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1. Introduction. This paper describes some networks 9 that can learn,

simultaneously remember, and individually reproduce on demand any number
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54 S. GROSSBERG

of spatiotemporal patterns (e.g., “motor sequences”) of essentially arbitrary
complexity. Because these networks are embedding fields, their behavior can be
psychologically, neurophysiologically, and anatomically interpreted ([1], [2],
[3], [4]). The network properties include the following.

(a) “Practice malkes perfect’.

(b) Memory of each pattern is essentially perfect if no competing experi-
mental practice is imposed.

(¢) New patterns can be learned without at all destroying the memory of
old patterns.

(d) All errors can be corrected.

(e) No “subject-induced” overt or covert practice is needed to ensure perfect
memory.

(f) Given a moderate amount of practice, memory spontaneously improves
(i.e., “reminiscence” occurs).

(g) Memory is not destroyed by recall trials.

(h) Learning occurs by a mixture of respondant and operant conditioning,
the operant effects including nonspecific arousal inputs in response to “novel”
stimuli, and induced blocking of incoming inputs by inhibitory signals, leading
to “habituation” of repeated inputs. Both respondant and operant factors are
unified into a single comprehensive learning mechanism.

(1) Only one “control neuron” is needed to activate reproduction of an entire
space-time pattern.

(3) The time needed to begin recall of a pattern can be made as small as we
please, and is independent of pattern complexity.

(k) The network is insensitive to wild “behaviorally irrelevant’ oscillations
of inputs.

() The network dynamics, though nonlinear, can be analysed globally.

Networks that perform any number of complicated “reflex acts’ (e.g., “walk-
ing’”’, “clasping’”, “sniffing’’) will also be constructed, as a special case of the
learning networks. These “reflex”’ networks also satisfy (1)-(1) above.

2. Network equations. The networks we will use were derived in [2] and [3],
and are reviewed in [1]. They are a special case of the following equations.

:!':.(t) = —w;T; + i gm[Im(f —_ ‘r!m') e P...—]*y,,“-(t)
m e
- ﬂg [z’"(t - rlnl') - Pmi]+Qmi + I.(t),

(2) yil) = p:‘kzik(t)['?":_} pimzim(t)]- , and

*)

(3) Z'-;‘(t) - {_uilzit(t) + v:‘k[xi(t - T:‘k) - Pfk]+xk(£)' if Pix > 0
0, if Pix = 0,
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fori,j,k = 1,2, -+, n where
4) [7]" = max (n, 0)

for any real number 7. The parameters, initial data, and inputs of (*) satisfy the
following constraints.

(I) Parameters:

(1) All constant parameters are nonnegative; e.g., &; , Bm , Tmi , Pir -

(2) The n X n matrix P = ||p;.)| is semi-stochastic; t.e., p;, = 0 and
Dot Pim =0or L

(3) vj: is positive only if p;, is positive.

(4) All time lags 7, are positive.

(53) Pmiqmi = O0forallz,m =1,2, ---,n.

(II) Iniiial Data. All initial data of z;(v) and z;,(v) for v < 0 is nonnegative
and continuous. Moreover we suppose for convenience that z;,(0) > 0 if and
only if p;. > 0.

(III) Inputs. All inputs I;(!) are bounded, nonnegative, and continuous
for ¢ = 0 and vanish for { < 0.

When we say henceforth that parameters, initial data, or inputs are chosen
“arbitrarily”, we will always mean “arbitrarily subject to (I)-(I1I)".

3. Cross-correlated flows on signed networks. The equations (1)-(3) de-
scribe a cross-correlated flow on a signed network 9. Since variants of this
flow have been previously deseribed in several places ([1]-[13]), the following
summary will be brief.

Let a finite directed graph G = (V, E) be given with vertices V = {v, : ¢ =
1,2, ---,n} and directed edges £ = {e;: 5,k = 1,2, --- ,n}. e is dravn as an
arrow facing from the point v; whose arrowhead N ;. touches the point v, . z,(t)
describes a process at v, , whereas z;(!) and ¥,.({) describe processes at N, .

At every time ¢ — 7., the value z.(t — 7.:) at v, creates an excitatory signal
of size

(5) 6|||[xm(t - Tn-n') _I‘mi]+pmi .

In particular, the signal (3) is positive only if the path weight p.; is positive and
if (¢t — 7a;) is greater than the signal threshold I'n; . The signal (3) travels at a
finite velocity along e.; and reaches the arrowhead N,.; at time ¢. It thereupon
interacts with the processes z.; and y.; , and a signal of size

(6) BalZalt = 7mi) —Twil Yms(t)

is released from N,; and reaches v, , where it perturbs z, . All signals from the
various v,, combine additively at v, , yielding the second term on the right hand
side of (1). z,(f) also decays exponentially at a rate «; , and is perturbed by the

input I;(¢) which is under the control of an experimentalist or other external
environmental factors.
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An inhibitory signal of size
(7) [zm(t - Tmi) - rm€]+QHn'

leaves v, at time ¢ — 7,.. . By (I5) of Section 2, either (5) or (7) is identically
zero.

212“>

M(”

Ficure 1.

2mi(t) sits in N ,.; and cross-correlates the signal (3) received by N,.. at time ¢
with the contiguous value z,(#) of v; ; hence the condition (I3). z,,,(t) also decays
exponentially at the rate u;, , which can be zero in-special cases (see [3]).

Umi(t), rather than z,.(¢), controls the excitatory signal that reaches »; from
Um-+ Ymi 1S & ratio of cross-correlators, as in (2), This ratio can be interpreted as
a kind of “competition between associations” or as “lateral inhibition coupled
to cross-correlators”, and is helpful in some form to make perfect learning
possible ((1], [2], [3]). [13] describes systems where z,; replaces Y .

Each of the dynamical variables in (*) has a mathematical, psychological,
and neural name. Thus

x; = 1% vertex function, or
= 1% stimulus trace, or
= 1 gverage membrane potential,

and

yn= (4, k)* edge (or interaction) function, or
= associational strength from v; to v, or
= gverage activity of transmitter control process in N, .

The network components also have qualitative anatomical labels. Thus

v; = 1% cell body cluster,
cluster of axons from v; to v, , and
cluster of synaptic knobs at terminal ends of e;, axons.

€k

N,‘;
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Each choice of the matrices P = ||p;:]| and @ = ||g;.|| defines a different “anat~
omy’’ for a network 9 by picking out the directed paths »; — v, over which
signals can be transmitted and the relative strengths of these signals. Varying
P and Q can dramatically change the qualitative properties of learning, memory,
and recall in a network ([5]-[13]). The task of this paper is, given (1)—(3), mainly
to choose an “anatomy’” (P, Q) that can accomplish the paper’s stated task.
This will not be the only anatomy that can do the job, but it will certainly be a
very simple one, and its deficiencies, where they exist, must be remedied by pass-
ing to more elaborate anatomics; see [12] for an example of a more realistic
anatomy.

4. Outstars. An especially simple example of (*) is given by the equations

®) () = —ex(9) + L),

©) 2(t) = —az(t) + Bzt — Dy + 1.0,
{**) n ~1

(10) yult) = zl.-(z)[gzzm(:)] ;

and |

(11) Aut) = —uzu(t) + Bzt — Dz.(D),

where 1 = 2, 3, - -+, n. (*¥) is characterized by the following parameter choices
in. (%)

a) a; = a,

b) 8: = 8,

c) Ui = u,

d) vix = 6,

e) T = ¢ = 0, and

(12) G o0 ==
1 ) ) .
-1 I t=13%7j.

The probabilistic graph characterized by (12) is drawn in Figure 2.
Hence the network ‘" which obeys (**) is called an outstar with source vertex
v, , sink vertices v, , 1 ¥ 1, and border B, = {v; :7 = 2, - -- , n}. We will construct
the network of this paper using several copies of suitably modified outstars.
The dynamics of 3’ have been studied in [8] and are reviewed in [6]. These
references describe the following theorem, which discusses an infinite sequence
GV, G?, ... | G, .- of outstars. Each outstar represents a “learning sub-
ject” who is matched in prior learning experience (i.e., initial data) with all
other subjects. G differs from G'*~" only by receiving more practice than



58 S. GROSSBERG

Ficure 2.

G**"", and by perhaps being subjected to a different sequence of recall trials.
The theorem means heuristically that in an outstar,

1) “practice makes perfect”,

2) an isolated outstar suffers no memory loss,

3) an isolated outstar remembers without overtly practicing,

4) after moderate amounts of practice, the memory of an outstar spontane-
ously improves,

3) the act of making a correct recall can be repeated as many times as one
wishes without destroying the outstar’s memory, and

6) all errors can be corrected, although the retraining time might be length-
ened due to response interference.
The theorem discusses the probabilities y,(f) of (10) and the correspondingly
defined probabilities

a3) X = 20,
Za Zu(l)

i=2.---,n Wedenote the y,; , X; , and I, functions of G**’ by y{¥*, X, and
I™ respectively.

Theorem 1. Let GV, --- , G, ... | be any sequence of oulstars with equal
but otherwise arbitrary initial data. Let I'™ be any inputs of the form
(14) IV = LOx(t — UN)) + hx(D),
and
(15) IV () = 6:1()x(t — UW@N)),
t =2 .-+ ,n, where

a) {8, 11 = 2, --- , n} 2s a fixed but arbitrary probability distribution (i.e.,
6, =2 0and D ., 6, = 1);
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b) U,(N) and U(N) are any nonnegative and strictly increasing functions of the
integer N = 1,

c) the inpuls I.({) and I(t) are constrained only by the existence of posilive
constants ¢ and T, such that

(16) f e L) dv = ¢
0
and
[
an f TG do 2 o,
1]
fort 2 T, ;
d) the inpul hy(t) is consirained only by being zero until t > U(N); and
1, i t<0
0 x() = { i
0, «f t=0.
Then

A) for every N 2 1, the limits QY = lim,.. XM (t) and P{Y’ = lim,_.y7Y ()
exist and are equal,

B) for every N = land t = U(N), XM (t) and y{Y’(t) are monolonic and are
contained in the interval [mY, M), where

m;Y = min (X{7(CW), v (UWN))),

MY = max (X(TA)), yi"(UWN))),
and
(18) lim m®™ = lim M = o, .
Nesoo N
In particular, by (A) and (B),
Jim Jim XM = lim Eirg yii () = 6 ;
1=2 - ,0

-

C) for ecery N = 1 and 7 # 1, the functions
?){'-'ﬂ. IEI_‘-) = yl{?r) - -X.!N], and gEH} = XE‘N) — 8, )

change sign at most once and not at all if {1~ (0)g™ (0) = 0. Moreover f:*(0)gi™’ (0)
> 0 implies that I ()¢ (t) > 0 and that y,Y’(t) is monotonic for all t = 0.

Remark. In [8], each G is denoted by G**”’ and Theorem 1 is Theorem
5(6).

5. Learning a single spatial pattern of arbitrary complexity. Theorem 1
allows us to use an outstar to learn a spatial pattern of arbitrary complexity.
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Suppose for example that we wish 9" to learn the spatial pattern “A”. First
we must specify the level of spatial descrimination that is desired. If, for example,
A is to be presented within a square region ®, then we can arrange the n — 1
border vertices B, of 9" in a rectangular grid spread over ®. The larger n is
taken, the greater will be 9‘"’s ability to discriminate fine spatial details in
the pattern. Since Theorem 1 holds for any value of n = 2, 3, --- , any pre-
scribed level of spatial discrimination can be guaranteed. Figure 3 depicts the
case n = 10.

Vi

FiGUre 3.

The “A-ness” of the pattern “A” does not depend on the absolute blackness
of its lines, but only on their relative blackness as compared to the surround.
A spatial pattern (in “black”, “white’”’, and “shades of gray’’) is therefore de-
fined as an input function

(19) L) = 6.J(1), T =2 ¢ ,mn,

delivered to B, , where the nonnegative number 6, specifies the relative black-
ness of the portion of the pattern that is seen by v, . The 6,’s can clearly be nor-
malized to form a probability distribution without loss of generality, and then
J(t) specifies the total intensity of the pattern at time {. The pattern “A” is
the same whether or not we view it in steady light or in flickering light, within
substantial physiological limits. J({) can thus oscillate quite wildly without
changing the pattern described by the #.’s. Henceforth we therefore speak of
the spatial pattern 6™ = {0, : 7 = 2, --- , n}.

The inputs I$¥ (1), 7 # 1, in (15) are a spatial pattern 6™ with total intensity
function

J(®) = I{Ox(t — UN)).
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In other words, presentation of the pattern ceases at time ¢t = U(N). Theorem 1
guarantees that if the spatial pattern 6 is presented sufficiently often (i.e.,
N — ), and if the source vertex v, is also perturbed sufficiently often, then a
later perturbation of v, alone will recreate the spatial pattern 6™ on the grid.

6. Respondant conditioning. The above learning paradigm can readily be
interpreted as a form of respondant conditioning. Consider Figure 4.

o {1;} = us
L~ 7

{0i}=ur

Ficure 4.

Figure 4 emphasizes that inputs I.(f) reaching border vertices v; give rise to
outputs O,(t) that are proportional to z;(f), 7 = 2, - - - , n. Suppose moreover that
all inputs I;(¢) have equalled zero for a long time prior to ¢ = ¢, . Then by (8)
and (9) we readily find that

(20) zl’(ta) = 01 1= 1: %5 e

(See [8], p. 673). Now let the spatial pattern 6 perturb B, at times? = ¢, . Then
by (8) and (9),

z,(t) = 0, it i,
and thus
= —az,(t) + 6,J(t),
1 = 2, -+, n, where J(f) becomes positive after ¢ = 2, . By (20) and (21),

z,(f) = 6,7 °' f e*"J(v) dv,
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1 =2, ---,n, (8], pp. 675-677), and thus

: z(t) ~ b

(22) 2':"”('5 = 3,‘ )

fori,7 =2, -+ ,n,and{ > {,. In other words, the spatial pattern imnput to B,
creates the same spatial pattern output from B, . We can therefore call the input
pattern I;(¢) an unconditioned stimulus (US) to B, , and the output pattern
0.:(¢) an unconditioned response (UR) from B, [14]. Learning in an outstar has
the effect of producing the unconditioned response from B, , given an input to
v, alone, by previously pairing inputs to », with unconditioned stimuli to B, .
If we call the input to », a conditioned stimulus (CS), this learning procedure
falls easily within the paradigm of respondant conditioning [14].

7. Complete graph with loops: pattern completion and the rigidity-plasticity
continuum. [7] and [9] describe a different network that can also learn a
spatial pattern of arbitrary complexity, namely a complete graph with loops, in
which every p,; = 1/n, all parameters are independent of their indices, and all
thresholds and inhibitory signals equal zero. Learning in the complete graph
with loops has some interesting properties that are not found in an outstar, such
as the following ones.

a) Patlern completion. After the pattern is learned, even a single “speck
of light” shined anywhere on the grid will suffice to reproduce the entire spatial
pattern on the grid. The complete graph with loops is, in fact, the smallest
embedding field that can do this.

b) Path rigidity vs. plasticity. Qualitative properties of memory in a complete
graph with loops depend on whether or not the number ¢(7) is positive, where

(23) o(r) = u + 2s(r)

and s(r) is the supremum of the real parts of the roots s of the equation
(24) s+ a— B =0.

If o(7) > 0, then

(25) l‘iz: O ltin: X.(), forall 7 and j,

where

B - 0,
2 za(t)

m=1

In other words, the associations converge to a spatial pattern in the absence of
practice, and in fact to the spatial pattern which is “closest” to the graph’s

values y;; and X, when practice ceases. If a(+) < 0, this is false. For example,
if 7 = 0, then
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(26) 0l — 1) = 2 10g (1 + i)

where k; depends on initial data. Thus by choosing ¢(r) < 0 and |e¢(r)| suffi-
ciently large, the associations y,,(f) can be made to remember anything arbi-
trarily well. In this sense, the network is “plastic’” for o(r) > 0 and “rigid” for
a(r) < 0.

Suppose also that « > 8. This condition means heuristically that large outputs
from the graph occur only in response to inputs, for any time lag + = 0. In this
case—which is the only case of physical interest—[9] shows that ¢(7) is a mono-
tone increasing function of + = 0. Hence if a way existed to gradually decrease
the time lag 7 as a function of time, then the sign of o(r) could be made to shift
from positive to negative values if #(0) < 0. Since

27) o(0) = u+2@B — @)
this can happen only if
0= u<2a—p).

Supposing that the length of the edges remains fixed through time, decreasing r
means increasing the signal velocity along the edges. Thus an increase in signal
velocity can take the network from a ‘“plastic’” memory phase to a “rigid”
memory phase capable of better preserving old learning, Since also the best
learning speeds approximate 7 [2], increasing signal velocity also lets the network
learn best at faster presentation rates.

In vivo, a standard method of increasing axonal signal velocity is to myelinate
the axon [13]. Hence an abstract ‘“myelinization” process, if coupled to the dy-
namics of learning in individual “cells” of a complete graph with loops. can help
to speed up learning and to better preserve learned patterns in the cellular
ensemble. A similar phenomenon occurs in complete graphs without loops (.e.,
pi; = 1/(n — 1) if ¢ # j, and p,; = 0), at least in the case r = Qandn = 3
(10]. Here if o(0) > 0, the graph forgets everything it has learned in the absence
of overt practice, whereas if ¢(0) < 0 the graph can be made to remember arbi-
trarily well by choosing |#(0)| sufficiently large. Suppose, for example, that the
excitation parameter 8 and the decay parameter a are equal, but are chosen with
any positive value. Then by (27), any choice u > 0 of the correlational decay
parameter, no matter how small, guarantees that ¢(0) > 0 and hence that the
graph will eventually forget everything that it has learned. Such a graph can
remain an ‘“‘unbiased” input filter for all time if inputs are presented at a suffi-
ciently slow rate compared to the decay parameter ¢(0) > 0, but can remember
arbitrarily well if #(0) < 0 and |#(0)| is taken arbitrarily large.

Neither pattern completion nor dependence on the sign of «(r) occur in an
outstar, which exhibits no pattern completion because p;; = 0 whenever v; is in
B. , and whose memory has the same qualitative properties for all = 0. None-
theless, an outstar has a vital property which complete graphs lack. We will
find that the outstar associations y,;(f) will not learn patterns in the border
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B, during times ¢ for which the source function z,(¢ — 7) is zero. Hence an out-
star can be made to ‘“sample” the patterns playing on B, at prescribed times ¢;
namely, those times for which z,(¢ — 7) is large. This cannot be done by complete
graphs because perturbation of any vertex of a complete graph can indirectly
perturb all other vertices via signals along the edges, as in pattern completion.

8. Approximating any continuous spaﬁe-time pattern by a series of spatial
patterns. A space-time pattern delivered to a grid of vertices v; is created by

an arbitrary array of input functions 7;(¢), ¢+ = 2, -+ , n. If the pattern weights
ou(t) = 40—
22 I.()
7 =2, .-+, n, vary “sufficiently’”’ slowly, however, then we can approximate

the space-time pattern by a series of spatial patterns in the following way.

Suppose for example that each function 6;(f) varies very slowly in intervals
of length £, where if some 6;(¢) is a rapidly varying function, then £ must be chosen
sufficiently small. We wish to construet a network that samples the space-time
pattern briefly every £ time units, and thereby learns this pattern as the series
of spatial patterns

(28) 9("’(155), k= 1; 2 o0y,
where at every fixed time ¢, 8 (¢) is the spatial pattern
(29) {0.():7 =2, .-+, n}.

If we can construct a network that samples briefly every £ time units for any
fixed positive value of £, then our approximation of (29) by (28) can be made
arbitrarily good, by continuity of the inputs I;(f).

A plausible proposal for doing this is readily suggested. Suppose that (29)
18 presented over a time interval of length 7', and that the sampling interval &
is prescribed. Let

(30) K, T) = [E?] e 1,

where [w] is the greatest integer less than w for every real number w. K, T)
18 the number of spatial patterns by which the space-time pattern will be suc-
cessively approximated. Let K (¢, T) outstars

) (1 1)
1y My oo, M

be given, and denote the vertex v; and functions X;, y.; , and I; of 9" by v ; ,
Xu.i s Yr.ii » and I ¢ , respectively. Suppose that

Vi = Unm,;

foreveryk,m = 1,2, --- ,K(, T),and ¢ = 2, -- - , n; that is, each 9" has the
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same border. Let v, , be perturbed by an input pulse of duration less than £ at
a time £ units after v,_,,; is perturbed. See Figure 5.

Figure 5 depicts the series of outstars 9"’ whose source vertices are excited
successively every ¢ time units by “‘axon collaterals’” of the edge leading from
v, - The space-time pattern is presented to the common border B, of these out-
stars by an independent source of inputs and the border gives rise to outputs
0.(t) as before. If the k* outstar could learn the k* spatial approximation to
the space-time pattern, then a later input to v, alone would recreate the entire
space-time pattern at B, by successively activating each source v;,,k =
1,2, -+, K( T). A single control vertex v, could hereby activate an arbitrarily
complicated space-time pattern!

The equations describing the network of Figure 5 are

(31) To(t) = —aezo(t) + I(2),
(32) #1() = —arzi () + Boxo(t — kt),
K(E.T)
(33) ji(t) = _C\’Ii(“') + B ; Ik.l(t = T)yt.u(‘) ot Ii(t)-
(***)

(34) Yendd) = -z*.,.-(z)["z za.l..(r)]“',

me=2

s F
cs =1, s AN 25 Ly
"“\\ v/ I\\ /] | o 4
‘\\‘\ / \ 7! !/,
L 1 I \ £
(3L ] 1 !
| BEEY ! /
\\ 6 ‘I 7
A1
\ o ’ y
\X’/ \ .'l' /
R4 S
+ W
- 1728
e o o o R e o o
® o o o & @ o & @

FIGURE 5.
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and
(35) Z:(t) = —uze () + vt — 7)x(D),
where z,(f) is the common value of all z, (), k = 1,2, -+ , K¢, T),and 7 =
2,3, -, n. (***) is called an outstar avalanche by analogy with Ramén y Cajal’s
description of parallel fiber conduction in the cerebellum as ‘“‘avalanche” con-
duction ([16], p. 196).

Alternatively, (***) can be replaced by the following system of equations:

(31) Zo(8) = '_a'oxu(t) + I(9),

(32) 3'?*,1(3) = "0'1331..1(0 + Boxo(t — kE),

(33’) 1'5&..'(5) = —Ck‘xx..'(g) + Bxk.l(t ‘_' T)yt,u(t) -+ f.’(‘),
(Y )

(34) Yea:(8) =_ 3&.1-‘(0[’2 3&.1:-(5)] )

and

(35') Zeai(l) = —uzp () + v¥2e (8 — 1)z (D).

In this system, each 9" has a separate grid, and the same input I,(f) is de-
livered to the i* border vertex v, ; of each 91" via axon collaterals from the
input source. The #** output from this avalanche is given by

Ki§(.T)

Oi(t) = § Z Ik.i(o~

kel

The following qualitative argument shows that the source vertex v, , in the
kt outstar 91"’ can be activated primarily in a time interval [k, k& + ] of length
less than £, and therefore 911"’ learns primarily the kt spatial approximation to
the space-time pattern reaching B, at time kt + 7.

First note that 9" cannot learn from the border inputs I,(¢) in intervals of
time [t, , T,] for which z,(¢ — 7) = 0, since then by (35),

ék.u(t) = _uzk.li(t);
or
2:(t) 22 772 (L),

and thus by (34)
yk.n‘(f') = yk.u(f.),

whence no new learning has occurred. Supposing that x, and each z, ; is initially
zero, (32) implies that

i (1) = B ™' f e "zo(v — kE) dv
0
0, !

A
aﬂ
v

v
el
sor

p—kE
ﬁue_“’“_"“f ez, () dv, ¢
0
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Thus if z,(v) is large only in an interval of length w < ¢, then
(36) Tea(t) =2 Boe™ A

fort = w + k¢, where

A= f e "zy(v) dv.
[

If moreover the decay rate «, is large, (36) guarantees that
() =0

fort 2 kt 4+ A, where w < X\ < £ If this can be achieved, then MY will learn
only the inputs reaching B, within the interval (k¢ + =, k¢ + = + A]; i.e., only
the k* spatial approximation to the space-time pattern.

It remains only to check that z,(v) can be made large in an interval of length
w < £ By (31),

(37) () = =" f ") db,

<o it suffices to make the duration of I,(v) less than X and to choose the decay
rate a, large.

This argument shows that a sequence of outstars can, at least crudely, learn
a space-time pattern as a sequence of spatial patterns.

0. A better approximation: Signal thresholds eliminatz source noise. The
accuracy of learning by an outstar avalanche is limited by the fact that each
zea(l) > 0forallt 2 ¢, if 2, ,(t,) > 0,k = 1,2, ---, K¢ T). Thus an outstar
9" can never wholly stop learning from the (X 4+ m)'™ spatial approximations
to the space-time pattern, m = 1,2, --. |, K(¢, T) —k. The influence of the
(k + m)® approximation will decrease as the source z. ,(f) exponentially decays
to ever smaller values, but some background interference can never be elimi-
nated.

This difficulty can be readily overcome. We need merely guarantee that very
small source values z, ;(f) never create signals to border vertices. Thus we re-
place (***) by the following system of equations.

(38) Zo(t) = —aeo(t) + Io(0),
(39) Zea(t) = —ay 2y () + Bolxo(t — kE) — Pq]l';

K{(£.T)

(40) z(l) = —azi(f) + B8 2 [t — 7) = D"y + L),

k=1

(41) Yeri(l) = zk.li(t)["é 3&.1-»({)]_1,
(§9)



68 S. GROSSBERG

and
(42) Zrai(t) = —uz () + v[z, Wt = 7) = Tu]"z(D),
where the signal thresholds I', and I'; are positive, k = 1, 2, , K¢, T), and

i = 2, --+ , n. The system (}) eliminates transmission of background noise
from v, to each v, , and from v, , to each v; , 7 % 1, by cutting off signals at the
positive signal thresholds T', and T, , respectively.

Alternatively the following system with K (¢, T') separate grids receiving axon
collaterals from a common source can be used.

(38) Zo(f) = —aozo(t) + Io(h),

(39) Zia(f) = —anzia(f) + Bo[zo(t — kE) — To]",

(40) T, i(8) = —awy,i(f) + Blxe (t — 7) ~ I‘I]*ya.:.-(ﬁ) + I.(¢),
69

(41) yk.l.-(t) = 3#.1-‘(0[2 zk.lm(t)]“ 1

and

(42') z.k.li(z) = —’U?-’k.u(t) <+ 'Y[-’L'k.l(t - T) - I‘J]+Ii.|‘(£)r

where the 7t output from this avalanche is

R(.T)

0.(H) = ¢ :L:; [ze.:() — TT7,

with T' a small, but possibly positive, output threshold.

By (38) and (39), it is clear that an input of finite duration at v, will create a
signal B[z, (¢t — 7) —T,]" of finite duration in e, ,; . (}) and (3) are constructed
from K(¢, T') outstars with positive threshold T, (i.e., T'-outstars), where below
we write T' instead of T'; for simplicity.

(43) i’:(t) = _alxl(z) + Il(t)'

(44) j-"(‘f) = _a:ri(t) + ﬁ[xl(£ - T) - I‘ryu(‘) + Ii(t')!
dp

(45) yn(t) = 31.‘(5)[“22 zlm(f')]_ ’

(46) 21:()) = —uz,,(§) + v[x, (¢ — 1) — T1"z.(8),

1 = 2, +++ , n. We must check that Theorem 1 holds in some form for (}{}). In
fact the following theorem holds, in which we assume to avoid trivialities that
the sums £(f) = X.2., Tn(?) and 2 (t) = D, zia(l) are positive at ¢ = 0.

Theorem 2. Let GV, G®, «-. , G, --. be any sequence of T-outstars with
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equal but otherwise arbitrary tnitial data. Let I{™ be any inputs of the form

(47) T = LOx( — Ui(N)) + hw(),
and
(48) IM) = 0.IOx(t — UWNN)),

t =2, ---,n, where

a) {6;:1 =2, -.-,n} 15 a fired but arbitrary probability distribution,

b) U,(N) and U(N) are any nonnegative and strictly increasing funclions of
N z 1;

c) the inputs I,() and I(t) are constrained only by the existence of positive
constants ¢ and T, such that

(49) f ' e'"“"’[ f e embL ) g — r]+ dv 2 ¢,
and

(50) [ 0wz,

fort z T, ; _

d) the input hy(t) is constrained only by being zero until t > U(N).

Then

A) for every N = 1, the limits Q™ and P{Y’ exist,

B) for every N 2 land t = UN), XM (t) and y!¥’(t) are monotonic and are
contained in the interval [m™, MM, where

(51) lim m™ = lim MY = 9, .

© N—o N=—o
In particular, by (A) and (B),
lim lim X{*(f) = lim lim y;2(¢) = 6; ;

Neoww j—w N—a [—=
C) for every N 2 1 and © 5 1, the functions y3Y°, {', and g¢¥’ change sign at
most once and not at all if {*(0)g™(0) = 0. Moreover, {2¥’(0)g¢™ (0) > 0 tm-
plies that {7 (t)g™ (£) > 0 and that y{Y’ (t) is monotonic for all t = 0.

Remark. If I' = 0, then condition (49) i1s weaker than condition (16). If
I > 0, then the limits Q™ and P{™ are not generally equal.

Proof. The proof of Theorem 2 uses methods developed in (8] and [9]. The
proof is divided into four sections. Section (I) transforms the nonlinear I'-out-
star into a linear system. Section (II) studies memory and recall in a I'-outstar.
Section (III) studies learning trials in a I'-outstar that are not cut-off after a
finite practice interval. Section (IV) cuts off learning after a finite practice in-
terval and pastes the results of (II) onto the end of this interval.
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(I) A I'-outstar becomes a linear system in terms of the probability distribu-
tionsy = {y 11 =2, -, n]andX={X‘:i=2,---,nl.

Lemma 1. The source function z, and the sums =" and z*" depend on time
only through the known inputs I, and I.

Proof. The assertion is obvious for z, by (43). Summing (44) and (45) over
i 5 1 yields

(52) 2P = —az™ 4+ Blz,(t — 7) = T]"+ 1
and
(53) 2 = —uz® 4 vzt ~ 1) — 2™,

Integrating (43), (52), and (53) completes the proof.

Lemma 2. The probability distributions y and X satisfy the following linear
system of equations.

(54) X; = A(yis — XJ) + Bi(6; — X))
and

(55) Ui = Cu( Xy = yu),

where

A = Blzy(d “;r()f)— L ;

I(1)

Bl('g) = m '

and

. .'L'“}(t)
and are hence known functions of time by Lemma 1.

Proof. Since X; = z,/z'”,
. 1 . 0
X; = m\Ti — I V)

which yields (54) after substituting (44) and (52), cancelling and rearranging
terms. Since y1; = 2;:/2'",

1 z'(l)
e = 7o \2e — zlez'_‘nn 1

which yields (55) after substituting (45) and (33), cancelling and rearranging
terms.

C(t) = y[z,(t — 1) — T



LEARNING NETWORKS 71

(II) Memory and recall experiments in [{, , «) are characterized by choosing
I.(t) =0fort = t,and7 = 2, -+- , n.

Lemma 3. Let (11) be given with arbitrary initial data in [t, — 7, t,], border
imputs I,(t) = Ofort = toandi = 2, --- ,n,and any input I,(O). Ifz,(t — 7) £ T
for t in an interval [t, , t;) such that t, < t, < t,, then y,:(f) and X ;(t) are constant
in (b, t). If z,(t — 7) > T for tin [t , t,), then y,;(t) and X (t) are monotonic in
opposite senses with |y,.(t) — X.(t)| monotone decreasing. Thus the limits

[ 1]

and
P“ - ].im y“(t)

=

exist, and X;(t) and y,.(t) lie in the interval [m; , M;] for t = t, , where m; =
min (Xi(io)l yli(tn)) and M; = max (Xi(to)) yu(to))-

Proof. By hypothesis, I(t) = 0 fort = ¢, . Hence (34) becomes
(56) Xi = Ay — Xo).

The proof follows by inspection of (35) and (36) using the facts that A, and C,
are nonnegative and continuous, and are positive or zero according as z,(t —
r) > Torx(t — 7) £ T. (See (8], Theorem 1).

(III) Another change of variables in needed to study learning in (1}), namely
from y,; and X; to f; = y.. — X:and g, = X; — 8, . Throughout this section,
(49) and (50) will be assumed to hold.

Lemma 4. {; and g, satisfy the equations

(57) f.' = _DJ; + Bﬁ?;
and
(58) g: = —B;Q.- + Alfi

where D, = A, + C, .

Proof. Rewrite (54) and (55) in terms of f; and g. .
The oscillations of f; and g, can be studied using the following lemma, in which
f=fi,g=g.‘,a=*Dl,szl,CzAl,andd'—"-'-Bl.

Lemma 5. Let the functions { and g satisfy the differential equations
f=af +bg
g = cf + dg,

where a, b, ¢, and d are continuous functions and the off-diagonal coefficients b and
¢ are nonnegative. Then f and g change sign at most once and not atall if {(0)g(0) = 0.
Moreorer {(0)g(0) > 0 implies f()g(t) > 0 for all t = 0.
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Lemma 5 is proved in [8], p. 663-664. By Lemma 5, two cases arise for large
values of ¢, Either

A) f:(0)g:(t) < 0 for all large ¢,
or

B) f;(0)g:(t) = 0 for all large .

If (A) holds, then by (57) and (58), f; and g. are monotonic in opposite senses
for all large t. Thus the limits lim,.. f;(f) and lim,_., g;() exist, and hence the
limits Q; = lim,.. X;(t) and P,; = lim,.. ¥::(f) exist.

The existence of P,; in both cases (A) and (B) follows by Lemma 5. (55)
implies

'!;’1.' e le.' .

Since C;, = 0, 7,, changes sign at most once and not at all if £,(0)g;(0) = 0. In
particular, ,,(f) is monotonic for large ¢, whence P,, exists, ¢ = 2, -+ , n.
Proving the existence of Q; = lim,.., X;(f) in Case (B) and the equation

P,; = Q; = 6; in both cases requires the following estimates on z‘*’ and 2.

Lemma 6. If the inputs I, and I satisfy (49) and (50), then 'V (t) and z*V (¢)
are bounded from above and below by positive constants.

Proof. Integrating (52) yields

(39) @) = e‘“'[z“’(ﬁ) + j: e Blz,v — 7) — T1" + I@) dv:l .
and thus
.’B“)(t) g f‘ e""“"’l(v) d‘!},

which by (50) yields
zV@#) =c¢c for t=T,.
Since also z'*’(?) is positive and continuous in [0, T,], z*’(¢) has a positive lower
bound in [0, «).
Integrating (53) yields
]
zM(0 = e_"‘[zm(()) + v f e[z, — 1) — T]"zV@) dv] ,
1]

which by (59) implies

2V = ve f‘ ez — 1) — T de

- '}’C&"; f._' e—u:t—-)[xl(v) — rr dv

To—r
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fort 2 T, + 7. Foranyw = Oand s = w + T, , integrating (43) yields

[l ~ 7 do 2

f' e—.t.-.)[f' e~ O () d — r]+ dv=c— We™

W = j: e"'[j;. e ""PLE) df — I‘:‘+ dv.

Thus lettingw = T, — rands =t — 7,

where

2w

-Yc?eul‘ } l 2w
for ¢t = f+ulog y

2

V() =

Hence z'"’(¢) has a positive lower bound in [0, =).
Upper bounds for z**” and 2’ readily follow from the boundedness of I, and I.
These estimates can be used to show that g,,(f) is bounded. (At points where a
two-sided derivative does not exist because of the threshold cut-off of z,(t — 7)
by T, in (55), a one-sided derivative is intended.) By (54) and (55),

lffnl = |01(Xi - yl.-‘) + C;(X.- - ?;1.-)1
< 2G| + C(IX:| + 91
2[|Cy| + Ci(A: + B: + C))I.

Lemma 6 and the boundedness of I imply the boundedness of 4, , By, C,, and
C, , and hence the boundedness of #; .

The boundedness of 7,; and the existence of P,; imply that
(60) lim 3;'1-'(:) =0

[—m

([8], Lemma 4). Hence by (55),
(61) lim C;(i)(X.-(t) — y:.-(t)) = 0.

==

In case (A), (61) implies that
(Qi - Pl.‘) lim 01(0 = 0.

L=

ItA

Thlls eit!her Q.‘ = Pl.' or ].iml_.w Cl(t) = 0. If lim‘_.w Cl (t) = 0, tvhen
(62) lim [z,() = T}* =0
by Lemma 6. But (62) implies

ﬁmfamﬂm@—rr@=m

which contradicts (49). Hence Q. = P;; in case (A).
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We now prove that @, = P,; implies Q; = 8. . Suppose not, and in particular
let @, > 6; . Then there exists a T such that t = T implies

‘9.' - X.‘(t) é "%(Qi - 9.‘)-

We will also show that there exists a constant K, and a positive constant K, such
that

(63) f&@@;m+mz

forall{ = 0. Thus forany S = Tand t = S,

[ Bo6 - x0) @ 5 ~3@ ~ 0) [ Bo v

S 30 - 0) [ B &~ 4@ ~ 0)(K: + Ka)

Now define h; = A,(y,: — X,) and note that since A, is bounded and P,; =
Q: , there exists an S such that

hi(t) = 3(@Q: — 6K,
for ¢t = 8. For such an S, integrating (54) from S to any ¢t = S yields
(64) Xi("’) ‘:C Gi(S) - %(Q- - 3-‘)K2f

where
G = XD + 3@~ 0) [ B
- %Kl(Q-‘ - ‘95) - ‘}(Qc - 9-‘)5:
and thus by (64),
—o = lim X;(f) = 0.

{—>

This contradietion shows Q; < 8, . The contradiction
o =limX,()£1

o0

similarly follows if Q; < 6 .

It remains only to prove (63). Denote the finite upper bound of z'"’ () by M.
Then by (50), forany ¢ > 0 andt =2 T, ,

z() = e'"'[e + ﬂ% j:e‘"l(y) dvj| ,

or

d Mo
Bmgﬁam&+;£em@]
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which yields fort = T, ,

f‘ B,(v) dv = L log [e + ‘1—/1 f‘ e”"I() dv] :

where

c

-1 _ E E Te ar .
L = —log [e-l- . j; e I(v)dv]
By (50),
f B.w) dv = L log (e + Me™)
(1]

> Llog M + Lat,

which completes the proof by setting K, = L log M and, K; = La, and noting
that L, and thus K, , can be made positive by choosing e sufficiently large.

It remains only to consider Case (B). Suppose for specificity that f;(f) = 0
and g;(t) =2 0fort = T, . (The case f.(f) < 0 and g:(!) < 0 can be similarly
treated.) Then y,,(f) = X () = 6, and y,;(f) is monotone decreasing fort = T, .
The equalities 8, = @, = P,, therefore hold if P,;; = 8; . It remains only to con-
sider the case P,; > 6. .

Let X;” = X, — 6, and y{” = y,; — 6, . Then (54) and (55) become

(65) X® = A,@" - X*) - BX?®
and
(66) 77 = C(X” — u"),

where () 2 Ofort = T, .

Lemma 7. Suppose y®@{t) = XP() = 0 fort = T, , where we can choose
T, = T, without loss of generality. Then there existsa pe (0, 1) anda T, = T2(n)
such that

(67) XOW = 1 — Wy — To).
Proof. Integrating (63) in [T, {] yields

(68) X =U0"¢T) + v, 1),

where

(69) UP@¢, T = X2, 1),

(70) VO T) = 27, T) f VO 4,20, T) dv,

T
and

(71) Z(¢, T) = exp [j: (4, + By) dw]-
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Since X{*(T) £ y!(T) for T = T, , (69) implies
(72) Ul T) £ y"(TZ7'¢, T).
(71) is evaluated as follows.

(=7 = 1"
R

_4a (1
= dtlog:z: + o,

and thus
[4%] i)eal
Z(t, T) = z (e’
( Tr) x(l)(T)eaT
(70) now becomes
VT = o [ i A
and since ¥ (v) £ ¥y (T) forv = T,
(73) v T) = y"(DRE T),
where
1 ‘ as
R, T) = x‘”(t)e“‘fr A,zVe™ dv.
Since 4, = B[z.(t — 7) — I1*/z",
1 ¢ + _aw
ROT) = 5 [ Bl — 7 = e as,
and since
ﬁ[$1(?) — ".") - P]+3c" — ecn(i:(ll + ax(l} _ I)
_ %(I(”eﬂ') — Iea"
4) RU,T) =1—27'(t, T) — —> f 1%V do.

V(e Ir
Combining (68), (72), (73), and (74) yields
(75) X" £y (TP, T),

where

1 b
Pit,T)=1-— W fr Ie™ dv (>0).
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By Lemma 6, there exists a positive constant M such that
Pt,T)=1~ Mj: e " 1) do.
Since

¢ = (j;r -+ f;)f““'"](v) dv = é

fort 2 T =2 T,, where I = sup {I():t = 0}(< =),

. T
f 0 dv = ¢ — f e " VI0) dv
T (1]

2 C = _‘Ee-"ﬂ(l—T]
—_— a .

Thus there exists a T, such that

! —alt—e} g_
Le I6) dv 2 §
fort 2T+ T,, and
(76) P(‘! T') <=: 1 - 1, B = %d‘{r

which along with (75) completes the proof.
Lemma 7 will now be used to draw a contradiction if P,; > 6, in Case (B).
Since y,; decreases monotonically to P, , there exists a T3 = T, such that

it = To) = 4u() £ 5 Pui — 6)
fort 2 Ty + T5 . Thusfort = Ty + T,
Yl = X)) = @uil®) — it = T) + @2t — To) — X))
2 —5 (P — 6) + 3" ~ T2) = X0,

which by (67) yields

yu(!) - X.’(“*) % "'";' (Pu - 9-‘) + p(’yu(f - Tz) - 3")

v

g(Pu — 00 (>0).
Thus by (61), lim,.. C,(f) = 0, which contradicts (49). Hence P,; = Q; = 6; in
all cases.

(IV) To complete the proof, we must study the effects of cutting off the learn-
ing interval at a finite time that is followed by recall experiments (inputs to v,
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alone) and/or memory intervals free from inputs. Thus we consider T-outstarg
with inputs given by (47) and (48).

By (A1), ¥’ (t) and X (¢) are contained in [m{*, M™] fort =2 U(N). Two
cases now arise.

Case 1. U(N) £ U,(N). By (II), Q; = Py, = 6, . Since
X" = X and () = v
for ¢ £ [0, UN)],

7) lim XMWy = lim (U =

and thus
lim m®™ = lim M{" = o, .
N-m Newm

In particular,

(78) LLrE 1‘112 XM = ixm lslrg ya () = 6,

Case 2. UN) > U, (N). In this case we will find that X™(U(N)) and

yiY(UN)) lie in [m$”, A3], where

mi’ = min {6, , XV (U,(N)), yii (Uy(N)))
and

M3 = max {6, X{V(U(N), yi (T (V).
Then by (IIT),

XMWY = X(UV) and ¢y P(UWN) = 1,(ULN)),

and since Q; = P,; = 6, ,

lim X:'\.)(Ul(NY)) = lim ylw(Ul(;V))

N=w N—o=

whence (77) and thus (78) follow.
For te [U,(N), UN)],

Xi‘\") - (N)(J('\Fl X‘gm) + B:N](ﬂ.- - XEN\)
and
P = CE® — ™).

Suppose y M (U(WN) =2 XV(U(N)) = 6, . Then gy (@) =2 XV(@) = 6, and
y¥(t) is monotone nonincreasing for ¢ = U,(N). Suppose y},‘"(U (N)) =
X™(U(N)) < 6, . Then y{Y’(¢) is monotone nonincreasing and X (¢) is
monotone nondecreaqmg until XM () = 6, at time ¢t = T, after which y¥(¢) =

X™() z 6 and y{’(f) is monotone nonincreasing for { = 7. In both cases
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XM (U@N)) and ¥V (U(N)) lie in [m{)’, M(Y’]. The two remaining cases can
be similarly treated.
The oscillatory behavior of (¥, £/ and ¢/ readily follows from Lemmas

1 1

3, 4, and 5, and the above argument. Theorem 2 is hereby proved.

Theorem 2 holds in the special case when I, and I are constructed from se-
quences of input pulses, where an inpul pulse is a nonnegative continuous func--
tion that is positive in a finite interval.

Corollary 1. Lel

Il(t) = i Jl(t - tl(k))

k=1

and

10) = 3. It — 1),

where J, and J are inpul pulses thal are positive in (0, \,) and (0, \), respectively,

£
sup,f e ") dv > T,
0

and the sequences {t,(k): k = 1} and {t(k): k = 1} salisfy
a 24k+1) —uk) Ze
and
o Stk + 1) — k) = o

for some posilive numbers e, , €, , 8; , and 8, . Theorem 2 holds for any such choice
of I, and I.

The proof is obvious, amounting merely to showing that the exponentially
weighted sum of an input pulse that is iterated with bounded spacing eventually
has positive upper and lower bounds.

Corollary 1 shows that a single I'-outstar will learn a spatial pattern perfectly
if its source vertex », receives inputs from a v, which is perturbed by a sequence
of sufficiently intense input pulses with bounded spacing.

Corollary 2. Let

L) = [i f‘e'“““_"Jo(ﬂ — to(k)) dv — I‘u]+

and

10) = 3 J¢ — 1),

where J, and J are tnput pulses that are positive in (0, \,) and (0, \), respectively,
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t v +
sup f e‘“‘““"[f e 0T ) dE — I‘g] dv > T,
] 0

and the sequences {t,(k) : k = 1} and {{(k) : b = 1} satisfy
6 Stk+1) —tk e
and
0 2tk + 1) — t(k) < &,

for some positive numbers €, , € , 61, and &; . Theorem 2 holds for any such choice
of I, and I.

LetI,,I,, -+ ,1,, -+ be the nonoverlapping closed intervals of time in
which z,(t — 7) £ I',,andlet J;,Ja, -+, Ja, -+ - be the complementary open
intervals on which z,(t — r) > I, . (55) shows that no learning occurs in the
I'-outstar for t e U,"f_l I, , since then 9,,(¢f) = 0. Corollary 2 shows, nonetheless,
that the I'-outstar can learn any spatial pattern perfectly for t e \JZ., J, , if
it is driven by a series of intense input pulses at v, .

To learn a series of spatial patterns in X (¢, T) I'-outstars, it remains only to
guarantee that the source functions z.,,{{ — 7) of successive outstars exceed
T', in successive, nonoverlapping time intervals, and that these time intervals
occur when the k' spatial approximation to the space-time pattern is arriving
at B, . The first condition is readily achieved by choosing J, so that £ > T, where

T {: : f e-““-'*[f' 0 g ) d — P“T o r,}-

The second condition requires that when the (X + 1)** spatial approximation
arrives at B, , effects of the k former spatial approximations and of inputs from
Uma,m = 1,2, -+« k, shall have substantially decayed. This condition is im-~
plemented by increasing the decay rate a in B, , or by decreasing

sup max |6;(8)}
t i

in intervals of length £, or by decreasing T/, ete. The decay rate of previous spa-
tial approximants relative to the arrival speed of new spatial approximants is
the rate-limiting factor determining accuracy of learning in the I-outstar
avalanche. Another way of improving this accuracy is mentioned in Section 12,
and uses an inhibitory feedback mechanism. Or independent grids can be used.

10. Simultaneous storage of patterns and multimodal learning. A network
that can learn any number of space-time patterns on any number of finite grids
can now readily be constructed from I'-outstar avalanches. Just one control
vertex v, , is needed to activate the m* independent pattern. See Figure 6.

The avalanche with control v,,, can learn from both grids (“modalities”) G,
and G, . The time lags ¥’ and =;* for signals to travel from the source vertex
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V4 N

RSN

FiGure 6.

'}, to G, and from »{%} , to G, respectively, can be different to help synchronize

the learning of patterns in modalities which filter inputs at different rates. The
avalanche with control v, , also learns from G, . Clearly the two avalanches will
not interfere with each other if their controls v, , and v, , are perturbed at widely
spaced times. For completeness, we list the equations of any number of ava-
lanches learning from any number of grids.

(79) B, 0(0 = —0melm, o(f) + Im u('f)
(80) Eoea(t) = —aSlzel ((8) + Bulza. ot — 7 — kEX') — TR,
7)) = —az{"()
(81) Kme
+ ZM ; xSt — — IOy ) + I8,
ne -1
(82) Yot = z,‘..'»!.:.-(t)[E zi.'a’.:,(f)] y
-
and
(83) Zoai(t) = —u 'zl () + yiodlzea(t — 73 — Taltz(),

where z.,, , is the control vertex function of the m® avalanche, z7} , is the source

vertex function of the k' spatial approximant in the m% avalanche lending to
the 7t grid, (" is the 7** border vertex function of the r* grid, y*? ,, is the (1, 7)®
associational strength from the mt* avalanche to the r** grid, etc. The avalanches
indexed by m ¢ M, perturb the r* grid, which has n, vertices. The m* avalanche
has k.., = K, T.,.) spatial approximants leading to the 7t grid. The relative
onset time £ of the m!® avalanche to the 7t grid, and the time lags £ between
successive spatial approximants can vary with (r, m). If a given I'-outstar sends
signals only to a proper subset of a grid’s vertices, then we partition the grid into
two parts and consider each grid as a grid in its own right.
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An alternative to (79)-(83) is given by (79), (80), (82),

B1)  gwet) = ~a 'zl () + Baalzans( = ) = Tl Ymenil) + L7(),

and
(83) £2.l) = —u2B.(t) + YRlESalt — ) = TR 2.

In this case, each I'-outstar (91" ‘,;L in the m* avalanche has its own grid, which
is perturbed by the inputs I{”, 2 = 2, --- , n, , via axon collaterals from the
7% input source. The output to the r* output sink is given by

kmr

Ogrl(f) = & Z Z[ (ry () - l-lr :} '

meMy k=l

where the I'’ are small, but possibly positive, signal thresholds.

11. Diffuse arousal inputs. Several presentations, or trials, of a space-time
pattern are often required before the pattern can be well learned by a I'-outstar
avalanche. Suppose that on the ¢ trial, the first spatial approximation to the
pattern arrives S; time units after the control vertex ¢, emits a signal. Unless
all S; are approximately equal, a given outstar M " in the avalanche will learn
different spatial approximations on different trials, and the avalanche will never
learn any one space-time pattern well. A way must be found, therefore, to
guarantee that v, transmits a signal only if the relative timing of v, signal and
B, input is approximately the same on all trials. This problem does not, of
course, arise when B, receives a single spatial pattern throughout the time
interval of length T during which the signal from v, is active.

Our goal can be reached in either of two ways. The first way supposes that
two sources of inputs to v, exist: a “conditioned stimulus”, or CS, to v, alone,
such as we have previously discussed, and a “diffuse arousal input”, or DAI,
which is controlled by the input sources that create the pattern at B, . We can
easily guarantee that

a) z, will exceed T, , and therefore transmit a signal, only if both the CS and
the DAT arrive at v, almost simultaneously, and

b) the DAI arrives at v, a prescribed time 75 before the “unconditioned stimu-
lus” arrives at B, . Thus the term “arousal” in DAI means that a control vertex
perturbed by a CS and a DAI readies its avalanche to be able to learn from the
inputs reaching the grid a short time later.  is chosen so that a signal from v,
can activate the “synaptic knobs™ of the first spatial approximant in the ava-
lanche before the space-time pattern reaches the grid.

Given (a) and (b), we must also require

¢) the input to v, on a recall trial is larger than the CS to v, on a learning
trial, or else no output from B, could ever oceur during recall.

The DAI must also have the following properties.
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d) Every edge producing an input to B, must send a DAI either directly or
indirectly, to every control vertex v, , . Otherwise there would exist patterns
playing on a small number of grid vertices which could never produce a DAI,
and control vertices v,,,, which could never send signals. Thus the term “diffuse”
in DALI refers to a widespread spatial dispersion of this input to control vertices.

e) If the parameters of two avalanches differ, then the parameters of the DAI
must differ commensurately. T'or example, let two avalanches with control
vertices v;,, and v, , be given such that T,, > T,, . If the same DAI perturbs
both avalanches, then by choosing a DAI such that I'y, > z,, = 2., > T, ,
(a) will be satisfied in the first avalanche and not in the second. The DAI per-
turbing v, , must therefore be chosen smaller than the DAI perturbing v;,, .

Consider a single avalanche with control », and border vertices v; . The sim-
plest choice of the DAI to », ereated by the input source perturbing v, is

I..() = oIt + n),
and the total DAI is

]

I = 3 L)
(34)

- Z I+ 1),

where w and 5 are positive. In other words, v, receives a suitable multiple of the
total input received by the border 5 time units later. n is chosen to satisfy (b)
and o is chosen to satisfy (a). By (a), neither a CS I, nor a DAI I, alone can
exceed T, , but a suitable intense combination I, + I, ean. That is,

(85) 1, = sup, f e UL ) do < Te

and

(86) s Bl f; f I o+ mydy < Ty
whereas

(S7) sup, [0 ' e‘“"—"[fo(u) +a Z Lo + 1) J dv > T,

for sufficiently intense inputs. Other things equal, @ must decrease as n increases
to satisfy (86). Suppose that n is large. Since an input to just one border vertex
v; is a spatial pattern, an intense input to such a vertex, summating as oI;(¢t + )
with the CS I,(¢) at v, , ought to satisfy (87). Since w is very small for large n,
wl;(t + 7) will be small as well, and thus I, in (85) will lie close to T, for large n.
The individual DATI’s wl;(t + ) are therefore small “subliminal”’ contributions
to the total input at v, which suffice to drive z, to suprathreshold values. See
Figure 7.
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Ficore 7.

A second way to accomplish the same goals is to let v, be inhibited by a
“diffuse suppression input”’, or DSI, which is, in turn, inhibited by the input
source that perturbs B, n time units before B, is perturbed. Many statements
about summating excitatory influences to exceed threshold can be replaced by
statements concerning inhibition of inhibiting influences (‘‘disinhibition’’) that
had prevented thresholds from being reached.

12. Feedback inhibition from control vertices. Once v, emits a brief signal
due to summation of a CS and a DAI, no new signals can be allowed to leave v,
until all K¢, T) outstars in the avalanche have been excited by the signal.
Otherwise, the second signal from v, would again cause each T-outstar in the
avalanche to learn from more than one spatial approximation to the pattern.
Thus the DAI sent towards v, by later spatial approximations to the pattern
at B, must never reach v, . The signal from v, itself must therefore inhibit these
later inputs. A release from inhibition will automatically oceur after the signal
from v, has excited the entire avalanche. See Figure 8.

Figure 8 interpolates a vertex v,, between the DAI input and v, , which is
inhibited by a feedback input from »_, . The “+” signs designate ‘‘excitatory”
edges and the ‘“—" signs designate “inhibitory” edges. This particular version
of feedback inhibition of the DAI by v, satisfies equations of the form

(88) 550(“') = "'an-ru(“') + In(t) + ﬁ-ﬂ.[z-&l(i - T+l) - r+l]+!
(89) £-1(t) = —az1() + Bolzo(t — &) — Tol",
and

(90) 55+:(3) = —ﬂfnxn(t) - 3—1[97—1(5 - E—:) - F-1]+ + w z.: I.‘(” 23 ";').

=2
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FIGURE 8.

where w and n must be adjusted to compensate for the additional parameters
and time lags in (88)-(90). The reader can readily construct improvisations on
this theme, say without the inhibitory internode v_, , and can modify the condi-
tions (83)—(87) accordingly.

A very interesting phenomenon occurs if Figure 8 is replaced by Figure 9.
Then the DAI input is inhibited periodically and, for suitable parameter choices,
never reaches a size needed to create a second signal from v, until the space-
time pattern has been wholly delivered. But also the pattern input to B, is
periodically inhibited, and the period of successive inhibitory signals can be
chosen equal to ¢ These inhibitory signals chop up the incoming space-time
pattern into spatial approximations to the pattern with a time spacing of £ units
between successive approximations, and thereby prepare the pattern for learning
by successive I'-outstars in the avalanche. This chopping procedure enables
the avalanche to learn spatial approximations to rapidly varying 6,(f) given
relatively small values of «, since it decreases the length of time intervals during
which large inputs reach B, . During a recall trial, the periodic inhibitory signals
do not affect the grid. Thus the small decay parameter a allows the successively
activated spatial approximants to blend smoothly on the grid, and to thereby
produce a more smoothly modulated output through time than is encapsulated
in the remembered successive spatial approximations of the avalanche.

13. A hierarchy of facilitatory and incompatible behavioral acts. Suppose
that two avalanches perturb the same grid and have each learned different
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space-time patterns. These avalanches must be prevented from thereafter
perturbing the common grid simultaneously. Otherwise, the grid output will
be a noisy mixture of both patterns, and the memory of each avalanche will
be destroyed. This can easily be guaranteed by supposing either that the control
vertices v, , and v, , of the two avalanches mutually inhibit each other, or that
the CS to one control vertex sends an inhibitory axon collateral to the other.
See Figure 10.

FiGure 10.
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A similar competition between control vertices occurs in a signed oulstar ([3],
Section 15).

The mechanisms of Figure 9 and 10 taken together have the following effect.
Suppose that no inputs activate v, , or v, , for some time, so that z, , and z, ,
are approximately zero. Then let v,,, receive a large simultaneous CS and DAI
(and much larger than the CS + DAI received by #..,). By Figure 10, v, ,
inhibits v, , and simultaneously sends a signal to its avalanche. By Tigure 9,
this signal can be made to cut off the DAI’s reaching v, , until the first avalanche
has been played out. This mechanism guarantees that at most one avalanche
will learn from, or perform upon, the grid at any time. The avalanches v, , and
v2 ., are said to control “incompatible” behavioral acts, because the performance
of one interferes with the performance of the other. Usage of the same grid can
be thought of in a behavioral context as control of the same muscle groups, or
way-stations to the same muscle groups.

Avalanches that control different grids need not mutually inhibit each other,
sinice performances of space-time patterns on different grids (i.e., by different
“muscles”) need not interfere with one another (one can talk as one walks).
The spatial distribution of inhibitory connections between control vertices
determines the degree of “incompatibility” between the behavioral acts con-
trolled by the vertices. If for example, v, , inhibits », , much more strongly than
v, , inhibits z, , , then v, , is the dominant control of the pair, since it will activate
its avalanche and inhibit v, , if both receive equal inputs. In any given network,
a hierarchy of incompatible controls playing on common grids will be determined
by the relative strengths of mutual inhibition between the control vertices.

In a similar fashion, controls operating over different grids can facilitate one
another by contributing to each other’s DAL Tor example, suppose that v, ,
aud v, , perform upon different grids, and », , sends a small excitatory signal
to v, , whenever z, , reaches suprathreshold values. Then v, , will be able to
activate its avalanche if it simultaneously receives a US. For example let v, ,
control “sniffing”” in response to a DAI caused by “hunger’” and the US caused
by the smell of “food”, and let »; , control “salivation’. The above remarks sug-
gest that 9T will start “salivating” after ‘“‘sniffing’’ begins with less provocation
than before “sniffing” begins. In this sense, prior search for food has “lowered
I’s salivation threshold.” Actually “sniffing”’” has raised z. , closer to its signal
threshold. This example is admittedly quite naive, but it can be extended to
achieve rather realistic effects.

In short, the geometry of the signed graph with fixed excitatory and in-
hibitory path weights between 9's control vertices determines hierarchies of
incompatible, facilitatory, and merely unrelated output behaviors by . The
avalanches within 91T that succeed in learning or performing at any time will be
determined by the spatial distribution of all conditioned, uuconditioned, and
diffuse arousal stimuli to 91T, along with the feedback excitatory and inhibitory
signals thereby created. The geometry of the signed graph can automatically
forbid the simultaneous occurrence of incompatible behaviors and can favor the
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performance of those behaviors which are most compatible with 9’s internal
states at any time.

14, Novelty and habituation. A “novel stimulus” in this setting has a clear
meaning. It is an input that succeeds in activating some avalanche. Essentially
all other inputs are too weak, or will be suppressed by feedback inhibition, at
some stage in their development. All inputs to a grid give rise to a DAI, but the
DAT will be effective in producing learning only if some avalanche is “ready”
to take heed of it, because of prior preparation by a CS—that is, by other inputs
that determine the network’s “psychological set” at the given time. Even if a
spatial pattern is novel at a given time, repeating it will cause “habituation”—

that is, once an avalanche is activated, it will suppress the DAI of the repeated
pattern.

15. Higher-order controls. The above remarks can be extended in many
directions. For example, a given set of control vertices v, , can be the border ver-
tices of a T'-outstar M{" whose input to v, , is the DAI of », , . See Figure 11.

o
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Ficure 11.

After several trials, the associational strengths y,,,, of 2, can learn any spaiial
pattern of CS’s playing on the control vertices v, , . A later recall input to just
the control vertex of M{" can therefore activate a spatial pattern of space-
time patterns.

16. “On” - “Off” performance of complicated reflexes and ‘‘paying atten-
tion”. The equations for a I'-outstar avalanche can be modified so that no
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learning occurs, and an arbitrarily prescribed “reflex pattern™ is produced when-
ever the control is activated. Merely replace (83) by the equation

(91) 3-:-1].5(5) = 0;

that is, choose the parameters u;, = v;; = 01in (3). Then the system (79)-(82),
and (91) can reproduce any number of reflexes, parameterized by m, on any
number of grids parameterized by r. The m' reflex to the r** grid will be deter-

mined by the sequence {y{’(k)} of spatial approximants with

(92) Yn (k) = Yme.1200), Yme13(0), =+ s Yms.in.),
k=1,2, .-, K¢, T,), where T, is the duration of the m® reflex. Speaking

heuristically, activating the single “control neuron” v, , can reproduce a very
complicated preseribed sequence of inputs to any collection of musecle groups,
and can thereby produce very complicated motor behavior. It is, in fact, well
known that a single neuron can activate complicated reflex acts, say in insects
({17], p. 8).

If the reflex is repetitive, as in walking, then we let the control v, , excite itself
via an axon collateral, thereby forming 2 loop, as in Figure 12.

U AL LN YV

FiGure 12.

Each total activation of the loop corresponds to a single cycle of the reflex. One
can easily choose the parameters of the loop collateral such that its input alone
will not activate another cycle of the avalanche. In this case, supplementary
inputs must bring .., to suprathreshold values—for example, DAI’s due to
91’s motion through the environment. If the parameters are chosen so that the
loop collateral can activate z..,, alone, then “walking” will continue until 9%
sends an inhibitory signal to v,,,, and thereby breaks the cycle. In this case,
“walking” can be viewed as a simple “on”-“off”’” phenomenon: once the control
U, 1s turned on, the cyelic performance of the motor pattern described by (92)
can be carried out automatically until 9 shuts the reflex off with an inhibitory in-
put. During the interim period, 9 need never worry about the ‘“walking” proc-
ess, albeit the pattern (92) can be a very complicated one. 9 can “pay attention’
to other matters entirely.

A simpler case is that of a “clasp” or “clutch’ reflex; for example, a hand closed
tightly around an object for a long time. Here, each successive spatial approxi-
mant ¥ k), in (92) can be chosen the same—.e., is an iterated spatial pattern
activating the clutching muscle groups. This clutch pattern can_be continued
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indefinitely by chosing the feedback loop in Figure 12 so that the time lag needed
for the feedback loop to re-excite v, is approximately equal to the time lag
necded to finish up one cycle of the clutch reflex. Thus the second cycle can
begin just as the eycle ends, unless an inhibitory signal v, drives z, to subthres-
hold values. Sets of outstar avalanches can, in principle, perform much more
complicated patterns, such as learning any number of pieces of piano music.
Of course, they will perform the pieces without any artistic subtlety.

17. Alternative systems. Part II of this paper [13] will study learning of
space-time patterns by avalanches constructed from the following I-outstar.

(92) () = —ax,(t) + L},

(93) 2,(t) = —az(t) + Blzi(t — 7) — W) 'zi(f) + 1:(8),

and

(94) 2:(t) = —uz,;(t) + vzt — 7) — ] z:(0),

1 = 2, - -+, n. This T-outstar does not use the ratios y,;(f). It is therefore more

plausible physically, but also its memory decays exponentially at the rate u.
The ratios

yu(l) = z“(t)[,.; zl,,,(f_)]-l

nonetheless are still remembered essentially perfectly in the absence of practice.

Part II will also discuss avalanches constructed from a I-outstar satisfying
(92), (93) and

95) 2() = [~uz; () + yz:(O)][z,(t — 1) — T)".

This system has perfect memory except during recall trials, and is also plausible
physically. During recall trials, this system undergoes “extinction” of memory.
(95) replaces the decay rate u in (94) by

(96) ulzi(t — 1) — T}

(96) couples the decay of transmitter producing activity to the presynaptic
spiking frequency. Were this coupling to exist ¢n vive, it would presumably be
carried out by the increase in Na" and the decrease in K* within N,; that occurs
during the action potential.

Actually Part II will discuss a large class of closely related equations that
include (92)-(94) and (92), (93), (96) as special cases.
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