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i. INTRODUCTION

This paper considers various aspects of the global limiting and oscillatory
behavior of the following system of nonlinear differential equations.

50 = —an(t) + 8 3 5070 + 10 M
3 -1
ylt) = 20 [ 3 51nl8)] @
Ealt) = —us(t) + B =D, £ @)
ang
2;(t) = 0, G

where 7,7, k = 1,2, 3 and B is a positive number.

The system (*) arises as a special case of a nonstationary prediction theory
or learning theory, whose goal is to discuss the prediction of individual
events, in a fixed order, and at prescribed times ([7], [2], [3]). In this theory,

- (*) describes a machine .# subjected to inputs I = (I, .1I,,1;) by an

experimenter & who records the outputs X = (%, ¥, , x,) created thereby.
¢ has only the inputs 7 and the outputs X at his disposal with which to
describe (*), and in terms of these variables (*) takes the form

X(t) = —aX(f) + B(X) X(t)  +I(t),

* The preparation of this work was supported in part by the National Science
Foundation (GP 9003) and the Officc of Naval Research (NOGO14-67-A~0204-0i1 o).
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il

where B(X,) is a matrix of nonlinear functionals of X(w) evaluated at all
past times w € [—, t] with entries

a0 + B J (o) o) do
Bill) = ) T an0) 1 B [} om0 o) + male)] do”

{i,j: k} = {1; 29 3}:
and
B(t) =0,

¢ > 0. The machine . therefore obeys a functional-differential equation,
and B(X),) contains the “‘memory” of ./Z.

The mechanism of .# can be described graph-theoretically in the following
way. Let G be a directed probabilistic graph [4] with vertices vV = {21, 7,03}
directed edges E = {e;:4,j =1,2,3}, and weight function <p€e,-,) =
1(1 — §,;). That is, each of the three vertices v; of G sends otft a directed
edge ¢;; with weight § to every other vertex v;, j i 7; thus G is a comﬁplete
3-graph. On the other hand, no vertex v; sends a dlf‘CCth cdge ¢;; to itself
(that is, g(e;;) = 0); thus G is a complete 3-graph without loops.

. can be interpreted as a flow over G [5] by letting x(t) denote the
state of a process at vertex o at time t, and y,(f) denote the state of a
process at the arrowhead of e;; at time ¢. At each time ¢, v; emits a flow
of magnitude v, (f) which travels instantaneously along the edge ¢, , reaches
the arrowhead of ¢,; , and thereupon activates the process yy,(2). As a result,
a quantity of size Bx;(t) yi(l) is immediately relcased by .the 'arrowhead
and reaches v; . The total input to o; at time ¢ from all vertices is the sum
ﬁzzsl x;(t) yxi(t) of these individual quantities, and (1) states thaF x,2)
responds at a rate proportional to this total input. The other terms in (1),
namely —ax(t) and I,(2), describe, respectively, a spontaneous decay process
at o, and the input delivered by & to v; at time 2.

¥.i(t) is the ratio of functions zy(f), as in (2). z,:.j(i) cross-correlates the
values Ax(t) and x,(t) in the sense of (3). Bx,(t) is interpreted as the flow
received at the arrowhead of e,; from v, at time ¢, and 2;,(t) cross-correlates
this flow with the value x;(¢) of the contiguous vertex ;. '

Part T studies (*) mathematically for appropriate experimental mputs.I,-.(t).
Part I interprets these mathematical results in learning and predlctxo‘n
theoretic terms. o

(*) can be interpreted prediction-theoretically only when all 1.ts initial
data, other than for 2,(0) = 0, are nonnegative. Moreover, all inputs I
must be coatinuous and nonnegative in [0, c0). Whenever these cqndxtlons
are satisfied, one readily proves [3] that (*) has a unique, continuously

.
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differentiable, and nonnegative solution in (0, 00). Morcover, if z,4(0) > C,
then z4(t) > 0, and if x,(0) > 0, then x,(t) > 0 for ¢ = 0. Throughout
the following discussion these constraints on initial data and inputs will
always be imposed.

2. MaiN THEOREM

Our main theorem discusses the following situation. Suppose that (*) is
given at time £ = 0 with wuniform initial data; that is, x,(0) =y > 0 and
2;4(0) = 8(1 — 8;;), where 8 > 0, and 7,7,k = 1,2, 3. Let I, , I, and I, be
any continuous and nonnegative inputs which are positive only in a finite
interval [0, 7]. What is then the limiting and oscillatory behavior of (*)
in (T, 0)?

Since (*) is symmetric in the indices j and % and, by hypothesis,
2;(0) = 2,5(0), it is clear that 2z;,(2) = 2,,(¢) for £ > 0. It therefore suffices
to consider the following situation, where we have replaced time t = T
by ¢ = 0 for convenience of exposition:

(wy) the inputs ; are identically zero in [0, 00), i = 1, 2, 3; that is, (*) is
input-free. )

(w,) the initial data satisfies x,(0) > 0; 2,,(0) = 2:,(0) > 0, j % k; and
2;(0) =0, foralli,7,k =1, 2,3.

Concerning any such situation, the following theorem holds describing
the ratios y;(t) and X(t) = x,()[Seey 201

Turorem 1. Let (*) be ihput~frée and suppose B is positive. Then for any
positive initial data satisfying z;,(0) = 2,,(0), j, k = 1, 2, 3, the following con-
clusions hold. ) ) ) _ )

(1) (limiting behavior). All the ratios X; and y; have limits

QO = limg,, X(t) and Py = limy o, yu(t) as t— oo, which satisfy the
system of equations

% >Qt‘ =QiPﬂ +QkPk¢’ {irj’ k} ={l,2; 3}-
In particular, '

%1_{2) x(2) e =0, 3 x,(0). v

k=1

(2) (oscillatory behavior). For all indices {i,j, k} == {1, 2, 3}, the functions
S =% — %5, fuig = Fni — Bng  Mys = %333 — %2y, and P,y change sign at
most once. f; and gy, do not change sign at all if £;(0) £,4,0) = 0, while hy;
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and y,; do not change sign at all if moreover fii(0) h;;(0) = 0. F.urt/zermore,
F:i(0) 2:,(0) > O dmplies fi(£) gii(t) > 0 for all t 20, and if moreover
F:0) 71;1.(0) > O then also fi{t) hi(t) > 0 for all t > 0.
(3) (uniqueness of limits). If the coefficients  satisfy .thg tnequality,
o =u-+2B—a)>0,thenQ; = % and Py = {(1 — &), i, k=123
(4) (nonuniqueness of limits). If o < 0, then

| P —yi(O)l < 2 log(1 + K;f} o 1),

where

Bl 0
K =550 ) "

The f{ollowing remarks help to visualize the geometrical meaning of this
theorem, say for the case ¢ > 0 in which uniqueness of limits holds.

(a) (2) shows, for example, that if x0) > x4{0) and zk'i(O) > 215(0),
then at) > x(t) and () > =,(t) for all ¢ > 0. Thus if a common
ordering occurs in corresponding edges and vertices at .t == 0, then this
ordering propagates through time (i.e., it is 2 “geometn-cal” property of
the graph). 2u(t) > #,(t) is equivalent to Vi) > 3. Since Py c'hang‘es
sign at most once, Yj; has a graph of either the form (A) or (B) given in

Figure 1.

11' (&)

Fre. 1

(B) is guaranteed if, moreover, 2,(0) 23:(0) > x,(0) #,5(0)- ’I:hus at.'te.r-at most
one start in the wrong direction due to an unfortunate choice of initial data,
yy; settles monotonically to its limit 1 but does not reach this limit in finite

time since fi;{C) £2:;(0) > 0 implies fii(t) gris(t) > 0. This strong control on
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(*)’s oscillations is important to our prediction theory, since (*) cau be
called upon at any time by the experimentalist controlling the inputs to
reproduce in outputs the ordering of y,,(¢) values induced by prior inputs.

(b) 'The hypothesis « > B is not essential to the proof. For example,
o is positive whenever ¥ > 2 |a — fB|. Because x = Zz_l %, obeys the

' equation & == (B — a)«, (1) implies that lim,,, x{t) = 0 if a« > §, that

lim,,, x,(t) = o0 if « < B, and that 3,_; x,(t) = constant if « = 8. In all
these cases, the ratios

_x(8)
xy(2) + xa(2) + x5(2)

X{t) =

approach } ast - o0 if ¢ > 0 and § > 0.

(c) The hypothesis 2;;(0) = 2;(0) is obviously equivalent to the
hypothesis 2,{t) = 2;(t), t = 0, even when (*) is not input-free. That is,
the “reversibility” of the weights 2;; is also a “geometrical” property of the
graph.

(d) The condition ¢ > O is not superfluous to proving, as stated in (3),
that Q; = } and Py, = }(1 — §;;). Indeed, by (4), whenever ¢ < 0 and

|92(0) — 3| > 2log(1 + K;fj ), then Py = }.

Proof. Theorem | is proved in five major steps. In step (I), we make a
change of variables that replaces (*) by a system of nonlinear integro-
differential equations in terms of the new variables X; and y;; . In step (II),
we make another change of variables that reveals a surprisingly linear
substructure underlying (*). Working directly with these equations we can
prove all the oscillatory properties stated in (2) as well as the existence
of the limits Py, . ,

Step (III) uses the existence of all P, to prove the existence of all limits
Q; by treating the equations found in (I} as a system of linear equations
in the unknown variables X with the almost constant coefficients y;; . In
step (IV), we use the existence of all Q; and P;, to compute the possible
values of these limits using various algebraic properties of (*). Then we
apply some special facts found in (II) concerning the manner in which
these limits are attained to show that the limits are unique if ¢ > 0. Step (V)
proves part (4) of the theorem using an equation derived in Step (I).

The following lemma describes our first change of variables.

‘Lemma 1. Let (*) be input-free with arbitrary positive initial data. Then
the probability distributions X; and y;; satisfy the integro-differential equations

Xy =B(—X: + Xyyu + Xeyw), - 4 B ={1,2,3}, (5)




336 GROSSBERG
and
X, .
yi = Gy |=———5— — ) #* R, (6)
Yik 1( [ —X, J'nc) J
where
d " v X)) d 7
G, = 108 (s + [ X1 — X)) do) Y
and
* 22-1 3;#(0)

Y B w0
Proof. Letx = Zi_l %y . Then X; = x,/x and
. 1/, x
X == 3) | ®

Summing over # in (1) readily shows, using positivity, that x satisfies the

equation

&= (B — o) x. ®

Substituting (1) and (9) into (8), we find

Xi = %(—‘O‘xi + By + BxrYis — x{B — a)),

= B(—X; + X;yii + XeYri)s

which is (5).
(6) has the following derivation. By (3),

By = —uZy + BXX
= —UZj; + ﬁszJXk .

Letting 39 = 23 + 2z, {1, ], k} = {1, 2, 3}, we therefore find

2P = —uz® 4 Bx2X (X, + X3)
— —ua + X1 — X (10)

In integral form this equation is
t
20(E) = e 29(0) + B f e X(1 — X;)dv), t=0.
0

Since by (9}, .
#(t) = (0) €8, (1)
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this equation becomes

(1) = e [z(0) + B+X0) LeX(l - Xydel, (1)
0

where ¢ = 4 + 2(B — o). Differentiating y;; = z;/3', we find

I = '3%,,‘ (311: - %k “:f:%‘) (13)
Substituting (3) and (10) into (13) gives
Y = 'z‘(l,—, [—uz,,, + Bt X; Xy — 3 (—-u + —ﬁﬁi—&(’;ﬁ_—&z‘)]
= B2 X, — 31 — X))
- ﬁxzx,(zlm— X;) [ ika’ — 3]

Letting G; = Bx*X,(1 — X;)/z'", it remains only to show that G, has the
form given in (7) to complete the proof of (6). By (9),

G — B0 X1 — X))
L P d
and by (12),
| _ Bx*(0) B-1X(1 — X))
T e wz9(0) + Bx*(0) [} e" X (1 — X,) dv}

_ et X[l — X))
v + _[:) e X,(1 — X,)dv ’

which indeed equals (7).

(II) To prove that all limits P, exist, we transform (5)-(7) still further
to exhibit new unknown variables which obey equations that have a
surprisingly linear form. We will find two matrix functions | X,;(#)|| and
| Yol of new unknowns such that each triple (Xy5, Yy, yy), 15 j, will
have the properties of the triple (X, Y, ) in the following basic lemma.

~ LEmMA 2. Let the real valued-functions X(t), Y(t), and y(t) satisfy the
Jollowing system of differential equations.
X =aX +bY (14)
Y=cX4dY (15)
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(Y — Xy =e(Y — X) +fY (16)
y=g¥ —X), (17)

where the functions a, b, ¢, d, e, f, and g are continuous, and in addition the
functions b, c, f, g are positive. Then the functions X, Y, Y — X, and y change
sign at most once. X and Y do not change sign at all if X(0) Y(0) = 0,
while Y — X and y do not change sign at all if X(0) Y(0) > 0 and
. (V — X)(0) Y(0) = 0. Moreover, X(0)Y(0) >0 implies X(t) Y(t) > 0
for all t >0, while X(0)Y(0)>0 and (Y — X)(0) Y(0) > 0 imply
(Y — X)) Y(£) >0 for all t =20. If in addition y is bounded, then
lim, o ¥(2) evists.

The conclusions of the lemma concerning the sign changes of the functions
X, Y, and Y — X can be conveniently pictured in the (X, ¥) plane as in
Figure 2, where the arrows indicate the direction of the (X, Y') point through

Y
. )
e X=Y
bhett
RX2X322]
() E
Fic. 2

time. If the (X, Y) point starts in the region (+), then (2) is always monotone
increasing, while if it starts in the region (), then y(t) is always monotone
decreasing.

Proof. The vector field pictured in Figure 2 is obviously nontrivial on
the indicated critical lines. Also, by uniqueness, the trajectory cannot arrive
at 0 from another point. The lemma’s conclusions are therefore clear
concerning X, ¥, and ¥ — X. They can also easily be seen by integrating
(14)-(16) using an exponential change of variable and then invoking
nonnegativity of solutions; positivity is inessential.

Consider 7 in (17). Since g is positive, ¥ changes sign at most once and
not at ali if X(0) Y{0) = 0 and (Y — X)(0) Y(0) = 0. We can therefore
find a T such that z > T implies p(2) is a monotonic function. Thus if
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¥(¢) is also bounded, then lim,,. ¥(f) exists. This completes the proof of

Lemma 2.
Lemma 2 will prove the existence of all limits Py, if we can find matrix

functions || X;(¢)ll and || Y;,(¢)|| with the properties of (14)~(17). We define
these matrix functions in terms of the probability distributions

2ix
Yie =T
2+ Ry

and the analogously defined probability distributions

Xk
X+ X ’

Xy =

where  {i,j,k} = {1,2,3}.

This we do by setting Y, = } — ys and Xy = § — %+ Supposing that

these functions satisfy (14)<(17), they also suffice to prove part (2) of the
theorem, because of the following identities:

__ Ju
Xlk - z(x‘ + xk) ’

— Eiik
Yie = 2(z5 + =)
and

_ Bse
Yie = X = (2 + %e)(=55 + 23x)

where x; + x; > 0 and 2 + 2;; > 0. We now procced to show that the
matrix functions || X;,(2)] and || Y;(2)ll defined above do indeed have the
desired properties. In the following discussion, only the triple (X , Yoi s 9a1)
will be considered. Our conclusions will carry over immediately to all triples
(Xi5» Yij » i) with i £ j by simply permuting indices.

(Ila) We seek an equation like (14) for Xy and Y, . This equation is

Xm = "‘Ale:u + Buyzx ’ (18)
whgre
X,
Ay = —'1—___.2}':'*'3 (1 +.}'_la_ﬂ2'_.l’§1)
and

By =§ [T%Jr%i(z:: )

By, is obviously positive, as Lemima 2 requires. (18) is derived as follows.
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Letting 7 = 3 and then 1 in (5) and subtracting the two equations gives

(X; — Xy) = B[—(Xs — X3) + Xo(925 — ) + X115 — X3yal
= B[—(X; — Xy) + Xo(y2s — ¥u)
+ (X; — X3) 15 + Xo(315 — Ya))s
or

(Xs — X)) = B[—(1 + )X — Xy) + Xo(¥2s — Y1)
+ Xy(01s — ya)l- (19)
The left hand side of (19) is an antisymmetric function of the indices 3 and 1.

We now seek an expression for the right hand side of (19) which is also
antisymmetric in these indices. Permuting the indices 3 and 1 in (19) gives

— X3) + Xo(yu — ) + Xa(¥s1 — sl
(20)

(X — X3) = B[—(1 +ya)(Xs

Subtract (20) from (19) and divide the resulting equation by 2. Then

Bl — X,)

(X — X = —HalXe — X+ BX(ym — ) + 55D (55 315,

(21)

where

Hal = 13 (1 +y—’—ls -2*'3’31) = Hls .

The right hand side of (21) is clearly antisymmetric in the indices 1 and 3.
Using (21) we seek an equation for the derivative of X, in terms of Xy

and Y, . Since

Xy =1—2y
=} —x /(% + x5) = (% — x1){2(%, + %3)
= (2t — %)[2(x — x5} = (Xs — X)/2(1 — Xp), (22)

we differentiate Xy, to find

sz = [(Xa — X3)/2(1 — Xz)]'

-, X, 1

) (X — %)

— XXy Tl o x
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which by (21) and (22) can be written as

, X, 1
Xa = 7% Xa + 3= [~ Ha(Xs — X3) + BXu(3ss — yu)
+ _‘———ﬁ(l ; Xs) (31s "’yu)].

By another application of (22) and a rearrangement of terms, we arrive at

X, BX,

Xy = — (Hax - T“:‘XT) KXo + Xl‘—"_)' (Y23 — Y1) +3 (J’ls Ya)

(23)
Consider the term [BX,/2(1 — Xp)](Ve3 — ¥91)in (23). Since yy = 1 ~yy

and Yy = § — yn,

BX, BX,

M —xy (Y33 — Ya1) =1=Xx, Yy.

Letting Ay = Hy; — X,/(1 — X,), we can therefore rewrite (23) as
Xyo= —AuXn + "ﬁ—'jY—z Yy + g (313 — ya)- (24)

Consider the term (8/4)( yla ya1) of (24) in the light of the hypothesis
& = 24 .Since ¢ '

%13 3
3+ R ¥+ 2

Y13 —Ya

. | SN, - S Z15(323 — %ay)
Bt 2y Fat 3w (Fa T+ 20)(31 + 2m)

2) -
zmz
z(l)z(s) (y23 y2l)v

this term equals

' ()
Y TP @)
Substituting (25) into (24) gives

where

s ()

By, 'is clearly positive.
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(1Ib) We now seek an equation like (15) for Y, and X, . This equation is
Ym = —G, Yy + GoXu, (26)

where G, is given in (7) and is thus positive. (26) is derived as follows.
By (6),
, ‘ x
Ya =G, (.1——:%\’_2- “J’zl)-
"Since Yy = § — Yu»

Yax = G, (——E‘ZX‘;'F*]Z— sz),

1 —
and since
Xy =1} % + %
I - | _ X,
=1 X —x, E i—-X,’
YZI = Gz(le - Yzl)- (26)

(IIc) We now seek an equation like (16) for Yy — Xy and Yy, . This
equation is
(Yu — Xn) = —Ex(Yn — Xa) +Fu¥a, . (27)

where .
Ey =G+ 4y + B(Ya1 — 13) Yz

and
Fy = Blya(s + Ya3) + Va1 Y1l

F,, is obviously positive, as Lemma 2 requires.

The strategy for deriving this equation is simple. We compute equations
for X,; and Y, by factoring out as many expressions Yy — Xj; as possible.
Then we combine these equations by subtraction. Since the equation for
V., namely (26), is already in the desired form, we need only compute
an equation for X,; . We already have equation (18) for Xy, and the new
equation is obtained by merely rearranging terms in (18). By (18),

Xpy = —ApnXn + BuYy . .

Using the normalization conditions X; + X + Xz =l and yy +ya = 1,
5.8 =1{12, 3}, we will be able to rewrite (18) as

ng = —Dp(Xy — Ya) ~Fa¥a (28)
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where F,, is positive. Subtracting (28) from (26) and setting E,, = G, 4 Dy
then gives _ :

(Y21 - Xm)‘ = 21(Y21 - le) +F 21Y=n (29)

It therefore remains only to-show that (28) can be found.
Letting K, = By — Ay, (18) can be written as

) Xn = __Azl(Xn —Yu) + Ka¥yu. (30)

Consider Ky; . Since

Bu=8 [TT)_{S(T* 5 (Zar)]
. and
Ay =v.1:X§2 +8 (1 .+. Y13 ';‘ysl )’
where

Xy = B(—Xe + X912 + Xs¥aah
it follows readily that :
2 ;
Kn =B (Ju +22 (Z55)). (31)
where ' ’

_ Xyt Xoys Y13+ a
]21 - 1 — )(2 (l + 2"‘ _)-

We apply the normalization conditions to J,; and rearrange terms.

Xi(1 — y1) + (1 — ) Y13 + Va1
- — (1 2T
Ja 1= X, (1 + 222

= %)%_1 —.?'is (%+‘T‘§){—2) —Ya (% +T:)£§‘XT)

= _;ym (% + 1 _)le"—z") —Ja (% + 1 :Y_af_)

2

We now evaluate the terms } + X;/(1 — X,) and } + X,/(1 — X,) in this
expression. Since Xy = } — Xj/(1 — X,) and ¥, = } — y5, we find
. €1 _ Lot s X, \

=13 ~’i"'{}’ai + (Yo~ Xﬁ)'
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and

—1-7 fl)g = § — gy + (Xay — V)
Thus

Ju = (13 — ¥ )Xz — o) — Vsl + Yu) —ud —yu)  (32)
Substituting (31) and (32) into (30) and rearranging terms gives
Xu = —ﬁzx(Xsn —~Yy)— F 21Ya1, (33)

where
Dn = Ay + B(¥a —%13) Y

and

Fp=8 [J’m(% + ya) + yu@ — yu) — mi‘ ( :Z: )]

We now show that F;, is positive and thus that the identifications Dy, = Dy,
and Fy = Fy can be made to give (28). For this computation, both the
normalization conditions and the constraints 2;; = 2;; are needed.

The terms in (1/8) Fy, can be rearranged to read

1
EF 5 = Ko + Ynds + ya(3 —ya)
where
. y 2(2)
Ko = —223_ ( z® )
Y13 (¥ — Fa) _ Y1 __Ra
= 28 (T ) = 20 (50 — )

2432 ' 0%
=1 (J’m)’al - jﬁ‘;%‘) =} (J’la}’u - ‘;}%}%{‘)
= $ya(1s — y12) = ¥u(} — Y12)-

Thus .
%F a = Yau(} '—.}’12) + Yudis + yu@ —yu)

= y51(2 — Y12 — Yor) + Va1 Yis
= yu(¥1s + Yes) + Ynd1s-
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F,, is manifestly positive when it is written in this way, and we have therefore
derived an equation of the form given in (28). This completes the derivation
of an equation such as (16), for which

Ey = Gy + Dy = Gy + Dy = Gy + Ay + By — 10) Yu

© and

Fy = sz = B[¥a1( Y13 + Ye3) + Y Yl

(11d) It remains only to produce an equation like (17) for J5, in terms of
Yy — Xo1 . This equation follows readily from (26). Since y = } — Yy,

Yo = Gs(Yzl — Xa), (34)

. where G, > 0. Equations (18), (26), (27), and (34) correspond to equations

(14)=(17). By merely permuting indices, we can in the same way derive
equations for all indices {i, j, #} = {1,2, 3}. Thus all the assertions of (2)
in Theorem 1 are immediate. Moreover, since y;, is a bounded function,
P, = limy,,, y;(2) exists for all j £ k.

(I1I) We now use the existence of all Py, to prove the existence of all
Q; = lim,,, X,(t) by treating (5) as a linear system of equations in the
unknown variables X; with the almost constant coefficients y;, . The first
step in this treatment is to reduce (5) from a 3-by-3 system of equations to a
2-by-2 system by utilizing the normalization condition X, + X; + X3 = L.
After doing this, the proof becomes straightforward.

By (5),

Xy = B(—X; + Xoyu + (1 — Xy — Xy) yu)
= —B(l +y2) X1 + (¥ — ¥2) X3+ u -

Letting m;; = y¢ — Py, this becomes

Xy = —f(l + Py + my) Xy + B(Pn — Py + oy — 1) Xy + By -
Similarly,

Xy = —B(1 + Pyg + my) Xy + B(Pra — Pyg + g — ) Xy + Byaa -

In terms of the vector X = (§:), these equations can be written in matrix
form as

X = (4 + B()) X + C(2), (35)
where

4

l

(e TaT

B(t) =8 ( —my(f) my(t) — "’al(t))’

myg(t) — myy(t) )



546 GROSSBERG

- and

0 =8 (o)

Since lim,,o i(f) = Py, we conclude that lim,,, B(t) = 0 and
. o (Pa
im0 - (2.

Since X(z) is bounded, limy,, B(#) X(?) = 0 and (35) can be written in the
form

X = AX 410 e
where
fe) = B X(t) + C@)
and
im0 = ()

We now show that the cigenvalues of the matrix 4 have negative real parts.
From this and the existence of the limit lim,,, f(t), it follows from (36) by
elementary arguments [6] that the limits 0; = lim,,,, X,(t) exist for all
i = 1,2, 3. To show that the eigenvalues A and A, of 4 have negative real
parts, we need only the elementary formulas A\, = det Aand A; 4 A, = tr 4.
det A is positive since :

det A = B(1 + Pa)(1 + Py) — (P — Pu)(Prs — Pio)]
= 1 + Py + Py + P21(P32 - P12)_+ Py Py,
= B2 + Py (Pgy — 12) + Py, Py,
=B >0

Tr A is negative since
trd = —B(1 + Py + 1+ Py) = —38 <0.

The eigenvalues A; and A, are either conjugate complex numbers or they are
both real. In the former case, Red; = Re )y = Ftr4 < 0. In the latter
case, A; and ; have the same sign since A\A, > 0. This sign is negative since
M + A, < 0. This completes the proof of the existence of the limits Q; .

(IV) Having established the existence of all limits Q, and P;; , we now ghow
that Q; = } and Py = (1 — 8;x) if ¢ = u + 2(8 — «) > 0. The first step
in this proof is to show that the following relations hold.

0, <%, (37
Q; = QiPji + QiPri» (38)

GLOBAL LIMITS AND OSCILLATIONS 547

and

Py = jER Q>0 (39)

Ox
1-0y°
(37) and (38) will be seen not to depend on the hypothesis ¢ > 0.

The inequality (37) follows from the inequality

X = B(—Xi + Xy + Xayw)
<B(—X: + X + X
= 28(3 — X\).
since then X; < 0 whenever X; > }.

The equations (38) follow directly by letting ¢ — oo in (5) and using the
existence of all limits Q; and P;, to conclude that lim,,,, X (t) exists and equals
B(—Q; + Q;Pic + OrPy:). Since X; is bounded, lim,,, X[t) = 0. (38) is
now immediate since 8 > 0. '

Equation (39) can be derived as follows if o > 0. By (37) and the hypothesis
Q; > 0, we find 0 > Q;(1 — Q;). Thus by (7),

lim,,, X;(1 — X))
lim,, o(yseot + f¢ e X(1 — X,) dv

= 0,1 — 0Ol — Qe
=0>0.

lim Gy(t) =

Letting ¢ — o0 in (6) therefore shows that lim,,,, J,(f) exists and equale

o (1 ngi —_ P,k).

Since y;; is bounded, lim,,, y;(t) = 0. Since o >0, (39) follows
immediately.

Using (37)~(39), we now show that the possible values of Q; and Py,
can be grouped into two cases if ¢ > 0.

Case 1. IfallQ; > 0, thenQ; = } and Py = }(1 — 85). This s proved
by substituting (39) into (38). ‘Then

O = Qs (1 _Q_’Q, + 1 gkgk)-

Since @; > 0,

_ 0, '
L=1=g,T1-0:"

)
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This is true for all j 7= k. Thus

9% _ 0 _ O
=0, 1-0. 1-0’

which leads immediately to the identities Q; = Q, = Q, . Since moreover
Z:-x 0, = 1, allQ; = }. (39) now implies that

P5k=T_i_—%_=%

ifj £ k.

Case 2. If one Q; =0, then Q; =0Qx =%, Pp=Py=1, and
P,; = P;; = 0. (No more than one Q; = 0 since then some Q; = 1 which
contradicts (37)). By (38),

0 =0Q; = 0Py + OnPui -
Since all limits are nonnegative
0 =Q,Py = OiPri.
Since 0, > 0and 0, > 0,0 =Py = Py and | = Py, = P,;. By (38),
'. Q; = QP -+ QuPrs = QuPrs = Qrc -

Since 1 = Z:,,l Q. = O; + Oy, we conclude that Q; = O = }.

To complete the proof.that Q; = } and Py, = Hl —8;) if 0 >0, we
now show that Case 2 cannot arise by employing special facts from (II)
concerning the manner in which the functions y;; and yy; approach their
limits. Suppose Case 2 holds. By (II) there exists a T >0 such that y;;
and y;,; are monotonic functions for t > T. y,; and y,; are also nonnegative
functions and their limits Pj; and P, are zero by hypothesis. Thus y; and
Yy are monotonically decreasing functions for ¢ > T; that is ¥;; < 0 and
5. <O for > T. By (6) this means that y;; > X,/(l — X;) and
Y 52 Xif(1 — X3) for t > T. We use these inequalities to estimate X;
for large ¢ In particular, we will be able to find a T; > T such that

> (B2 X; > 0fore = T, . Since X; is positive, X; can therefore never
achieve a zero limit. But Q; = 0, by hypothesis, This contradiction shows
that only Case 1 can arise.
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To establish the desired estimate for X;, consider (5) for ¢ > T Then

X = B(—X; + X5 + X yw)

=‘3[(1fjx, T f’},"‘l)X‘“LX’(J’"—TgiXT)

+ X (J’k.' - —1—?}:)]

X;

>B(1—X, .

1—X,

1) X,.
By the hypothesis O, = O, = }, it follows that

X .
- ¥ﬂ1—X1_¥l{B’1—Xk—

1.

Thus there surely exists a 73 such that

X}}%Xi for t>1T,.

We have hereby proved parts (1), (2), and (3) of the theorem.
(V) Part (4) of the theorem follows from simple estimates on (6). By (6),

t
() — y2(0)} < fo | Y52 | dv
t
<2 f G, dv
[1]
1 d v
=2 f o (v + j.o v X1 — X)) dw) dv
1 t
— . ~lojv 1 —
2log (1 o joe X,(1 — X)) dv)
1

$
— ~lol
< 2log (1 -+ i, oe ’d'v)

<2log (1 + 1 )
Letting 2 — oo shows that
K,
[ P — y(0)] < 2 log (1 + 'I—a!l—), (40)

where K; = 1/4y,. This completes the proof of Theorem 1.
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Note that other estimates such as (40) can be derived from the equation

1 t
yal0) + 5 [ e XX do
Yi Jo
ynlt) = ) 1
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If y;(Ts) < %, the symmetric situation prevails. We prove these alter-
natives in the following corollary. ‘

COROLLARY 1. There exists a Ty such that exactly one of the following
alternatives holds for all t = Ty if ¢ > 0:

%
+L [ emx1 — Xy do
Yi‘o
’ Dyy2x521
which follows from (6) and (7); for example, if ¢ < 0 then Qi =xy 294
. 3) yi; = } = xy and x,; is monotone increasing.
Py — yi(0) < el 4) xy; = } > y;; and x,; is monotone decreasing.

Proof. By (1), X;;, Yy, and Yy — X5 do not change sign for t > T if
T is chosen sufficiently large. For example, we can have X;; > 0 for ¢t > T.
This is the same as x;; << 4 for ¢ > T Similarly Yy > 0 for ¢ > T gives
vy <ifort > T.And Yy — X;; > Ofort > T gives x;; >y fort > T.
By examining all possible inequalities in this way, it follows that the relative
magnitudes of x;;, y;;, and } are fixed for t > T.

We also know that y;; is a monotonic function for ¢ >> T'and that Py; = }.
Thus if (say) y;,(T) = }, then y,; decreases monotonically to § for ¢t > T.
This means y;; << 0fort > T.Since y;; = Gi(%;; — Yiy) Yis => %5 fort = T.
This situation admits two possible subcases. Either y;; > x;; > }§ for

3. THE PROBABILITIES X;;(2)

Theorem 1 shows that y,,(2) approaches its limit 4 monotonically w.hen
¢ > 0 except possibly for one peak in its graph. We now discuss the os'c'xl!a-
tions of the analogous probabilitics x;(t) as t — oo, since these probablh.txes
describe the relative size of the outputs x,(#) and x,(t) as t — ©0. We consider
only the time interval [T, , co) after all functions X, Yji, and Yy — Xy
have made their single sign change. We will show that there 'txre only two
possible avenues of approach for x; to its limit § in this time interval. ) t>T, or y;; > 4% >« for t > T. These are cases (1) and (3) in the

For example, suppose that y;(Tg) > 1. Then one of the two graphs in statement of the corollary. Cases (2} and (4) arise if y,;(T) << 4 . Obviously
Figure 3 holds. cases (1)-(4) exhaust all the possibilities.

: In cases (1) and (2), x,; is bounded by } and by y,; for ¢ > T while y,;
converges monotonically to § . Thus x;; is forced into an ever smaller interval
as t increases and its oscillations, if any, become smaller and smaller. We
shall now show that in cases (3) and (4), no oscillations whatsoever occur
in x,; if ¢ is taken sufficiently large. Since #&; = —X;; , it suffices to show
that for all large ¢, X, is either nonpositive or nonnegative.

Consider case (3) for specificity. By (18),

s

Xm = "‘Aan + B21Y21

%
%

§

where By, > 0 and

. : _ =% Y13+ m ':
Fic. 3 A,y = 1——:‘7(-; + B (1 -+ -——2——).

That is, either x,4(73) <} and xy; increases monotonically to %, or Suppose we can show that there is a T, > T such that 4, is positive for
x,(T) = % and the oscillations of xy;, if any, are squeezed between yi; t > T, .Since wearein case (3), Xp = 3 — 2 >0and ¥y = } — yy <O,
and 2 asy; —> %, i for ¢t > T,. Thus &y = —Xy >0 for t > T, and xy increases mono-
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tonicaﬁy to % . An identical argument shows that x,, decreases monotonically
to } in case (4). We now show that such a T, exists.

g =[22= ‘\1"{“{2 Xodu 4y 4 2utin)
>p[ldt X - ﬁyi_ D) = X — )
=8 [T-:l—jfz— —3— Xy Y1 —;2 :i—— )}2(}’32 - %)]

=83 — 1y —31 =19 —3%

Since lim,,e Yia(t) = lime,e Yae(t) = 3, we can obviously choose a T,
such that

PITO

Ay =5>0  for 12Ty,

and the proof is complete.

4. A ReLatep GrapH wWITH Loops

We now consider a graph which has the same local geometrical proi)ertx:s
as (*), but whose global behavior as a flow differs from that of (*). ()
describes a flow over a complete 3-graph without loops. Each vertex of this
graph receives two flow arrows and sends out two flow arrows. Another

complete graph exists which also has this property, namely the complete
2-graph with loops, which obeys the equations

i) = —oai(®) £ B Y, Elt) YD

Pald) = zp(B)[23(2) -F 2] (**)
and .

2(8) = —uzg(2) + Px,(t) x:(D),

foralli, j, 2 = 1,2 [3]. An observer sitting on a vertex in either the complete
3-graph without loops or the complete 2-graph with loops cannot tell frffm
the immediate geometry which graph he is in. Nonetheless, the dynamics
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of the two graphs are dramatically different, as the following theorem
concerning the ratios y,,(f) and X (t) = x,(t)[xi(¢) + x,(t)]? shows.

THEOREM 2. Let (**) be given with arbitrary nonnegative initial data and
arbitrary positive coefficient B. Then

(1) the limits Q; = limy,,, X,(t) and Py, = lim, o, y,(t) exist and obey
the equations

OPy = Q:Py,  {i,j} =1{1,2}

(2) the functions f;, = X — Yy and Yy, change sign at most once and
not at all if {(0) fx(0) < O, {J, &} = {1, 2}.
(3) the initial data can be chosen so that the limits Q, and P;, satisfy

| the equations P, = Q,, where the Limits Q;,Q, can form an arbitrary

probability distribution.

If moreover ¢ = u + 2(8 — o) > 0, then
(4) the limits Q; and Py, always satisfy the equations Py, = Q.

Theorem 2 differs dramatically from Theorem 1 because the probabilities
Q; and P;;, are not uniquely determined in Theorem 2 even if ¢ >> 0. Adding
the assumption 2,,(0) == 2,,(0) in no way changes this situation, since the
relative size of the initial values 2;,(0) and 2,,(0) is not affected by this
condition. Theorems 1 and 2 together show that a vertex “knows’” whether
or not the flow it receives comes from another vertex or itself, in the sense
that the limiting behavior of its vertex function differs in the-two cases.

Proof. The strategy of the proof is essentially the same as that of
‘Theorem 1. We therefore exhibit only the relevant formulas and presuppose
familiarity with previous arguments to immediately draw conclusions from
these formulas. We also assume that all initial data are positive unless
otherwise stated, since all other cases can be handled with ease once this
case is understood.

(I) The first step in the proof is to derive equations for the ratios X,
and y;; . These are readily seen to be the following by the usual manipulations:

Xdt) = Bl—X0) + X0 yu(®) + XO)2:®)), () ={1,2} (40)

and
In(t) = BOIXi) — i),  jii=12 (41
where
B,=-B:T'f, =% +%, and 2=z, +3;.
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Since X, 4- X, = 1, (41) gives
X; = BlXiyu — X0 + X35 — X9l (42)

(Ii) Using these equations, we show that the limits Py exiz.at and establish
some properties of these limits. Subtracting (41) from (40) gives

fii = —(BX; + B)) fs = BX:fu 43)

and by renaming indices
= —(BX; + B fu — BXifs 44

where fup = Xo = Yuv» and {3, j} = {1, 2}. From (43) and .(44) it is obvxc;lus
by the positivity of BX; and BX;, and the argument used in Lemﬁxa 2>ttat
if £to) < 0 and fite) > 0, then fi(t) <O and fift) > 0 for a (;f/ .
Similarly, fii(fo) > 0 and fulte) <O implles.fﬁ(.t) >0 .ar.xd fult) < odr a
t > t,. The same facts hold when the strict me.qual.ltxes are replace A z)l
weak incqualities. Moreover fiite) = fulto) =0 1mp'hes filt) = fult) =
for all £ = to. It is therefore obvious that the functions fj; and f;; change
sign at most once, and not at all if £;:(0) fu(0) < O- Also, f;:(2) and fi(£)
are identically zero if f;(0) = f::(0) = 0. . 4 ot

By (41) and the positivity of B;, ¥si change§ sign a:c most once ans.no
at all if £;,(0) f:(0) < 0. Thus y;; is a monotonic functxon.for large t. Since
y;; is also bounded and continuous, Pj; = lim, e }')j,-(t) exists.

: Moreover yi(t) = 0 if f;0) = £::(0) = 0. In this case ;1) is a constant,
and since fu(t) = fult) =0, X[t) =yit) = 9,(t) = constant. In par-
ticular, Q; = Py = pP,. N

(1II) We now use the fact that the limits Py exist to show that the hr:(x)ts
0, exist. Since X, + X, = 1, it suffices to prove the existence of O; . By (40),

X, = B((yu — )X+ (1 — X3) ym)
= B{—(y12 + Ya) X1 + Ya)

which has the integral form
t d
x,(0) = exp (=] U £)

x| 3(@%1%@%@ (] vier ) do].

where Uy = B()12 -+ ys) and yy are positive and have _ﬁ_nite limits as

¢ — oo. It is therefore obvious that Q; exists.

GLOBAL LIMITS AND OSCILLATiONS 555

To show that the equations O;P;; == Q;Py; hold, note that (40) can be
written as

Xl' = ﬁ[(yll - 1) X; + ijﬁ]
= B(_Xfyl'j + ij,',')-

Since all the limits Q; and Pj; exist, the limit lim, o, X(t) also exists and
equals B(—Q:P;; + Q;Pj)- Since X; is bounded, lim,,, X,(t) = 0 and thus
QP = QP -

(IV) We know from the case X;(0) = yu(0) = yu(0) and X, (0) =
920(0) == ,5,(0) that any probability distributions Q, = Py; = P, and
Q, = Py, = P, can arise as limits. We now show that only limits Q; and
P, subject to these constraints can arise for ¢ >0, and that these limits
are positive if the initial data is positive. This we prove in two cases, in
which we again always assume that all initial data is positive.

Case 1. SupposcQ; = 0. ThenQ, = 1,and 0 = Q)P = Q;Py = Py .
Since yg(2) is a positive and monotonic function for large ¢ and P, =0,
94,(2) is a monotone decreasing function for large 2. By (41) and the positivity
of B, , yu(t) = Xy(2) for large ¢. Consider (40). Then '

Xx = B(—Xxym + X ya1)
= B[ Xy — X») + X(Xp — )]
> BXy(X; — ¥1a)-

Two possibilities arise. Either X, — ¥, > 0 for all large ¢, or X, — 352 < 0
for all large ¢. In the former case, X; > 0 for all large ¢. Since X; is positive,
we conclude that Q; > 0, which is contradiction. Suppose X, — y12 < 0
for all large t. Since X, — ¥, =1 — X; — | +yy =y — Ay, then
¥ — X; < 0 for all large ¢. By (41) 14 = 0 and y;, is monotone increasing
for all large t. Thus y;; < X; < yy for all large ¢, where yy; is a monotone
increasing and positive function. Hence Py, > 0, which is a contradiction.
We have hereby shown that Q; > 0. Similarly @, > 0.

-Case 2. Suppose Q) >0 and Q, > 0. Since Q; >> 0,

lim By(f) = lim X,(2)
- o et Jo o0 X () dé
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By (41), lim,,, $15{t) exists and equals o(Qp — P,,). "Since Yz is bounded,
lim,,o $15(t) = 0, and thus Q, =Py, In 2 similar fashion we find
Q, = Py = Pyand Q) = Py = Py, which concludes the proof.

The way in which the common limit Q;,=P; =Py .is approached by
X,, ¥, and y;; for large ¢ can be spelled out very p.rec1sely. Exactly two
Kinds of alternatives exist in an interval [T, co) if T is chosen sufficiently
large. These alternatives are graphed in Figure 4. Thus either X, approaches

m

Fic. 4

its limit monotonically in the opposite sense from the monotonic approach
or the oscillations of X, if any, are pinched between yj
h the common limit Q; in opposite senses. These

of y;; and ¥y,
and y;; as they approac :
alternatives are proved in the following corollary.

COROLLARY 2. One of the following alternatives holds for each triple

(Xi » Vsi »yz‘t‘)' {1’]} = {1! 2}‘

(1) y5 = Xi = Yui» Yii s monotone decreasing, and y is monotone

increasing for allt = 0,
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(2) yis = X 2 ¥, Yu is monotone decreasing, and y, is monotone
tncreastng for all t > 0.

(3) X: = yu, Xi 2 ¥4, ¥ and yy are monotone increasing, and X; is
monotone decreasing for all t > 0, .

4) yii = X;, yi = Xi, y4: and yy; are monotone decreasing, and X, is
monotone increasing for all t > 0.

(5) Either (3) or (4) holds for all t, or becomes (1) or (2) for all large t.

In all cases, the common limit Q, = P; = P, lies within the interval
[m;, M}, where

m; = min{X(0), ;(0), y:(0)]  and M, = max{X,(0), ¥;/0), y(O)}.

Proof. (1) is a translation of two facts. Firstly f;; < 0 < fi(t) for all
t 2 0. Secondly 34 = B;f;; 2 0 and 34, = B;f; <O forallt > 0. (2) is
proved in a similar way. (3) says f;(t) = 0 and f,(t) > 0 for all 2 == 0.
By (42), X; = —B(X.fs + X;f;;) < Oforallz > 0. (4) is the same situation
as (3) with all inequalities reversed. Theorem 2 says that either (3) or (4)
hold, or one of the functions f;,(¢) and f,,(#) eventually changes sign. This
is case (5).

The following corollary can be proved in the same way that Part (4)
of Theorem 1 was proved.

COROLLARY 3. For arbitrary positive initial data and any o,

[ Py — y5:0) < 21log (1 + L fwé""X, dv),
Yido
where

_39(0)

7= )

In particular, when o < 0,

1
| Py — 91(0)] < 2log (1 + W)
Thus taking ¢ << 0 and | o | > 0 forces P, to lie very close to ¥i(0). We
therefore find that a complete 2-graph with loops can remember its initial
data both when ¢ > 0 and when ¢ < 0.

Remark (Average Output vs. Individual Outputs). In both (*) and (**),
when these graphs are input-free, the average output x = 1/n 33, % obeys
the linear equation

#=(B—a)x
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Nonetheless, the individual outputs x; of these graphs obey nonlinear
equations and exhibit substantially different qualitative behavior.

Part 11

5. LEARNING THEORETIC INTERPRETATION

The learning theory described by the system (*) provides a mfatllematlcal
description of the following kind of experiment.. An “experuzler‘m‘ter fé’,
confronted by a machine ., presents .# with a list of “letters”, “‘spatial
patterns”, or more gencrally “events” to be learned. Suppo.sc, for example,
that & wishes to teach /% the list of letters AB, or to predict the event B,
given the event 4. & does this by presenting 4 and then B to Y several
times. To find out if % has learned the list as a result of these list pr?senta-
tions, the letter 4 alone is then presented to /7. If # responds with the
letter B, and .# does this whenever A alone is said, then we have gOf)d
evidence that .# has indeed learned the list AB. Thus ./ learns to pre'dlct
the event B whenever the event 4 occurs as a result of repeated presentations
of the list AB. o .

In order to translate into formal terms the intuitive idea o.f Presentmg a
list AB of events to .7/, we assign one vertex of 7 to each distinct symbol
of an event. If for example we are given three syr.nbols. A, B, and C, then
we assign ¢, to A, v, to B, and v to C. Given this ass1gnment_ of symbols
to vertices, suppose that & wishes to teach 4 to predict B glven.A. He
indicates to . that B is the “correct” successor of A by repeating Fhe
desired sequence AB several times. AB is presented to 44 by pert.urbmg
the vertices v; and v, which stand for A and B, respectively, by 1‘r‘1‘puts.
Eczch presentation of a symbol to A/ at a time £y 1s {eprfsented by.an mp;lt
pulse” to the corresponding vertex with “onset time t, An z.nput pulse
is a continuous and nonnegative function J which is positive in a finite
interval. The onset time of ] is inf{t : J(t) > 0}. For exan.lple, if {1 and B are
presented to J# 7 times at a periodic rate with 4 occurring at t.xmes t =0,
w -+ W, 2(w + W),..., (r — 1)(w + W), and B occurring at times t = ,
20 -+ W, 3w + 2W,.,rw + (r — 1) W, then

r—1

L) = 3 it — ke + W),

k=0

r—1

L(t) = ¥ Jo(t —w — Kz + W),
k=0
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and
I(t) =0,

where ], and J, are input pulses with onset time zero.

By (1), an input I (#) corresponding to presentation by & of an experimental
“symbol” or “stimulus” to .# perturbs x,(f), which is therefore heuristically
thought of as a “stimulus trace”.

The function y;(t) in (1) and (2) is thought of as the “associational
strength” from v; to v, at time ¢ since it controls the size of an output from
2, due to an isolated experimental input to v; (i.e., the size of the prediction
created by the presentation of a symbol). The definition of y,(t) aims at
guaranteeing that y,,(f) will grow only if the symbols corresponding to v,
and v, are often consecutively presented to ..

6. THE MEMORY OF A GRAPH

We will be able to interpret Theorems 1 and 2 as statements concerning
how .# remembers what it has been taught by &. These statements are
made rigorous using the following colorful language. If the associational
strength y;,(¢) changes very little during a time interval [T}, 7}], we say
that . remembers the association from v, to v, during these times. If,
moreover, }'ij(l) = yik(t) =1, {ir b k} ={l, 2, 3}’ and xl(t) = ".Z(Z) = x3(t)
during a time interval [7,, 7y], we say that . is in a state of maximal
ignorance during these times, since all associational strengths y,(f) with
J # k are equal, and all vertices have equal stimulus traces due to prior
inputs. If all associational strengths y;,(f) with J ¥~ k converge to } as
¢t — oo and all stimulus traces arc asymptotically equal as t — oo, then .#
JSorgets what it has learned from &, since it returns eventually to a state of
maximal ignorance. Any nonnegative and continuous input to ./ that
eventually becomes zero can be interpreted as s learning experiment
performed by & on .# which ends after a finite amount of “practice” time.

Theorem | discusses any .# which is initially in a state of maximal
ignorance after it undergoes an arbitrary learning experiment that ends after
a finite amount of practice time. The study of .# after practice ceases is
thus the study of how well .# remembers what it has learned from the
experiment.

Theorem 1(1) shows that all associational strengths and the relative and

_absolute sizes of the stimulus traces have limits as  — 0. By Theorem 1(3),

«# forgets what it has learned whenever o > 0. By Theorem (4), .#
remembers what it has learned with an arbitrarily good accuracy if o < 0
and || is taken sufficiently large. By Theorem 1{2), the associational
strengths ,,() approach their limits essentially monotonically.
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Theorem 2 shows that a corplete 2-graph with loops will not forget its
associations y;(t) even if ¢ > 0. Thus, changing the geometry of a graph
—in the present case by adding loops—can change the way in which the
graph remembers its past experiences. . .

The following sections interpret Theorem 1 in several ways to bring to
the reader’s attention some suggestive heuristic relationships between the
behavior of (*) and more familiar mathematical structures.

4. CONNECTION WITH FINITE MARKOV CHAINS

The system of equations
Qt’ = QJ'PJ'i + QkPki s {l) j! k} == {19 2) 3}’ (42)

describes an ‘“‘equilibrium” or “stationary’”’ state that (¥) ap}.)x.‘o'aches as
¢t — oo. When for example ¢ <0 and o |>0, t‘ne.;')r.obabxhnes y,-.,:(t)
move very little, by (40). Nonetheless, the probabilities X(¢) adjust
themselves as much as is required to satisfy (42).

The equations (42) suggest a relationship between (*) .and the theor}.r .of
finite Markov chains [7] if we interpret Py as the' stationary p'robablhty
of going from state 7 to state j, and Qy, as the probability of being in state k.
We denote this Markov chain by G(o0), and for every ¢ =0 c‘ieﬁne a Ma‘rkov
chain G(t) with transition probabilities y;,(2). Then (*) describes a no‘nlmear
process whose transition probabilities y;(f) ﬂuct\{atc as t — o but ultxmatel.y
approach stationary transition probabilities I?ij. 1f the initial process G(0) is
“spatially homogeneous” (i.e., has uniform' mm.al data) and the process 1}s1
perturbed by inputs /; only over a finite time interval. If we re.ahzc eac

Tarkov chain G{t), 0 <t < 0, as a probabilistic grapl.l [4] with we'lght
function ¢, such that g,(e;;) = Yi(t), then (*) can alternatively be desc.n.be.d
as a nonlinear mechanism which continuously deforms one probabilistic
graph G(t,) into a future probabilistic graph G(t,), t > % - Theorem 1
hereby becomes a kind of “homotopy”’ thecrem [8].

8. A RELATIONSHIP BETWEEN IVIEASUREMENT, LINEARITY, AND REVERSIBILITY

We can give Theorem 1 another heuristic interpretai.:ion which is‘quit.e
suggestive of situations familiar from statistical mcc':hamcs. [9] We do ths
when (¥} is given at ¢ =0 with ¢ > 0 z.md uniform u?m_al data g.le;.,
2;(0) = & > 0, i # j, and x(0) =y >0,i=1,23) 2 is perturbed by
inputs within the finite time interval (7y, Ty, where 0 < T3 < Ty < o0,
and (*) is input-free in (T3, )-
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Clearly, x,(t) == 1x(¢) for t &[0, Ty}, where x = ZZ,I x;, . Thus %{t) =
(B — «) x,(t) for t€[0, T}], so that the output from each v; is Ilinear.
Morecover, 2,(¢) is independent of 7 and j, i54j, for te[0, Y], so
¥:5(2) = 3 = y;(t). That is, the flow from v; to v; and from o, to v, is
globally reversible {*‘globally” because y,; depends on all indices ¢, f, &, and
controls the size of the flow between vertices).

In (7Ty, T,], the output from (*) is obviously nonlinear. Moreover
Y1a(t) 7£ ¥a1(2), so that the flow between v, and v, is globally irreversible.
By contrast, z;; = 2;; so that the flow is still locally reversible (*locally”
because 2;; depends only on indices ¢ and j).

In (T,, o), (*) is input-free and z;,(7T,) = 2;(7,). By Theorem I,
lim,,, #,(¢)/3%(t) = 1, where 1x obeys a linear equation. That is, the output
of each v; is eventually linear once again. Moreover, lim, . v;{(t)[y;(t) =
3/3 = 1. That is, the flows within (*) are eventually globally reversible once
again.

The input to v, for e (T}, T,] is again interprcied as a measurcraens
performed by an experimenter & studving (*). This example therefore
illustrates that a measurement can transform a linear and globally reversible
system into a nonlinear and globally irreversible system, but that linearity
and global reversibility are gradually restored as the effect of the measurement
wears off. The measurement does not affect local reversibility.

When ¢ << 0, we again begin with a lincar, and both locally and globally
reversible system. Again this system' remains locally reversible throughout
all inputs. Again this system becomes eventually linear since all Q, exist.
But we no longer can assert that the system is eventually globally reversible.
Moreover, the alternative between eventual global reversibility and irre-
versibility depends on a parameter ¢ which cannot be directly measured
by &. Also this alternative does not correspond to an alternative between
linearity and nonlinearity of the system, since in both cases the system is

~ eventually linear.

9. Ourpur Si1zE vs. MEMORY

Only the case o > B in Theorem 1 has prediction theoretic interest since
then the outputs approach zero as t — oo if & does not perturb . Also’
the constraint # > 0 is imposed to guarantee that present inputs to .
have a greater importance than past inputs. A major concern of our prediction
theory is to study those properties of .# which & cannot directly measure
in terms of inputs and outputs when « > 8 and u > 0.

For example, Theorem 1 shows that there is little connection between
the absolute magnitude of the outputs produced by # (when & does not
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perturb %) and s “memory”’. This is becaus:e. Thcorerfl 1 'dcscribes an
alternative depending on the sign of o which decides the limiting behavior
of the probabilitics y;(t) as t — 0, whereas the outputs x,(t) converge
exponentially to zero as £ — © whenever a > . The gorx‘?}tlon a”>‘ 0 can
be guaranteed by choosing # > 2(« — f) > 0. Then (*) “forgets’ its past
as t — 00, since the probabilities X (£) and y;(t) cventually return to a stafe
of “maximal ignorance”’; that is, Q; = 4 and Py = (1 — 8;x) ire umform.’}:
distributed. When ¢ < 0, or 0 <u < 2{a — B), the gra.ph' remembers
its past at lcast partially as ¢ — <0, since the maximal deviation of Py, from
¥;(0) decreases as | o | increases.

In both cases, after & ceases to perturb M, the outputs ;v,- apprO?ch zero.
A plausible inference is that both graphs are fo‘rgcttmg &’s prior inputs as
the effect of inputs on outputs wears off. This is, however, true only when

o > 0.

10. RATE OF EXCITATION AND RECOVERY vS. IMIEMORY

Another limitation on &’s information concerning ¥ follow’s from tbe
fact that ihe rate with which ./ reacts to and recovcrs‘from é’s inputs is
not closely related to .#’s “memory”’. The parameter 8 is the rate at which
each vertex function x; is “excited” by an ir.xpflt from another vertex, and
« gives the rate of &; decay as the effect of this input wears off. u is the ra}tl:e
at which the “cross-correlation” Bx;(?) x,(f) of pulses Bx(t) and x,(f) at the
: ‘head . wears off.
arrli:th;a;or;.eﬁ also o > 0, then the rate of excitation and of decay at the
vertices is very large and of the same size. Such. a system has t‘l‘xe Vll:tl;,(.:
that its response to inputs is rapid and does not introduce large ' inertia ,
effects. If moreover u > 0, then also o >.O an.d M ’ eventually foggets\
evervthing. We can therefore conceive siFuat%ons in which .//{ reslc)i?n syab
quicidy 2s we please to inputs and in which 1ts cross-correlatxo'ns 1: a\nt ;y
as slowly as we please, and still # eventually forgets everything that the
inpt -c taught to it!
m%?cﬁilfai \:e can conceive situations in wh'ich M’s ex‘citatilo; andodecaz
rates arc large and of the same order of magnitude (say B == goa§> 1) an
can still guarantee that .7 remembers its past as well as we piease v ettxr;g
the cross-correlations decay sufficiently slowly (say 0 < # <K oo = 2(x — B)
and thus o < 0 with {¢ | > 0). . ﬂ. )

These examples show clearly that the absolute ,. ,resp‘onse ra?e o A 3
&'s inputs is not closely related to .#’s memory. é’s d'xlemma 1ssentiax;c:)
by the existence of a graph, namely 2 complete graph with loops (Section 4),
which remembers certain initial data when ¢ < O and | o | > 0.

O Co
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