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ABSTRACT

A mathematical model with both a psychological and neurophysiological interpreta-
tion is introduced to qualitatively explain data about serial learning of lists. Phenomena
such as bowing, anchoring, chunking, backward learning, all-or-none versus gradualist
learning, anticipatory versus perseverative errors, accumulation of inhibition, and their
dependence on intratrial interval, intertrial interval, list length, list position, énd
reaction time have mathematical analogs in this model. The proper definitions of
a list’s beginning, middle, and end for the purposes of learning theory are seen to
depend crucially on temporal as well as geometrical factors.

1. INTRODUCTION

A recent series of papers [1-11] has introduced a new theory of
learning in a rigorous mathematical setting. This theory investigates a
collection of mathematical machines M whose laws are derived from
simple psychological postulates [5]. How some of these machines learn,
remember, and recall in various experimental situations has been studied
in previous papers. In this paper we study how one of these machines
learns lists of symbols of arbitrary length presented in a serial fashion at
an arbitrary speed. It is well known that varying list length, intratrial
interval, and intertrial interval in a serial learning experiment can
dramatically change the way in which a list is learned by a human subject.
We will show that qualitatively similar changes often occur in our machine.
Among the phenomena for which we will find a mathematical analog in the
machine are bowing [12], chaining [13], and chunking [14]. The classical
Hovland curves showing different relative benefits of small and large
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intertrial intervals when the presentation rate of the list is fast or slow
qualitatively hold in this machine. The serial response oscillation curve
also qualitatively holds. It is shown that anticipatory errors are more
frequent than perseverative errors for an item in the middle of a long
list, and that very remote errors are roughly equally probable in both the
forward and backward directions.

We see qualitatively in the machine that increasing list length rapidly
increases learning difficulty, and that the degree of skewness of the mean
error curves decreases as list length increases. We also see that one-trial
learning often occurs on short lists.

An empirically familiar order of learning at different list positions is
found, in particular the anchoring effect, which seems to occur around the
first list position. Familiar effects of interpolating a short well-learned
list in a long list arise, particularly a clustering effect in the learning of new
list items, which occurs in both the forward and backward directions
around the short list. Generalizations to bimodal and multimodal bowing
effects are made, and applications to the relative benefits of whole and
part learning are discussed. Various other serial effects also follow from
the same line of reasoning.

The mathematical variables of our machines have been given a
neurophysiological and anatomical interpretation [5-7]. Thus all of the
above-mentioned psychological phenomena can readily be interpreted as
properties of ensembles of nerve cells. We find, for example (as Hull
hypothesized thirty years ago [12]), that a kind of ‘““‘accumulation of
inhibition™ is responsible for bowing in the middle of sufficiently long
lists, We have provided a rigorous mathematical mechanism that gives rise
to this inhibition (the details of which are, to be sure, very different from
those envisaged by Hull) and have shown that this inhibition is lateral
inhibition of the neural variety [15], since our equations reduce in a special
steady-state case to the empirically derived Hartline-Ratliff equation for
lateral inhibition [3, 6]. A derivation of this lateral inhibitory mechanism
based on learning postulates has been given elsewhere [6].

Substantially more important than specific predictions is our analysis
of the concepts of psychological space and time that underly them. These
concepts apply to a much broader class of phenomena than serial learning
data. They are particularly evident in serial learning data only because
these data constitute one of the simplest and most “homogeneous”
examples wherein behavioral units are integrated into a reproducible
spatiotemporal pattern.

Mathematical Biosciences 4 (1969), 201-253



SERIAL LEARNING OF LISTS 203

2. THE MACHINE

The laws of our machine are expressed in the mathematical language
of nonlinear difference-differential equations. Our discussion here aims
at the simplest possible qualitative derivation of our conclusions in order
to clearly show how the various phenomena we have mentioned arise from
a single mathematical mechanism. We will therefore avoid a technical
exposition and will instead study approximations to our machine that
reveal in a simple way the mathematical reasons behind the effects that
we seek to explain. These approximations are, moreover, compatible with
all the rigorous results described in earlier papers.

Before approximating our machine, we must define it precisely. This
is done in the following way. Let us for convenience denote the symbols
from which our lists will be constructed by ry, ry, ..., r,. For example,
if our symbols are the letters A, B, ..., Z of the alphabet, then n = 26
and we can identify r, with A, r, with B, and so on until we reach r,q and
Z. We will call the collection of all the symbols r,, i =1,2,..., n, the
alphabet £. We let L(#) be the collection of all lists constructed from the
alphabet 4, subject to the constraint that no letter in A appears more than
once in any list. For example, whenr; = A,r, = B, ..., ry = Z, the list

ABCDE is in £(#) but the list ABACA is not. We wish to construct the
~ smallest machine that can, in principle, learn any list in £(#£). We denote
this machine by M ().

The first step in defining M(+) is to assign to each symbol r; in £ a
point (or vertex) v; in AL(£). We then connect every point v; to every
distinct point v,, j 7 i, by a directed arrow (or edge) e, in M(-£) that leads
from v; to v, (see [5]).

To every point v; we assign a function x,(¢) that describes a process
taking place in M(4£) at v;. The function x,(¢) is called the point strength of
v, or, alternatively, the stimulus trace of v, We call the arrowhead of e,;
the node N;; of e;;, and suppose that a process, denoted by y,;(¢), is taking
place in AG(#4) at N;;. Process y;;(¢) is called the nodal strength of N, or
alternatively the associational strength of N,;. These assignments are
pictured in Fig. 1. The point strengths and nodal strengths are defined

x; (1) . yi () x;(t)
- > o
Vi eij Nij Vj
FiG. 1
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by the following equations, which we designate system (*).

50 = —ax () + B3 xult = yu® + 1O, (D
yalt) = Zﬁc(‘)l: g_;z,m(t)}" , )
2;(8) = —uzu(t) + Bx(t — 1) (), j#k, (3)
and
2,() =0, @)

i,j,k=1,2,...,n The functions z;(t) can be entirely eliminated from
this definition by observing that (2)-(4) are equivalent to

2,(0) + B f X0 — e dy

y.fk(t) = j # k,

Zmaéi[zjm(o) + ﬁJ:xj(v — 7)x,,(v)e*” dv] ,

and y,(t) = 0, in which z;(¢f) appears only through the initial data
z;x(0). In reference [5] we derived the system (*), among others, from
some simple psychological postulates, and showed how to interpret it as
a flow over the vertices v; and edges e, with cross-correlations occurring
at the nodes N;;. Such a system is called an embedding field. The inputs
I,(t) in (*) describe an experiment performed on A(#4) by an experi-
menter & Each choice of these inputs prescribes a different experiment,

3. THE SERIAL LEARNING PARADIGM

We wish to study how M(4) learns any list from £(#) that is presented
to M(+) in a serial fashion. Suppose, for example, that our list is £ =
rirs - - r. Denote the event of presenting the symbol r, to M:(4) at time

t by mw,(¢). The serial learning of £ by A((#) can now be concisely described
as the following collection of events.

1?1(0), 7’2("”)9 Wa(zw): seey ﬂL((L = I)W);
m((L—Dw+ W), mo(Lw+ W), my((L+Dw+W),... 1 QL—Dw=+ W),
m(2UL—=Dw+2W), 7(QL-1Dw+2W), =,QLw+2W), s GUL—=1D)w+2W);

and so on. Thatis, £ is presented once to M:(4) at a rate w=L. A pause of
W time units then occurs before the list is presented once again at rate
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w1, This process is repeated until a suitable criterion of perfect learning
is satisfied. The entire collection of events is denoted by &(w, W; L).
The first row of this collection, namely,

7,(0), ma(W), m(2W), . . ., mL((L — Dw),
is called the first trial of &(w, W; L) and is denoted by &(w, W; L).
Similarly, the ith row is called the ith trial of &(w, W; L) and is denoted by
&,(w, W; L). w is therefore called the intratrial interval (or presentation
interval)of &(w, W; L), and W is called the intertrial interval (or rest period).

These are, of course, just the usual empirical definitions given in a concise
mathematical shorthand.

J(1

P -
-—

0
FiG. 2

An event m(¢;) has the following effect on A(+£). Suppose that a
function J(¢) with a graph of the general form given in Fig. 2 is defined
once and for all. That is, J(¢) is a nonnegative and continuous function
that is positive in an interval having ¢ = 0 as its left-hand end point. We
call any nonnegative and continuous function f(¢) that is positive in an
interval (4, w), A < u, an input pulse, and 4 is called the onset time of f(z).
Thus J(¢) is an input pulse with onset time zero. The event 7(#,) is realized
in M(#) as the input pulse J(¢ — t,) delivered to v;. Input pulse J(z — 2,)
has onset time ¢ = #, corresponding to the fact that r, is presented to H(+)
at time ¢ = #,. Ina serial experiment &§(w, W; L) consisting of N trials, the
total input to v, is simply the sum of the individual input pulses created by
the events

(i — Dw + (L — Dmw + mW), m=0,1,...,N—1,

corresponding to the N presentations of r; to A(st). That is, fori=
Ly Zssnsnis
N-1
I(WO=3Jt—(i—Dw—(L—1)mw—mW) (5)

m=0
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in (1), whereas fori=k + 1,..., N,
I(t) = 0. (6)

Any choice of inputs such as (5) and (6), for any fixed number N > 1 of
trials and any fixed list length L, L = 2, 3, .. . , n, defines a serial learning
task 6(w, W; L) for AL(A).

4. REVIEW OF SOME EXPERIMENTAL DATA

We will study the effects on AG() of varying the time intervals w and
W while keeping the list length L fixed, and of varying L while keeping w
and W fixed. Some of the qualitative effects that we will find are depicted
in the classical experimental curves of Fig. 3, with the associated Table I.

Mean number of failures

Positions of syllables in series

Fi1G. 3. From C. I. Hovland ([12], page 506).

TABLE 1

@ —@ W =6sec,w=2sec
O-=-=- O W = 2min6sec, w =2 sec
@ ----@ W=6sec,w=4sec
O———0 W =2min 6sec, w = 4 sec

These curves say, speaking roughly, that the middle of a long list is harder
to learn than its beginning and end, and that the beginning is easier to
learn than the end. Moreover, increasing the rest interval W between
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trials improves learning in the list’s middle more when the presentation
rate w™' is fast than when it is slow. If the presentation rate is sufficiently
slow, then increasing the rest period by even a large factor will have a
negligible effect on the learning rate.

A related experimental phenomenon is described by Fig. 4, which

w 12 -
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F1G. 4. From C. L. Hull et al. ([12)], page 503).

shows a “response oscillation” curve; this curve says, speaking roughly,
both that it takes longer to begin to show learning on an item in the
middle of a long list, and that incorrect guessing persists longest in the
middle of the list after some evidence of learning appears. Itis also known
from such studies that: incorrect guesses at the middle of a list can come
from a much broader set of response items than errors at either end of the
list; the frequency of a given error is a monotonically decreasing
function of increases in the remoteness of the error from the stimulus
item; anticipatory errors are more probable than perseverative errors of a
given remoteness; and very remote errors of equal remoteness are
approximately equally probable in both the anticipatory and perseverative
categories. See Osgood ([12], Chapter 12) for further experimental
details.

The very existence of these data immediately broaches some rather
deep general questions concerning psychological space and time. In a
“long™ list, for example, we typically find the bowing effect of Fig. 3 if the
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presentation rate w! is sufficiently fast. In a “short” list, such as AB,
or even ABC, manifestly no such pronounced bowing effect occurs.
How long must a long list be before bowing occurs? Bowing is a phenom-
enon associated with a list’s middle. Yet ABC has a “middle,” namely
B, and no significant bowing occurs while a standard adult learns ABC.
Does this mean that, in some sense, the list ABC really has no middle?
Moreover, the amount of bowing depends on the presentation rate w1 or
on temporal factors. Does the definition of a list’s middle, which seems
to be a purely geometrical problem, really depend on time as well? By
asking questions of this kind, we are led to realize that there exist at least
two answers to such seemingly innocent geometrical questions as the
following. (1) How long is a long list? (2) Where is a list’s beginning,
middle, and end? (3) Where is a list’s boundary and interior ?

Given a list refre,t 1y, the first—and trivial—answers to these
questions are: (1) length = m; (2) beginning = {ri}, end = {r, },
middle = {r } when m is even and {r - m} when m is odd; and (3)
boundary = {rl , 'y, }, interior = {r, Piao - Significant answers
to these qucstlons must, by contrast try to characterlze those features
of the learning process that will guarantee that a long list takes many
trials to learn, that the middle of a list elicits a bowing effect, and that the
boundary of a list is learned at a different rate from its interior. Answers
of the latter kind are in the spirit of Figs. 3 and 4, and we now propose
some answers in this spirit.

5. VARYING INTRATRIAL AND INTERTRIAL INTERVALS IN THE BARE FIELD

For simplicity, we always consider a machine that is initially at rest
and in a state of maximal ignorance. “At rest” means that the initial data
x;(v) =0,forve[—7,0landi=1,2,...,n Thatis, the experimental
inputs of &(w, W; L) are the first to perturb A(4) in a very long time.
“Maximal ignorance” means that z;,(0) = 6 >0, j % k, and z z;,(0) = 0.
That is, all associational strengths y,,(0) with j > k are initially the same.
We now investigate how such a machine learns for various choices of w,
W, and L. A previous paper [5] studied a special case of this problem,
namely, the learning of long lists (say, L = n > 2) whose intertrial and
intratrial intervals are the same (i.e., w = W). That paper showed that
such lists are learned very poorly indeed if w is either too small or too
large. By this we mean the following. We must always evaluate the size
of w relative to at least three factors: (i) the “reaction time” = of Mo();
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(ii) the duration of any event, namely, sup {t: J(¢) > 0}; and (iii) the rate
with which the effects of an event wear off, namely, the relaxation time
of the x,(¢). These three factors determine time scales by which events
are measured within AC(A). When we say that w is “small,” we will
always mean “small relative to these factors.” That is, w is small if events
are presented so quickly to A(#4) that a second event arrives long before
the effects within M(A) of the first wear off.

Suppose, for example, that w = 0. Then [,(t) = L(t) = - - = I,(1),
and since x,(0) = x,(0) and z,;(0) = z;,,(0) whenever i # j and k # m, we
immediately conclude, by symmetry, that all associational strengths
yi(t) with j # k remain equal for all # > 0. Thus no learning occurs in
Mo(oA).

Suppose w is very large; for example, w 2> 7. Then a second event
occurs in M(#A) long after the effect of a prior event wears off. In this
situation, an input to any given v;, j=1,2,...,n — 1, creates equal
signals in each edge e;;, k # j, which reach the node Ny, = time units later.
The effects of the input gradually wear off and the signals also decay to
zero. The next input to M(4) reaches v, ; w time units later, which is long
after the signals have become very small. As a result, all the cross-
correlations z,,(f) with k # j of (3) always remain comparable, and so all
the associational strengths y;(¢t) of (2) always remain approximately the
same. Again very little learning occurs. The earlier article [5] went on to
show that learning is better when w =< 7, since then a signal created by an
input to v, reaches N, ., as the input I, , becomes large at v;,,.

We will now consider more general choices of w, W, and L. Our
previous remarks illustrate that a variation of w and W can have profound
effects on how AG(+) learns. In order to study this variation in its simplest
setting, we now consider the way in which each point v, separately responds
to serial inputs. To accomplish this, we temporarily remove all the inter-
actions between points in A(+). That 1s, we remove all the edges e,
from AG(4) and all the interaction terms

B3 %t = Dyu®

from (1). Then (1) becomes the following system of linear differential
equations.

Xi(t) = "'axi(t) + Ii(t)’ l= 1: 2: I (8 (7)

where x,(0) = 0 and I,(¢) satisfies (5) and (6). The linear equations (7)
are collectively called the bare field of M().
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We will always, for simplicity, constrain the input pulse J(z) from
which the inputs I,(¢) are constructed by the following conditions.

I. J(¢) is positive only in (0, ) where 4 < 7.

That is, the duration of a “simple” event such as w,(z,) is less than the
“reaction time” of M(A).

II. J(t)increases monotonically to a finite maximum and then decreases
monotonically to zero.

That is, since J() represents the occurrence of a simple event, it rises to a
single maximum and then decays.
We will also impose the following condition on w and W.

I1. w < W.

That is, the rest period W between trials is no shorter than the interval w
between successive item presentations.

Each of the constraints I, II, and III can eventually be removed and
leads to obvious modifications in the details of the following analysis.
Consider the first trial &;(w, W; L) of a serial learning experiment per-
formed on the bare field (7). Since the events

7,(0), mo(w), ws(2w), . . . , and 7 ((L — Dw)
occur in succession, the input
L) =J(@ — (i — Dw), R LT U S

occurs at v; with onset time ¢ = (i — 1)w. Since also x,(0) = 0, (7) implies
that

x () = exp(—at)fexp(ow).f(v — (i — Dw) dv,

which after a change of variables becomes

(0, 0<Lt<<(i—Dw
t—(i—1)w
xi(t) = { exp{—aft — (i — Dw]} exp(av)J(v) dv, (8)
\ (—1w<t<(L—-Dw+ W
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In particular,

x()=x(t—(@G—1Dw) fortel0,(L—Dw+ W) 9

andalli=1,2,..., L.
The input pulse J(v) has duration 4, and thus for all £ € [(i — Dw 4+ 4,
(L — Dw + W], (8) implies

x,(t) = Aexp{—a[t — (I — DYw]} (10)
where

A
A =fexp(mv).f(v) dv.
0

That is, x,(f) decays at the exponential rate « A time units after 7,((i — 1)w)
occurs. In short, first x, begins to grow at time ¢ = 0, then x, begins to
grow at time /= w, and in general x,(f) begins to grow at time ¢ =
(i—Dw, foralli=1,2,...,L. No more than 1 time units after its
growth begins, each x,(¢) begins to decay at an exponential rate.

We can say more concerning the pattern of growth and decay of each
x4(t) because J(¢) rises to a maximum and then decays. Indeed, we now
show that x,(¢) also grows monotonically to its maximum and then de-
creases monotonically to zero. By (9), it suffices to prove this for i = 1.
By (7) and (8), we have on trial 1 that

t
X(t) = —aexp(—at) f exp(av)J(v) dv + J(t)

(3
= —‘cxp(—oct)f.l(v) ji exp(aw) dv + J(2).
v
0
Integrating by parts, we find

X1(t) = —exp(—at) [J(t) exp(at) — J(0) —fexp(ocv)](v) dv] + J(@)

or

xX,(1) = exp(—af) f exp(av)J(v) dv. (1D
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We now invoke hypothesis IT concerning J(v), namely, that J(v) > 0 for
small v and J(v) < O for all large v. Thus by (11), X,(¢) > O until after
J(v) changes sign. Thereafter x,(¢) changes sign at most once, since J(v)
changes sign at most once; X;(f) changes sign precisely once since x,(r)

decreases to zero for all £ > 4. We summarize these simple facts in the
following proposition.

Proposition 1. On trial &(w, W; L), x,(t) = x,(t — (i — D)w), i =
1,2,..., L, where :

0, t <0,
t

(a) x,(t) = exp(_at)fexp(ow).](v) dv, O<t(L—-1Dw+ W,

0
(b) x,(¢) rises monotonically to its maximum in (0, 2); and

(¢) x,(t) decays monotonically toward zero thereafter, and at the ex-
ponential rate o« in [A, (L — Dw + W].

Moreover, x,(t)=0,i=L+1,L+42,...,n

One of the most important variables determining learning effects in
AG(#4) is the number of x,(z) that are large at any time ¢. The reason for
this, as we will soon prove, is that the associational strength y,.(¢) for any
J # k measures the size of x,(t — 7)x,(¢) relative to the other x,(t — 7)x,,(2)
values, m # k, in M(A) at time 7. If only x,(t — 7)x,(¢) is large, then
Yie(t) will grow rapidly and learning of the association from r; to r, is
enhanced. If, on the other hand, many x,(r — 7)x,(¢) are large, then
Ya(¢) might well decrease, and learning of the association from 7, to ry, is
jeopardized.

Since the number of x,,(t) that are large at any time ¢ is relevant to
learning in M (#) at that time, we now introduce some simple devices
whereby this number can be discussed in a precise way as a function of
time and of the parameters w, W, and L.

6. ACCUMULATION SETS

For fixed ¢ > 0, let 4,(w, W, L; t) denote the collection of indices i
such that x,(z) > e. That is, 4,(w, W, L; t) tells us which x, are at least
as large as ¢ at time 7. For simplicity, we write 4,(w, W, L;t) as A,(t),
and also let |4,(r)| be the number of indices in A,(f). A4,(¢) is called the
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e-accumulation set at time t, since it contains the indices of all points v, that
have accumulated at least an amount ¢ of point strength at time t. We
always suppose in the following that ¢ is fixed in such a way that 0 < ¢ <
max{x,(t): 1 > 0} to avoid trivialities. The following basic facts con-
cerning A4,(t) on trial &,(w, W; L) are casy consequences of Proposition 1.

The set | 4,(2)] remains zero until the first time 7 = t, at which x,(¢) = &.
Then |4,(¢)] = 1. The index | remains in 4,(¢) until the time ¢ = T, at
which x,(¢) = & for the last time, since by Proposition 1 we can also
assert that x,(¢) > ¢ for all ¢ in [t,, T,]. Since x:() = x.(t — (i — Dw)
foralli=1,2,..., L, the index 2 enters A,(2) at time ¢ = ¢, + w, the
index 3 enters 4,(¢) at time 7 = ¢, + 2w, and in general the index i enters
A t) at time t =1, + (i— )w, i=1,2,..., L. Each of these indices
remains in A(¢) for T, — ¢, time units, and none of the indices i =
L+ 1,...,never enters A,(¢).

The overall behavior of 4,(¢) as # varies within [0, Lw] depends on two
factors, for fixed w, W, and L. These are the amount of time S,=T,—1,
that a single index remains in 4,(¢), and the number of new indices that
are added to A,(¢) during this time. To describe the interplay of these
quantities in a precise way, we introduce the following notation.

For any & > 0, let [£] be the greatest integer that does not exceed &.

Now let
G = ];

G,(w) measures the number of new indices that can be added to A[t)
before an old index drops out. Since S, is independent of w, G,(w) is a
monotone decreasing function of w. We will find that the existence or
nonexistence of a bowing effect in () during the learning of a given
list £ = ryry - - * rp, can be qualitatively decided by examining the absolute
and relative sizes of G,(w), L, and W, To do this, we must distinguish two
cases.

Casel. G,(w) <L —1.

In this case, 4,(t) accumulates the indices 1, 2, ... , G.(w)+ 1 at a
linear rate at the times t =1, t,+ w,..., . + wG,(w). In particular,
|4.(¢)] jumps by 1 every w time units from its initial value O until it reaches
G, (w) + 1.

After time # = T, the “old” index 1 drops out of 4,(¢), but at time
t = w(Gy(w) 4+ 1) the “new” index G,(w) + 2 enters A,(t). Thereafter,
one old index leaves 4,(z) and one new index enters A,(¢) every w time units
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Ge(w)+|

[Aet)]

FiG. 5§

until all indices i =1, 2, ..., L have entered 4,(z). In particular, after
[4,(#)| climbs at a linear rate to its maximum value G,(w) + 1, it thereafter
oscillates with period w between G,(w) + 1 and G,(w) until z = Lw, as in
Fig. 5.

Case2. G, (w)>L — 1.

This case can be treated just as Case 1 was with the following all-
important difference. The list indices i = 1,2, ..., L all enter 4,() as
|4.(t)| climbs to the value L. Thus, |4,(f)| climbs at a linear rate to the
maximum value L, and there is no steady-state oscillatory behavior with
period w, as in Fig. 6.

|Ae(t)]

s — — — — — — ———

| | l l I | i
te fetw f€+2w Lw

Fi1G. 6
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Cases 1 and 2 exhaust all the possibilities for ¢ in [0, Lw], so that in all
cases, A,(t) is a connected set of indices of the form

A,() = {k(0), k(D) + 1, . .. K () + 1 (0}

where k,(¢) and r,(¢) depend on w and L. We summarize these facts in the
following proposition.

Proposition 2. On trial 6,(w, W; L), for t in [0, Lw], A,(¢) is a con-
nected set of indices such that

(a) indices are added to A,[t) in chronological order at times t = t,,
t,+w,...,t,+ (L — Dw, where t, = min{¢: x,(t) = ¢}, and

(b) each index remains in A,(t) for T, — t, time units, where T, =
max{t: x,(t) = ¢}. In particular, letting G,(w) = [(T, — t)/w], if
G.(w) < L — 1, then |A(t)| increases in unit steps every w time units until
|4,(0)] = G,(w) + 1. Thereafter |A,(t)| oscillates between G,(w) + 1 and
G.(w) with period w. If G(w) > L — 1, then |A,(t)] increases in unit steps
every w time units until |4,(t)| = L.

We now use Proposition 2 to study how changes in w and L produce
changes in the associational strengths y,,(¢) through time. The main fact
needed for this study is that y,(r) compares x;(z — 7)x,(f) with all
xi(t — 7)x, (1), m##j. When x;(t — v)x,(t) is much larger than all
X,(t — T)x,(t), m # j, k,then y;,.(¢) grows quickly and the association from
r; to r is quickly learned. When x,(¢ — 7)x,(¢) is comparable in size or
smaller than several x;(t — 7)x,,(¢), then y,(f) grows slowly, if at all,
and learning from r; to r; is negligible. We now translate these facts into
corresponding facts about accumulation sets 4 (7), and then classify the
choices of w and L that produce accumulation sets that have a prescribed
effect on learning in AG(A).

7. MASSED VERSUS DISTRIBUTED PRACTICE

The association y;(¢t) from r; to r, grows quickly at times ¢ for which
x,(t — DX () D x,(t — Dxp(t), mFEJ k.

This condition can be achieved if x,(t — 7) and x,(¢) are large, whereas

all x,,(¢) are small, m # j, k. This means that j is in A,(t — 7), k is in

A,(t), and all m 3£ j, k are not in A4,(¢), for some sufficiently large ¢ that

we fix once and for all. In particular, {4,(¢)| is a small number, since only

j and k can be in A,(f).
How can we guarantee that [4,(z)| be a small number? By Proposition
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2, the maximum of |4,(z)| in [0, Lw] is G,(w) + 1. We need therefore
merely require that G,(w) be small. But G,(w) = [S./w], which is mono-
tone decreasing in w. Therefore, |4,(¢)] will remain small for all ¢ in
[0, Lw] if w is taken sufficiently large. One way of speeding up learning
in M(+A) is thus to slow down the rate with which list symbols are presented;
that is, to “distribute practice.”

Conversely, if the presentation rate of the list is very fast, G,(w) will be
large, and there will exist times ¢ in [0, Lw] at which [4,(t)] is large.
Indices that are in 4,(¢) at these times will not rapidly be incorporated
into new associations. Thus “massed practice” can slow the learning
rate.

Distributing practice will not always facilitate learning. By Section
5, choosing w 3> 7 yields very bad learning even though such a choice of
w certainly distributes practice. The good or bad effects on learning of
increasing w correspond to two different factors, distinguishability and
correlations.

Distinguishability. Increasing w decreases G,(w) and thereby keeps
|4,(¢)| small in [0, Lw]. Thus only a few x,(¢) are large at any time, and
these can easily be distinguished from the many small x,(¢) by the
associational strengths.

Correlations. By Section 4, choosing w 3> 7 means that all products
x,(t — T)x(t) with k 3£ j are always either approximately equal or small,
and thus all y;(¢) remain approximately constant.

Distributing practice helps learning only if good distinguishability and
good correlations prevail; that is, if G,(w) is small and w ~ r. Since
G, (w) = [S,/w], G,(w) is small and w =~ 7 only if S, ~ w =~ .

These conditions impose constraints on the duration A of an input
pulse and on the rate « with which point strengths respond to inputs. We
derive these constraints in the following way. By definition, S, = T, — ¢,.
Since x,(¢) grows monotonically to a maximum and then decays mono-
tonically toward zero, S, estimates the amount of time needed for x,(7) to
respond to an input pulse and then to decay toward zero. Clearly, x,(z)
needs a little longer to respond fully to an input pulse than the duration
A of the pulse. Since §,2< =, we must choose 1 < = if we desire good
learning to occur for some choice of w. This is why we imposed this
condition on 4 in Section 5. Point strength x,(¢) decays no faster than the
exponential e~*. Since e~** requires T = « log 2 time units to decay to
half its initial value, we must also choose a =2 v to create conditions
optimal for rapid learning in AG(A).
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The foregoing considerations show how easily we can be misled by the
dictum “distributing practice helps learning,” since as w — oo, the relative
improvement in distinguishability diminishes rapidly while the relative
disintegration of good correlations increases rapidly.

8. CONTIGUITY VERSUS CONNECTEDNESS

We can now easily see that contiguous symbols, such as ry_i, I'y, and
r3+1, are most likely to enter into associations with one another. This is
because 4,(¢) is always a connected set. For example, in order that y,(¢)
grow rapidly, x;(f — 7) and x,(¢) must be large, and |4,(¢)| must be small,
By Section 7, this is best guaranteed when S, ~ 7, so that no index i re-
mains in A,(¢) much longer than r time units. By Proposition 2, we also
know that indices are added to A,(¢) in chronological order. Since fast
learning requires that j be in 4,(f — 7) and k be in 4,(f), we conclude
that y,(¢) will grow fastestif k =~ j + 1; thatis, if ; and r, are contiguous.

When w is small (and G,(w) is large), 4,(t) is still a connected set, even
though there exist times ¢ when it contains many indices. Once again we
can assert that contiguous associations are the strongest ones, but we must
interpret this assertion in the weak sense that associations form best at any
time # among the indices in the connected set 4,(¢). In particular, associa-
tions such as y; ;.4(t), y;.,45(t), and y, ;_,(¢) might well be of substantial
size, thereby reducing the size of y, ;,,(f). Backward learning effects, such
as an increase in y; ; (), are discussed in [5].

9. THE BEGINNING AND THE MIDDLE OF A LIST

We are now in a position to define the beginning and middle of a list
in a way that takes into account some of the temporal and learning
factors mentioned in Section 4. For example, let w and L be chosen in
such a way that L>> 1 and G,(w) < L — 1. Then by Proposition 2,
|4,(t)} grows in unit steps every w time units from 0 to G,(w) + 1, and
thereafter oscillates between G,(w) and G.(w) -+ 1 until # = Lw. We must
distinguish two cases.

Case 3. G,(w) > 0.

In this case, 4,(t) goes through two phases: (1) a transient phase at
times ¢ corresponding to the monotonic increase of |4,(f)] from 0 to
G.(w) + 12> 0; and (2) a steady-state phase at times ¢ corresponding to
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the periodic oscillation of |4,(¢)] between G,(w) and G.(w) + 1. See
Fig, 5.

Case 4. G,(w)==0.

In this case, 4,(f) goes through essentially only one phase, since
[4,(2)| oscillates between G,(w) =<0 and G,(w) + 1 22 1 at all times # in
[0, Lw]. See Fig. 7.

laeth]

1Mo mr

fe fetw tet2w Lw

Fi1G. 7

We can now define the (dynamical) beginning of the list ryr, - - - ry, for
fixed w and L at times 7 in [0, Lw] as being the set of symbols r, whose
indices i are in the same phase of A,(t)’s development as the index I is. The
(dynamical) middle of the list is the set of symbols 7, corresponding to the
second phase of A/(t)’s development, whenever this phase exists. We
denote the set of symbols in the dynamical beginning by B, = B,(w, L);
and those in the dynamical middle by M, = M,(w, L). When G.(w) is
large, several symbols will be in both B, and M,. This ambiguity is in the
nature of the problem.

The foregoing definitions of B, and M, have some unusual, but none-
theless useful, consequences. For example, (a) the numerical length of a
list’s dynamical beginning is a function of w, and (b) there exists lists that
have no dynamical middle and whose symbols all belong to the list’s
dynamical beginning,.

Various experimental bowing effects can be conveniently explained in
terms of these definitions; for example, (c) symbols in the list’s dynamical
middle are harder to learn than symbols in the dynamical beginning.
This is because every symbol r, in M, has-a large x,(z) value when 14,(t)]|
equals one of the large numbers G,(w) or G,(w) + 1. Thus x,(r) cannot be
easily distinguished and associations are not easily formed with r,.
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By contrast, even if G,(w) is large, x,(t) is large when |4,(2)| is small,
x,(t) is large when |4,(¢)] is only slightly larger, and so on. Learning in B,
is therefore certainly faster than learning in M, if G,(w) is large.

If G,(w) is small, say ~ 0, learning is fast throughout B,, which now
includes all symbols r; in the list, since |4,(¢)| remains small for all 7 in
[0, Lw].

The assertion that learning is faster in B, than in M, confirms the first
half of the experimental bowed learning curve of Fig. 3. The assertion that
Fig. 6 is transformed into Fig. 5 and finally into Fig. 7 as w increases
agrees with the experimental fact that slowing the presentation rate
flattens the first part of the bowed curve.

The definitions B, and M, merely illustrate the interplay of temporal
and geometrical factors in determining ease of learning. The size of
|A,(2)] when each x,(¢) is large is the crucial fact to determine.

10. HOW LONG IS A LONG LIST?

Just as a list’s dynamical beginning varies with w, a list’s dynamical
length does also. Intuition bids us to say that a list is ““dynamically long”
only if it takes a long time to learn. Since an increase in w causes a decrease
in G,(w) and a consequent increase in learning speed, increasing w also
decreases the dynamical length of the list.

Is a list of short numerical length (say L =~ 2) dynamically short?
The answer is “yes” whenever 1~ G, (W)=~ L — 1, since then good
correlations and good distinguishability occur together. Consider, by
contrast, the case 1 € G,(w) < L — 1. Then the list has a beginning and
a middle, and is consequently long. Letting w increase until 1 o~ G (w) K
L — 1 eliminates the middle and thereby shortens the list.

Decreasing w until G,(w) > L — 1 has a qualitatively different effect.
By Proposition 2, 4,(f) then has only a transient phase in which [4,(¢)]
increases from O to L for ¢ in [0, Lw]. Again B, exhausts all list symbols,
but now point strengths x,(f) with i =2 L are large only when |4,(f)| =< L.
Thus if L 3> 1, the symbols r; with i =~ L do not easily enter new associa-
tions for ¢ in [0, Lw]. Once G,(w) > L — 1 for some w = w,, decreasing
w further cannot increase learning difficulty by changing the phases of
A/t). In this sense, the numerical length L of a list places an upper
bound on the difficulty of learning at any presentation rate. Nonetheless,
decreasing w beyond w = w, makes it increasingly likely that all corre-
lations will be approximately equal, by symmetry.
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11, WHERE IS THE END OF A LIST?

We have thus far considered the behavior of 4,(¢) only for ¢ in [0, Lw],
and have based our definitions of B, and M, on this behavior. No dynami-
cal end exists in the list before time t = Lw, even though all list items have
been presented to M(#) before time t = Lw! The dynamical end of a list is
created only after the list has been presented to M(A), and is due to the
interactions of stimulus traces x,(¢) and associations ¥Yi(t) within M(4)
before the list is presented for the second time. To see this, let us now
consider A4,(t) throughout trial & (w, W; L), where as usual w < w,
that is, throughout the time interval (0, (L — 1)w + W). It suffices to
consider the interval (Lw, (L — 1)w + W). This is readily done, since all
x(#)=0,i=L+41,...,n, by (7), and thus no new indices enter A[t)
for ¢t in (Lw, (L — Dw + W). OId indices continue to drop out of

A,(t), however, and consequently |4,(z)| decreases in unit steps every w
time units. We can again distinguish two cases.

Case 5. G,(w)> 0.

The steady-state phase of 4,(¢) is followed by a second transient phase
during the times ¢ at which |A4,(¢)] decreases in unit steps at the rate w.

Case 6. G,(w) ==0.

Since |4,(2)| is always small in [0, Lw], any decrease in [4,(¢)] due to an
uncompensated dropping out of indices is negligible, and so once again
A,(t) has essentially only one phase.

We now define the (dynamical) end of a list as the set of symbols, if any,
whose indices appear in 4,(t) during its second transient phase. We denote
the symbols in the dynamical end by E, = E,(w, W; L). We immediately
conclude that (a) learning is faster in the dynamical end of a list than in its
dynamical middle. The reasoning is the same that showed the advantage of
the beginning over the middle. We have hereby shown that the middle is
harder to learn than the beginning and end simply by counting the number
of large stimulus traces x,(z) that the associations y,,(f) must distinguish
and correlate with x,(t — 7) at any time 7.

The distinction between a list’s dynamical beginning, middle, and end
is highly ambiguous when G,(w) = 0. This is because 4,(r) goes through
essentially only one phase, and the most we can say heuristically is that
all list symbols are either in the beginning, or the middle, or the end, and
that learning is satisfactory if also w o= 7. (This statement will be modified
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to take into account the numerical length L of the list when the interactions
are replaced.) This ambiguity therefore implies that (b) the bowed curve

flattens both at its beginning and its end as the intratrial interval increases,
as Fig. 3 shows.

12. THE DEPENDENCE OF A LIST’S END ON THE INTERTRIAL INTERVAL

The intertrial interval W has a profound effect on E,(w, W; L) because
|4,(t)| has less opportunity to decrease when W is small. For example,
suppose that W = w. Then trial &(w, w; L) begins right after trial

&, (w, w; L) ends. Vertex v, receives its second input pulse J(t — Lw) at
time ¢ = Lw, and thus

x:(t) = exp[—a(t — Lw)]{xl(Lw) + fexp[oc(u — Lw)lJ(v — Lw) dv}
Lw

for tin [Lw, 2Lw]. A change of variables shows that
t—Lw

x1(t) = exp[—a(t — Lw)]xy(Lw) + exp[—a(t — Lw)] f exp(aw)J(v) dv.

(11)

In particular

t—Lw

x,(t) 2 exp[—a(t — Lw)] f exp(aw)J(v) dv
0
- xl(t — LW).
The index 1 therefore enters 4,(z) on trial &,(w, w; L) not longer than w
time units after L enters 4,(¢) on trial & (w, w; L). Since each x,(¢) with
i=1,2,..., L satisfies
x(t) = x:(t — (i — Dw),

the indices 1, 2, 3, ..., L enter 4,(¢) on trial &(w, w; L) in chronological
order at rate w. We conclude that |4,(¢)| never has a chance to decay
after the inputs of trial & (w, w; L) cease. We can readily extend this
argument to show that [4,(f)| never has a chance to decay on the first

N — 1 trials of any serial experiment &(w, w; L) of N trials. The phases
that occur again can be classified into two cases.

Case 1. G,(w)> 0.

The set 4,(z) goes through a transient phase on trial § (w, w; L) during
which |4,(#)[ increases from 0 to G,(w) + 1. This phase is followed by a
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steady-state phase of oscillations in |4,(¢)] as old indices leave A,(¢) and
new indices enter A,(¢) in chronological order, modulo L. This phase
lasts from trial &(w,w;L) through trial &y ,(w,w;L). On trial

&x(w, w; L), a second transient phase is entered during which |4,(¢)|
decreases monotonically to zero.

Case 8. G,(w)==0.

A,(?) goes through a single steady-state phase (see Fig. 8).

Gel(w)>>0
|A€(t)]
3 P 3 ces €N
(a}
Ge(W)E 0
|A€(1)|

FIG. 8

Case 7 shows that a symbol that is in one dynamical part of a list on a
given trial can be in a different part on another trial. For example, r, is in
B, on trial &,(w,w; L). By contrast, when r; enters A,(tf) on trial
&(w, w; L), 14,(t)] = G,(w) > 0 and A,(¢) is in its steady-state phase.
Thus r, is in the list’s dynamical middle on trial &(w, w; L)! In fact all
list symbols are in the dynamical middle on trials &,(w, w: L), where
i=2,3,...,L—1. Because r; and r, are in B, on trial & (w, w; L),
associations such as y,,(f) grow quickly on this trial. But since r, and r,
are in M, during the next few trials, the initial advantage to y;(¢) is
gradually washed away during these trials.

Mathematical Biosciences 4 (1969), 201-253



SERIAL LEARNING OF LISTS 223

In Case 7, A4,(¢) has the same phases no matter how many trials exist in
&(w, w; L). Thus N presentations of #;#, « « - 7 in such an experiment are
properly thought of as one presentation of the cyclic list

r]_rg..'rLrl"'rLrl"'rLrl."rLrl"'rL-
N— i’
N times

We now consider the effect of increasing W step by step when the list
has a middle; that is, when 0 K G. W) < L—1. If W= 2w, then
[4,(#)] decreases by 1 after its steady-state phase on trial §,(w, 2w; L).

Ac(t)

N N N i N i
3 & &3

s o EN
FiG. 9

Trial &,(w, 2w; L) then begins and |4,(¢)| quickly rises once again to its
steady-state phase. The advantage to y;,(¢) of trial &, (w, 2w; L) is thus not
entirely destroyed on trial &,(w, 2w; L), but the advantage to Yes(t) on
trial &;(w, 2w; L) is slight.

Let us now increase W step by step. Then for a fixed value of W,
|4.(¢)| decreases step by step at a rate w for ¢ in (Lw, (L — )w 4+ W)toa

minimum value of
max{O, G w) + 1 — [V—V]]
w

If W is chosen so large that

['ﬂ = G + 1,

then |4,(¢)| decreases to 0 before trial 8,(w, W; L) begins. A,(f) will there-
fore have essentially the same phases on trials €y(w, W; L) through
Ex(w, W; L)as it had on trial &,(w, W; L). In particular, symbols that are
in B,, M,, or E, on one trial will be in the same dynamical part of the list
on all trials, and the effects on associations that characterize a given list

part will have a cumulative effect on them as more and more trials occur
(see Fig. 9).
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Using these remarks, we can easily account for the major bowing
effects of Fig. 3 in A(#A). For example,

(a) if L= 2 and w < , bowing does not occur, since |4,(2)| is always
small;

(b) bowing occurs only when 0 & L < G,(w) or 0 & G,(w) < L, since
only then does |4,(¢)] ever achieve large values;

(c) the bowed curve is flattened, but raised, when 0 & L < G,(w) or
0 L G.(w) < Lif Wczw, since then all list symbols are usually in M,;

(d) if for fixed W > w bowing does occur, then increasing W lowers
the bowed curve near its numerical middle by increasing the numerical
length of B, and E,;

(e) increasing W by a fixed amount has less of a lowering effect if w is
large than if w is small, because G,(w) is monotone decreasing in w;

(f) for fixed w, increasing W beyond a W, such that

[%:—“:' = G, (w) + 1

has little lowering effect on the bowed curve since |4,(¢)] decays to zero at
the end of each trial for 4/l such #; and

(g) if bowing occurs but 1 € L — 1 < G,(w), then increasing the list’s
numerical length L while keeping w and W fixed can decrease the skewness
of the bowed curve by increasing the numerical length of M,.

13. RESPONSE OSCILLATION AND REMOTENESS

We now have enough information at our disposal to qualitatively
understand how some features of the response oscillation curve of Fig. 4
arise in M(A). Suppose, for example, that 1<G,(w) < L — 1 and that
W is sufficiently large for some bowing to occur.

At times ¢ when |4,(¢)] is small, the formation of new associations will
be restricted to a small number of indices. Thus learning will begin to
show its effects faster in B, and E, than in M, and competing responses
are restricted to a relatively small set of list symbols. By contrast, for
ryin M., iisin A (f) when | 4,(?)] is large. Competing responses to a symbol
in M, are therefore broadly distributed throughout the list. Learning
therefore takes relatively long to show its effects in M, and a long time is
needed to eliminate the large collection of competing responses after
learning begins. These are the main effects of Fig. 4.
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These remarks are all special cases of the heuristic observation that
associations between symbols become harder to form as the “dynamical
remoteness” of the symbols increases. A convenient measure of the
dynamical remotness Rf;.” from 7, to r; on an experiment consisting of N
trials is
N[(L — Dw 4+ W]

S, U2
where U.?'(k) is the total amount of time during which 7 and j are both in
A,(t) on trial & (w, W; L). We can now say that (a) the very remote
errors of a symbol in the middle of a long list are approximately equally

probable in both the anticipatory and the preseverative directions. For
example, if 0 < G,(w) <« L and

Rjj =

[E:I ~ G,(w) + 1,
w
then for any r, in M,

R = R = o,
since neither x,(¢) and x,(¢), nor x.(¢) and x,(¢), are ever large simul-
taneously. Nonetheless, given the same choices of w, W, and L, (b)
nonremote errors of a symbol in the middle of a long list are stronger in
the anticipatory than in the perseverative direction, as was shown in the
discussion of backward learning in [5].

These conclusions do not hold for symbols in B, and E,, however.
For example, given the same w, W, and L,

R « o0, whereas R{E = oo.

Thus (c) anticipatory errors are more probable than perseverative errors
at the beginning of a long list if significant bowing occurs.
By contrast,

R¥r , K o, whereas RY] = oo,

so that (d) perseverative errors are more probable at the end of a long list
in which bowing occurs than they are at the beginning of the list. The
anticipatory bias of B, and the perseverative bias of E, are mirrored by the
fact that [4,(¢)| increases in B, and decreases in E,. That is, the behavior of
|[4,(t)} in E, is (roughly) the “time-reversed” behavior of |4,()| in B..

Of course, when (say) W=w and L — 1 > G,(w) > 1, the con-
clusions above are no longer valid, since then all symbols are in M, at
practically all times during &(w, W; L). ' ' '

Mathematical Biosciences 4 (1969), 201-253



226 STEPHEN GROSSBERG

14, ASSOCIATIONAL STRENGTHS IN THE BARE FIELD

We are now ready to introduce the associational strengths into the
bare field. That is, we place y;,(¢) at the arrowhead N, and let it compute
the x,(t — 7) and x,,(¢) pulses, m # j, without allowing these pulses to -
interact along the edges. By this we mean that Eqgs. (7), (2), (3), and (4)
hold for i, j,k=1,2,...,n.

We also let u = 0. The reason for this is readily seen as follows. Let

all x,(t) = 0. Then (3) becomes

Zp(t) = —uz(1),

so that if u > 0, z,(t) = z;(0)e~**. Thus by (2), y;:(t) = y;(0) for all
t 2 0. In other words, if all stimulus traces are zero, then the memory of
M(#4) is perfect. On the other hand, each z;,(f) decays exponentially at a
rate #, which creates the paradoxical situation that the observable associa-
tions y;(¢) stay fixed whereas the unobservable correlations z,,(z) decay.
The choice u# = 0 eliminates this difficulty by keeping both z,(¢) and
Ya(t) constant when all stimulus traces x,(f) are zero. The use of y,.(¢)
instead of z;,(¢) as an association is helpful to guarantee that A(+) be able
to learn lists perfectly given enough practice, as shown in [5]. The y,(f)’s
accomplish this by adding a mutual inhibition to the associations leading
from v,, since increasing y,(t) decreases y,.(t), m # k. In [6], this
inhibition between associations is replaced by lateral inhibition coupled to
the z;,(¢)’s, which is the finite-rate analog of mutual inhibition between the
»(t)’s. When this is done, the two functions y,(¢) and z,(¢) are merged
into one, and the constancy of either function therefore automatically
implies that of the other. The choice # = 0 comes as close to this merging
of functions as the present level of approximation permits.

Our previous remarks concerning accumulation sets have used the
hypothesis that y;(f) compares x;(t — 7)x,(¢) with all x,(z — 7)x,,(¢),
m # j. The next lemma makes this assertion precise, and will permit a
somewhat more exact analysis of bowing than that provided by accumu-
lation sets.

LemMmA 1. For any distinct values of jand k,
P )

ya0) + K, f %0 — (o) do

; (13)
14 K,J;x,(v — 2)xP(v) dv

where x =3 %, and K; = B[ .12;m(0)1
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Proof Letu =0and 1ntegrate (3). Then

zy(t) = z(0) + ﬁij(” — T)x:(v) dv. (14)

Letting z(8) = 3, ;7;m(¢) and x‘”(t) = _Xn(t), we find that (14)
implies

29(1) = z'0) + ﬁij(v — )x () do. (15)

By (2) and (4), yi(t) = 2z () [z(£)}*, which by (14) and (15) becomes

zmm)+ﬁﬁ}xv—rn4wdv

yal) = (16)

29(0) + ﬁ'rx,.(v — 7)x(v) dv |
0

Division of numerator and denominator in (16) by z)(0) yields (13).

Equation (13) shows that y,(f) compares x;(v — 7)x,(v) with each
x;(v — T)x,(v), m #j, for all v < t. Our analysis using accumulation
sets considered explicitly only the value v = 7. This analysis is nonetheless
qualitatively correct because it claims that y,,(r) will grow substantially at
any time for which

x;(t — Tx (1) > x,(t — T)x,,(2), m#j, k,
as (13) shows. Equation (13) also claims that the changes during all
such values of ¢ (namely, all v < ) are cumulative.

The system (7), (2), (3), (4) can be solved to yield explicit formulas
for the associations y;(7) in terms of the input pulses I,(v), v < 7. Before
deriving these formulas, we show heuristically how such phenomena as
bowing occur in the associations y,,(¢), using an argument that naturally
extends the idea of accumulation sets. We therefore consider a list
£ =nrry - - r presented to M(+4) with an intratrial interval w =  that
satisfies 1 < G,(w) < L — 1. We also let all p,(0) = 1/(n — 1), j # k,
and K; = K to start M(A) in a state of maximal ignorance.

15. TWO FACTORS YIELDING DECREASE IN ASSOCIATIONAL STRENGTH
WITH INCREASED REMOTENESS

Consider the assoc1at10ns »lt), i=2,3,..., L on trial §(r, W; L)
for ¢tin [0, L7).
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A. The Time Interval [0, 7)

Symbol r, is presented to M(+4) at time ¢ = 0 and creates a positive
input signal I,(f) = J(¢) at v, within the time interval (0, 1). Point strength
x,(t) thereupon grows and equal signals fSx,(¢) are sent to all nodes Ny
J # 1. These signals reach the nodes Ny, j 5 1, at time ¢ = 7. By (7),
only x,(#) is positive for ¢ in [0, r). Thus by (13), all yu®)=1/(n —1)
for ¢ in [0, 7), and no associational changes occur,

B. The Time Interval [r,2r)

Symbol r, is presented to A(#4) at time ¢ = 7 and creates a positive
input signal 5,(r) = J(t — 7) at v, within the time interval (r, 7 + 2).
Point strength x,(¢) thereupon grows. By (7), x,(¢) is positive for all ¢ > 0
and x,(¢) is positive for all # > . Since the signal I,(¢) to v, is large for
tin (0, 4), x,(r) achieves its largest values in (0, 1) and thereafter decays at
the exponential rate «. Similarly, x,(¢) achieves its largest values in
(7, 7 + 1) and thereafter decays exponentially. In particular x,(z — 7)
and x,(r) achieve their largest values during the common time interval
(7,7 + 4), and thus x;(f — 7)x,(¢) is large during this interval. By
contrast, all x,(¢) with j 7 1, 2 remain equal to zero for ¢t < 27, as (7)
shows. Thus for ¢ < 27, (13) yields

m—1D1T+K f txl(v — 7)x5(v) dv

ylZ(t) = ’ (17)

14+ K f txl(v — 7)x5(v) dv

and yy,(f) grows substantially for + < ¢ < 27. All other y,,(¢) decrease by
equal amounts for 7 < ¢ < 27 since x,(t) = 0 during these times.

C. The Time Interval [27,37)

Point strength x,(f) becomes positive for ¢ > 27 because ry is presented
to M(s) at time £ = 27, x4(¢) achieves its largest values for ¢ in (2r,
27 4 1), by the usual argument. Only x,(¢), x,(t), and x;(¢) are positive
for ¢ < 37, and thus by (13),

t

(n— 11+ Kf x,(v — 7)x5(v) dv

2r

Yia(t) = (18)

14+ K [ J; txl(v — 7)x5(v) dv +J:rx1(v — 7)x3(v) dv]

for 27 < ¢t < 37. We now show that y,4(¢) grows less for 27 <t < 37
than y,,(¢) did for r < ¢t < 2r. This is due to two factors.
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1. Competition by y,o(t). Just as the growth of Y12(#) in (17) is accom-
plished by increasing

?

Jxl(v — 7)X,5(v) dv, (19)

T

the growth of y,,4(¢) in (18) is accomplished by increasing

t

f x1(v — 7)x5(v) dv. (20)

2r

The term (19) in (18), however, diminishes Y1a(?) growth, and no such
competitive term diminishes y,,(¢) in (17) for + < t < 2.

2. Poor correlation of stimulus traces. The process x;(v — 7) attains
its largest values for v in (=, 7 + 1) and decays exponentially thereafter,
whereas x3(v) attains its largest values in (27, 27 + 2), where 27 > r + A.
Thus the overlap between large x,(v — 7) and x3(v) values in (18) is not as
good as the overlap between large x,(v — 7) and Xg(v) values in (17).
Since also x3(v) = x,(v — 7), the boost by x,(v — 7)x,(v) to Y1s(2) growth
for 7 in [27, 37) is not as large as the boost by x1(v ~ T)xy(v) to yu,(¢)
growth for ¢ in [r, 27).

We conclude that the “higher-order” association 1a(2) that forms for
tin [27, 37) is not as strong as the “correct” association Y1a(t).

D. The Time Interval [3r,47)

For 37 <t < 4r, the association y,,(¢) also receives a boost, since by

(13),

¢

mn—1D1+K f X (v — 7)x,4(v) dv

0

() = (21)

1+ K f 550 = T)(%4(0) + x5(0) + x40)) dv

for ¢ in [37, 47), and x,(v) becomes positive after r, is presented at time
t = 37. Nonetheless, y;,(f) grows even less than y;4(f — 7) did both
because (i) the overlap between the large positive values of x,(v — 7)
and x,(v) is worse still than that between x,(v — 7) and x,(v), and (ii)
x1(» — 7)x4(v) must compete with the two products x,(v — )x5(v) and
%1(v — 7)x3(v) in the denominator of (21) during its period of maximal
growth.
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By continuing this argument in successive intervals of the form
[(m — 1)7, m7), where m < L, we find that the strength of associations
y1m(t) decreases as m increases; that is, decreases with an increase in the
remoteness of the list positions r, and r,,, both because of an increasingly
bad overlap of the stimulus traces x,(v — 7) and x,(v) as m increases,
and because the correlation x,(v — 7)x,,(v) must compete with all corre-
lations x,(v — 7)x,(v),i=2,3,...,m — 1, during its period of maximal
growth. This increased competition between correlations is interpreted
as increased lateral inhibition between the v,, i =1, 2, ..., m, in [6].

16. THE LISTS’S DYNAMICAL MIDDLE: INHIBITION BY BOTH PAST AND
FUTURE FIELDS

Consider associations yg,(¢) for all i # R where R is fixed once and for
all to satisfy G,(r) + 1 < R < L —1 and ¢ varies in [0, L7); that is,
v is in the list’s dynamical middle within [0, L7).

Element rg is first presented to M.(#£) at time ¢ = (R — 1)7. Since
Ig(t) equals J(t — (R — 1)7), Ip(t) is positive for ¢ in ((R — )7,
(R — )7 + 2). Thus by (7), xz(?) becomes positive after ¢ = (L — 1)7
and attains its largest values before 1 = (L — 1)7 + A, after which xz(?)
decays at an exponential rate «. By (13), the various associations yg,(?)
cannot change until > Rr. Since xz,,(f) becomes positive after = Rr,
and all A1), i=1,2 ..., 8=, become positive before ¢ = Rr, all
the associations yg(t), i=1,2,...,R—1, R+ 1, are susceptible to
change for > Rr. Indeed only these associations, for fixed R, can
change for ¢ in (R7, (R + 1)7). By (13), the “correct” association
Yr.r+1(2) satisfies the equation

n—1)7T+K f t xp(v — 7)Xg4.(v) dv

YR, R+1(t) = (223
14K f wal = A 50 + 0o

for ¢ in (R, (R 4 1)7), whereas the “backward” associations yg;(f)
i=1,2,...,R — 1, satisfy

(n—1D"1+ Kr xg(v — 7)xv) dv

Yri(t) = (23

TN f (0 — DIZET x(6) + Xpoa()] dv
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for t in (Rt, (R + 1)7). The interval (R7, (R + 1)7) is obviously the
interval of maximal overlap of the stimulus traces xz(v — 7) and xz,(v)
and is therefore the interval of maximal growth of y5 r.1(¢). By (20) and
(21), however, the backward associations yg(t), i=1,2,...,R — 1,
seriously compete with yp r,1(f) growth in this interval. Thus, although
the overlap between xz(v — 7) and xz.,(v) is just as good for v in (Rr,
(R 4 1)) as was the overlap between x,(v — 7) and x,(v) for v in (7, 27),
the growth of yr g1 (2) for £ in (R7, (R + 1)7) is less than that for y,,()
in (v, 27) due to the added competition of backward associations; that is,
due to increased lateral inhibition by previously excited stimulus traces
(or membrane potentials).

Clearly, the backward associations yg,(f), l <i< R — 1, that com-
pete most vigorously with yz z.,(f) are those for which |i — R| is small
(i.e., “contiguous” associations), since the overlap between xz(v — 7) and
x,(v) gets worse as |i — R| increases.

The associations y; ,,,(f), i > 1, at the beginning of the list thus grow
faster than the associations yg p.,(t), i > 1, near the middle of the list
simply because there are more competing backward associations when the
middle of the list is presented. This fact can be conveniently summarized
using the following terminology.

For fixed € > 0, let the set of indices

P(R) = U{4.() n{1,2,..., R — 1}: ReA,(),
0<1<(L—w+ Wi

be the past field of ry, (or alternatively of ¥Ygr.(2)) on trial &(w, W; L), and
let

FR) = U{4,(t) n{R+ 1,R+2,...,L}: Re 4,(1),
0t < (L —Dw+ W,

be the future field of ry (or alternatively of yz.(#)) on trial & (w, W; L).
The set P,(R) tells how many “past” x,(t), 1 < i < R — 1, are large when
xg(t) is large on trial & (w, W; L), whereas F,(R) tells how many “future”
x,(1), R + 1 < i < L, are large when xp(f) is large on trial &,(w, W; L).
Correct associations yz .1 (¢) at the beginning of the list are larger than
correct associations in the middle of the list simply because only correct
associations at the middle must compete with associations leading to the
past field, whereas associations in the beginning and middle of the list
must compete with the future field.
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17. DECREASE OF INHIBITION BY THE FUTURE FIELD FOR ASSOCIATIONS
AT THE LIST’S DYNAMICAL END

Consider the associations y; {,(¢), i=1,2,...,L — 2, L, for tin
[0, L7). By (13), these associations remain constant until x; ,(v — 7)
becomes positive at v = (L — 1)7. For ¢ in ((L — 1)7, L7), (13) implies

1

n—D"+ Kf xz_4(v — 7)x(v) dv

(L-1)r

Y1) =

I +K j g o — DS x) + xe(0)] db
(L—-1)r

which shows that the inhibition due to backward associations y(t), j =
1,2,...,i—1, during the interval (ir, (i + 1)7) of y, ., ,(¢)’s greatest
growth is maximal if i = L — 1. In other words, until 7 exceeds L7, the
associations y_, ,(¢) are in the dynamical middle of the list. It is not until
after all list items are presented to AG(+) and an extra w time units go by
that JG(#4) can possibly know that ry, is the last item in £. Viewed by a
psychological experimenter, the fact that /ater information affects A(+£)’s
processing of a past event (past on the psychologist’s time scale!) means
that a dynamical “time reversal” has occurred.

The inhibition that the past field of r,_, exerts on yr_, r(¢) for ¢ in
((L — Dr, L7) will be comparable to the inhibition exerted by the past
field of r; on y, ,.1(¢) for ¢ in (ir, (i + D7) for all i such that G,(w) <
i < L — 1, since the maximal size of |4,(t)| is G, (w) + 1, and after this
size is reached A4,(z) adds and subtracts competing vertices one at a time in
chronological order.

Now consider y;_; r(¢) for ¢ in (L7, (L — 1)7 + W). No new indices
enter the future field of r;_, during these times. Thus, although associa-
tions in the list’s middle and end can receive comparable amounts of
inhibition from their respective past fields, the future field of a position
at the list’s end exerts less competition than a position in the list’s middle.
Of course, the reader must qualify these remarks by always choosing
W sufficiently large, or else new indices will enter the future field of rz_,
from the list’s numerical beginning on trial §,(w, W; L) before the indices
remaining from trial &;(w, W; L) can decay out of sight.

In summary, the heuristical explanation of bowing on trial &§;(w, W; L)
becomes: (a) associations in the dynamical beginning must compete
primarily with their future field; (b) associations in the dynamical end
must compete primarily with their past field; whereas (c) associations in
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the dynamical middle must compete both with their past and future
fields. '

The three major heuristic ideas behind these conclusions are (1)
presentation of list items creates fluctuations in stimulus traces that persist
in time; (2) associations correlate these stimulus traces; and (3) associa-
tions mutually inhibit one another, by a process that is identified in [6]
with lateral inhibition.

The details of our analysis require only an estimate of how good the
overlap between correlated stimulus traces is and, relatively speaking,
how much inhibition is created by stimulus traces that are simultaneously
large. With these ideas in mind, the reader can now easily work out
relative sizes of the remaining associations y,;,(t) on trial & (w, W; L).

Before proceeding to trial 8,(w, W; L), we present the formulas for all
V(1) on trial §;(w, W; L). Again we choose w = 7, and for simplicity we
let W = rw for some r > 1. It then suffices to compute y;(m7) for all
m such that 0 < m< L+r—1and all j#k, j,k=1,2,...,L.

THEOREM 1. Letu=0,A< 7,

A

A. = e“"J(E) df, (24)
0
ré v
H = e“mfe“fj(é') dé dv, (25)
o 0
and
A v "
G =fe“2°‘”(fe“5.l(§) dé) dv. (26)
0 (1]
Then on trial &,(7, rr; L),
i (n — 1)_1 + Kffk(mT) (27)
R Rl m) + Foeel) + i)
where for all j # k
Sfu(mr) =0 ifjfzmork>m+ 1,

= Aexp[—(j — k + 1Dar]
x (H + 7 {oxp(~2ud) — expl—(m — )2a})

ifk<j<m,
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=G + {2}5 {exp(—202) — exp[—(m — j)2ar]}

ifk—1=j<m,
= Aexp[—(k — j — 1ar]

X (H + % {exp(~2xl) — exp[—(m — k + 1)2ar]})

ifj<k—1<m;
g:f(mT) — 0 I.fj > m,

_ [exp(—wr) — exp(— jwr):|
exp(ar) — 1

’ (AH + % {exp(—2aA) — exp[—(m — j)2ocf]})

ifm>j;
and
hj(mT) =0 If.] + 1 > m,
exp(—ar) — exp[(j — m + Dar] A?
. AH 4+ — —2al
{ 1 — exp(—ar) }l: + 20 i ):l

A’ {exp[(j — m — Dar] — exp[(2j — 2m + Dar]
2a exp(ar) — 1 }

ifj<m<L+1,

__ {exp(—ar) — exp[(j — L)ar] ./Lz
B { 1 — exp(—oar) }[AH o 2o exp(——2w’l)i|

~E exp(—mzaT)[exP[(j + Lyer] — exp[(2) + D]
20 exp(ar) — 1 }
ifi<m>L.
Proof. By (13),

(n—1'+K f mrx,(v — 7)x(v) dv
Yp(mr) = ,:r
1+ KDies| x{v—7)x(0)do
- 0

It therefore suffices to compute the integrals

Jat) Efx,-(v — T)x(v) dv | (28)
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at values ¢ = mr for all j # k. This is done using simple changes of vari-
able along with the identities

) =x0t—(G~1)7), j=1,2,...,L, (29)
and
(0, 1<,
X = { 4 (30)
e““‘fe“”.f(v) dv, 0Kt (L+r— D,
\ 0

of Proposition 1. By (29), (28) can be written

Si(t) =fx1(v — J7)xy(v — (k — 1)7) dv. (31)

Suppose, for example, that k < j. Then by (30), f;.(¢) = 0 for 7 < Jrs
whereas for ¢ > jr,
14

o
F(®) = | x1(v — jo)x(v — (k — 1)7) dv
tT‘fr

=] x@x(v + (j — k + Dr) dv,

L

which by (30) yields
t—Jir
fald) = expl—(j — k + Dar] | exp(—2a0)
0
v v+(:f—~;l€+1)r
X f exp(af)J(§) d& | exp(an)J(n) dy dv. (32)
0 0

In (32),J(n) =0 for » > A, where A < 7, and v + (j—k + )7 > rfor
all v 2> 0. Thus by (24)

t—ir v

Sl = Aexp[—(j — k + l)otr]f exp(—2cw)fexp(a£)J(E) d& dv.
0 0

Now let # = mr, where m > r. Since J(£) is positive only for £ in (0, 1),

fe"EJ(E) dé =A forallv > 4.
(1]
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Thus
fu(mr) = Aexp{—(j—k + Do)

A (m=i)r

X [J-l— j ] exp(—Zav)fexp(aE)J(E) dé dv,

which by (25) is the same as
fa(mr) = Aexp[—(j — k + ar]
X (H -+ -1 {exp(—2ald) — exp[—(m ——j)ovr]}).
20

The case k = j + 1 is treated similarly. Indeed,

4
e

fi,101(8) = x, (v — 7)x;,4(v) dv

0
1
2l

= | x5.1(v) dv

2
ﬂ
= | x}(v — jr) dv

t—":ir

= x¥v)dv
0
t—fr v .

- e‘z‘“’(fe“.l(é') dE) dv.
0 0

Let t = mr with m > j. Then by (24),
A (m—ij)r v .
fusuitm) = [ [+ [ ] xpt200)( [exptarsee at] ao
0 A 0

=G + {2}5 {exp(—20d) — exp[—(m — jar]}.

The case k > j — 1 differs from the preceding cases only in that the inte-
gral

13

fn(t) = f X (v ~ jr)x,(v — (k — 1)) dv
(k—1)r
is cut off at (kx — 1)r rather than at jr.
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The quantities g,(m7) and A;(mr) are derived from the formulas for
fix(m7) by the definitions

-1

%
gimr) = ’glf w(mr) and h mr)= Z S (m).

f=+2
These summations can readily be performed by the reader.

We now use Theorem 1 to check some of our previous heuristic
conclusions in more quantitative detail. For example, consider the
“correct” associations y; ;.,(¢) right after their interval of greatest growth;
that is, let = (j + 1)r. Our heuristic arguments suggest that y, , ;((j +
1)r) is a monotone decreasing function of j=1,2,...,L—1.
Corollary 1 confirms this expectation. We will set X = 1 for simplicity in
this and later corollaries.

COROLLARY 1. y;,.:((j+ 1)7) is a positively accelerated, monotone
decreasing function of j = 1,2,...,L — 1.

Proof. By Theorem 1, h,((j+ 1)r) = 0. Thus by (27),

(n— D"+ f; (G + D7)
1+ g((+ D7) + fr0(G + D)

Vs,inl(J + D7) =

which is the same as
: n—1yt+ 4
Va0 = L+

1 4+ A 4 B(e™ — ™)

(33)

where
2
A=G o -_A__ (e—2a). _ e—2ar)
2a ‘

and

A2 —2ad —2ar

e = )].

Function (33) is readily seen to be monotone decreasing inj. The positive
acceleration of y; ;.,((j + 1)7) is proved by defining

Af) = (n+1)'+ 4 .
1+ A+ B(e™ — &%) |
The quantity A(¢) interpolates y;;.,((j + 1)r) in the sense that A(j) =
V1.0+1((j + 1)7), and it is easy to see that A(r) > 0.

Our heuristic arguments also lead us to expect that the “correct”
association y;_, 7(m7) is facilitated for m > L + 1, since then no further
list items are presented to create an inhibitory future field. Corollary 2
proves this.

B = (& — 1)_1[AH +
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COROLLARY 2. y;_, y(m7) is monotone increasing in m for L 4+ 1 €
mL+r+41.

Proof. By Theorem 1, hy_;(m7) =0, m > L + 1. By (27),
(n— D+ fr 5 (m7)

J’L—l,L(m‘f) = ;
1 + gpa(m7) + frq (m7)
which yields
(n — 1)+ A — Bexp(—m2ar)
mr) =
Yi-1,(m7) 1 4+ 4 — Bexp(—m2ar) + C — D exp(—m2aur) 4
where
A2
A= G+ — exp(—2al), (35)
2u
A2
B == o exp[(L — 1)2ar], (36)
o

__ fexp(—ar) — exp[—(L — 1)ar] A? exp(—2ad)
; ¢ { exp(ar) — 1 }[AH N o ]’ .
an

D= {eXp(—wr) - exp[—(L — 1)0!.1']} A

exp(ar) — 1 20 exp[(L — 1)2xr]. (38)

To show that y;_, ;(m7) is monotone increasing in m, we define w(z) by
replacing m in (34) by ¢; that is, let

@(t) = yr1,2(t7),
and show that ®(¢#) > Ofor L+ 1<t L+r+1.

Since the denominator of &(¢) is positive, the sign of @(?) is the same as
the sign of the numerator of w(¢) where

I, x>0,
sign(x) = 0, x =0,
-1, x <0,

for every real x. We therefore find that

sign(@(f)) = sign{(1 + 4 — Be *" + C — De *")(20rBé *)
— [(n = )™ 4+ A — Be *"|(2arBe™**" + 2ar De~**%)}
= sign{B(1 + A — Be > 4 C — De ")
— (B + D)l(n — 1) + 4 — Be "]}
= sign{B[1l — (n — 1)™"] + BC — [4 + (n — 1), D},
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By (35)-(38),
BC—[A+ (n— 1D

2

= 2—— exp[(L — 1)2ar]

exp(—ar) — exp[—(L — 1ar] R
X = }[AH G—(n—1" (39)

By the nonnegativity of J(£) and the definitions (24)-(26), it readily
follows that
AH > G.
Hence (39) yields

BC—[A+(m—1DYYD > —(n — 1)-13—2 exp[(L — 1)2ar]
(e 8

2 exp(—ar) — exp[—(L — Dar]
exp(ar) — 1

}. (40)
By (40) along with (36),
Bl —(n—1D714+BC—[A+(n—1)1D

2

> s exp[(L — 1)2uar]
20

X (1 —(n— 1)*1{1 + e"p(”‘”)c ;(i’:‘;[:(f - D“”]}). (41)

As a function of ar > 0,

exp(—ar) — exp[—(L — 1)ar]
exp(ar) — 1

has a maximum of L — 2. Inequality (41) therefore implies

Bl—(mn—1)"14+BC—[A+®m—-1)YD

_ 2
i B B olh, e D
n—1 2«
>0,

and thus sign(@(2)) > 0.

We will now prove, as an illustration, one of the formulas showing
that bowing occurs. Corollary 1 shows that y, .. ,(¢) is monotone de-
creasing in i if # = (i + 1)7. Corollary 2 shows that a kind of facilitation
appears in yz_; 7(f) if = mr and m is allowed to increase beyond the
value m = L. The next corollary shows that this facilitation effect
propagates backward into the list and produces bowing. We can only
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expect this effect to occur if m is taken sufficiently large. Welet m approach
infinity to simplify our formulas. For m at finite values, the bow occurs
nearer to v, than to v,.

COROLLARY 3 (Asymptotic Bowing). The function
B(l) = lim y,;’,-_‘_l(m'r)
m-— oo
first decreases monotonically to a minimum and then increases monotonically

as i increases from 1 to L — 1. The minimum occurs fori = }(L — 1) if
L is odd, and for i = (L — 1) or i = &L if L is even.

Proof. By Theorem 1, for¢ > L,

N(t, m)
Nl L Rl 42
.Vt,t+1(m'r) D1, m) (42)
with
N(t,m)=((n — 1) 4+ A — Be*,
and

Dft,m) =1+ A — B + (C — De*)(E — Fe*)
+ (I — Jeart) — Keart + Le2¢rt

where
A2
A=G+ E‘Z e‘z“”, (43)
2
— j_\; e-—m2ar’ (44)
- (45)
D = (e — 1), (46)
A2
E=AH+ —2—; e 22 (47)
2
_ % gmaar (48)
2 —2ai —a7
- (AH +Azea )1 i = (49)
2 —24l —Lar
=(AH+A; )lie—“"’ (50)
K = % e—m2ar_¢re_L____1, , (51)
o X —
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and

L = £ e-—-mZar e

; 2
20 e —1 (52)

We wish to show that the function

m-—* oo

(0) = lim sign 7, 307

is negative when ¢ = 1, positive when ¢ = L — 1, and zero exactly once
for ¢t in (1, L — 1). Since the denominator of y,..,(mr) is positive, it
suffices to consider the numerator of 3, ,,; () to find the sign of p, ,., (m7).
Proceeding as in Corollary 2, we find that

sign( Yy s1(m7))
= sign(Be**{—2[1l — (n — 1)"'1+ 3DEe™*"* — 2CE — 2I + (J + K)e*"}
+ [(n — D™ + AJ[2Be**™* — DEe™*" — DFe*"
+ 2FCeé*™ + (J + K)e™® — 2Le*™)). (53)

We now let m approach infinity. By (44), (48), (51), and (52), we find
that B—0, F—0, K—0, and L—-0 as m->o0. Since also

(n+ 1)1 4+ 4 > 0 by (43), (53) yields
B(t) = sign(— DEe™™" 4 Je™).

Since J 7% 0 2 DE, §(¢t) has at most one zero. Since J >0, $B(¢) > 0
for all sufficiently large z. It remains only to show that B(1) < 0 and
BL —1) > 0.

By (46), (47), and (50},

] earte—Lar e—art
HB(t) = sign -—
(1) = sig (1 1)

&7 ar

= §i gn( Pl e—Lar s e—art)

Thus
B(1) = signf{exp[— (L — 1ar] — exp(—2ar)},

which for any L > 3 is negative (and for L < 3 manifestly no bowing
occurs), whereas
B(L ~ 1) = sign{exp(—ar) — exp(—a7) exp[— (L — Dar]}
= sign{l — exp[—(L — Darl},
Mathematical Biosciences 4 (1969), 201-253
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which is positive for all L > 2. Note also that $(¢) changes sign for
t = }(L — 1). The proof that bowing occurs for sufficiently large m (and
thus for sufficiently large W) is therefore complete.

The next corollary shows that the strength of associations y, ,.,(mr)
and y;, ,(mt) always decreases as the numerical remoteness k > 1

and ¢ > 1 increases. The inequality y,,.,(mr) > y, .,(mr) between
first- and second-order associations holds, however, only if the product

ar of decay rate and reaction time or the ratio /A of reaction time to input
duration is sufficiently large.

COROLLARY 4.  Association y; ;,.(m7) is an associational strength y; ;.p
(mt) is a monotone decreasing function of k, 1 <k < L — —Jyj=

1,2,..., L= 1. y;3.0m7) > y,; 4,.0(m7) if (sap) * > 24 or G > e~ *"AH.
y,,,_,,(m-r) is an associational strength y, ; ,(m7) is a monotone decreasing
Sunctionof k, 1 < k<j~—1,j=2,3,...,L.

Proof. The denominator of y; ;. (m7) in (25) is independent of
k > 1. Hence it suffices to prove our claim for the numerator

(m — 1) + f;x(m7) of y;;.(m7), and in particular for J.i(mT)
alone. By Theorem 1,

Ji,06{m7) =0 fj4+k>m+1,
2
=G + % {exp(—2al) — exp[—(m — 2o}
o

ifk=1andj < m,
2
= {AH + ‘—2— exp(—-zaﬂ.)} exp[—(k — Doar]
o

! 2
- 2— exp[—(m — j)2a7] exp[(k — 1ar]
o
ifk>1landj+ k< m+ 1.

To show that f; ;. ,(m7) > f; ;,o(m7), it suffices to prove that
A2
G+ = {exp(—2a4) — exp[—(m — j)2ur]}
o

2 2
> [AH + %— exp(——ZOM):I exp(—ar) — 3— exp[—(m — {)2r] exp(an).
o oL
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A rearrangement of terms shows that this is true if

é\f exp(-zaA)u - exp(—ow)] > AH exp(—-o&r) = G, (54)

which certamly holds if G > AH exp(—ar). Inequahty (54) can also be
satisfied if = > 24, because the inequality

2
AHe—ar &= A -—ar(l : -2a).)
‘ 20
shows that (54) holds if
A? :
G > izl (e—ar =i e—zaz)’
which is certainly true if 7 > 21, since G > 0.

It remains only to show that f; , ,(m7) decreases as a function of
k > 2 wherever it does not vanish. Fork 22 and k <m — j+ 1,

. ,
fi,1(mr) = [AH -} ‘%‘ exp(-—_2_ozl):| exp[—(k — 1)ar]

At -
o exp[—(m — j)2ar] exp[(k — Dar],
- 2a L

from which our assertion is obviqus. -
A similar proof goes through for f; ;_,(m7), k > 1. -

The forward association y; H_1(m'r) will dommate the backward associ-
atlon ¥;.5-1(m7) only if similar constraints are placed on «, or 7, or A

COROLLARY 5. The inequality f; ;. 1(m7) > f,_,._l(m-r) holds if and
only if ,

— {exp( 204) — exp[—(m “1)2‘1”']}[1 — exp( 2“7)] =
> AH exp( 200')
and thus if
G > AH exp(—2a7).-

- The corollary is provéd by comparing the numeratéfs‘of fi.sra(m7)and
f;.1-1(m7), and rearranging terms. The inequality G > AH cxp(—wr) of
Corollary 4 thus implies f; ;,,(m7) > f; ;_1(m7).
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18. FASTER LEARNING IN THE DYNAMICAL BEGINNING THAN IN THE
DYNAMICAL END

Very often, as in Fig. 3, the beginning of a long list is learned more
rapidly than the end of the list, even though both beginning and end have
an advantage over the middle. The main reason for this in M(4) is
simply the following.

Consider y;_;, 1.(¢) versus yi,(t), for example; y, , ,(¢)first grows for
tin ((L ~ 1)7, L7), but must compete with a maximally large past field
during these times. y,,(¢) first grows for ¢ in (r, 27) and suffers no com-
petition during this time interval. Association y;_, ;(¢) has no future
field with which to compete for L+ < t € (L — 1)r + W, but it continues
to compete with its entire exponentially decaying past field as x;_,(¢ — 7)
also decays exponentially. By contrast, yy(t)for2r < t < (L — Dr + W
competes with associations in a future field that gains new entries only one
at a time every r time units, so that x,(¢ — 7) is very small before many
competing associations can be activated by successive inputs. These two
factors help to guarantee faster learning in the beginning than the end of
the list.

If this argument is extended to all intermediate associations y, ;. (¢),
by “continuity” with respect to i, we readily find that the bowed curve often
decreases over a smaller number of list items than the number of items
over which it increases, as in Fig. 3. The length of the intermediate flat
portion of the curve is determined, as was pointed out in Sections 6 and
12, by the relative sizes of G,(w) and L. If 1<G,(w) < L, then many in-
dices are in A,(¢) during its steady-state phase, and the bowed curve is
flattened over these indices. If, by contrast 1<G,(w) == L, then |A4,(¢)|
rises to a large maximum G,(w) =2 L and then falls to zero (supposing W
is sufficiently large). The flat portion of the bowed curve is consequently
VEry narrow.

19. GROWING CHAINS OF ASSOCIATIONS AROUND AN ANCHOR SYMBOL

We now consider learning on the later trials §,(w, W; L), i >-1. We
saw in Section 12 that the learning produced on trial & (w, W; L) can be
erased on later trials if w and W are small and L is large. We henceforth
suppose that W is chosen sufficiently Iarge that all x,(z) can decay to small
values after trial &,(w, W; L) ends and before trial Sm(w, W L) begins,
i=1,2,.
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Given this assumption, trial 8;(w, W; L) differs from trial & (w, W; L)
only in that its initial data y,((L — 1)w + W) are no longer uniformly
distributed, as the values y,,(0) = (n — 1)~ at the beginning of trial
&,(w, W; L) were. Instead, some learning has already occurred, especially
at the list’s beginning and end. By repeating the arguments leading to
Theorem 1, we easily find that on trial §,(w, W; L), learning is again faster
at the beginning and the end of £, and the effects of learning on the first
two trials are cumulative. This fact suffices to show that the list seems to
be learned in growing chains of associations, as the next paragraph shows.

Vi Vi
& L
—p & [ ey ]
V-2 Vi Yo Vi Vo V3 Va
Prnsrrmfis. i @ [ B & B 8 L ]
VL V|

Trials

| | |
.

FiG. 10

Suppose, for example, that a given association y; ..,(¢f) produces a
behavioral guess of r,,, given r,, only if y,,. ,(¢) exceeds some given
threshold 1 —¢, 0 <& < 1. (See, e.g., [6] and [8], where response
thresholds and some of their physiological causes are discussed.) Clearly
¥1a(t) reaches threshold before y,(f) does, and Yas(t) reaches threshold
before y,(f), and so on. Similarly, y;_; ;(#) reaches threshold before
Yi-2.r-1(t)does, and y;_, 7_,(¢) reaches threshold before y;_4 ;. ,(7) does,
and so on. In other words, M(#) seems to learn the list in both the
forward and backward directions around the “anchor stimulus” ry, as
has been experimentally reported [13]. “Chains” of associations seem to
sprout from the anchor r, and grow in length in both the forward and

backward directions as more trials occur, until the two chains meet (see
Fig. 10).
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20. FORWARD AND BACKWARD FUNNELING REDUCES INHIBITION ON
‘LATER TRIALS

We now discuss heuristically the flow of events in the nonlinear system
(1)-(4) that leads to the process of “chaining’ around an anchor stimulus.
Trial & (w, W; L) causes yy,(f) to exceed its initial value (n — 1)~ and
all other values y,,(¢) at the beginning of trial §,(w, W; L). Let r, occur on
trial &;(w, W; L) at time ¢ = (L — 1)w + W. The input signal from r, to
rifortimestin (Lw + W, (L 4+ Dw 4+ W)is

Bxy(t — TIyr(2),

as (1) shows. Since y;5(f) > y12(0) = * - + = p1;(0) > yy,(¢) during these
times, the input received by v, from v, on trial §;(w, W; L) exceeds the
input that it received (L — 1)w 4+ W time units ago on trial §,(w, W; L).
Growth of the association y,,(?) is hereby enhanced on trial &(w, W; L).
Another way of saying this is that the association y,,(¢), due to past
training, has funneled a disproportionately large fraction of the total signal
Bx,(t — 7) from v, to the “correct” response point v,. A similar argument
shows that y.,(¢) funnels a large fraction of fx,(t — 7) from v, to v, but
not quite as large a fraction as y,,(¢) funneled from v, to v,. As more and
more trials occur, the stimulus trace x;(¢) of each list item r; is funneled
with ever greater effectiveness to v,,, i=1,2,...,L — 1. Funneling
hereby reduces competition between the correct associations y; ;,,(t) and
the incorrect associations yu(t), k # i + 1, by keeping the stimulus traces
x3(¢) small unless they are perturbed by experimental inputs. In physio-
logical terms, funneling diminishes lateral inhibition by the incorrect
vertices v,, k # i 4+ 1, of the correct vertex v, ,. (See the sections on
spatiotemporal masking and reaction time in [6] for a more detailed
physiological discussion.)

A similar argument shows that funneling also occurs in the backward
direction; that is, into the past field. Namely, since y;_, y(¢) is relatively
large when trial &,(w, W; L) begins, the stimulus trace x,_,(¢) is funneled
preferentially to vy, The future field of v, is thereby restricted primarily
to vy; that is, to the “correct” vertex, instead of to all vertices. Once
Vr-2 r-1(¢) becomes large, it can funnel the stimulus trace xy_,() primarily
to vy _;, and thereby decrease competition due to incorrect vertices by
eliminating these vertices from the future field of vz _;. The argument can
be extended successively to y; s 7 o(?), yr 47 s(t), and so on. The
heuristic point is always the same: the growing correct associations
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funnel their stimulus traces to correct response points, and thereby
eliminate competition via lateral inhibition by stimulus traces that have
not been recently excited by experimental inputs.

The existence of competing vertices before the list is learned is, of
course, necessary, since otherwise M(4) would not be capable of learning
many different possible lists [S]. Once a given list £ is presented to (),
however, funneling eliminates those alternatives that are incorrect, given

£, and lets learning proceed with an ever lessening degree of competitive
inhibition.

21. TRAVELING WAVES OF EXCITATION IN REFLEX ARCS

‘After many trials have occurred, and all y, ,.,(f)=~=1,i=1,2,...,
L — 1, the funneling process carries stimulus traces along a chain from
v, to vy, from v, to v, and so on until v;_, and vy are reached; thatis, a
traveling wave of excitation is set up that inhibits out incorrect alternatives
as it flows from point to successor point. In [6] it is shown that “feedback
inputs” are needed to keep the traveling wave from dying out on later links
in a long chain. These inputs are created in the medium surrounding AG(A)
much as we “hear ourselves talk.” :

The chain of associations y, ;.,(f)=>~=1,i=1,2,...,L —~ 1, can be
thought of as a “reflex arc,” since exciting v, causes only v,,, to be excited,
and all other “choices” v,, k # i + 1, have been inhibited aWay. In other
words, the associations form a “Pavlovian circuit.”

A later paper will show that these traveling waves of excitation,
bolstered by lateral inhibition of incorrect vertices, are closely related to
brain waves.

22. CLUSTERING AROUND A KNOWN SUBLIST OF A LONG LIST -

The funneling argument can be used to explain why learning occurs,
or is “clustered,” in a forward and backward direction around a short
well-learned list placed in the middle of a long poorly learned list, or why
several bows can be created in a very long list if it is learned with a long
rest pause near its numerical middle.

Clustering can be explained as in Fig. 11. Let the short well-learned
list £ = rg., " * riy be interpolated in the dynamical middle of £ =
ryrs -7z, where we have supposed that conditions suitable to the
occurrence of bowing are satisfied by w, W, and L; for example, 1 K
Gw)+1<i&L and r=wL W. Consider the presentation of
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/\v'

15 oo 5 Py to M(o€) on trial §,(w, W; L). Right after r, is presented, the
past field of r; is very large, since |4,(¢)] =~ G,(w)>> 1 at this time.
Since £’ is well known to JM(A), y,,..() = Vir1,ipa(t) 2
Yire—1.:06(t) 22 1. Two effects now occur.

1. The stimulus traces x,(¢), j = 1,2, ..., i — 1, decay exponentially
to zero in the time interval ((i — V)7, (i + k)7) during which £’ is
presented to A(A).

2. The stimulus traces x;(z), Jj=1i, i+ 1,...,i+ k-1, corre-
sponding to symbols in L’ are all funneled to their correct successor

Fic. 11

Upi1e

By (1) and (2), if the time interval of length (k + 1)r during which
L' is presented to JG(+) is sufficiently long and the decay rate o of the
stimulus traces is sufficiently large, then |A4,((i + k)7)| will be far smaller
than |4,((; — 1)7)| was. Thus the association y,, ; ;... () will suffer much
less interference from its past field than it would have had £’ been originally
unlearned by AG(A).

This argument also shows why y,_, ,(¢), then y;_, ;_,(¢), and so on, are
learned quickly by M(#£). Letr, ; and then 7, be presented to M:(+). The
trace x;(t) of r; is funneled only to r,,,, instead of to all r,, k 5 i. The
future field of r, is thereby decreased in size, and the number of competing
associations is reduced. Once y,_, ,(¢) becomes large, it can be thought of
as an extension of the known list £’, and our argument above can then be
applied to x;_;(¢) instead of to x,(¢).

Interpolating a short well-learned list £’ in £ has much the same effect
on the learning of £ as would interpolating a long rest period between the
initial segment £; =ryry - r,; and the terminal segment £, =
Fivper * Iy Of £, as we now show,

23. MULTIMODAL BOWING (WHOLE VERSUS PART LEARNING)

Given the list L = ryry -+ - 7z, choose w, W, L, and i as above. Present
r.yq after r, with a time lag of W 3> w instead of w. Then [A4,(¢)| sinks from
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G,.(w) or G,(w) + 1 to zero in the time interval (( — 1)z, (i — 1) + W),
Element r, is therefore in the dynamical end of the sublist £; = ryry -+ - r;
whereas r,,, is in the dynamical beginning of the sublist £, =
Fipleys® * * rz. Two bows therefore occur, one for £; and one for L.
The two sublists £; plus £ are clearly learned more rapidly than the single
serial list L. That is, part learning is better than whole learning, as experi-
ments have shown [13].

24. MASSING VERSUS DISTRIBUTING INTRATRIAL INTERVAL

The argument above suggests that a suitable mixing of small or large
values of w on different trials might well speed up learning.

Before learning occurs, a small (or massed) w can slow the speed of
learning by creating a large G,(w) value at certain list positions. Thus
distributing practice (or keeping w large) might well speed up learning on
the first few trials.

Once some learning has occurred, funneling sets in. Thus the associa-
tions help to reduce the amount of scatter of stimulus traces caused by a
small w., Massing practice on later trials might well therefore have less
harmful effects than on early trials.

Similarly, a presentation on each trial of items at the beginning and end
of the list with a small w and those near the middle of the list with a large
w might well help to flatten the bowed curve of errors.

25. FEWER ALTERNATIVES AND MORE COMPETITION

If for fixed i, all y,(¢), j # i, are equal, then all r;, j # i, are equally
good responses to an isolated presentation of r,, but it is highly unlikely
that any of these responses will be produced by M(+4), since the condition

~ of equal y;(t) means that lateral inhibition of outputs from the v; is
maximal [6]. If, say, only y; ;.,(¢) and y; ;..(t) are large, then only r;,; and
ri.s are likely responses to r,, but each of these responses can occur at
different times if y; ;.1(¢) and y; ;,,(¢) are sufficiently large, since each can
satisfy a response criterion. This fact helps to explain the seeming paradox
that a large number of equivalent response alternatives might interfere less
with responding than a small number of privileged response alternatives.
Because of this fact, distributing practice can create rapid learning on the
first few trials by keeping G,(w) everywhere small, only to be followed by
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several trials of strong competition between a small number of large
contiguous associations.

26. PAIRED ASSOCIATES VERSUS SERIAL LEARNING (GRADUALIST
VERSUS ALL-OR-NONE)

These remarks apply equally well to the case of paired-associate
learning, since we need only test the size of |4,(z)] produced by the paired-

associate paradigm through time. Let the following paired associate
paradigm be given, for example.

m(0),

(W), m(w + W),

(2w + W),

m3(3w + W), m(3w -+ 2W),

and so on. Thatis, ry is presented at time ¢ = 0; JM(#£) is given w time
units in which to guess r,. Then r; and r, are presented with a time

FiG. 12

separation of W. ltem ry is then presented, after which the correct pair
rs and r, is given, and so on. Clearly the paradigm distributes practice in
the sense that only r; and r, occur in the time interval (0, 2w + W), only
rs and r, occur in the time interval 2w + W, 4w 4 2W), and so on. The
set |4,(¢)]is therefore small for all ¢ > 0, and the pairs (ry, 73), (3, 70, = * *,
are learned by M(4) much as a sequence of lists of two letters each might
be. Asshown in [5], strong forward and backward learning occurs within
each pair (ry, r5), (rs, ra), . . . , and a sequence of associational “dipoles”
is created, as in Fig. 12. Suppose that the pairs are changed after several
trials of the experiment to form a new paired-associate paradigm (ry, r3),
(r4, 75); . . . . Although 7, is merely a “response” symbol to r; in the first
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paradigm, it has by this time formed a strong backward association
pa1(t) due to the distribution of practice between pairs. This backward
association will thereupon interfere dramatically with formation of the
forward association y.(t) in the new paradigm, where 7, is a “stimulus”
symbol for rs.

The situation in a serial list is quite different. For example, given an
item r; in the dynamical middle of a long list, the associations y(¢),
k # i, remain uniformly distributed over several trials until funneling
reaches r,. We can therefore interchange two points r; and r; in the dynam-
ical middle before funneling reaches these points without altering
associational strengths, since then y;(f) =y, j# k # i, and y,;(t) =~
y;:(2); that is, without creating interference due to prior learning. A later
note will study such effects systematically to show that all-or-none and
gradualist learning effects can occur at different list positions on successive
trials of the same experiment! We will thereby demonstrate that the
explanation of all-or-none learning does not require a mathematical model
in which discrete jumps in associational strength occur.

Serial learning also differs from paired associate learning in that entire
sequences of symbols in a serial list can act like simple symbols (or
“stimuli”) after a sufficient amount of practice occurs, as is discussed in
some detail in [6]. This fact does not require the introduction of any
special “serial learning strategy,” but depends merely on an analysis of the
overlap of stimulus traces produced by the serial paradigm and the rates
of growth of associational strengths produced thereby. As the sequences
of letters begin to act like “simple” symbols, it seems that the original
symbols are chunked together. A process of chunking has been experi-
mentally reported [14]. This “chunking” process is apparent even as
individual points are tied together by a single chain of associations
as learning goes on.

27. UPPER BOUND ON LENGTH OF LEARNABLE LISTS

When all interactions are turned off and w is chosen to satisfy G,(w) =~
0, A,(t) goes through only one phase in which |4,(7)] =0 or 1. Thus
distinguishability is good at all list positions. If also w =< 7, then corre-
lations between contiguous list items are good at all list positions. This
conclusion is independent of the numerical length L of the list. Given
this conclusion, why is it not possible to learn lists of any numerical
length L, just so long as G,(w) =2 0 and w2 7?2

Mathematical Biosciences 4 (1969), 201-253



252 STEPHEN GROSSBERG

We readily find a reason by turning on the interactions. Then point
strength flows from each vertex v, to every vertex v, with J # i after v,
receives an input. This creates a positive level of “background noise” at
incorrect vertices v;, f # i + 1. As more and more vertices are perturbed
on a given trial, the level of background noise at each vertex gradually
accumulates. Competition between associations (or lateral inhibition)
works to annihilate the background noise, but it might not be completely
successful without annihilating the correct succession of stimulus traces as
well, since by choosing w == = we guarantee that background noise from
a given vertex v, arrives at the vertices v, just as the input to the correct
vertex v;,; occurs.

Thus, if L is taken too large, the following danger to learning the
list occurs. When vertices v, with i =~ L recieve their inputs, the level of
background noise in the past field of v, can be so high that the input signal
I; is lost in it; that is, the signal to noise ratio becomes unfavorable to
learning. The background noise level when I, occurs can, of course, be
lowered by increasing w. Doing this might, however, make good
correlations impossible to achieve, since w must be increased as L is
increased.

A finite upper bound on the numerical length L of lists that can be
learned exists, therefore, since given a presentation rate for which good
distinguishability and correlations exist at some vertices, accumulating
background noise decreases the distinguishability of vertices v, with
I ~ L as L increases.
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