest verbal units of daily discourse,

t ch as single letters like A. An obvious feature of this usage is that wc never try to ecomposc.,.l

into two or more finer subparts, as for example we can with a word consi ting of more
than one syllable. Yet even complicated words may be decomposcd into 0 more than

finitely man)! simple parts, and clearly there are only a finite number of implc pieces
in anyone person's vocabulary.
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~'t 112 GROSSlIERG

If we wish to understand our usage of such simple verbal units as A, we must take
seriously our imprl~ssion that A is a single unit that is never decomposed in actual
speech. We do this by assuming that A is represented in M by a single state. That is, we
as~ign to A a single point PA in M. We also assign a point PB to 8, PC' to C, and so on. In
more mathematical terminology, given any n simple behavioral units r; , i = 1,2,..., n,
we define n points Pi in M, i = 1,2,..., n, to stand for these u~its, as in Fig. I.

M'---,
.PI

r2 . .P2
.
.
.

rn .' .Pn

FIG. I

The reader interested primarily in our mathematical postul~tes can proceed to the
next section, but we will linger momentarily to discuss our ,impressions of simple
behavioral units, since these reveal a rather deep property that !any theory of learning

might profitably have, and which the present theory has.
When a standard English speaking adult hears a word spqken or speaks a word

himself, the word seems to occur at a single instant in time. Th~t is, we can say either
that the word has, or has not, been said at a given time in a perfectly definite way.
MOref)Ver, no more than a finite number of words are spoken in! a lifetime. Thus, both
"spatially" (the number of verbal units) and "temporally" (the number of time
instants at which verhal units occur), language seems to have many properties of a
finite, or discrete, phenomenon.

THE REPRT;SENTATION OF SENSORY CONTINUA BY DISCRETE SYMJOLS

One of the most vital uses of la~gllage is to report our sensor'lj experiences, such as
variations in tactile pressure, light intensity, loudness, taste, etc. Many of these
sensory imprcssions secm to vary in a continuous way both in! space and in time. A
basic characteristic of much sensory experience is that it seems to be spatio-tmzporally
continuous.

Yet we successnlJly use language, which seems to be q~ite spatio-temporally
discrete, to express-or to represent-sensory experience, whiQh seems to be spatio-
temporally continuous. The representation by language of sensations requires that
the two kinds of phenomena interact, and so, mathematically speaking, we must
envisage the interaction of spatio-temporally discrete and continuous processes of
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~i
~Isuch a kind that the relatively discrete pn)c('~~ provid('s an adequat(' representation of

the relatively continuous process, Moreover, although each sensory modality seems
to provide us with essentially different varieties of experience, the very same
language tools are adequate for describing at least the rudiments of all of these Ivarious
modalities, Thus, the discrete representation of continuous processes mu~t be a
universal representation of some kind, I.'or thi~ r('a~on, we t:xPt:ct conclu~iol18 about
the dynamics of language behavior to generalize to many other psychological

phenomena.

LEARNING AS A BRIDGE FROM CONTINUITY TO DIS(~RETI-:NE."S

,
...

1;~
,1",

The centrality of the connection between relatively discrete and continuous pJ\enom-
ena in behavior is better understood by considering several simple examples. Con-
sider the phenomenon of walking for specificity. When a child begins to learn how to
walk, he must concentrate much effort on the endeavor, and must attend continually
to his efforts. An observer is struck by the many motions of the child that are inessen-
tial to the walking process, and by the total absorption of the child in the process. In an
adult, walking takes on a different appearance. A first step is automatically follow~d by a
second, the second by a third, etc. Ollce the decision to walk i5 made, th~ walk
essentially takes itself, and one can pay attention to other matters so lonK as a minimal
amount of obstacle avoidance is accomplished. After walking to one's destinati~n, one
"decides" to stop walking and the walk comes to an end. Whereas a child must
continuously attend to the walking process until he has mastered it, the adult ~ttends
essentially only to starting and stopping the walk, and the mechanics of walki~g are
entirely automatic. Starting and stopping are "(m"-"off" responses, which are di~cretc.
Thus, walking requires continuous attention before its mechanism is mastered, hut only
discrete attention thereafter. The very process of learning how to walk invQlves a
passage from a relatively continuous representation of voluntary efforts at wal~ing to
a relatively discrete representation of these efforts.

A comparable example can be found in language learning. When a young child first
begins to learn a letter such as A, an observer is a\vare of the relatively slow and
seemingly continuous juxtaposition of complicated lip, tongue, and assoeiated motions
governing pronunciation of the letter. Once A is learned, A can be emitted rapidly and
in a seemingly simple integrated motion occurring at a given instant of time. $aying
the letter A becomes after learning a simple and discrete act. This situation is analo-
gous to the example of walking, where again an initial state that is continuous bPth in
space and time converges (or contracts) to an asymptotic state, approximately dilscrete
both in space and time. Examples can be drawn from many varieties of le~rning
experience. The fundamental conclusion is that learning often involves a passage from
continuous representations of the control of a given act to a more discrete repre~ent~-
~ion of this control.
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THE PYRAMID OF DISCRETE ACTS

'i'he intuitive significance of such a passage is easy to see. On e the saying of a verbal
unit seems to the performer to be a simple aet rather than a tre endously complicated
juxtaposition of delicately poised muscular motions, he ca proceed to integrate
several of these units into more complicated composite unit constructed from se-

quences of.8eemingly simple acts. After thesc composite units also seem to be simple,
the composite units themselves can be organized into still more omplicated composites,
and so on. Without the reduction of continuous (and complicat d) acts to discrete (and

simple) acts, the integration of more complicated behavior b ed on these acts would
seem hopelessly complicated. \'ie would be doomed to paying ttention day and night
to \\'alking and other menial endeavors. The passage from initial y continuous represen-
tations of behavioral controls to asymptotically discrete rep esentations is thus no
casual event. It makes possible the emergence of new organized behavior patterns, and
is a prerequisite for effective learning.

~~,

THE CONTINUOUS AND DISCRETf.: PICTURES COEXIST

Since different behavioral sequences in different stages of lea ning can often coexist,
all intermediates between continuity and discreteness can in rinciple coexist at any
tirne,

The pervasiveness of the coexistence of discrete and continu us representations can
be seen from the following example, When a single letter, s ch as A, is said to a
standard English speaking adult, his impression is that .4 i presented at a single
instant of time and that A seems to he a simple behavioral uni , Nonetheless, if scalp
l'lecm)ui.:s are placl'J OIl his Ill'at! whcn f1 is prcscntcd, thcrc ill ensue a temporally
prolonged and spatially \...idespread alteration in his brain wav (Walter, 1953). Thus
the impression that,(1 is spatia-temporally discrete must be r conciled with the fact
that A's presentation .\'imultaneou'\'ly causes spatio-temporally continuous alterations
in neural potentials, This conclusion is not surprising if only b cause of the represen-
tation of thc sound of .4 as it travels through the air as a compli ted series of waves.

Propertil's of discrctcness and continuity coexi~t at every tage of learning. The
continuous background is never wholly eliminated, We m st study how certain
processes superimposed on this background become increasin ly discrete relative to
an initially prescribed standard of continuity, and will have our disposal at least
two different levels of dynamical graining such that the degree 0 continuity of one level
takes on meaning Ollly rclative to the degree of continuity of t e other.

To postulate that A is represented by a single point PAin amounts to the hypo-
thesis that A, as a simple behavioral unit, has already been learn d by M. We therefore
enter th(~ learning process in the middle, and seek to know h w known simple be-
havioral units are integrated into more complicated units, uch as the alphabe~
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ABC...Z. Once we see how new units are formed from old, whether we call ~ur
original points PA ,PB ,..., etc., or by another name will Sl~em irrell~vant. I
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THE TIME SCALE OF THE MACROSCOPIC WORLO SEI':MS CONTINU()~S

The impr~ssiun frum daily cxp~ril:ncc tllal tilllC fl()WH l()IJtilltl()lI!lly is takl"1 or
granted in all physical theories. Since we ",i!lh to maiJltain as closc a contact to d ily
experience as possible, "'c too will suppos~ that hllth /!-' and /11 havl' .1 l()l)tinlious ti ne
scale t.

A theory constructed in continuous time has the substantial formal advantage of
b(~ing ablc to consid~r arbitrary input spacing \\"itllout alll/llC cllallge!l in J)aram~ .cr
values. For example, suppose that [~. tries to teach :11 the alphabet .4 RC,..Z by pr~se t-
ing the letters with an intratrial inten"al of w. As w approaches 0 or Xi, the list bcco es
impossible to learn, whereas the list can more readily be learn~d at some intermedi te
value of w. The explanation of even this fact can be cumbersome wilen discussed in
terms of a model in discrete time, but it is trivial in the continuous time theory to e
discribed.

4. THE EXISTENCE OF CONTINUOUSI~Y DJFI;'I~I{ENTIABLE Si'ATI-: FUNCTIOt-.'S
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The word "see" and the letter "c" sound alike in daily discolJrse. If I sa)' "sce" to
someone, he might well reply, "See what?" But if 1 say "ABC" to him, it is far m re
likely that he will reply by saying "D."

To make this latter assertion with confidence, we must specify tht: ratt: w at which,
then B, and then C are said. If rv is a few seconds, then D is ct:rtainly a likely reply to
ABC. If w is 24 hours, then "See what ?" is a more likely reply. And as u' var es
smoothly from seconds to hours, the effect of the "contcxt" "1 B ~radually wears off in
the determination of a reply to C. This is only one example of many where the cffe ts
of prior events linge~ and then gradually fade away.

We must be able to represent in M that an event such as A has occurred at a rec nt
time. The point P A alone does not suffice to do this, since tht:re is no time variation in
P A .There must e~ist some function, or functions, of time t that do this for M. Si ce
we have, in Sec. 2, emphasized that A seems simple in daily experience, ~e should ry
to restrict ourselves to just one function of time at P A .We denote this function y
XA(t). Thus to every simple behavioral unit T; , Wt: postulate the existence in M 0 a
point Pi' and a function Xi(t) representing a process taking place at Pi' i = 1,2,..., n.
We now discuss several properties of .\';(t).

Xi(t) is continuousf.v differentiable. '\'i(t) was introduced to represent within 1\1 t e
occurrence and gradual fading away through time of the event T, presented to M a a
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given time. This is a. question about t~e rate of change of Xi(t
~ through time, or about

XJt)( d.I:Jt)fdt). Since the effect of an event wears off gr dually, we assume that

Xi(t) is continuous.

Xi(t) is Nonnegative (,W is Observable). The data availa Ie to a psychological
experimenter Ii.' is of two kinds: either a stimulus or response oes not occur at a given
time, or it does. We are predisposed to express the occurr nce of "nothing" by a
statement that some quantity is zero. Thus, if A is never resented to M, we set
XA(t) O. Suppose A is presented to M for the first time t t = t(A). Then surely
XA(t) =: 0, for t :,,- tfA). But XA(t) cannot remain zero for all> t(AI, since XA(t) was,

after all, introduced to represent the occurrence of A. Whe something occurs, we
arc predisposcd to assign a positive weight to the quantity re resenting the event, and
therefore we suppose that XA(t) becomes positive when t > t A).

As t increases, the effect of A's occurrence at time t = t(AI adually wears off. Thus
'\"A(t) must gradually return to the level signifying that A ha not recently occurred,
namely zero. Thc graph of .~A(t), given exactly one occurren e of A at time t = tIA),
thus takes on approximately the form described in Fig. 2. ,.

FIG. 2

In particular '~A(t) is nonnegative for all t. (By a change in 0 r sign conventions, we
could have just as well assumed that XA(t) is nonpositive for al t.)

To express Fig. 2 mathematically, we need a way to trans te the occurrence of A
at time t = t(A) into mathematical terms. There is a stand a d mathematical way of

doing this. That is, let an input IA(t) perturb XA(t) at time t -t(A). XA(t) grows most
quickly when IA(t) is large, and decays towards zero ",'hen I t) is zero. The simplest
mathematical way of saying this is ,.

XA(t) = -CXXA(t) + IA(t), (I)

where (X is a positive constant, and the initial data of XA , say x (0), is nonnegative.
We can readily determine some of the basic properties 0 IA(t) from (I) and our

previous remarks. Since both "CA(t) and XA(t) are continuous, (I) implies that IA(t) is
also continuous. "CA(t) is nonnegative to represent the effect 0 M of the occurrence or
nonocurrence of A. Since IA(t) is E's way of presenting A to M, (1) shows that IA(t)
should be nonnegative. In the present example, IA(t) stands for the presentatio~ of
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EMBEDDING FlEWS 217

A to M at time t = t(..4). Thus, IA(t) becomes positive once t exceeds IrA). Since this

presentation takes only a finite amount of time to oc~ur, IA(t) becomes zero once
again after a finite amount of time. We summarize these conclusions about I,4(t) in
Fig. 3.

A OCCURS AT

TIME t=t(A)

~-;~

~
~
t

FIG. 3

Equation 1 describes a machine in which XA(t) can become as large as we please if
lA(t) is taken sufficiently large. In a machine within which XA(t) has a fixed maximum
MA' (I) is replaced by

'~
1'\1
'~i+

,.;It

XA(t) = -axA(t) + (MA -XA(t)) 1,4(t), (I')

where 0 ~ X,4(O) ~ M,4. It is obvious that X,4(t) ~ M,4 for all t :::.;:: 0 no matter how
large 1A(t) becomes. That is, XA(t) saturates at M,4 .Throughout the following dis-
cussion, we will always consider (I) for specificity, but all our conclusions apply to
(1 ') as well with obvious modifications.

Let us consider experiments in which E presents A to M at more than one time
instant. Suppose that A occurs at the times t1,4), t4,4I,..., IAr~), where tl,41 < 11~l,
i = 1,2,..., N,4 -1. Our previous discussion of 1,4(t) can be extended to this situation

if we suppose that 1,4(/) becomes large momentarily at all the times 1 = tl,4),
i =;= I, 2,..., N A , as we show in Fig. 4.

,'"
~i

A OCCURS AT
TIMES t = t~A)

I ,

i = f, 2, ..., NA

IA (t) I

°1

<==::> I ~ ~~,...
1--;r:;~'iA)'JA)... t

I'IG. 4

Figure 4 can be expressed mathematically in the following way. Let JA(t) be a fixed
nonnegative and continuous function which is positive in an interval of thc form
(0, "A). "A > O. Then Fig. 4 can be expressed as

NA
I..(t) = L J..(t

k-l
t~A1; (2)
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tLA}. The waveform

given event A in M.

i, i = 1,2,..., n, and

Ithat is, as a succession of input pulses J A( t -t ~A) at the times t
described b}' a particular choice of J A(t) is the "signature" of th,

The above remarks are true for all simple behavioral units j
not merefy A. We can th.erefo~e generalize (1) an~~) by writing

IXi(t) ---cxx;(t) .+ I;(t), t -1,2,..., n,
(3)where

N;
~ (;)I;(t) = £.. J;(t -ti: ),

k=l

~

sitive in an interval
e of symbols chosen
ite choice of inputs

Iand each Ji(t) is a nonnegative continuous function that is pc

(0, AJ, Ai > o. Equation 3 translates the Occurrence of an.v sequen
from '1"2"'."", and occurring at any times tl!', into a defi
delivered to M.

Having defined the input 1i(t) to Pi, we remark in passing that he output O;(t) from
Pi will ultimately he given by

O;(t) = max{xi(t) 8(t) -F; , O}, i~'

where F; is a positive "responsc thrl'shold" and i~

rZ-l .\k(t) In2 .\I;(t)-t- , In2 nH(t) =

with

~~'
'fhe mathematical properties of this definition are discussed in GI
hrief these properties are as follows. H(t) is closely related to t
function of probability theory, which is defined for any prob

Pl,P2,...,Pnby I

'ossberg 

(1968b). In
.1e familiar entropy

ability distribution

n
H(Pl,...,Pn) = -LPkln2Pk'

k=l
since

H(t) = 1 --!l(X1(t), X2(t),..., x..~t.>2
In2 n

It is well known (Khinchin, 1957) that (i) H achieves its maximum
if all Pi = I/n; (ii) H achieves its minimum of 0 if and only 1:
Pi =" I and all pj = 0, j =1= i; and (iii) H is a continuous function.

approximates its minimum of 0 if and only if all stimulus traces xi(t1

of 

In2 n if and only
for some fixed i,

rherefore, (if) H(t)
are approximately

"
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whereas

O$(t) = 0, j =1= i.

~.:~

Thus, no output will arise from the weak stimulus traces Xj(t),j # i. An output wi I
arise from the strong stimulus trace X;(/) just so long as X;(/) ::> ]'; ; that is, if P; h
been excited recently by a sufficiently large input that the output threshold ri i
achieved. The onset of a positive output at time t from Vt is translated as the occurrenc
of the guess r; by the machine at time t. The input pulses Ji(t) which create thes
outputs are fixed once and for all in a given machine before an experiment begins
Many of our qualitative conclusions hold for any choice of continuous J;(t) with

single maximum and a duration less than T, as Grossberg (1968e) shows.
The function R(/) expresses a kind of mutual inhibition of associations in th

production of outputs, whereas the constants r; describe output thresholds. Grossber
(J969b) shows how to improve these inhibitory and threshold effects using a simpl
formal argument, and thereby derive equations which agree, at least formally, wit

empirically measured physiological mechanisms of lateral inhibition (l{atliff, 1965) and
spiking thresholds (Eccles, 1957). The empirical Hartline-Ratliff equation for lateral
inhibition is also derived as a special case. The main heuristic point of these deduc-
tions is that the physiological mechanisms can then, at least formally, bt, discussed a$

provisions needed to make perfect learning and efficient ,guessing possible,
The discussion above shows that Ot(t) reduces essentially to x;(t) minus a constant

threshold shift r; if only a co'lple of stimulus truces are large at time t. Since our

thought experiments in this paper involve only a coupJe of 'Yi(t) functions at a time,
the assumption that the output from Pi is ,\";(/) is qllite satisfactory.

S. THE PRODUCTION OF ()lJTPUTS
BY INPUTS AFTER LEARNING HAS OCCURRED

""" =---,

i.~,
It'll'
:,;If1

'1l!r".~ ~
il*~~~~ '" ~~~~.

Ui(t) ~ max(x,.(t) -J',. , 0)
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Consider 1'III after it has learned the list AB. Suppose B has been presented many
times by E to M in the past. Since A-l now knows AB, if presents A alone to M, then
M must reply a short timc later by saying B. We now as how this can happen.

The presentation of A to M at time t = t(A) has bee conceptualized as the occur-

rence of an input] A(t -t(AI) delivered by Eto P A at ti e t(A). Thus, M'~ reply to E
a short time later should be an output delivered by PB E. This output arises from
PB at (say) time t = t(A) + TAB' where TAB is some posi ive reaction time. The TAB is

positive simply because responses to stimuli take some ime to arise. Which function
at PB is the output? Only one function, namely XB(t , is associated with PB. We
suppose for simplicity that ,'l:B(t) is the.desired output. In summary, after AB has been
learned, an input to P A at time t = t(A) gives ris to an output from PB at
time t = t(AI + TAB'

An input to PA at time t = t(A) creates a momenta increase in XA(t). Thus pre-
senting A to .1\1 at time t = t(A) and receiving B in rep y at time t = t(A) + 'TAB has

the effect on M which we have diagrammed in Fig. 5. ,

XA(I) XB It)

A--

t(A) t

~

~~ f -
tc t(A)+ TAB

I

.
Pe

.
PA

FIG. 5

~,
Ii!

E causes only the increase in XA(t). 'rhe mechanis of M itself must cause the
increase in XB(t) TAB time units later. Figure 5 shows, h wever, that the only possible
cause of this increase in XB(t) is the prior increase in x (t). A signal fromp.. is thu.s
carried to PB with a delay of TAB time units, and this ust be true whenever x..(t) is
large after AB has been learned. Since the signal reachi P B from PAis large at time t
if and only if .\"A(t -TAB) is large, we suppose for simpl'city that the signal is propor-
tional to XA(t -TAB), and choose positive proportional ty constants,B and PAB such
that the signal equals ,BPAS""A(t -TAB).

To write this conclusion in mathematical terms, w need only observe that the
signal from PA to PB is an input to Ps , just as IB(t) is n input to Ps. We therefore
replace the equation ~ "

XB(t) = -axB(t) + 1B(t),

by the slightly more complicated equation

XB(t) = --axB(t) + 1B(t) + tBPABXA t -TAB),

which also takes into account the signal from PA to PB .

Wi,
~ij

~;i}~, fc,~,jIi.i,""",., i4i;J.,
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The previous argument must hold when the list .4 B is replaced by any list r ir j
which M can learn. Thus, after i\1learns rirj ,

.tAt) = CXXj(t) + 1;(t) -]- .BPir,";(t -Ti;), (4)

where,just as in the special case ri = A and rj == B, p;j and Tij are positive constants.
How is the signal from P A to P B carried to P B? We will envisage some pathway

over which the signal travels without decrement at a finite velocity so as not to reach
PB until TAB time units after it is emitted by PA .We denote this pathway by eAB .Since
the list AB is not the same list as the list BA, eAB 'I: eBA. That is, e"IB is a directed
pathway from PA to PB. We denote it by an arrow facing from PA to PB. Thus, for
every list rpi which 11-1 can Icarn, an arrow eii will fact. from Pi to pj in ordcr to carry
the signal.BPijXi(t -Tii) after rpj has been learned. Figure 6 diagrams this situation.

Xj (t).
p.J

Xj(t-Tlj) --+ .BPij Xi(t-Tij) ---

Pi e "
JI

FI'

If it is impossible for M to learn r ir j , then no signal can reach pj from Pi , and ~'e set
Pii = O.

6. THE MECHANISM OF LEAI{NING ,,~

Equation 4 holds for any sequence rJ j which has alrcady been learned hy ,'Il, :;ay
AB. Before learning AB, on the other hand, thert: must exist other possible lists
AC, AD, etc., which M could learn instead of AB, for if B were the only possihJc
reply to A, then by definition, AB would have already heen learned. This means that
P A must be able to send signals to all points P B , Pc , P D ,..., which stand for possible
successors of A, or else no possihle connection hetween P A and these ~ltt:rnatives could
evcr be established. In particular, the points pj ,.i =, fl, C, D,..., could never possibly

satisfy (4).
We are thrown, therefore, into the following dilemma: After learning occurs, we

want PA to send a signal such as (4) only to the correct point PB so that a prt:st:ntation
of A to M creates the reply B. Before learning occurs, P A must be ablt: to send signals
to all the points Pi which correspond to symbols rj that might he learned. The process
of learning thus eliminates thc signals from P A to all incorrcct points PL' , PD ,..., at tht:
same time that it preserves and strengthens the signal from PA to PB.

~~

'~~i
':o~;i;",:~;J,

,~?*:
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This can happen in essentially only one way in the ~icture we have thus far con-
structed. The only effect on M of saying AB several ti$es, say at a rate w, is to make
both XA(t -w) and XB(t) large during and shortly afte the times IA(t -w) and IB(t)
are large, respectively. Saying AB more often ensures that XA(t -w) and XB(t) are
both large more often. If AC were said instead, ,VA(t -w) would sometimes be large,
but XB(t) would always remain small. If only B were sid, ,VB(t) would sometimes be
large, but XA(t ---w) would always remain small. If not ing were said to M, then both
XA(t w) and >"B(t) would always remain small. Thus, the learning of AB occurs if
and only if the product

XA.(t -W) XB(t), (5)
is often large, and all other products '\'A(t -w) Xj(t) j = C, D".., remain small,
whcre w > 0 is some "reasonable" learning rate.

In order for M to be capable of learning, a me hanism exists in M which
computes these products, or else M would have no way f distinguishing one ordering
of inputs from another. Thcrefore, we postulate the xistence of a process Z.4B(t)
somewhere in M which ~rows only if X.4(t -tv) XB(t) is large. ZAB(t) can only take
place at some position in 1\-[ where both the values x (t -w) and XB(t) are simul-
taneously present, but there is only one place in I;'ig. 6 which past x.4 values (such
as XA(t -w» and present XB(t) values are simultaneousl present. This place is at the
arrowhead NAB of eAB, since only here is the signal ,BP.4BX (t -7" .4B) fromp.4 contiguous
with the XB(t) value of PB .We therefore replace the pro uct (5) by the product

.BPABXA(t -TAB) XB(t), (6)

and say that ZAB(t) gro~s if and only if (6) is large. Tht simplest way to express this
mathematically is to say that ZAB(t) grows at a rate e~ual to (6), minus perhaps a
spontaneous decay (or "forgetting") term UZAB(t). That ~s, we let

ZAB(t) = -UZAB(t) + ,BPABXA(t -~B) XB(t).

In the same way, we can define a Z;j(t) function at the arrpwhead Nil of cach eii by

ziAt} = -UZii(t} + ,BPiiXi(t
Tit) Xj(t). (7)

where fJ > 0, U > 0, Pi; ~ 0, 'T;} > 0, and %;;(0) ? O. Figure 6 now becomes Fig. 7.

FIG. 7

J~
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Zi;{t) -uziAt) + ,BPiAM;; -z;At» .\";(t -T;;) '~At)J
(7')

just as we replaced (I) by (I '). In summary, the functions Z'iAt} cxist at thc arrowhcads
because this is the only place where past signals from Pi and present signals from Pi
coexist, and the past signal from Pi ig needed so that an inpllt to Pi will1!,iv(' rise aftt,r a
short pause to a correct output fromp; once r;r; has been learncd.

We have defined functions such as ZAD(t) not only to record whether or not All has
been frequently presented to M, but also to guarantee that after 1'18 has been learned,
an output to p A generates an output only from PB TAD time units Jater. To achieve this

mathematically, note the following heuristic rcquircmt:nts.
If A is said but AB has not been learned, then B will not be said in reply TAB time

units later. If A is not said, then B will not be said TAB time units 1ater even if All has
been learned. And if A is not said and AB has not becn learned, then surely B will not
be said in reply. Saying A amounts to momentarily increasing XA(t). Saying B in reply
amounts to momentarily increasing XB(t + TAD)' And having learncd AB amount., to

keeping ZAB(W} large at least for W chosen within the times that XA(t} and ,r:D(t + TAD)
are lar(~e. Since XB(t + TAB} will become large in this situation only if the signal
receiv",d by PB from PA is large, our heuristic requircmcnts show that ZAO(W} must
influence the size of the signal /1'PADXA(t} while it is being tranRferred through the
arrowhead NAB from e AB to PB' This occurs at time Zl} =, t -j- TAD' Indeed, our
heuristic requirements imply that J,'B(t -t- TAD} becomes large only if both /1'PAD.\"A(t} and
ZAB(t + TAD} are large, or only if the product

f3PAB'~A(t) ZAB(t + 'TAB),

fJpij.V;(t TiJ) Z;;(t).

Equation 4 is therefore replaced by

*;(t) = ~'r:j(t) + Ij(t) + .BPit'r:i(t 7";;) z;At), (8)
and Fig. 7 is replaced by Fig. 8.

FIG. 8
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7 THE INDEPENDENCE OF TS

Consider now a machine M in which the lists .4B and :B can both be learned; that
is, PAB > 0 and PCB> O. We want to be able to learn A independently of C if C is
never said during the learning process, and to be able t learn CB independently of
A if A is never said. (We temporarily ignore higher order onditioning effects. Some of
these will be an automatic consequence of our consider tions.) That is, we want the
two inputs .sPAB,t'A(1 -T.ofB) ZAB(t) and .sPCB'~C(t -TCB ZCB(t) to combine indepen-
dently at PB. l\'Iathematically speaking, combining two uantities in an independent
way means: add them. Thus, the total input received by B from P A and Pc at time t is

.s[XA(t -TAB) PABZAB(t) .+ ,~c(t -TCB} CBZCB(t)].

Or more generally, the total input received by 7j from all 7 ,k = 1,2,..., n, at time tis

..
.8 L Xk(t -TkJ PkjZkj( I),

k-l
and (8) is replaced by

(9)
foreveryj= I, 2 , n.

Equations 7 and 9 together form a mathematically well I
ing machine 1'14. Tht: next st:ction shows how to modify
make it learn much bettcr. This modification is suggested 1
in our derivation and by a corresponding formal difficultv
without obscrvahility. It then suggests a det:pcr set of equ

logical implications in Grossberg (1969b).

lIefined 

proposal for a leam-
such a machine slightly to
)oth by a heuristic oversight
.The modification is madelations 

with further physio-

!;i~,

8. THE NORMALIZATION OF PIa-'I

Consider the problem of learning AB vs AC once agai .The letters Band Care
heuristically thought of as a "set of response alternatives" 0 A, and the strengthening
of B as a reply to an isolated presentation of A carries wit it the weakening of C as a
reply to A. Otherwise expressed, the choice of B as a r sponse to A is made only
relative to the strength of other response alternatives, or re ponse alternatives compete
with one another.

We will show that by overlooking this rudimentary fa , we have constructed a
system with some unpleasant formal properties. Then we ill include the competition
between response alternatives in a simple way, and sim ltaneously, automatically
overcome the formal difficulties. Grossberg (1969h) studies a related case.

Consider the problem of learning AB vs AC once again, and suppose for simplicity
that no other lists can be learned, so that only PAB and PAC epos1tive. We assume for

~..

'-~-~"1:~--

~J:i1~,J, ",,"' ...~."
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simplicity that all T ij
becomes

0, so that M has a well defined "rcaction time" 'T. Then\(9)

.\'8(1) ~\'8(t) ,8XA(t T)PAflZ'AII(t) '8(/).
and

J
J

",:':

XC(t) = -<X.~C(t) + /:I'XA(t -T) PACZAC{t) -I Ic(t). ( 0)

We assume that A, B, and C have occurred at least once in the remote past of (10). y
(7), we can therefore suppose that ZAB(t) > 0 and ZA({t) :.0 for all the timt:1j t whi h
we will consider. In thi~ st:tting, we reinvestigate the til~k of teaching AB to M, a d
observe the following tt:chnical difficulties:

a) ZAG Remains Too Large. When A occurs, the sign ill /:I'XA(t --r) PAC from A
along eAC grows. Since ZAC(t) > 0, a positive signal /:I'XA(t -T) PACZAC(t) reaches A
and causes, by (10), a momentary increase in the valu!: of '~c(t). ('onsequcnt y

/:I'PAcXA(t -T) '~c(t) also grows momentarily, and so, by (7), ZAC(t) is momentari y
boosted in its value as well. Then the cycle repeats itself, with the net effect th t
saying A alone helps to keep ZAC(t) from decaying at an e"ponc.~ntial rat!:, even thoug
C is never said. Of course, ZAB(t) grows much fastcr than ZAC(t) during this time. W
can surely guarantee that ZAB(t) ~ ZAC(t) as a result of saying AB sufficiently ofte ,
but we cannot guarantee that only the flow from PA to Po eventuall)! survives th

learning process. This is the main formal deficiency of the process (7) and (9).
related secondary difficulty is the following one:

(b) Instability of the Transformation from inputs to outputs. If AB has occurred ver
often in the recent past, then ZAB(t) can grow very large. Even a very small inpu
lA(t) to PA can therefore create a very large output .'-'B(t -I T) from PB' because th

signal /:I'XA(t) PABZAB(t + T) from PA to PB will be large even though XA(t) is small. We
desire, however, an equation such as (4) after learning has occurred, in which an input
generates a correct output of comparabl!: size.

These examples suggest that we replace the functions P;jZij(t) which control the size
of the flow from Pi to pj by new functions Yij(t) which avoid the formal difficulties of
(a) and (b), and which express the intuitive idea that response alternatives compete.
Then (9) is replaced by

,

I
"

*j(t) = -IXXj(t) +/J' L Xk(t-r)Ykj(t) +lj(t), (II)
k-l

j = I, 2,..., n. We now list several properties which Yij should have, and then exhibit
a simple function that realizes all of these properties.

Consider YAS(t) for specificity. YAB(t) should be a function only of PASZAS(t).
PACZAC(t),..., and PAZZAZ(t), since only these functions control the size of the flow
from PA to possible response points Ps, Pc ,..., pz .That is,

Y AB(t) =.f AB(PABZAB(t), P ACZAC(t) , PAZZAZ(t»

for some as yet unknown f AS .

~.~
1,

);~~c.,w"~"."
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l~onsider now a learning experiment in which only AB occ rs, and C, D,..., Z have
occurred only in the remote past. Then we should be able to ump together the non-
occurring letters C, D,..., Z, since they are never distinguishe one from the other by
any experimental operation. That is

YAB(t) = gAB(PAOZAB(t),PACZAC(t) + ...+PA ZAZ(t)), (12)

for some as yet unknown function gAB = gAB(U, v) of u;;;" and v;;;" O. We now
itemize various desirable properties of gAB' gAB is nonnega ive since the function
PABZAB which it replaces is nonnegative. To avoid the proble of (b) we also assume
that CAB is boundcd from abovc. Since an as yet unspecified p itive constant .8 multi-
plies Y AB in (II), we can take this bound to be I without loss,of enerality. That is,

0 ~gAB ~ I. (13)

As M learns AB better and better, we want PABZAB, and thus AB' to grow. That is,

gAB(U, v) is monotone increasing in u. (14)

Similarly, if the incorrect alternatives PACZAC + 1- PAZZAZ et to be learned better,
thcn Icarning of AB is jeopardized and Y AB decreases. That is,

.1: AB(U, v) is monotone decreasing in v. (15)

The difficulty in (a) shows that, at best, saying AB very often mplies for t sufficiently
large that

'If!'

(16)
iii.

R;'

f

PABZAB(t)?> PACZAC(t) + ...+ PAZZAZ( ).

Wc also want Y AB(t) to bl.: vrry close to its maximum I at such imes. That is,

u>vimpliesgAB(u,tl)~ 1.

Similarly, if AB has been very poorly learned, then

PASZAS(t) <{ PACZAC(t) + ...+ PAZZAZ( )

and also _v AB(t) is very close to its minimum O. That is.

u <{ v implies gAB(U, v) ~ O.

And certainly,
gA8(U, v) .is continuous in u and v. (18)

We now ask if a function satisfying all the conditions (12)-(1 ) exists. The answer is
"yes" and perhaps the simplest such function is given by

YA8(t) = ---PA8ZA~(t) \ .
PA8ZA8(t) +PACZAC(t) + ...+PA z(t)

That is, we need merely change PABZA8(t) into the ratio of nZAB(t) compared witb

~

,Ii.'i
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all the functions PAiZAi(t) that control a flow from PA to a possihle rt'sp()n~(,' !>oint

Pi , i = 1,2,..., n. This definition of Y AB(t) immediately generalizes to

[ n ] 1
.Vij(t) == PijZiAI) L PikZil.(t) ,

1.-1 .
for all i,j = 1,2,..., n. This definition of YiAt) clL'arly enlbodie:i the idea that the hoiee

of B given A is made only relative to other response alternatives. For example, if and

C are the only response alternatives to A, then P AA '" PAD P AE c'" co PAZ c, 0, s that

P ADZ AB(t)

~:-;(/)-!--P~~~(/)
Y AB(t) =

and

_1ACZ~~ -PASZAO(t) ! PACZAC(t) .

By nonnegativit), of PASZAS(t) and PAC,ZAC(t), an increase in B given..1 (i.e., in y o(t»)
implies a decrease in C given A (i.e., in y AC(t), and achieves this competition be een
alternatives b)' "relativizing.." or dividing, PASZAS(t) by the sum of PASZAS(t and
PACZAC(t). The conditions (12)-(18) can therefore be thoU.I{ht of as soml~ fI rmal
prerequisites for competitive choices among response alternatives to occur i our
machines. In Grossberg (I 969b), this competition bctwccn choices is shown 0 be
closely related to the physiological process of lateral inhibition in much the sam way
that the outputs O;(t) are. ""e have hereby derived the following system of non 1 near

difference-differential equations to describe M.

n
x;(t) = -1XX;(t) +,B I x",(t -T)Y"'i(t) + I;(t), ! (19)

'n~1.

Y AC(t)

.

j
~1~1
!.~;(Ijl
1~:~!\;t

and
Zjk(t) = -UZjl..(t) + .8PjkXAI -r) "'k(t), (21)

for all i, j, k = 1,2,.." n. This completes our derivation of the mathematical laws

governing the machines .11.1. We now single out a particularly important collecti n of
the machines that are currently undergoing a sy::;tematic mathematical analysis. I the
Yii'S are not used, then the numerical parameters in I~qs. (7) and (9) must be care ully
chosen to avoid (a) and (b) (Grossberg 1969h).

9. LOCALLY UNBIASED MACHINES

ifPik = 0, then (21) becomes Zjk = -UZjk' or Zjk(t) = Zjk{O) e-UI, and Zik(t) delays
~o zero at an exponential rate. Since Pik = 0 also implies that Yik(t) = 0, or that no

"'t",..~ '11

;~!~i
,~ !ill!:; 'i~c.
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flow whatsoever passes from Pi to Pk , we can for convenienc~ set zik identically equal
to zero without changing M in any nontrivial way. We tbcrefore replace (21) by

if
if

--UZjk(t) -I-- .8PitXAt --r) Xk(t),

0,
Pik > 0
Pik = 0, (21 ')

~and by the initial condition that Zjk(O) > 0 if and only if Pik O.
Our mathematical studies of these machines (Grossberg, 1 67, 1968a-d, 1969a, d-f)

considcr only cases where the positive values of Pik have the ~ rm

1PiA: = ":\; > O.

That is, the positive weights I<:ading from a fixed point to all ther points are the same.
We then call the geometry of M locally unbiased. In this c se, (20) and (21) can be
simplified by letting Zjk(t) cc A,-Zj!;(t) for allj, k == 1,2,..., n, and noting that

[ n ] -1- ~Vil..(t) = PikZjk(t) ,t!. PjmZ;,n(t) (20')

and

? ( ) --\ -UZjk(t) + .8X;(t -7) Xk(t), if p;!; > 0 (21")/, jA, t -I 0, if P;k = O.

The main advantage of using Zjk instead of Zjk is that the c efficients P;m now occur
only in (20'). Since all common factors can be divided out of e positive values anlong
Pjl ,pj2 ,..., and P;n which appear in (20'), we can assume ithout loss of generality
that

n
L pj". = 0
".~L

1,or j = 1,2,.1., n.

10. THE NEURON HYPOTHESIS

A considerable amount of anatomical and physiological injyestigation has gone into
the demonstration of the existence of nerve cell bodies, axons~ endbulbs, synapses, and
the directed transmission of neural impulses from the nerVe cell body towards the
synapse (Crosby, 1962; Eccles, 1957, 1964). These investigat~ons show that membrane
potentials at the cell body give rise to spikes traveling dow~ the axon in frequencies
that vary systematically with variations in membrane pot1ntial. Once these spikes
reach the endbulb they cause a release in transmitter that t avels across the synaptic
cleft and influenccs the postsynaptic potential. \

Striking analogs of all these processes exist in our machi es M. Each point Pi can

" "","""'~""-
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roughly be thought of as a collection of cell bodies, each ed~(' eu can roughly be tho~ght
of as the collection of aXOllS Il:ading from <:l~Jls ill Pi to <:ells ill Pi , I:al:h arrowheadlNjj
as the endbulbs attached to these axons, and the gap h<:twl:l:n 1\7 ii anu Pi as th<: cdrre-
sponding synapsl:s, Given this olwiuus <:andidate for a Ill:ural il1tl:rprc:tation of! the
geometry of M, the following interpretation of the dynamical variables of M is rea ily
suggested. Xi(t) roughly corresponds to the average membrane potential over the
cells corresponding to pj , ,.8Xj(t) is the spiking frequency in tht: axons correspon ing
to ejj , and Yu(t) is the state of transmitter prouul:tion in th('. c:nuhlllh~ corrcspon ing
to Nil' Once these identifications art: made, then the flow of ,.8Xi(t) to Nii followe by
the input ,.8.\';(t) yu(t -f- T) to pj reads: after thc membrane potential generates a sp'ke,
it travels along the axon to the endbulb, \\'hc:re it activatcs the transmitter con 1'01
process at the endbulb and releases a quantity that incrca~es both with increase of
spiking frequency and with the amount of available transmitter. This statement has
a very familiar neurological ring to it, See Gn)ssberg (1969h) for a more deta led
physiological account.

In a clear sense, therefore, we have been lcd, from purely psychological postulate. to
some of the basic qualitative facts of the neuron hypothesis, in particular the existe ce
of directed transmissions along a network-tikI: ~tructure, the e~i~tence of a proccs at
the network arrowheads, and the interaction of the transmissions and arrowh .ad
processes to produce inputs to the recipient "ccll bodies," These conclusions re
independent, moreovl:r. of thc dl:taill:d fllnctiOllal furln Ilf 1~4s. 19 21. 'rhcy fulow
quite readi]y from our remarks concerning the existence of reaction times, and he
places at whicb processes could possibly exist to distinguish one ordering of inp ts
from another.

j

11. A POSSIBLE MECHANIS:\f OF ~ELTRAL L)~ARN)NG

We have also been led to a new idea of how learning occurs. Thus, the functiqns
Zii(t) grow only if both the presynaptic influcncc from Pi via till: signal f1Pijo\"i(t --r) nd
the postsynaptic value Xi(t) are large. That is, a coupJ.iI1~ of both pre- and p t-
synaptic influences is necded to incrcase the level of transmitter production a d,
thereupon, the strength of the connection from Pi to Pi .

In forthcoming papers, we explore the possible physiological means whert~by s ch
a "trophic" effect of postsynaptic influences on the endbulb can take place by replaci g
the postulate of observability by a more realistic one (Grossberg, I 969,b c).

12. REAC'l'lON TIMES ANi) LEARNIN(; RATES

In Sec. 3, we observe that a variation from 0 to 00 of the presentation rate w o{ a
long list takes us from an impossible learning task to a more tractable task, and baFk
again to an impossible task. We now show that our machines also have this property.
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-i :/: J'
n-I'

0, i =j,
that M's initial data satisfies Xi(V) "--co y(v), Vt"(-T, 0], were y is continuous and
nonnegative, and that Zjk(O) "'CO °Pik where 0> 0, and i j, k ~-= 1,2,..., n. Let us
present the list 7) ,72"'" rn to M at a rate w. Thus IJt) J(t), I2(t) = J(t -w),
I3(t) J(t --2w),..., and In(t) 0=0 J(t -(n -I) w), wher J(t) is some input pulse.
Suppose w = O. Then Il(t) cc I2(t) = ...= 1,,(t), and by s mmetry, Xi(t) = xAt) and
ziAt) " zkm(t) for all i :;i: j, 1< :;i: m, and t ? O. Thus M re ains in a state of maximal

ignorance for all t ~:;- 0, and nothing is learned. Similarly, if u' is very small relative to
the duration of J(t), then again by symmetry, we will expe t M to remain close to a
state of maximal ignorance.

Now suppose u' _C T :-.- O. Then for any': '-co 1,2,..., n I, the signal created by
Ii at Pi reaches Pi;) at the same time that Ii+l becomes large at Pi+l .This means that
the product x;(t --T) '\';+I(t) will become large relati e to all the products

Xi(t -T) Xj(t), j:;i: i -t- I. By (21), the function Zi.i+l will e given a strong boost in
its values as compared to the functions Zik , k :;i: i + 1. T us Yi,i+l will grow con-

siderahly, whert~as all Yik, I<:;i: i + I, will decay. Subs ntial learning therefore
occurs. The same argument manifestly holds for values of which are of the order of T.

If w ,,:;. T ..:- 0, thell the signal created by Ii at Pi reaches Pi+l long before 1i+l be-
comes large at p;!). Since I; becomes zero long before Ii+ occurs, the signal from
Pi to pj also bccomes very small before Ii-!-1 becomes larg .Thus, all the products
,Xi(t --T) Xi(t) are always either equal or very small, and so he function Zi.i+l grows
little more than the functions Z iI., k :;i: i + I. All the functio s Yik remain approxima-
tely equal, and little learning occurs.

This argument shows that the maximal learning rates i M are of the order of
magnitude of its reaction time T. Once we decided that M's r ply to an input should be
delayed in time, we tacitly prescribed the places in l\I/ were functions Zii could
possibly be computed, and thus in turn the relative timing 0 inputs which could lead
to efficient learning. Grossberg (1969b) describes machin s which can effectively
predict items at a rate somewhat faster than the rate at whic they learned them.

p;j =

13. STIMULUS TRACES, ASSOCIATIONAL S RENGTHS,
AND SPACE-TIM~-: CONTEXTS

The functions Yij detennine the strength of M's reply rj t an isolated presentation
of r; .""C therefore call YiAt} the a.\'sociational stren.!?th of rirj t time t, by analogy with
classical theorizing, such as that of Hull (Hilgard, 1956). T e associational strengths

Yij(t) collcctivcly contain M'I' mcmory of past expcrimcnts.

' ".-
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14. MARKOVIAN AI\:D NON-MAI~KOVIAN

!The context which is formed at any tim(' in ,11 Jepends un tht rate at whi\:h illP
i ts are presented. Suppose, for example, that ABC/) is presented ohce at rate w. Tha is

1,4(t) = 1B(t + w) ,,~ 1c(t + 2w) ,,-,1 o(t -I. 3u,). If w is not large compared to T and to
the rate of decay of the Xi'S, then all of the point strengths '\'A(t), '\'B(t), '\'c(t), and ,t'D t)
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will be large right after /) is presented. XD(t) will often be largest since D has just

occurred, and ;\'A(t) will often be smallest since A occurred some time before, but all
these point strengths will have some influence on the d'etermination of the nodal

stren'i!,ths Y;j(t), the magnitude of their influence depending on their relative size at any
time. l~vents which Occur prior to D (i.e., ABC) will influence the behavior of M after
f) OCl:urs, and so. thc "past" afJ:"ects the "future." In thc mathematical literature such

an effect is said to be "non-Markovian" (Kemeny and Snell, 1960).
Now let w increase. Suppose w is chosen far larger than both 7" and the decay time

of the point strengths x;(t). Again let ABCD be presented at rate w, and consider M

shortly after f) has occurred. Then each of "'A(t), XB(t), and Xc(l) will be very small
when XD(t) is large.. because their inputs occurred so long ago that they have decayed
back to their restin~ position. Therefore, only /) determines the future behavior of M
when j) is presented to M, i.e., the "future" depends only on the "present." Such a

dependence is mathematically l:alled "Markovian."
We see in this simple way that our systems can behave in both a Markovian or

non-Markovian fashion depending on the particular choices of inputs to which they
arc cxposcd. This fact suggcsts that our systems can also behave in an "all-or-none"
or "gradualist" fashion, depending on the particular experiment, since all-or-none
lcarning is distinguished from gradual learning by different effects of past on future
events. In a later paper we show that this is the (~ase. See Grossberg (1969d), for

example.

15. LINEAR AND NONLINEAR

..
,*,/(t) ~ -cx.xj(t) +.B L Xk(t

k-l
-r) ()/ci + 11;(t),

".
~!,""" 1'
I!! )

~1;i-j:;~'i, ::il:~!; ,[Ii~t~;~'1. ~i*, ..;,~

!!~j~J.1.1';~~:Li"'~:.:

xCI) = -<X.\'(t) + fJx(t -T) + l(t),

even though the interaction of the x;(t)'s along the edges elk is nonlinear. Thus our
systems are often "linear in the large" although they are "nonlinear in the small."
This linear behavior in the large is independent of the Ylk'S, and thus of all learning
effects.
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which is approximately a system of linear equations for the outputs "'i(l) in terms of the
inputs 1;(t), If the inputs to M arc sufficiently regular ill time that learning occurs, thell
M's behavior automatically passes from a nonlincar phase to a linear phase, Since 1\1's
output will seem linear after a sufficient amount of practice has occurred in an experi-
ment, it is tempting to try to model ,1I,1's mechallism in a linear way, Noncthcless,the
learning mechanism of M is nonlinear, so that such an extrapolation will work w<,11
only after M has already learned. 'rhus linearizing in the present situation destroys
the very mechanism of learning that we wish to study. This il; proved rigorously in

Grossberg (196ge),

16. GESTALT, GUTHIUI~, ANI) PAVIJOV

Consider a machine M before it has learned anything. SUppORC that M is capable of
leamingany list chosen from rl. r2 ..,', rn in which no symbolr; occurs morc than once.
Suppose also that M is unbiased for specificity, Then

i¥'jPiJ = I~
0, i =j.

Since M begins in a state of maximal ignorance, all .\.,.(v) are equal, i = 1,2,..., n, for
V£[ -7,0]. All Zik(O) are also equal, j * k, and are positive. No\\' let any symbol be
presented to M, saY'1 ' Then XI grows momentarily and large si.l{nals are transmitted
to all the other points Pi ,j * I. If, 2 then occurred, P2 sends large signals to all the
other points Pi ,j * 2, And so on. Before learning occurs, therefore, the entire "field"
of points is influenced by an event at a single point, i.e., a kind of "Gestalt" effect
"in space" occurs (Hilgard, 1956).

Similarly, if the list '1'2."'" is presented to M at a rate w which is not lar.l{e compared
to 7 and the decay rate of the point strengths, then several point strengths will deter-
mine together the alterations in nodal strength at that time, as pointed out in Sec. 14,
i.e., a Gestalt effect "in time" occurs. In summary, if M begins in a state of ignorance,
then M exhibits Gestalt effects in space-time whenever it is exposed to a long and
rapidly occurring list of symbols.

Let us now consider 11,.1 after it has learned the list '1'2.'.' n .Then, by definition,

Yll(t) ~ YI3(t) ~ Y34(t) ~ ...~ Y"-l...(t) ~

for all times t during which M kno~'s the list, and all other Yij(t) are approximately
zero. Thus, a chain of associational strengths leads from Pi to P2 , from P2 to P3 , and so
on until Pn-l and Pn are reached. This chain has bc~n ('mheJd~d into th<.: fi~ld of M's
;tlternatives-hence the name "embedding fields" for our theory.

,:'~"'L...~"i;:.-"".
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We can now readily see that 1\1's behavior after learn in is qualitatively different

from its behavior befort~ learning. After learning, an input to PI creates a large signal 'T

time units later only at P~ .and so only P2 delivers a large utput to E at this time.

Similarly a large input to P2 creates a large signal 'T time uni s later only at Pa , and so

only Pa delivers a farge output to E. at this time. This is so r every Pi and Pi+1 with

i "" 1,2,..., n -I, and the Gestalt effect in space-time has been substantially elimi-

nated. It has been replaced by a simple succession of "stimuli" and "responses," and the

response which Occurs depends on the contiguity of the sti ulus in the list TY2...Tn .

This kind of behavior is often associated with the name of uthrie (Hilgard, 1956).

We have, therefore, at our disposal a machine which w uld be a delight to the

Gestaltists before learning occurs and a discomfort to them fter learning occurs. The

same machine would be a comfort to Guthrie after learni g and a stranger in his

house before.

Before learning occurs, AT is a complicated net\\"ork of tra sitions representing the

many possible alternative choices at M's disposal. After learn.ng occurs, M becomes a

simple chain, or circuit, in which no choices remain. That iS

j M's behavior is reduced to a series of reflexes, or to a "Pavlovian circuit" (Hilgard, 19 6).

We wish to suggest by these examples that our machines co tain within thern formal

properties that are highly suggestive of various theoretical m vements drawn from the

history of psychology. As in the case of Gestalt vs Guthrie, th se formal properties can

sometimes appear at different times during the very same ex eriment, and a learning

or perceptual mechanism which seems adequate to describ the effects of one kind

of experiment often seems hopelessly unsuitable for the escription of a closely

related experiment. We wish to suggest that this difficulty rises when theorizing is

done by tacitly or explicitly assuming mathematical properti s, such as linearity and

locality, which are simply not generally valid but which nonet eless work quite weUfor

specific kinds of cxperiments. Our machines also exhibit so e of these properties for

one kind of experiment (i.e., initial data and inputs) and different properties for

another kind of experiment. It will be of interest to test wether these changes in

formal properties correspond, at least qualitatively, to so rces of controversy in

classical psychological theories.

17. 

BACKWARD LEARNING

Co~sider an u~bias~d m~chine which can learn both AB afd BA, for example, the
machIne 111 depicted m Fig. 9. Thus, PAR = PAC = PAD = PRA = PSG = PSD = t,

T !II b .. f '" I ." d .. t " and all other Pi; ,- O. L,et, egm m a state 0 maxima ig orance an at res .
That is,

XA(V) = ,\,S(V) xc(v) XD(V) = O. vi.[ IT' OJ.

~ ~-
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FIG. 9

and Ii
ZAB(O) = ZA(;-(O) ZAD(O) === ZBA(O) ZBC(O) = ZBD(O).

.f;~':~

We now show that teaching the machine AB at a speed w ,-= T automatically teaches
the machine BA, but to a lesser extent; i.e., backward learning occurs. Thus, learning
BA given only the occurrence of AB follows from the mere possibility of learning BA
at all! The list BA is certainly a short list. Grossberg (1969d) shows that this
conclusion must be substantially qualified in the case of long lists. We now show how
BA is learned given only the occurrence of AB.

When A occurs at time t = 0, .\"A(t) grows and equal signals are sent along
eA1f, eAC , and eAD towards PB , Pc, and PD, respectively. As tht.~sl' signals reach the
arrowheads NAB' N AC , and N AD at time t = T, B occurs. Pc.' and P /) thereafter
receive only signals from N AC and N AD. PB , on the othcr hand, receives a signal from
NAB as well as an input IB. Thus, ZAB > ZAC ,= ZAD for all times after B occurs.
Consequently Y AB > Y AC = Y AD as ,veil, and at least partial learning of AB has
occurred.

After B occurs, XB(t) sends out equal signals along "BA , eRC , and "Bf) to P A , p(, , and
PD, respectively. These signals begin to reach their destination at time t = 2T. PA has,
however, also received the input I A 2T time units earlier. Although the effect of 1;1 has
partially worn off by time t = 2T, '\"A is still larger than '\"c(t) and Xf)(t). After the signa]
from PB arrives at PA , Pc, and PD , therefore, YBA(t) ::;:c. YBC(t) ,= YBD(t), and thus at
least partial learning of the backward list BA occurs. Whereas the overlap in time of the
signal frompA to PB and the input IB(t) to PB is perfect, the signal from PB to PA arrives
only after the effects of IA(t) have partially worn off at PA. Thus we expect
Y AB(t) > YBA(t), or learning in the forward direction is better than learning in tht;
backward direction,

~i~
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I 

the asymmetry between~Duts 

I A and I B graduallyI 
by symmetry'. Thus, theIrmg 

in M arises simplyrnals 
within M favors the

rtly close to the optimal

As the speed w of saying .4B is allowed to approach zero
the states PA and PH due to differences in the timing of the 11
vanishes. Indeed, when w 00 0, Y AB(t) = YBA(t) for all t ;;;: 0
relative advantage of forward learning over backward leaf
because the relative timing of inputs from E to lWand of SII
forward direction when the presentation speed w is sufficie
learning speed 'T.

If ABAB... is presented very often to M at a periodic spee
initial bias of saying A first will gradually wear off, and the ~
will decrease as t increases. By contrast, if ABC is presente~
association YBC will competitively diminish the backward as!
rudiments of a for".ard "arrow in time," namely, Y AB > Y BA
established within iW.

,] W = T, then clearly the~ifference 

Y AB(t) -YBA(t)
f to M, then the forward
ociation YBA , so that the
and YBC > YCB' will be,

18. LEAI{NING WITHOUT REVERBERP

hat neural memories are
ural networks. We now
s to be preserved in our

destructive of M's

11y between the points Pi.~re 
maximally small; that

I n his classic book, Hebb (1949) discusses the possibility
preservcd by a form of persistent reverberation '-\'ithin nc
remark that reverberation is quite unnecessary for memon(
machines. Indced, revt:rberation is one of the processes
memory that can o(~cur.

Reverberation in M means that large Xi signals pass cyclica
I;'irstly, we show that 11-/'s memory is perfect if all the signals
is, if all ,\";(/) art: identically zero.

Suppose .\"i(t) 0, i "-,'" 1,2,..., n. Then by (21), ifpn, >

Zjk(t) 'Zjl'(O) e'lt. 'rhus by (20),

r' 

then Zit = -UZjk, or

Yjk(t) = _Mjk(O) e-lilLn --
",-1 PjmZj",(O) e-wl

P;kZjk(O)~""-"'"CC" .- = ~" P z (0)""'m=l tm im

= y;JO).

The associational strengths remain constant for all time, an(
Hence, reverberation is surely unnecessary for 1\[ to rememl

Reverberation harms M's memories because whenever
values, the values of many Yij'S will also change, just as in
temporal contexts. Changes of the Yij'S mean changes in l\['S

Moreover, we want the values Xi(t) to become small whe
zerO over long time intervals, because these values, or at leas1

1M's memory is perfect.
t>er very well.~

o many Xt'S have large

the formation of spatio-

emory. .
ever the inputs I;(t) are

I a subset of them, are tht;
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"'rit

~

"".- ""'"".., ~,k "-, ,_.."~.- " ,. ,..



231i~J\lmmDING FIEf.OS

outputs ot M, and we would like M to be able to remcmher without per~istently
spelling out its mcmoric~ ill largc output..; to toc out~idc \\orld. Small outputs are oftcn
desirable, and small outputs imply little reverberation and good memory within M.

1.9. BRAIN AND BEHAVIOR

We now have two ways by which we can, at least roughly, interpret our mathematical
variables: one psychological and one neurological. Thl~ point strcngth ,r;(') stands
both for a stimulus trace and for an average membrane potential. 'l'he nodal strength
Yik(t) stands both for an associational strength and for the average state of transmitter
produ,ction in a collection of endbulbs. To the extent that our machines M are realistic
models of simple behavioral systems, we can now translate a psychological fact into a
neural property, and conversely. We have at our disposal at least a partial prupo~al fI)r
a language to suggest how "brains control behavior." This translation table between
neural and psychological variables will be extcnded systt:matically in latt:r papers of
this series.

20. M IS NOT ENTIRELY OBSERVABIJi':

We constructed M with nonnegative states .x;(t) to try to gu1r:lntec that the .'\tates be
observable to E. Nonetheless the functions Zik(t) cannot be directly measured by H,
and these functions contain the heart of M's learning mechanism. Zjl..(t) is a hidden or
intervening variable, and our mathematical papers prove rigorously that various
fundamental features of ,\J's behavior are not directly measurable by H, in spite of all
our efforts to maximize M's observability to E. In particular, the protocol of M's
stimuli and responses does not provide a complete picture of M's learning mechanism.

~

21. INPUTS AND OUTP{.TTS VS STIMULI AND RESP()NSES

Much psychological theorizing is based on the use of the concepts of stimulus and
of response to a stimulus. In complicated experimental situations, one is then some-
times forced to discuss stimuli which share some responsl: propcrtics, and rcsponses
which share some stimulus properties, the degree of sharing depending on the situation.
We believe that the stimulus-rcsponsc terminology is oftcn an inconvenient one
because it does not correspond in a simple way to thc way in which WI: learn. This is
clear even in our simple machines M.

A stimulus r i to M is an input to Pi .Then Pi sends out signals to other Pi .These
signals reach the Pi as inputs also. Are these inputs stimuli to Pi ? Since Pi can distin-

-"""-""
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guish only the size of an input and not its source, our answelj must be "yes," using the
"principle of sufficient reason." Thus a stimulus becomes I identical with any input
that a point receives. In a similar fashion, a response befmes identical with any
output that JW emitH. Hut this is certainly not the custo ary way in which S-R
terminology is used.

It is well known that realistic behavioral systems ben t substantially from the
feedback created by their own behavior; for example, ".~can organize our speech
better when we can hear our words. In M, this means th t an output from a state
should create a subsequent input to that state via some for of feedback through the
physical medium surrounding M. By virtue of our preViou~remarkS' this means that
every response also has stimulus properties. To avoid a ter inology which does not
clearly distinguish the process that decides how important he stimulus or response
aspects of an event are, we propose instead that one simpl ' classify the inputs and
outputs which occur, and study systemically the mechanis s that connect them.
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