
Reprinted from JOURNAL OF ST.'TISTICAL PHYSICS Vol. I, No.2.1~69
Printed in Bel,.~m

Stephen Grossberg1

Received June 13, 1969

Learning of patterns by neural networks obeying general rules of sensory transductl
and of converting membrane potentials to spiking frequencies is considered. A
finite number of cells Ol can sample a pattern playing on any finite number of cells
without causing irrevocable sampling bias if Ol = f:H or Ol () f:H = 1". Total eneJ
transfer from inputs of Ol to outputs of f:H depends on the entropy of the input distril
tion. Pattern completion on recall trials can occur without destroying perfect mem<
even if Ol = f:H by choosing the signal thresholds sufficiently large. The mathemati
results are global limit and oscillation theorems for a class of nonlinear functiolJ
differential systems.
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1. INTRODUCTION

Some networks of formal neurons have been found(1.2) which can learn, sim 1-
taneously remember, and perform individually upon demand any number of spa e-
time patterns of essentially arbitrary complexity. Learning in these networks occ rs
by formal analogs of respondant and operant conditioning, and various mathemati al
phenomena that occur during the conditioning procedure have analogs in psychol g-
ical and physiological data. These papers have shown that a single formal neuron c n

The preparation of this work was supported in part by the National Science Foundation (OP 900~),
the Office of Naval Research (NOOOI4-67-A-O24-0016), and the A.P. Sloan Foundation.

Ii i1 Massachusetts Institute of Technology, Cambridge, Massachusetts. ..ittl.r.
319 ';,,[',



320 Stephen Grossberg

learn and control performance of an essentially arbitrarily complicated ~ ace-time pattern, such as a piano sonata or a dance, if its axon collaterals ter inate on

sufficiently many muscle groups, or on cell bodies which control thes groups.
Encoding an entire pattern in one neuron has a serious drawback, however: perform-
ance of the pattern is wholly ritualistic, or by rote.

Voluntary control of complex behavioral acts by a higher animal is not ritualistic
in any obvious sense. In particular, voluntary control is sensitive to feed ack from
immediately prior performance and internal controls of this performanc , and to
fluctuating environmental demands, both external and internal. An adaptiv response
to feedback becomes possible only if the space-time pattern is learned by a ollection
of cells in which no one cell can irrevocably trigger performance of the pat ern in an
unmodifiable way.

fWe therefore consider below situations in which a finite collection of cells
encodes, or "samples," prescribed segments of a space-time pattern deli ered to a
finite collection ,qJ of cells by an independent input source. If Ot and ,qj ar disjoint,
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then the sampling is said to be nonrecurrent. If, moreover, every cell in Ot samples
all cells in 114, then the sampling is nonrecurrent and full, as in Fig. l(a). Oth~rwise,
the sampling is nonfitll, as in Fig. l(b). In full sampling, each cell in Ot can sample 114
at essentially arbitrary times without interfering irrevocably with the sampling
activity of other cells. In nonfull sampling, the sampling cells cannot saD1ple at
arbitrary times without interfering with each other. Instead, constaints on the onset
times and duration of sampling intervals by particular cells in Ot must be fulfilled to
avoid mutual interference. These constraints have a natural neural interpretation,
which is discussed elsewhere.(S) If Ot = 114, the sampling is said to be completely
recurrent, as in Fig. I (c). If Ot =1= 114 but Ot (') f:H =1= 0, then the sampling is called
incompletely recurrent. We will prove a general theorem about sampling of ~ by Ot
that reduces to these various cases, and which applies to arbitrarily large finite sets Ot
and 114. Once cells in Ot learn the space-time pattern segments that they have sampled,
it is readily seen that they can reproduce these segments on t!4 if they are later activated.
These results therefore amount to a rather general discussion of learning by respondant
conditioning.(4! Applications to operant conditioning are also readily noticed once
the learning mechanism is understood.(2)

The above results on learning can be joined to studies of pattern discrimina,tion(5!
yielding networks capable of performing any number of essentially arbitrarily' com-
plicated output patterns selective.lY in response to any number of essentially arbitrarily
complicated input patterns. The pattern discrimination work introduces networks
whose components can be interpreted as hierarchies of cellular filters, or "feature
detectors," since various cells in these networks can be activated by particular pattern
features. Suppose that some of these cells can send signals to cells which control
given muscle groups. The feature detectors can be interpreted as cells Ot add the
muscle control cells can be interpreted as cells t!4. Our results then show that compli-
cated input features can trigger complicated output responses. It is clear th,t the
cells Ot must be carefully arranged in realistic situations; for example, to avoid the
simultaneous firing of t!4 cells which control incompatible motor acts, and to gualtantee
that the correct Ot cells are activated by feedback.

Two typical network types which motivate our results are given as follow~:

..
Xi(t) = -(XtXi(t) + L [xm(t -'Tmt) -r n.t]+ .8mtZ~l(t)

m-l

(1)
"

-L [xm(t -TmJ -r",J+ 'Ym(z~-l(t) + 1;(t),
m-l

ZJt>(~) =F= -U:t)ZJt)(t) + v~t)[-Yi(t -TSJ -rsJ+ [X;(t»)+, (2)

and
.(-) (t) (-) <-)(t) + (-I [ ( ) r ]+ IZ;i = -"i1 Z;i Vii Xi t -Tit -i1

:-x.(t)]+, 11 (3)

1,2,..., n; or E~. (1)

t~r(t) = {-u~1)z~r(t) + V~r[.~t(t)]+}[Xi(t -'Tit) -riJ+ (4)

where [w]+ = max(~', 0) for any real number w, and i, j =

along with
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and

z~,)(t) = {-u~,)z~,)(t) + V~,)[-Xi(t)]+}[Xi(t -'Ti;) -rii]+. (5)

Elsewhere,(2) systems of this kind are interpreted psychologically, physio~ogically,
and anatomically. In particular, let n cell bodies Vi be given with average potential Xi(t),
i = I, 2,..., n. If ,ski> 0 (Yki > 0), then an excitatory (inhibitory) axon! e~ (eki)

leads from Vk to Vi .Denote the synaptic knob of e~ (eM) by N~ (Nk,), and Ilet z~(t)
(ZkAt» be the excitatory (inhibitory) chemical transmitter activity in N~ (l'r!k""t). The
spiking frequency which is created by Vk in e~ (eki) in the time interval [t, t + dt]
is proportional to [x,,(t) -r ki]+ ,ski ([Xk(t) -r mJ+ YmJ. The time lag for t~e signal
to flow from Vk to N~ or Nk, is Tki, and the spiking threshold of ek1 or e~ is r ki .
We can choose equal excitatory and inhibitory time lags and thresholds I for our
present purposes, since we require that ,skiYki = O. When the signal from v~ reaches
N~ (Nk""t) at time t, it causes release of excitatory (inhibitory) transmitter !into the
synaptic cleft facing Vi at a rate proPQrtional to

[Xk(t -'Tkt) -r kt]+ .BktZkt>(t) ([Xk(t -'Tkt) -r kt]+ 'YktZk7)(t»),

whence the rate of change of XI increases (decreases) proportionately. All e~citatory
(inhibitory) signals are added (subtracted) at Vi, as the term ,_.

t\

L [xm(t -Tmi) -r mi]+ .Bmiz<,:;2(t)
m-l

in Eq. (1) illustrates for the excitatory case. Xt(t) also decays exponeqtially at
the rate ai, and is perturbed by known inputs It(t) that are under conttlol of an
experimentalist or independent cells.

The transmitter production processes are regulated by cross-correlation of
presynaptic spiking frequencies and postsynaptic potentials. For example, z~r(t) in
Eq. (2) cross-correlates the presynaptic signal fJil[X;(t -Tit) -r;t]+ received from Vi
by NJr at time t, with the value [Xt(t)]+ of the contiguous postsynaptic cell Vt ; hence
the term v~r [x;(t -Tit) -rit]+ [Xt(t)]+ in Eq. (2). This cross-correlation is positive
iff V; has a positive spiking frequency at time t -Tit and Vt has a supraequilibrium
potential at time t. z}t)(t) also decays exponentially at the rate u~r. z~)(t) has
a similar interpretation, with the difference that V~j)[Xi(t -T;t) -riJ+ [-Xt(t)]+
in Eq. (3) is positive only if Vt has a subequilibrium potential at time t. Speaking
psychologically, Xt(t) is the stimulus trace of Vt , and z}[I(t) (z}jJ(t») is the ~xcitatory
(inhibitory) associational strength of the association Vi -+- Vt. Elsewhere, 19) I give
references which discuss psychological, physiological, and biochemical implications
of these equations in a more leisurely way.

The mathematical results which we will use to study these network~ include
functional-differential systems of the following form:

Xi(t) = A(W" t) Xi(t) + L Bk(W" t) Zki(t) + Ci(t)
keJ

(6)
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and

(7)Zii(t) = D;(W t , t) z;;(t) + E;(W t , t) ~i(t),

where i E I, j E J, and the finite sets I and J of indices are either disjoint o~ equal,
corresponding to Fig. l(a) and l(c), respectively. The coefficients A, Bi, Di 'land E;
in Eqs. (6) and (7) are continuous functions of t, which can depend nonline~rly on
the vector function W = (Xi' Zii : i E I, j E J) evaluated at all times no later~ than t,

and on known functions of t. The generality of these coefficients means that pe ipheral

sensory transducers and rules for transforming cell-body membrane potenti Is into
axonal spiking frequencies can be of very general form without distorting the ~ltimate
path of learning, once the network anatomy is suitably chosen. Particular tranSt Uction and spiking-frequency rules merely determine the rate at which particular atterns

are learned by particular cells, and therefore the importance of these pattern to the

prescribed cells.
!We will consider questions of energy-entro~y dependence. In the case 1= J,

for example, suppose that a total input C(t) through time is prescribed, an~ that a
definite fraction 8i of this input is delivered to the ith cell, i E I. In other! words,
we deliver a spatial pattern with weights 8i to the cells, and allow them to ~utually
interact. What pattern maximizes (minimizes) the total potential X = Liel Xi land the
total output of the network after the interaction takes place? In various fses of
interest, the pattern with minimal (maximal) entropy maximizes (minimizes) the
total potential and output. Thus, if more order is introduced into the input vattern,
then more output energy is available to drive the processing of these outputs at the
next level of cells. These results are compatible with the fact that minimal (nlaximal)
input entropy minimizes (maximizes) the destructive effects of inhibitory interactions
on the total output, where these interactions exist. Elsewhere,(6) I discuss infibitory
interactions in terms of the principle of sufficient reason. The fact that inputs ill which
a certain amount of order already exists are given preferred treatment enereetically
stands in interesting contrast to the behavior of the closed systems of classical thermo-
dynamics, and to the thermodynamic second law, which presages maximal~ntrOPiC doom for the universe. In making this contrast, it is well to remember hat the

energy-entropy relations in our open systems are a consequence of the t reshold
and quadratic nonlinearities between Xi'S and Zii'S that are the basis of evol tionary

trands, or learning, in these systems.

2. MAIN THEOREM

This section proves that systems which satisfy Eqs. (6)-(7) can learn ::1 spatial

pattern Ci(t) = DiC(t), where LielOi == I and Oi ~ 0, under rather weak C $ ditions. Then, us~ng results giv~n elsewhere,(l.~) this r~sult can ,readily be applied to the problem

of learrung a space-time pattern with vanable weights Di(t) = Ci(t)[2:ksl C,.(t)]-l.

The theorem studies the limiting behavior of the probabilities Xi(t) = Xi(t)[2:k~IXk(t)]-l

and Yii(t) = Zii(t)[L:kel Zik(t)]-l,

!~J
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2.1. Theorem 1

Consider the system given by

x;(t) = A(W, , t) x;(t) + L Bk(W" t) Zk;(t) + 8;C(t)
keJ

(8)

and Eq. (7),

%;;(t) = D;(Wt, t) Zjj(t) + Ej(Wj, t) Xj(t),

where i E I and j E J, and the finite sets I and J of indices are either disjoint or equal.
Let the initial data and inputs be nonnegative and continuous, and let the coefficients

I

be continuous functions of t. Suppose furthermore that:

I. All Bj and E; are nonnegative

2. [ Bj(W", v) dv = ~ only if fro E;(W", v) dv = (X) (9)
0 0

3. [ C(v) dv = 00 (10)
0

~

4. There exist positive constants Kl and K2 such that for all T ;;:?; 0,

if t ~ K2

5. The solution of Eqs. (7) and (8) is bounded. ,
Then all the limits Pfi = limt-+", Yfi(t) and Qi = limt-+'" Xi(t) exist, with! Q, = 8, .

Furthermore, if
fll

(12)

thenPij=Oio
The following proposition is needed to prove Theorem 1, and is stated in terms of

the functions Yj(t)= max{Y;At):j E J}, YAt)= min{YiAt):j E J}, M.{t)= min{ Y At), x(t)},
mi(t) = min{Yi(t), Xi(t)}, Yi.e(t) = max{Yi(t), OJ}, Yi.S(t) = min{Yi(t), OJ},
Mi,e(t) = max{Yj,e(t), XAt)}, mi,9(t) = min{Yi,e(t), XAt)}, XJe)(t) = Xii(t) -°i,
y:e)(t) = Yii(t) -OJ, YJ9)(t) = Yj(t) -OJ, and yje!(t) = Yi(t) -°i, fOri! i E I and

jEJ. I

2.2. Proposition 1

Let Eqs. (7) and (8) be given with nonnegative and continuous initial data, and
suppose for convenience that Lief XJO) > 0 and Lief Z1JO) > 0 if E1 ~ 10. Let the
coefficient functionals be continuous in t, with C and all Hi and EJ nonnegative.
Also, let the solution of Eqs. (7) and (8) exist for all t ;;?; O. Then for every time T ;;?; 0

and all t ;;?; T, I
mj,e(T) ~ ml,e(t) ~ Mj,e(t) ~ Mj,e(T)



Recurrent and Nonrecurrent Signed Networks 325

If, moreover, C(t) = 0 for t ~ T, then

mj(T) ~ mi(t) ~ Mi(t) ~ Mi(T). (14)

The functions Yi,S' .')ii,S, Xi -Y;,s, and Xi -Y;.8 change sign at most once, and
not at all if Yi,S(O) ~ Xi(O) ~ Yi,s(O), If, moreover, C(t) = 0 for t ~ T, then
the functions Yi ,.')i;, Xi -Yi, and Xi -Yi change sign at most once for t ~ T,
and not at all if Yi(T) ~ X.(T) ~ Y;(T), .

It follows from Eqs. (13) and (14) that if Xi(t) and all Yii(t) are attracted close
to Oi by a sufficient amount of practice, then these functions will remain close to 8,
even after practice ceases, See Theorem 2 of my earlier paper(?) for a related discu~sion
in the special case that .

,8x;(t -7)

Lkel Zik(t)
B;(Wt, t) = E;(Wt, t) =

with I = J = {I, 2,..., n}.

2.2.1. Proof of Proposition 1. Equations (7) and (8) can be transformeq into
the following system of equations for X;8) and y}1):

, I

X~8)(t) = L Fk(Wt, t)[Yk~){t) -;- X~8)(t)] -G(t)X:O)(t)
kel

(15)

y}:>(t) = Hi(Wt, t)[X:6>(t) -y~:)(t)J, (16)

(17)

(18)

(19)

(20)

FAW t , t) = B;(W t, t) z;(t)/x(t),

G(t) = C(t)/x(t),

H;(W t , t) = E;(W I, t) x(t)/z;(t),

x(t) = L Xi(t),
ieI

(21)Zi(t) = I Zii(t).
iel

Equations (15) and (16) follow from the equations Xi = X-l(Xj -XjXX-l) and
Yji = Zjl(Zii -ZjiZjZjl) along with Eqs. (7) and (8), and the equations

.jj,tl

(22)x = Ax + L BkZ" + C
keJ

and
(23)7.j = Djzj + Ejx.
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The proof of Proposition 1 can now be completed using Eqs. (15) and (16)
after noting that all coefficients in these equations are nonnegative, and that 6:t) = 0
ifal;t) = O. Cases 1-3 below can be read off from Eqs. (15) and (16) by inspection.
Since C(t) is continuous, C(t) = 0 on a sequence of nonoverlapping intervals
Jf! = [Of!' bf!]' On these intervals, and in particular if C(t) = 0 for t ;:;::, T, Cases 1-3
can be strengthened to yield Cases 4'-6 below. Then the assertions of Pro~osition I
follow by pasting together the assertions of these exhaustive cases.

Case 1. If X~81(tO) ~ 0 and yJ8)(tO) ~ 0, then XJ81(t) ~ 0 and yJ81(t) ~ 0 tor
t ~ to. If, moreover, XJ8)(tO) ~ YJ8)(to), then XJ8)(t) ~ YJ8)(t) and Y,(8)(t) is monotone
decreasing for t ~ to. On the other hand, if XJ8)(tO) > Y,(8)(tO)' then XJ81(t) is mono-
tone decreasing and all y~:)(t) are monotone increasing until the first time t = t1
at which Xi(81(t) = YJ81(t). If no such time exists, all limits Qi and Pi, exist and
Qi ~ Pii ~ 8, .If such a time does exist, the preceding case holds for all t ~ t1 .

Case 2. If X} 8, (to) ~ 0 and Y18)(to) ~ 0, then the arguments of Case I go through

with inequalities reversed, and yJ8) and Y18) interchanged. Thus, either all, limits Qi
and P ii exist, or there is a tl such that y18)(t) ~ X18)(t) for t ;;::: t1 .

Case 3. If YfSI(O) ~ 0 ~ y~S)(O) and YfS)(O) > y~S)(O), then either YfSI(t)
~ 0 ~ yJSI(t) and yi(SI(t) > y~S)(t) for all t ~ 0, or we eventually enter either Case 1
or Case 2. Suppose that the former alternative occurs. If, moreover, XJSI(O) ff; [YJS)(O),
YfSI(O)], then XJSI(t) and all y~~)(t) are monotonic until the first time t = ta at which
XJS)(t) E [y~SI(t), YfS)(t)]. Thereafter, XJSI(t) E [Y1SI(t), YfS)(t)], and y~S)(t) is JDonotone
decreasing, whereas yJ SI(t) is monotone increasing. Both limits Yi( 00) = limt , Yi(t)
and Yi(OO) = limt ,y;(t) therefore exist. If Yi(oo) = y;(oo), all limits Qi and Pii

exist and are equal.
Cases 1-3 exhaust all alternatives,. and readily imply Eq. (13) as weU as the

assertion concerning Yi,s, Yi.S, Xi -Yi,s, and Xi -Yi,S.
For any to, t1, and tin JjO, Cases 1-3 can be strengthened as follows.

Case 4. If Xi(/o) E [y;(tO)' Yi(tO)], then Xt(t) E [Yi(t), Yi(t)] for 1 ~ 10, where Yi(t)
is monotone increasing and Y;(t) is monotone decreasing for 1 ~ 10 ..

Case 5. If Xi(tO) > Yi(to), then Xi(t) is monotone decreasing, and all Yii(t) are
monotone increasing until the first time t = t1 > to at which Xi(t) = Yi(t). Thereafter,
Yi(t) is monotone decreasing and Yi(t) is monotone increasing by Case 1, so that Y i(t)
changes sign at most once, and Yi(t) is always monotone increasing.

Case 6. If Xt(to) <Yt(to), then the conclusions of Case 5 hold withYt replacing Yt
and all inequalities reversed.

Cases 4-6 imply Eq. (13) as well as the assertion concerning Yt, y, ~ X, -Yj,
and Xt -Yt '

In the statements above concerning the derivatives Y j, Y t,S , Yt, and Yt,s ,
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left- and right-handed derivatives are intended where two-sided derivatives do not
exist. The statements concerning mono tonicity do not intend strict m0notonicity,
as the following corollary emphasizes. I

2.3. Corollary 1 ill

Yii(t) = 0 if EAWI , t) = 0, and Xi(t) = 0 if all BAWt, t) = 0 an~ C(t) = O.

The fact that Yii(t) does not vary in intervals for which EAWt, f)! = 0 is the
basis for sampling in our networks. Suppose, for example, that an arbitrary space-time
pattern with weights Oi(t) = Ci(t)[:}:::keI Ck(t)J-1 perturbs the system, but that EAWt , t)
is positive only at times t {or which O;(t) = Oi .Then Y;i(t) will only vary at these
times, and will, apart from momentary fluctuations of Xi(t) toward the values of
other Yki(t) with Ek(Wt, t) > 0, be attracted toward Oi. If, however, $AWt, t) is
positive at times during which .Oi(t) varies throughout an interval [Oi -.£, Oi + £J,
then Y;i(t) will be attracted to a suitable weighted average of all the vaJues in this
interval. It is therefore often desirable either that (1) E;(Wt, t) and onl:y E;(Wt, t)
is positive in intervals of such short length that Oi(t) cannot substantially vary during
these intervals, or that (2) the input energy C(t) is sufficiently great when Ei(Wt , t) > 0
to quickly drive Xi(t) and hence Y;i(t) toward Oi before °i(t) can substantially change.
Elsewhere,(5) it is shown that a sampling interval of prescribed duratton can be
achieved, given even a conditioned stimulus of unlimited duration, using the
mechanism of nonrecurrent inhibition.

By the above paragraph, a space-time pattern with weights °i(t) can be approxi-
mately encoded as a sequence of-spatial patterns with weights Oi(kg),k = .,2,..., for g
sufficiently small, by letting successive probability distributions y(k) == {Yki : i E I}
sample the pattern sequentially for brief intervals in "avalanche" fashion, as discussed
elsewhere.(z.3) The closeness of fit of Yk to the weights Oi(kg) will depend crucially on
the limiting statements of Theorem I, which we now prove.

3. PROOF OF THEOREM 1 II

By Eq. (10) and Proposition 1, Cases 1-3 exhaust all possibilities. It is!convenient
to first consider the subcases of Cases I and 2 in which all limits are known to exist
because X. and all Yii are monotonic for large t. Suppose, for example, that
XJ91(t) > YJ9)(t) and X.(9)(t) ~ 0 for all large t in Case 1, and let these inequalities
hold at all t ~ 0 for convenience. Then by Eq. (15), XJ9) ~ -GX19), and X. decreases
monotonically to a limit Q. ~ 8.. Thus, X19) ~ G«(Ji -QJ, or in integral form,

.1

0 ~ X.(t) ~ X.(O) + «(J. -Q.) J G(v) dv
0

for all t ~ O. Supposing that Q, > 8, , we will derive a contradiction. S,nce x(v) is
bounded above, say, by Kil, '"

.1

Ks(Qt -(JJ In Cdv ~ Xt(O) ~ 1
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for all t ~ o. Thus, J; C dv < 00, which contradicts Eq. (10). A similar! procedure
can be used to show that Qi = fJi in the monotonic subcases of Case 2.

We now show that P ii = fJ i in the monotonic subcases if Eq. (12) holds. Consider
the subcase of Case I. We know that Qi = fJi, and for t > 0 that X}8)(ti) ~ Yi(8)(t)
and X~(8)(t) ~ o. Thus also y~(8)(t) ~ 0 for t> O. Otherwise, there will exist a T
such that Y~(T) > fJi, and consequently Xi(t) ~ Yi(t) ~ Yi(T) > fJ~ tor t ~ T,
since Yi(t) is monotone increasing if X~(t) > Y~(t). In particular, Q~ > 8~, which is
impossible.

We can therefore restrict attention to the case in which X}8)(t) ;;;?; ~ ;;;?; y~(8)(t)
for t> O. Then by Eq. (16), for every j E J, ,[

(24)

5'" 

~ H;(O, -y;,)

and moreover Y;; increases to the limit P;; ~ 9;. Thus, Y;i ~ (9; -P;i) f£; for all
large t, or without loss of generality for all t ~ O. The inequalities ,,]

therefore hold for all t ~ 0, and, consequently,

(25)Hi dv < <X)
Jo

where x(O) ~ O. Equation (II) with T = 0 therefore implies that x(t) ~ Kl for
t ~ K2, and, in particular f: £j dv < 00, which contradicts Eq. (12), and thereby
proves P ji = Of .

Only the non monotonic subcases of Cases 1-3 remain, and these are listed below:

I. YJ9)(t) ~ XiI9'(t) ~ 0 and y!9'(t) ~ 0 with YJ9)(t) monotone decreasing,
for t}> O.

II. y!9)(t) ~ XJ9)(t) ~ 0 and YJ9)(t) ~ 0 with yJ9'(t) monotone increasing,
for t}> O.

III. XiI9)(t) E [y!9'(t), yiI9'(t)] and y!9)(t) ~ 0 ~ Y,19)(t) with yJ9)(t>Imonotone

increasing and YJ9)(t) monotone decreasing, for t }> O. i

Only Case I will be explicitly considered, since Cases II and III can b~ treated by
an analogous method. First, we treat the subcase in which

Bk dv < 00.

if Oi > P ii .Equation (25) will now be shown to contradict Eq. (12), and thus Oi = P ii .
Since Zi is bounded, Eqs. (19) and (25) imply f: xEi dv < 00. But, by Eq. (22),
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Then, for every E > 0, there exists a T. such that t ~ T. implies

L fa) Bk dv ~ E/2.u
keJ I

where .u = sup ZjX-l < 00. By Eq. (15),

X.(s) :..- ~ F GX (s)
i ""'£... k- i,

keJ

and thus for t ~ T. ,

Gdv]+Ifl keJ T.

T.

which by Eq. (26) implies

0 ~ X:8)(t) ~ (E/2) + exp [ -It G dv].
T.

Equation (10) and the boundedness ofx(v) now imply Qj = OJ.
We can now show that all Pij exist in this case. By hypothesis, Xj(t) ~ OJ and

Yi;(t) ~ OJ. Since Qj = OJ, for every E > 0 there exists an S. uch that
OJ ~ Xj(t) ~ OJ + E for t ~ S.. Thus if Yi.(t) > OJ + E for some t ~ S., then
Yi;(t) decreases to a limit Pi; ~ Oi + E, or eventually Yi.(t) ~ OJ + E. In other
words, either Pij exists or Yi.(t) ~ OJ + E for every E > 0 and t sufficier tly large.
Since also y;.(t) ~ OJ, Pi; exists in all cases. If Eq. (12) holds, Pij = 0; C!ln readily
be proved as in Eq. (24) using Q/ = 0/ .

It remains only to consider case I-and cases II and III analogously-if

I. fa) Bk dv = 00.
keJ 0

Partition J into two sets J(l) and J(2) such that j E J(l) iff

I~ B; dv = 00.
0

whenever (dldt) rJ8)(t) =;i: O. Thus, if there exists a T such that either X,(8)(t)l;;;::: YJ8)(t)
for all t ;;;::: T, or X,(8)(t) ~ .1'J8)(I) for aliI;;;::: T, then .1'18)(00) exists. It ~mains to

By Eq. (28) and the nonnegativity of Bj, J(l) * 0, and we can define tht function
y~8) = max{y}~): je J(l)}. '

We now show that rJ81( CX) == limt-o", rJ81(t) exists in Case I if Eq. (28) ho ds. To do
this, note by proposition 1 that
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consider only the case in which Xi(8)(t) -9~8)(t) oscillates at arbitr~ilY large times. Define the functions L(i) = LkeJ(i) Fk, i = 1,2. Then by Eq. (lS~

%:8) ~ L (2) + (9~8) -X:8') Lfl) -GX:8). ,!~, (31)

Suppose that XJ9)(t) ~ YJ9>(t) only in the disjoint sequence of inte~valS [Sit, Tit],
k = 1,2,... .Then :r~9)(Sit) = X~9)(Sit) for all k = 1,2,..., and by Eq (31),

j(~9)(t) ~ L <z)(t), t E [Sit' Tit], l~

which implies

and, in particular,

?~8)(t) ::::; ?~8)(Sik) + fa) LU)(v) dv ~t (33)

by the nonnegativity of L(2)." Since by defin:;;on of J(2), f: L(,)(J) dv < 00, the
function u(2)(T) == f; L(2)(V) dv monotonically decreases to zero as! T -+ 00. Thus
by Eqs. (30) and (33), the bounded and continuous function :P!8)(t) ~s alternatively
monotone decreasing or increasing by an amount that approaches *ro as t 00.
It readily follows that ?!8)( 00) exists.

Inequality (31) along with the existence of Y191( 00) will now be i used to prove

that :P!81( 00) = Qi = (Ji' Then the existence of all P ii for j E J(2) can be proved as in
the paragraph following Eq. (27). Define the functions M = (dfdt)[lo$(X -A -G)]
and N = (dfdt)[log(x -A)]. By Eqs. (17), (18), and (22), Ll1) + L(2) ::j: LkeJFk = M.

Equation (31) therefore implies !i

[j(8) & .L (2) + M:P!8) - NX(8) !Wi (34)i ~ .i , F\

which can be expressed in integral form for any t 1 T ~ 0 as

X:e)(t) ~ p:e)(t, T) + Q~e)(t, T)I+ R(2)(t, T)

using the notation

p~9)(t, T) = X~9)(T) x(T) X-l(t) exp

and

We now estimate each of these terms from above. First note that

R(2)(t, T) ~ U(2)(t, T) == I:L(2)(V) dv.
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This follows from Eq. (22), which shows that oX ~ Ax, and thus that

exp

To estimate Eq. (37), we first eliminate the case in which r~8)(t) < XJ8)(tj for all t ;?- T and some T;?- O. In this case, Eq. (31) implies X~8) ~ £(2) -GXJ81 fo t;?- T,

and since, by Eq. (30), rj8)(t) is increasing for t ;?- T, !
I !tt:

Xi(9) ~ L (2) -f~9)(T)G (4for t;;:t T,

where we can assume that y~8)(T) > 0 without loss of generality. Integrating f:q. (40)
between T and 00 then readily yields the inequality J: C(v) dv < 00, which codtradicts
Eq. (10). I

Thus, either Y18)(t) ~ X18)(t) for all t ~ T and some T sufficiently l~rge, or
Y~8)(t) -Xi(8)(t) changes sign at arbitrarily large times. If Y~8)(t) ~ Xf8)(t) for t ~ [T, S],
then Y~8)(t) ~ Y~8)(T), since Y18)(t) is monotone decreasing. If Y~8)(t) 40es not
exceed XJ8)(t) for all t ~ 0, then there exists a disjoint sequence of intervals [S!k , Tik]'
k == 1,2,..., such that y~8)(Sik) = XJ8)(Sik) and XJ8)(t) ~ Y18)(t) o~ly for

'"t E Uk-l[Sik , Tik]. For any t E [Sik , Tik]' Eq. (32) holds. Pasting these cases together,
we find that

y~8)(t) ~ y~8)(T) + U(2)(T)

for all t ~ T and any

T e Uti == {I: y~8)(t) ~ X:8)(t)}.

Returning to the upper estimate of Eq. (37), note for any T E Ott and aI~ t ~ T,
that Eqs. (37) and (41) yield

)1

Q~8)(t, T) ~ [f~8>CT) + U(2>CT)] V(t, T), (43)

where

Invoking Eq. (11) at any t ~ T + K2 provides the inequality

V(t, T) :..;;;: 1 -p. -x(T) X-l(t) exp [I' A dv]
T
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with,u == (K1/sup x) E «), 1). Bringing together Eqs. (32), (35), (36), (39), (43), and (44),
we finally cqnclude that

0 ~ X181/) ~ U(2)(T) + (I -1"')[y~81T) + U(2)(T)]

for any T E Oti and all t ~ T + K2. Inequality (45) and the existence of :p~8)( 00)
are the basis for all that follows.

Suppose first that there exists an increasing sequence of times Wik E Oti, with
limk-+", Wit = 00, such that limk-+:e :p~8)(Wik) = O. Then by Eq. (45), Qi exists and
equals Oi , and the proof can readily be completed. Supposing that no such sequence
of Wit'S exists amounts to saying that :P~8)(T) ~ 1] for some 1] > 0 and all T E Oti .
But since :P!8)(t) is monotone increasing for all t t/: Oti, we can then assume that
:P!8)(t) ~ 1] for all t ~ O. Moreover, since in Eq. (45), U(2'(T) monotonically appro-
aches zero as T -00, there exists aWl ~ 0 and a v E (0, 1) such that

x:6)(t) ~ (1 -v) y~6)(T) (46)

if Te a; n [WI , 00) and t ~ T + K2. Since trivially,

y.(8)(t) -x18)(t) = :P~8)(t) -:P~8)(T) + :P~8)(T) -X!8'(t)

for any t and T, Eq. (46) shows that

y:6)(t) -X~6)(t) ;;;;,: v y~6)(T) + r~6)(t) -y~6)(T)

if T E Oli (') [W 1 , 00) and t ;;;;: T + K2. Since Oli includes !l.rbitrarily large numbers
and f:8)( 00) exists, Eq. (47) implies the existence of a time W 2 such that

y~81t) -X:91t) ~ (v/2) :r~9)(OO) for t ~ W 2

and, in particular, that

y~S)(t) -X:S'(t) ~ (v77/2) > 0 for t ~ W 2

The inequality (4~) will now be shown to be impossible, thereby completing the
proof.

By Eq. (48), there exists a Ws such that

:f18)(t) ~ :f~8)«X) -(1/7]/8) > :f~8)«X) -(3117]/8) ~ X18)(t), t~ wa'

Thus if for any j E /(1) and any t ~ Wa, y~:)(t):!:;; :p~9)(00) -(v'rl/4), then
y~:)(t) < Yi(9)(t) for all t ~ Wa. In other words, every j E J(l) such that :pJ9)(t) =y~:)(t)
at any t ~ Wa satisfies y~:)(t) -Xf9)(t) ~ v'rl/8 for all t ~ Wa. By Eq. (16),
j~:)(t) :!:;; -(V1J/8) H;(Wt, t) for t ~ Wa, and thus J: Ei dv < 00, which by Eqs. (9)
and (29) contradicts the fact that j E J(l), and completes the proof.
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4. EXCITATORY NONRECURRENT FULL NETWORKS

Such a network of type (3)-(5) satisfies the equations

.tAt) = -cx;x/(t) + I;(t),

m
*;(t) = -CXX;(t) + (J L [X,k(t -Tk) -r k]+ Zk;(t) + 1;(t).

R-l
(50)

and
z;;(t) = -U;Z;i(t) + V/[X;(t -'TJ -rl1+ Xi(t),

where j E J = {l, 2,..., m} and i E I = {m + 1, m + 2,..., m + n}. Theorem
implies the following result for such a system.

clearly

4.1. Corollary 2

Let the system (49)-(51) be given with nonnegative and continuous initial data
m+nand inputs. Suppose Ii(t) = (JJ(t), where Li-m+l (Ji = 1, (Ji ~ 0, and for every

T~O,

if t;;?; Kg

for suitable positive constants Kl and K2 .Also, let the solution be bounded.
all limits Pii and Qi exist, with Qi = (}i' If moreover

then Pii = Oi.
In applications, the inputs often dominate an iterated input, in the sense that

.,
II(t) == L Jlk(t -Ilk)

"-0
where Jik(t) ~ JAt) and 0 < 8i ~ ti,k+l- tik ~ Ei < CX) for all t ~ 0 and k = 0, 1,2,... .
Here JAt) is an input pulse; namely, a continuous nonnegative function that is positive
in a finite interval. The function Jik(t -ilk) can, for example, correspond to an
experimental event with onset time tik' For any such input IAt), Pi; = (}t holds

by Eq. (53).if

SUPt It exp [- CXj(t -v)] lj(v) dv > rj.
0

An excitatory nonrecurrent full network of type (3), (6), and (7) satisfies the
equations (49), (50), and

Z;i(t) = {~UiZii(t) + ViXi(t)}[XAt -'TJ -rJ+.
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Corollary 2 clearly holds for this system as well. Corollary I also holds for the more
general systems in which [x,.(t -'7',.) -r,.]+ is replaced by j,.(x,.(t -'7',.)) with j,.(w)

monotone increasing, continuous, and nonnegative.

5. INHIBITORY NONRECURRENT FULL NETWORKS

Such a network of type (3)-(5) satisfies the equations (49),

m
Xi(t) = -axi(t) -fJ L [Xk(t -Tk) -r k]+ Zki(t) -Ii(t),

k=l

and
Z;i(t) = -U;Z;i(t) + V;[Xs(t -7S) -rs]+ [-Xi(t)]+ (56)

with nonpositive and continuous initial data for the Xi'S, nonnegative initial data for
the Z;i'S, and nonnegative inputs. ~nder these circumstances, Eqs. (55) and (56) can be
transformed into Eqs. (50) and (51) using the change of variables Xi ---~i ~ -Xi.
This is because Xi(t) ~ 0 for all t ~ 0, so that Eq. (56) can be written

Z;i = -UZji + V;[Xi(t -7j} -rs]+ ~i ,

whereas Eq. (55) becomes
m

~.(t) = -cxg.(t) + ~ L [Xk(t -7"k) -rk]+ Zk.(t) + l.(t).
k-l

Thus learning of inhibitory patterns is also a special case of Theorem 1. A similar
remark holds for inhibitory networks obeying Eqs. (49) and (55) and

Zii(t) = {-U;Zii(t) ~ v;[ -x.(t)]+}[x;(t -7";) -r ;]+. (57)

Physiologically speaking, learning of inhibitory patterns can be interpreted as
respondant conditioning of inhibitory transmitter production. Livingston(4) gives

related data.

6. EXCITATORY COMPLETELY RECURRENT NETWORKS

Such a network of type (3)-(5) satisfies Eq. (51) and

where i, j = 1,2,..., n.

6.1. Corollary 3
Let Eqs. (51) and (58) be given with nonnegative and continuous i*itial data and

inputs. Let 1;(t) = Ot1(t), where }::::-lOj = 1, Ot > 0, and 1(t) satisfieS I Eq. (52) with

Kl[l -exp( -<xK1)]-1 > maxt(rt/Ot) i I (59)
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Also suppose that the solution is bounded. Then all limits Q; and Pi; exist with
P;; = Q; = IJ;.

6.1.1. Proof. Let x = L~l Xi' Then by Eq. (58),

x(t) ~ x(nK2) exp[- cx(t -K2)] + exp[- cx(t + nK2 -v)] I(v) dv

for every t E [nK2 , (n + 1) K2] and n = 0, 1, 2, In particular, Eq. (52) implies

x[(n + 1) K2] ~ x(nK2) exp( -aK2) + KI

~ KJ1 -exp[ -cx(n + 1) K2]}[1 -exp( -cxK2)]-I.

Thus, given any 8 > 0, there exists a T a such that

x(t) .~ K1[1 -exp( -CXKz)]-l -S jri~ (60)

for t ~ T8' By Theorem 1, Qt = 8t; and hence for every E > 0, there exfsts a T.
such that

[Xj(t -Tj) -rj]+ ~ [(81 -~) x(t -Tj) -rJ+

for all t ~ T.. Thus for all t ~ max(T6, T.), Eq.. (60) impli.es

[x;(t -7'J -rj]+ ~ [(8j -E){K1[1 -exp( -cxK2)]-1 -8} -rj]+

and by Eq. (59), for sufficiently small Sand E,

Xj(t -'Tj) -r1 ~ (81 -e){Kl[l -exp( -aK2)]-1 -8} -rj > O.

In particular, for every j, f: [Xi(V -1"/) -ri]+ dv = 00, which by Theorem I
implies Pii = 0; .

Condition (59) means heuristically that a sequence of input pulses of sufficient
intensity and/or duration can learn any pattern with positive weights. For «,xampJe,
let I(t) be a periodic sequence of rectangular input pulses with intensity I, duration ",
and interpulse interval fL. Then by Eq. (59), all Pi; = OJ if ,

I(e"A -1)cx(e«(A+,.) -1) > maxi ~ . (61)

Corollary 3 also holds for systems in which [X;(t -'l"J -rJJ+ is replaced
by /;(XAt -'1";», where /;(w) is monotone increasing, continuous, and nonl1egative.
Then Eq. (59) is replaced by the condition min//;(8;K1[1 -exp( -<xKa)]-l) > O.
For example, if /;(w) = log(l + 171 + w), for some 171 > 0, then Pit = 8t given any
positive choices of Kl and Ka in Eq. (52). The appearance of a positive "ill in this
choice of /; means that the network axons are always spontaneously ac~ve, and
therefore continually sample the pattern weights at other cells. "CO
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The upper bound Kl[l -exp( -aK2)]-1 in Eq. (59) can usually be increased by
iterating the equations (51) and (58) at equally spaced discrete time steps. For
simplicity, we consider below the case in which all 'Ti , Ui , and Vi are indep~ndent of j,
and K2 = 'T. co

6.2. Corollary 4 ("Bootstraps") I

Let Eqs. (51) and (58) be given with nonnegative and continuous ~nitial data
and inputs. Let all Ti, Ui, and Vi be independent of j, and suppose I;(t) = O;I(t),
where L;=IO; = 1, (J; > 0, and I(t) satisfies Eq. (52) with K2 = T for soJlDe KI > O.
Define the sequence x(;) by the initial data, Xl-I) = x(O) = 0, and the reculrsion

fJ v ..i
Xli+lI ~ K1 + xlile-BT + -(1 -e-UT) L [fJ,.xliJ -r k]+ L [fJkX<ml -r k]+ jXlm)e<m-iJUTau k-l ".-1 (62)

for i ~ 0, and suppose
K > max;(ri/fJi)

where K = lim SUPi-+'" X(i). Also suppose that the solution of Eqs. (51) land (58) is
bounded. Then all limits Qi and Pii exist with Pii = Qi = (}i. ""

6.2.1. Proof. By Theorem 1, Q, = 8,. Hence, by choosing t suffic,ently large,
Eqs. (51) and (58) can be replaced by ,

n
x;(t) = -<xx,(t) + .B L [8kX(t -r) -r k]+ Zk,(t) + 8,I(t)

k-l

and
Z1i(t) = -UZ1i(t) + V[(}1X(t -r) -rj]+ Xi(t) Ikl

without destroying the validity of an inequality such as Eq. (62) at Whifh we aim.
In particular,

..
x(t) = -ax(t) + ,8 L [B,.x(t -T) -r k]+ Zk(t) + I(t)

k-l

and
.2'1(t) = -uzAt) + v[8jx(t -7) -rj]+ x(t).

Starting with zero initial data in Eqs. (64) and (65), we will find an lasymptotic
minorant for x(t) by iterating Eqs. (64) and (65) every T time units. T~is iteration
yields !

(66)
11

X(i+l) ~ x<t)e-«'" + <.Bfa) L [OkX(i) -r k]+ z~) + K1
k=l

and

(67)Z~l) ~ z~-l)e-UT + (vju)(l -e-UT)[OkX(i) -r k]+ X(l),
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where Zk-1) = O. Equation (67) implies

i
zIt) ~ (v/u)(l -e-u-r) L [(},.x(m) -r ,.]+ X(m)elm-iJu-r

m-l

which, when substituted into Eq. (66), proves Eq. (61).
Since K = lim SUPi"'X) Xli), Eq. (63) implies the existence of an £ > 0 such that

x(tk) ~ £ + max;(ri/8J on an increasing sequence of points tk with limk-+a) tk = 00.
By the boundedness of the solution and inputs, Eq. (58) also implies the boundedness
of x(t). Thus, there exists a 8 > 0 such that x(t) ~ (£/2) + max;(ri/BJ on an
increasing sequence of disjoint intervals [Wk, Wk + 8]. In particular, for every j,
J: [x;(v -'7") -r;]+ dv = 00, which by Theorem 1 implies P;i = 8i.

Speaking heuristically, Eq. (63) says that if K1(1 -e-a1")-l is sufficiently large,
and the gaps between successive values of r k8;;1 are sufficiently small, then the
interaction term L:-l[8~(t -'7") -r k]+ Zk(t) can boost x(t) up by its own
"bootstraps." For example, if, for i sufficiently large, X(i) > max;(r;/Bi)' then

n
K ~ Kl(l -e-IXT)-l + (,8vfcxu) L (OkKJl -e-IXT)-l -r k]2.

k-l

In situations for which /(t) dominates an iterated input, the above conditions
can often be improved by estimating the maximum value of x(t) created by an
individual input pulse, rather than its minimum, and then iterating the maxi~um
estimate. For example, condition (61) can then be replaced by

.!'.co

I(emA -1) em" r
a(em(A+'" -1) > max'i

For such estimates, Xi need not exceed Ti at all large t to guarantee Eq. (12).
The constant K is a lower estimate for the maximum g of the set L( C+) of l~mit

points of the curve C+ defined by x(t) for t ~ O. A limit point L is any point for
which there exists a sequence of times tk with limk-o., tic = 00 such that limlc-o., X(tlc) = L.

Since the solution of Eqs. (51) and (58) is bounded and continuous, L(C+) is a
cpmpact interval (Hartman,18) Chapter 7), and thus g exists. For every j such that
g > Ti(Jjl, Pi; = (Ji' For every j such that Ti(Jjl > g, there exists a Tj such that
[Xj(t) -Tj]+ = 0 for t ~ Ti. Thus, only if g = Ti(Ji1 can f: [XAV) -T1]+ dv < 00
hold without [xAt) --, Tj]+ vanishing identically for all sufficiently large t.

7. COMPATIBILITY OF EQUIDISTRIBUTED PATTERN COMPLETION

AND PERFECT MEMORY

In a nonrecurrent and full network, it follows from Theorem I that each sampling
cell Vi' i E I, can reproduce a given previously learned pattern on all the cells Vi' j E J,
without destroying the memory controlled by other cells Vi, i E I. In a completely
recurrent network, the existence of such a situation is not a priori evident, since
perturbing a single cell Vi can perhaps create signals that reverberate throughout
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the network and thereby destroy the patterns encapsulated in the synaptic knobs.
Indeed, suppose that the network given by Eqs. (51) and (58) has practiced the pattern
with weights (Ji to a high degree; that is, Y;i(t) ~ (Ji when !(t) is shut off. Let an
input pulse be delivered to a single V/c at a later time as a recall trial. Will such pulses,
if repeated sufficiently often in an effort to have the network reproduce its stored
memory, eventually destroy the memory of the pattern weights? The answer is "yes"
if all thresholds r; = 0. The answer is "no" if the thresholds r; are so large that the
signal received at any Vi from VA: is insufficient to create further signals from Vi.
Indeed, by Corollary 1, if all [Xt(t -7"t) -rt]+ = 0, i * k, then all Yi;(t) = 0,
whereas when x/c(t -7") > r /c' YA:i(t) is attracted toward (Jt, and "reminiscence,"
or spontaneous memory improvement, occurs [cf. Grossberg,(9) Part II(l)]. In this
sense, high signal thresholds localize the memory of the network and produce context
effects in response to localized inputs (cf. Grossberg(lOI).

The fact that each cell separately in a completely recurrent network can reproduce
the entire pattern is a form of pattern completion. The fact that any cell can reproduce
the pattern is called equidistributed (or equipotential, or mass action) pattern compe-
tion, and might suggest to an experimentalist surveying such a network that the
memory is somehow diffusely spread over all the cells. Such an experimentalist
might reasonably hope that this "mass action" effect of the cells implies a lack of
specificity in the way memories are stored. Such an impression would be confirmed
if very large test inputs were presented to the networks, since the signal thresholds
could be readily overcome. (Contrast the leveling effects of inhibition, and compare
the effects of electroshock.) But the network dynamics would seem paradoxical if
small test inputs were presented, since then perfect memory, pattern completion, and
specificity of pattern representation can be simultaneously achieved.

In networks such as those in Eqs. (51) and (58), even though the ratios Yki(t)
remember pattern weights perfectly if all signals equal zero, the associational strengths
Zki decay exponentially. To potentiate the amount of transmitter without changing
the weights Y/Ci(t), it suffices, by the above remarks, to let small individual test inputs
perturb each cell VA: separately at widely spaced times. In networks such as those
in Eqs. (54) and (58), by contrast, all Zki(t) are constant in intervals when no signals
are positive; hence, memory is perfect and transmitter potentiation is unnecessary.
The difference between the decay law in Eqs. (2) and in (4) can be heuristically traced
to whether or not Ca++ and Na+ enter all membrane channels through mutually
independent pores.

8. CONDITIONS GUARANTEEING BOUNDEDNESS

This section lists some results that guarantee boundedness of excitatory non-
recurrent full networks and completely recurrent networks. The results show that
arbitrarily large bounded inputs are compatible with an arbitrarily small memory
decay rate uJ if the common decay rate cx of all potentials Xi(t) is sufficiently large.
In both cases, for fixed UI , the input can grow essentially like the square root of cx,
given Eq. (51). Throughout the following discussion, let,8 = max/,8; , r = mini r;,
U = min. u. .and v = maxi VI .
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Then the solution of Eqs. (49)-(51) is bounded. In particular, the solution is bounded if

so that sampling times of each Vi can then be arbitrarily chosen.

I'

8.1.1. Proof. Define U and V by the equations

m
U(t) = -cxU(t) + ,8 L. [Xi(t -TJ -rJ+ V(t) + I(t)

i-I

and [mttKJ '2' J~ ~ '-'"" 'S .

V(t) = -uV(t) + & fl [xAt -7",,) -r,,]+ U(t),

with initial data U = x and V = L::l Zi' Then U ~ x and V ~ Zi for all t ~ O.
Hence, by Corollary 2 of Grossberg, (21 the solution of Eqs. (49)-(51) will be bounded if

2«XU)I/S :;;;:?: E + r. [X;(t -T;) -r;]+
,8 + v ;-1

for all sufficiently large t and some £ > 0, which is true if Eq. (68) holds.
The discussion of completely recurrent networks is more difficult because the

terms [Xi(t -7) -ri]+ cannot be independently controlled. It suffices in applications
to start the system in equilibrium (i.e., with zero initial data), and then to subject
it to an arbitrary collection of suitably bounded inputs.

8.2. Proposition 3

Let Eqs. (51) and (58) be given with zero initial data, and let the total input [(f)

satisfy

11111 &~\~- [~- 8CXU ]1/2
j~ ...,. 4 12 4 (cx + U)2

( CX + U \ 8cxu 3 [9 8cxu ]1/2 j l/2
)X r + 2(,8 + v) 1 (cx + U)I -:2 + "4 -(cx + U)I .
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Then the solution of Eqs. (51) and (58) is bounded. In particular, if IX = (n -1) u
and

II III~ ~ ~ (1 -! )[ r + u[(16f3) -S]1/2 1/2]n 2{{3 + V) n

for some 8 > 0 and n sufficiently large, then the solution is bounded.

8.2.1. Proof. Define U and V by the equations

O(t) = -aU(t) + P[U(t -T) -r]+ V(t) + 1(t)

and
V(t) = -uV(t) + v[U(t -'1") -r]+ U(t),

where U and V have zero initial data. Then U ~ x and V ~ z, for all t ~ o. Consider
the function

.\(t) = -t(cx + u) + t«cx + U)2 -{4cxu -(fJ + V)2 [U(t -'1") -T]2})1/2.

Suppose we could find an E, 0 < E < 1, such that

4au -(,8 + V)2 [V(t -T) -rp .~ E(a + U)2

for 1 ~ O. Then ;\(/) ::;;;: -1J. , where

'rl. = l(cx + u)[1 -(1 -E)1/2]. (74)

Letting N = (U2 + V2)1/2, Corollary 2 of Grossberg(21 implies, for every t ~ 0, that

U(t)~N(t)~'rl;lIIIII,"" (75)

and thus the solution would be bounded. Equation (73) will follow if

r + [4<xu -i~ ~ U)2]1/2 ;;;:: U(t -T).

This inequality, along with Eq. (75), can be achieved for all t ~ 0 if

II III~ ~ "7. Ir + [4cx" -i~ * ")B]1/B I

for some ~ such that 0 < ~ < 1. In particular, letting

F(£) = [1 -(1 -£)1/2] (A -£)1/2

where A = 4IXu(IX -U)-2, it suffices to find an EO such that 0 < Eo < A
maximizes F(E), and then constrain I(t) such that

(IX + U)2
II I"~ ~ r1].o + 2(8 + V)F(EO)'

This we now do.
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To maximize F(e), make the change of variable ~2 = 1 -E, and define

f(~) == F(1 -~2) = (1 -~)(~2 -B)1/2 (77)

where B = 1 -A and vB ~ 8 ~ 1. Computing the value 8 = 80 which maximizes
/(8) for VB ~ 8 ~ 1 by solvingf'(8) = 0 yields

80 = 1 + i(1 + 2B)1/2 = 1 + i(1 -2A)1/2.

Computing £u = I -SUi and substituting in 7]. and F(£) yields by Eq. (76) the
criterion Eq. (69) for boundedness.

We now estimate the right-hand side of Eq. (69) in the case cx = (n -1) u for
fixed u as n becomes large. Denoting this function of n by Gn , we find

Gn = ~ \~ - [2 -8(n -1) ]J/2

!4!2 4 n2

8(n -1) -~ + [~ -8(n -1) ] 1/111/1 )nZ 2 4 nZ j
nu:r+ 

2(11 + v)x (

Gn can be estimated from below as follows. For every n > 1

~ - [~ -8(n -1) ]1/2

2 4 n2
~ ~ (n -1)
~ 3 n8

Furthermore the inequality

I

8(n -1) -.:? + [~ -8(n -1) ]1/211/2

n2 2 4 n2
~ kn-1/2

holds if

which is true for n sufficiently large if k = [(16/3) -8]1/2 for some 8 such that
0 < 8 < 16/3. Thus if IX = (n -1) u and n is sufficiently large,

G ~ ~ (1 -! )[ r + "[(16/3) -~] 1/2
]" ,;;-- 3 n 2(.8 + v) n,

so that Eq. (70) implies Eq. (69) for n sufficiently large, and in turn the boundedness
of the solution.

Boundedness for cases in which Eq. (54) replaces Eq. (51) can be studied using
Corollary 3 of Grossberg,!I) or a direct analysis of oscillations. The latter procedure
is illustrated below. The bound on inputs in these cases can grow like (X rather
than (Xl/I.
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8.3. Proposition 4

Let Eqs. (49), (50), and (54) be given with nonnegative and continuous initial
data and inputs such that

8.3.1. Proof. For times t at which Eq. (78) holds, consider the system

m

(1= -IXU+.8 L W;V~+IIIII~
;=1

and
Vi = (-uV;'+ vU) Wi, (80)

where Wi = [Xi(t -7;) -r;]+,j = 1,2,..., m, having initial data U = x == L::~+I Xi
m+nand Vi = Zi == Li-m+1 Z;i' Then U ~ X and V; ~ Z; thereafter.

Define V = maxi Vi, Divide the time scale into mutually nonoverlapping
intervals Al , BI , A2 , B2 ,... such that uV(t) > vU(t) for t E un An and uV(t) ~ vU(t)
for t E un Bn. For t E An = (anI' an2), uv-1 V(anJ ~ U(t), since V(t) is monotone
decreasing by Eq. (80). For t E Bn = [bnl , bn2]'

which implies

U(b"2) ~ max[U(b.,J. U(E,Bv)-ll1lll..,],

or by the preceding case,

U(b,,+l.J ~ max[U(b"J, U(£,Bv)-lllll1~] .

The boundedness of U readily follows, and, from this, the boundedness of all Vi
by Eq. (80).

9. ENERGY"ENTROPY DEPENDENCE

This section shows that the total potential is maximized (mininuzed) if the
spatial pattern comprising the input has minimum (maximum) entropy. ~rhese results
can be extended to space-time patterns by approximating these patterns by sequences
of spatial patterns. The heuristic point of these results is that the learning mechanism
of the networks allows those environmental demands which have the most order
in them to energetically drive more of the cellular filters needed to discriminate these
demands. Of course, the patterns that are preferred will depend on the network
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geometry. Below we consider cases in which all geometrical asymmetries are eli-
minated by choosing all network parameters independent of j. First, we give examples
of the solutions of nonrecurrent full networks as functions of the pattern weights
8 = (81 , 82"", 8m). Thus let

X~8)(t) = -!X1X~8)(t) + f} IJ(t),

m
X~9)(t) = -IXX~9)(t) + ..B L [XJ9)(t -'T) -r]+ Z~:)(t) + I.(t),

;-1

and
z~~)(t) = -uz~~)(t) + y[x1'(t -T) -r]+ X~8)(t),

where j = 1,2,..., m, and i = m + 1, m + 2,..., m + n. Superscripts "(6)" here
refer only to dependence on the pattern 6, and do not mean x19) = Xt -6t as in
Proposition 1. For example, denote the total potential of Eqs. (81)-(83) by
XC9) = L:':':+l X~9). Let XC8) denote the total potential corresponding to a pattern 6
with some 6; = 1, and let XCI) denote the total potential if all 8; = 11m. Furthermore,
define .0(8) = L~-l 6;2 for all 6.

9.1. Theorem 2 (Majorization of Total Potential)

Let the systems (81)-(83) be given with nonnegative and continuous initial data
and inputs, and the same total inputs J(t) and I(t) = L~~"+l li(t). Let all XI'
j = 1,2,..., m, have zero initial data for convenience. Also, suppose there exist
positive constants 11., v, and (1J and a constant T ,..w such that

where (X ~ u,

and

for t ~ Tuvw. Then for any pattern 8 * S, there exists an Ea8 > 0 and a Ta8 such that

(87)x(')(t) ~ X(9)(t) + E'9 for t ~ T~8

If moreover the threshold r = 0, then for any two patterns 91 and 92 , there exists
an £12 > 0 and a T 12 such that

X(81)(t) ;;;:: X(81)(t) + Ell (88)if .Q(fJ,) > .Q(fJJ and t ~ TlI'

Analogous results hold for x(f) as a minorante for all X(8).
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9.1.1. Proof. By definition,

.f,(4)(t) = -ax(4)(t) + ,a[K(t) -r]+ Z(4)(t) + I(t)

and
Z(8)(t) = -UZ(8)(t) + y[K(t) -r]+ X(8)(t),

(90)
with

K(t) = 0,

= J:-"
t~'T

exp[ -al(t -T -v)] J(V) dv, t>T

whereas

and
Z~8)(t) = -UZ~8)(t) + y[fJ ;K(t) -r]+ X(8)(t).

Letting U = x(&) -XII) and Vi = z(~) -Z(8) we findi ,

m
iT = -aU + .8 I [elK -r]+ Vi + W

i-I
and

Vi = -uVi + y[K- F]+ U+ Yi,

where the functions

and

Yi = yx(9'([K -rJ+ -[elK -FJ+)

are nonnegative. Given initial data such that U ~ 0 and all Vi ~ 0, then Eqs. (93)
and (94) imply U ~ 0 and all Vi ~ 0 for t ~ O. In fact, Eqs. (85) and (89) imply
that x(~}(t) ~ v for T ""'" .Since cx ~ u, Eq. (90) implies that

Z(B)(t) ~ 'Y It e-Ull-fl){K(v) -rJ+ XIB'(V) dv,
0

which by Eq. (86) shows that ZIB)(t) has a positive lower bound for large t. But then
by Eqs. (86) and (93), and the nonnegativity of all Vi, U also has a positive lower
bound for large t, since (}:f= 8. In other words, Eq. (87) holds for suitable EB.8 and TB.8 .

This has been shown only for a fortunate choice of initial data. The proof is
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completed by noting that under the hypothesis (84), any two solutions (X(8.U, Z(8.1)
and (X(8.21, Z(8.21) of Eqs. (89) and (90) are asymptotically equivalent; that is,

lim(x(8.11(t) -X(8.21(t») = lim(Z(8.1)(t) -Z(8.2)(t») = O.
t-+a> t-+a>

This follows readily by the method used in Proposition 2, which in turn depends on
Corollary 2 of Grossberg. (2)

To prove Eq. (88), let r = O. We consider explicitly the case in which all 0,. > o.
Choose the initial data such that OjlZ,.(O) is independent of j. Then the system (89)-(90)
takes the form

X(8/(t) = -ax(8/(t) + .s.Q(8) K(t) ~(8)(t) + I(t)

and
~(8!(t) = -U~(8)(t) + yK(t) X(8)(t),

where ~(t) = :}:;:1 8j1Z~8)(t). Now consider any two patterns 81 and 82 such that
Q(8J < Q(82). Comparison of two solutions (X(8V, ~(8V) and (X(81>, ~(81» given equal
initial data shows that Eq. (88) holds for some E12 and T12. Then asymptotic
equivalence can be proved as above to derive Eq. (88) for all initial data.

The proof of inequality (87) for completely recurrent networks is more difficult
at the stage of demonstrating asymptotic equivalence. A proof is given below in the
case T = 0, under constraints which also guarantee that any two bounded solutions
of the maximizing system do not oscillate relative to one another at large times.
One might hope that analogous results hold for all T > O.

Consider the system

n

-CXX~8) + .8 L [X~8' -r]+ Z~:) + 0,1
;-1

(97)

and
-UZ(B) + '\J [ X(B) -r ]+ X(B)

Jt I 1 t' (98)

defined for any pattern 8 = (81,82"", 8n) and i, j = 1,2,..., n. The pattern 8 = 8
cannot be perfectly learned if r > O. On the other hand, any pattern with positive
weights that approximates 8 can be learned by choosing r sufficiently sma.l1 and I
sufficiently large. Moreover, if 8 = 8 with (say) 8j = 1, and if xI4) and .~I:) have
positive initial data whereas all other X~4) and z}~) have zero initial data, then by
Proposition 1, the system (97)-(98) has the form

,*,(4) = _CX;X(4) + ,a[XI4) -r]+ z14. + I (99)

and
(100)Z(8) = -:-UZ(81 + y[X(8) -r]+ X(81

for all t ;;::; 0, where we have omitted subsctjpts i for convenience. We will now show
that the system (99)-(100) majorizes all systems for which B * 8 under suitable

constraints.
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9.2. Theorem 3

Let the systems (97)-{98) be given with nonnegative and continuous initial data
and inputs such that the solutions are bounded and Eq. (52) holds. Suppose that
cx ~ u and that there exist positive constants ,u and T,. such that

Jt e-a(t-v) [Jv e-a(V-iJI(g) dg -r]+ dv ~ 11.,

0 0

,8vu-lK2 > II Ilia) ,

t~T",

and
2,BVU-2M-2([K -T)+)3 > r, (103)

where K is defined by the recursion of Corollary 4 given 8 = 8, and M is an upper
bound for X(4) given any admissible initial data (cf. Proposition 3). Then given any
pattern 8 # S, there exist positive constants E48 and T 48 such that Eq. (87) holds.

Moreover, the vector functions

(x(~J -X(~I» )f~~) = z(~J -Z(~I)

which compare any two bounded solutions (X(~l), Zl~v) and (X(3v, Z(311) of (99)-(100),
have fixed sign for large t and zero limit as t -+ 00.

A similar comparison theorem holds between X18} and XIII.

9.2.1. Proof. Letting U = X(8) -XIS) and VI = Z(3) -z}S), we find

n
(J = -/XU + .8 L [X~8) -r]+ V; + W

;-1

and
VI = -uVI + V[Xla) -r]+ U + YI,

where
n

W = PZ(3) L ([X(3) -F]+ -[X~9) -r]+)
i-I

and
Y I = VX(B)([X(B) -r]+ -[X~B) -r]+)

are nonnegative if U > O. Thus starting with initial data such that U > 0 and
all Vi > 0 implies U> 0 and all Vi > 0 for t > O. By Eq. (52) with T = 0 and
Eq. (99), X(8) has a positive lower bound for large t. Thus by Eqs. (100) and (101)
and the inequality <X > U, Z(8) has a positive lower bound for large t. By Eqs. (104)
and (105), this will imply the existence of a positive lower bound for U if
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has a positive lower bound for large t. By Eq. (52) and the boundedness of solutions,
Theorem I implies that [X~8) -r]+, [8ix(8) -r]+, where X(3) ~ X(8t. Thus by
Eq. (108), U has a positive lower bound for large t, and Eq. (87) holds for this choice
of initial data.

The above analysis can be carried out for all or ~ O. The proof below of
asymptotic equivalence for solutions of (99}--(IOO) holds only if or = O. We will
assume that r > 0 below, since the case r = 0 is more easily treated.

For simplicity, denote any two solutions of (99)-(100) by (Xl' zJ and (Xz , zz),
and define the variables Fi; = XiXjl -1, Gi; ~ zt/ZZjl/Z -1, and Hii = Ii; -gii for
{i, j} = {I, 2}. We will derive systems of the form

Pii = ai;Fii + bi;Gii, (109)

Pi; = CiiFi; + di;Gii, (lID)

Gi; = -eiiGii + /i;Fii' (Ill)

Gi; = giiGii + hiiHi; , (112)

and
fiii = kiiHi; + miiGii (113)

where for both choices of .{i, j} = {I, 2}, all coefficients are continuous and bounded,
and the coefficients hii, Cii, eii, hi , gii, and hii have positive lower bounds for
large t. For one choice of{i,j} = {I, 2}, the coefficient mil will have a positive lower
bound for large t if Fii(t) Gii(t) ~ O. For the same choice of {i, j} = {I, 2}, the
coefficient dii will have a positive lower bound if also Fi,.(t) Hii(t) ~ 0 for large t.
Moreover, all second derivativesFii, Cii, and Ilii are bounded.

Using these facts, the proof can be completed as follows. Since hii ~ 0 and
hi ~ 0, Eqs. (109) and (Ill) imply that Fii and Gii change sign at most once, and not
at all for t ~ to if Fii(to) Gii(tO) ~ O. Suppose Fii(t) Gii(t) ~ 0 at all large t. Then
since also eii ~ 0, aii has fixed sign for large t, whence limt-+co Gii(t) exists. But Cii is
bounded, and thus also limt-+co Gii(t) = O. Since eii and hi have positive lower
bounds, Eq. (Ill) implies limt-+coFii(t) = Iimt-+co Gii(t).= 0, which completes the
proof in this case. In the only remaining case, Fii(t) Gii(t) ::> 0 for large t.

Supposing that F.,.(t) Gii(t) > 0 for large t implies the nonnegativity of mii'
Using this fact along with the constant sign of Gii for large t shows that Hii changes
sign at most once for large t, and not at all for t ~ to if Gii(tO) Hii(to) ~ O. Suppose
Gii(t) Hii(t) ~ 0 for large t. Then by Eq. (112) and the nonnegativity of gii and hii,
Gii(t) has fixed sign for large t, limt-+co Gii(t) exists, and we argue as above that
limt-+co Gii (t) = limt-+co Hii(t) = 0, which completes the proof in this case.

It remains only to consider the case for which Fii(t) Gii(t) ~ 0 and Gii(t) Hii(t) ~ 0
for large t. In this case, also FiJt) GiJt) ~ 0 and GiJt) HiJt) ~ 0 for large t, by the
definitions of Fii , Gii, and Hil. For at least one choice of {i, j} = {I, 2}, however,
Cii and dii have positive lower bounds. For this choice, Eq. (110) shows that Fil(t) has
fixed sign for large t, which as above shows that limt-+co Fii(t) = limt-+co Gii(t) = 0,
thereby completing the proof. I
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The system (109)-(113) will now be derived. We will show that for large t,

ai; = Xjl(,Brz; -I), hi; = ,BZJX:;l(Xi -r)(l + Ci;),

CiJ = Xjl(.8Z~i -I), diJ = ,BZJXJ1(X~ -T)(2 + C~J -A

e~; = !VX;ZJ1[(X~ -T) Ci""Jl + (XJ -F)], hs = !vxsZjl[(X~ -r) Ci""Jl + x;],

g~J = !vrXJZjl, his = !VXSZ11[(X~ -r) Ci""Jl + x;],

k~J = !VXJZjl[(r -X~) Ci""Jl -Xi] + XJ1(,Brzs -I),

and

mtj = fJZjXi1(X, -r)(l + Ctl) -!VrXIZjl + xi1(fJrzj -I).

First use the equation (fg-l)" = g-l(/ -fgg-l) on the functions Ail = XiX"i1 and
Bil = ZiZ"i1 to prove that for large t,

Ai; = Xjl(I -{3rzJ(1 -AiJ + (3Z1Xjl(Xi -r)(Bj; -1)

and

Bi; = vx!Zjl(A~; -Bi;) + VrX;Zjl(Bii -Aij)'

The term (Xi -r) equals [x, -r]+ for large t by Eq. (103). Then letting C'i = B~~2.
we find .

A'i = xi1(f3rzj -1)(A'j -1) + fJZiXjl(X, -r)(l + C'i)(C'i -1)

and

Bii = vxizI1(A~i + Cii)(Aii -Cii) + VrXiZjl(I + Cii)(Cii -I) + VrXiZjl(I -Aii).

(115)

Equation (114) can also be written as

Aii = xi1[,8rzj -[ + fJZi(Xi -r)](Aii -1) + fJZjXjl(Xi -r)(2 + Cii -AiJ(Cii -1),

(116)
and Eq. (115) can be written in two ways as

Bjj = VXjzjl[XAAjj + C/J) -r](Af; -I)

+ VXjZi1[r(1 + C/J) -XAAjj + CfJ](Cj; -I) (117)

and

Bti = vxizi1[XAAti + C1t) -r](Ati -C1J + vrxizi1Ctt(Ctt -1). (118)
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Since Cii = ICii1BiJ , Eqs. (117) and (118) imply

Ci; = lV.\";zjlC;:;I[(Xi -T) + X;Ci;](Ai; -1)

+ lV.\";ZjlC;:;l[(T -XJ + Ci;(T -X;)](Cii -1)

and

CiS = iVXSZ;lCijl[(Xi -r) + XjCis](A'1 -Ci1) + iVrXSZ;1(C'1 -1).

Now subtract Eq. (120) from Eq. (116) to find

(121)

(A1i -Cii) = {IVXiZjlCijl[(r -xv -XiCii] + xjl(,arZi -1)}(Aii -Cii)

+ [,8ZiXjl(Xi -T)(1 + Cii)

-tVrXiZjl + xjl(,arZi -I)](Cii -1).

~

mij ;;::?: 2,8ZjXjl(Xj -r) -lvrxjzjl + xi1(,8rzi -I)

= X/l(,8Z;Xi -I) + ,8Xizi1[z;X/2(Xi -r) -lv,a-lr].

By Eqs (102) and (103), respectively, (ftz,x, -1) and z,'x,'(x, -n -tvIJ-'r have

positive lower bounds for large I
It remains only to show that do has a positive lower hound for large I if Hil ,,; 0

(ie, C,,;" Ail), given the above choice of{i,j) ~ {I, 2) In thisc...,

dil ;;?- 2z;xi1(Xi -F),

from which the claim is obvious. The proof is therefore complete.
In networks free from learning, such as the nonrecurrent full network

m
x;{t) = -cx.x;{t) + ,B I. [8iK(t) -11+ + /j(t),

;-1

i = m + 1, m + 2,..., m + n, and the completely recurrent network
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i = 1,2,..., n, estimates of the above type can be proved if r > O. If r = 0, x(t) is
independent of B. Such net.works are presumably found nearest to peripheral receptors,
where an unbiased response to experiential inputs is required, as illustrated by the
formal reduction of our equations to the Hartline-Ratliff equation in the absence of
learning, in response to steady-state inputs, and in the presence of purely inhibitory
interactions across cells (Grossberg,(6) Section 13).

J
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