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1. INTRODUCTION

This paper studies the variational systems of two closely related systems
of nonlinear difference-differential equations which arise in prediction- and
*  learning-theoretical applications ([Z], [2], [3]). The first system is

i(t) = —oxdt) £ B Y ot — ) Ymalt), )
n -1
yalt) = 520)] 3 5] @
and
2.(8) = —uzpft) + Pxt —7) x,(8), 3

i,j, B = 1,2,..., n, where n is any integer greater than 1, 7 is any nonnegative
time lag, and 8 > 0. The second system differs from the first only in that (3)
is replaced by
2(t) = —uzp(t) + Pt — ) x ()] Fk (39
and (**)
z(t) = 0, (3
% j, & =1, 2,..., n. Nonetheless, the qualitative behavior of (*) and (**) differ

dramatically as £ — 0. .
' (*) and (**) can be interpreted as cross-correlated flows over directed

probabilistic networks G**) and G, respectively [J]. Both G and G**
have # vertices ¥V = {v;:7 = 1,2,...,n} and n? directed edges
E={ep:5, k=12, n}.
In G®, each edge ey is assigned the weight ¢(e;;) = I/n. By contrast, i{l
G*% each cdge #;, leading from a given vertex v; to a distinct vertex vy, kR#£7J,s
¥ Supported in part by NSF (GP9003) and ONR (N0C014-67-A-0204-0016).
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is assigned the weight ¢(e;;) = 1/(n — 1), whereas each e;; is assigned the
weight p(e;;) = 0. Every vertex is connected with positive weight to every
other vertex in both G and G***, and thus both of these graphs are
complete. Since in G even g(e;) > 0, we call G a complete graph with
loops. Since in G***), gle;;) = 0, G'* is a complete graph without loops. Often
in the theory of nonlinear networks, the addition of loops complicates the
analysis by creating a new source of nonlinear oscillations. In the present
account, the reverse is true, since G** is much easier to analyse than is Gt**),

Our reason for studying the variational systems of (*) and (**) is twofold.
Actually, the global behavior of (*) itself has already been analysed [3]. The
result is stated in terms of the ratios y;(t) and the corresponding ratios
Xi(t) = %) [Tomey X)L, as well as the constant o(7) = u + 25(7), where
s{7) is the largest real part of the zeros of R (s) = s + « — Be~5. We state
some of the facts concerning the limits of y;;, and X}, as t - o0 below.

TueoreM 1. For any n 2 2 and any v 2= 0 with o(z) >0, let (*) have
arbitrary nonnegative and continuous initial data. Then the limits

Qi = tll{‘;‘) Xt and Py = }Lﬂg Yi(t)

exist and satisfy the equations

Pji = Qi > i’j = 1, 2,-.., n.

Moreover
Qi em;, M),
where »
m; = min{X(0), ¥,,(0) : &k =1, 2,..., n}
and

M; = max{X0), yu(0) : & = 1, 2,..., n}.

CoroLLARrY 1. (Stability is Graded in 7). If o > Bard o(ry) > 0, then
Theorem 1 holds for alln = 2 and+ = =,.

CoroLLARY 2. If u > 2(a — B) > 0, then Theorem 1 holds for all n > 2
and 7 = 0.

Genuinely nonlinear systems of difference-differential equations which can
be subjected to a global analysis are hard to find, and so we take advantage of
this one to compare its global nonlinear and linearized behavior.

(**) is 2 much harder system to analyse. Thusfar the only global result
available discusses the case # = 3 and = == 0 for initial data constrained by the
condition 2;5(0) = 2;,(0), 7,7 = 1, 2, 3[2]. Some of the pertinent facts in this
case are listed below,
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TuroREM 2. Let (¥*) be given with n = 3, = = 0, and arbitrary positive
and continuous initial data satisfying the constraint 2;;(0) = 2;(0)s,7 = 1,2, 3.
Then the Limits Q; = lim,_,, X,(t) and P, = lim,_, y;(t) exist and satisfy
the equations

3= 0; = OiPji + OxPri {6 k} ={1,2,3}

In particular,
3
lim x,(t) e=®% = 0, Y x,(0).
=0 m=1

.

Ifo=u+2B8—4>0 then Q; = % and Py, = 3(1 — 8;). If o <0, then

21311=1 zjm(o)
| P — O] < 210 (1 + st 2
Since ¢ = o(0), we note that (**) has the unique limits Q; ::},; a.nd
P, = {1 — 8;) if 0(0) > 0. By contrast, (*) can have any limits satisfying
ik = 3
* 0, = P;; € [m; , M;] when o(0) > 0. .
~ We will be able to analyse the variational system of (**) for a large set of
2 and r that includes all 72 = 3 when 7 = 0. This analysis will revefal a formal
reason why (*) is easier to analyse than (**). Indeed, the behavior 9f (*Ys
variational system depends on the behavior of a linear second-order differen-
tial equation of the form

i+ A(t) ¢ + Bt)g =0,

whose coefficients A(¢) and B(?) converge to constants at an exponential rate
as t — oo0. The behavior of (**)’s variational system, on the other hand,
depends on the behavior of a linear second-order difference-differential

equation of the form
i -+ () b+ B@) e — =) + CO b+ Doyt — =) = 0,

whose cocfficients A(t), B(t), C(t), and D(t) also converge to constants at an
exponential rate as £ — 0. Adding loops to.the Im.canzed graph thus trans-
) forms the problem from one in difference-differential equations to a sxmplér
one in differential equations. This fact also shows that we sho'uld expect (*)
* and (**) to be affected in different ways by an increase in the time lag . ‘
Theorem 1 for (*) shows that the limiting values Q; can occur fanywhere in
the interval [m; , M;] and are not, in particular, fixed nurr.lbers 1'ndependcnt
of initial data, as we find in Theorem 2 when o(0) > 0. This fact is translated
in the variational system of (*) as follows: the coefficient B(#) converges
exponentially to 0 as £ — c0. Thus thelequatio.n f9r o2(t) reduc?s ast— 0 tg
an equation in which only terms involving derxv.atxyc?s of g are .1mgortant, an
an extra degree of freedom in determining g's limiting behavior as £ — 0 18
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acquired. This is not true of the equation for X(t) as ¢t — co, and thus A’s
behavior is determined without an extra degree of freedom as ¢ — c0.

2. 'THE VARIATIONAL SYSTEM OF (*)

We now linearize (*) and compare the behavior of the linearized system
with (*) itself. Speaking roughly, the conditions guarenteeing stability in the
linearized and nonlinear versions of (*) are the same, but the distributions of
values of -the unknown variables as f— oo differ. The distribution
Py; = Q; = 0; of Theorem 1 is needed to carry out our prediction theory
[3], since it represents a graph which has “learned” the probability distribu-
tion {6; : = 1, 2,...,n} and can reproduce this distribution on demand. The
linearized distribution can agree with this nonlinear distribution only if
P; = Q; = 1/n, which represents a situation of “maximal ignorance”; that
is, one in which no “learning” has occurred. Thus passing from the nonlinear
to the linearized case obliterates the main property for which the nonlinear
system was constructed.

We now briefly review the way in which (¥) is linearized. For convenience,
we write (*) in matrix form as

U = f(U), Uit — ) *

in terms of the n{n + 1) dimensional vectors

U = (%1 00y By 5 211 yeey Z1n s Zag yeees Z)
and
f = (fl ""’fn ’fll ""’.f-ln ’f21 ""!fn'ﬂ)’
where
n n -1
fi=—a; + B x(t — 1) 2y (Z 3km)
k=1 m=1
and

fir = —uzp + Byt — 1) %

To linearize (*), we will compare an arbitrary positive solution U of (¥)
with a suitably chosen positive solution Uj of (*) by studying the function
V =U— U,. We expand

V() = f((Ut) + V(1) Ut — 1) + V(z — )
—f(Us(t), Uglt — 7))
in 2 Taylor’s expansion ([4], p. 341) to find the equation
V() = f(Us(t), Uyt — 1) V(2)
+ 1(U(8), Uglt — 7)) V(& — 7) + o({| VII), 4)

|
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where we have written f = f(£, 1) as a function of two n(n + 1)-dimensional
vectors ¢ and 1. The closely related linear system

W(t) = fUot), Uslt — 7)) W(2)
+ fU(t), Ut — ) W(t —7) )

in which the higher-order terms of| V'|}) are entirely ignored is called the
variational system of (*). In the following, our notation for W in component

form will always be
W = (By yeeer P> P1z seees Ban)s

where k; in (5) corresponds to x; in (*), and %;;, corresponds to 2y, .
The comparison function Uy will always be chosen in the form
Uy = (Yseers ¥y 8500, 8)
n times #® times

where v is a positive solution of
y(t) = —o(t) + By(t —7) (6)

with continuously differentiable initial data in [0,7], and & is a positive
solution of

8(t) = —ud(t) + By(t — 7) ¥(): ™

also with continuously differcntiable initial data in [0, 7]. It is easily seen
that (6) and (7) are the solutions x; and z;;, of (1) and (3) when the initial
data of (*) has the form x,(v) = y(v), v € [0, 7], and 2;(7) = §(r). Any
solution U, of this form will therefore be called a positive uniform solution
of (*). Our desire to comparc an arbitrary positive solution of (*) wit}} a
properly chosen positive uniform solution of (*) is motivated by the following

proposition.
PrOPOSITION 1. Given any positive solution
U = (%1 y0ees X » B11 9005 Zpn)
of (¥), there exists a: positive uniform solution
Uy = (3o ¥5 8505 8)
of (¥) such that the difference )
V = U— Uy = (01 s Un » V11 r+++s Vnn)

satisfies the equation

v 1 _1__(__"'.___.1)
k1 Uk n 1 —n\3 L % n
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Thus if we knew the distribution of the ratios o[y, 7]}, we would
automatically know the distribution of the probabilities X; = PE D

Proof. Given fixed initial data of U, let the initial data of U, be chosen so
that y(v) = i1 *x(0), v € [0, 7]. Since both y and x = 31 %3 are solutions
of (6), then y = x.

Thus
; _ l . x; —y _ l
Yre1% P 2 k1% — Ny n
_ xmy 1
T (l—ny =

1
=1—n(>:{iix:‘)—i

We can now state our main theorem concerning the variational system (5)
of (*). To do this, we define the functional '

K(f) =f0) +8 [ fl) v do
for every 7 > 0 and every f, € C[0, 7. |

THEOREM 3. Suppose the variational system of (*) is given with anyn =2,
any v > 0 such that o(r) > 0, and any positive uniform solution Uy of (*). Then
for arbitrary continuously differentiable initial data in [0, 7] satisfying

£ (3 ) #0,
m=1
there exist constants Q,- i =1,2,..., n, such that

hy(t) [i h,,,(t)] o O; + O(e-tkin+otmty

m=1
and

hjk(i) l:mz:l‘l hjm(t)] -1 — Qk_{:{;g_: 4+ O(e—a(f)t)’

1,7, k=1,2,..,n, where k(r) = Be=*"),

—
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Moreover

—75(z) pr o
. —~s(r)t — Qie I\‘r(2m=l hm)
hz(t) e’ 1 _+_ BTe—--rs(-r)

+ O(exp[—min(p, k(v) + o(7))t])

and

- (0; + 01 e Ko(y) KXt i)
) 2s(r)t
hu(t) e (I & Bremsny2

+ O(exp[—min(p, k(7) + o(7)) 1]),

jo k= 1,2,..,n, where p = Re(s;) — Re(s), and Re(s;) is the ith largest real
part of the zeros s; of R,(s) = s + a — Be~™s. In particular,

~

0 K )
1 + Bre—7stn

+ O(exp[—min(p, k(r) + o(r)) 1),

hg’k(t) =28t —

(1) + Iufe) "

Cik=1,2..,n

COROLLARY 3. Theorem 3 holds for all n > 2 and v > 7, if « > B and
o(ro) > 0. If u>2(e — B) >0, then Theorem 3 holds for all n =2 and
+ > 0, and moreover s(t) < 0.

Proof. The proof is same as for Corollaries 1 and 2. One most show that
« > B implies o(r) is monotone increasing in 7 > 0, and that

o(0) = u + 2(8 — ).

Remarks. (a) Since continuous initial data in [—7, 0] gives rise to a con-~
tinuously differentiable solution in (0, o), the restriction to continuously
differentiable initial data in [0, 7] is merely for the sake of convenience of
exposition.

. (b) The study of (5) was motivated by considering for each U a U, with
(&) = Z:‘n=1 xa(£), € € [0, 7], which in terms of v; = x; — y yields

Y on(®) = (1 —m)nH,  £€00,7)
m=1
The linearized analog of this constraint is

$ ) =1 —moe)  EeO .

me=l
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This case is covered by Theorem 3 since then

K, (z hm) = (1 —n) K.{y) < 0.

m=1

(c) The analog of P;;, in Theorem 1 is clearly

0x +0;
P, ==k =i
ik l—{—an

The equations Py, = Oy of Theorem 1 agree with these equations supposing

. 1
Qg>0 iff ij':Qk:;)

since if
0= P =295
Y E=T _{_an
then
Qlc + ”Qa‘Qk =Q: +Qk N
and

Proof of Theorem 3. The proof is divided into five steps. Step (I) consists
merely in writing out the variational system in terms of its components %; and
ki, . These components obey the equations :

A Rt [ A R

e
and
iy, = —uhy, + Bly(t — )by + vh(t — 7)), 1
where
k=Y h, and Hy= 3 hy.
m=1 m=1

Step (I11) shows that the sum k = Y7 _; A, of the solution of (10) obeys the
equation

k= —ah + Bh(t —7), (12)

|
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and that the sum H = Z:,j=1 h;; obeys the equation
H = —uH - Bn(y(t — 7) h -+ yh(t — 7). (13)

The sums % and H are thercfore independent of the distribution of the
ks and h;;’s. This fact is crucial in the remainder of the proof.

In step (II1), we use (12) to simplify (10) in the following way. Each of the
n equations in (10) has a right hand-side which depends on all n(n + 1)
variables k; and 4;;, . We will nonetheless be able to transform the ith equation
into an equation in which only one unknown function appears, namely the
function

—= (14)

A price is paid for this s-impliﬁcation.. g; obeys a pair of coupled equations,
namely

& = —Dg; + EG; (15)
and .
G; = —uG; + Fg, (16)
where
h(t — t
p-#=1  p. 57(03,1 D, P =gk,
and

Gi=(m—1)H — Y H,.

ki

(15) and (16) can be thought of as an “‘uncoupling” of the variables /; from
the variables Aj; in (10). The remarkable fact about (15) and (16) is that all
terms in which the time lag = appears are relegated to the coefficients D, E,
and F. This fact corresponds to the following fact for (*): X, and yj;; obey
equations of the form

n

= 2 Am(ymi - Xz)

m=1

and
Vi = Bi( Xy — Yk

where all expressions involving X;’s evaluated at past times occur in the
A,’s and B/’s [3].

b e o e 5
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In step (IV), we differentiate (15) and manipulate (15) and (16) algebraically
to find a second-order equation for g; of the form

g+ Al)g: + B(t)g: = 0. (17

Such an equation for general variable coefficients A(¢) and B(z) would
provide us with little information about g,(t) as ¢ — 0. It is fortunate that in
the present situation these coefficients have limits as ¢ — o0 and approach
them at an exponential rate. Moreover, lim,,, B(¢) = 0. We can therefore
compare the behavior of (17) for large ¢ with the behavior of the solution w;
of the following trivial equation with constant coefficients.

@, + Ad; = 0 - (18)

Using this comparison, we readily prove the existence of all limits lim,, g,(¢),
and thus of all limits @, = limy,q A()[Tmoy Am(t)]"2. Moreover these
limits are approached at the exponential rate 4.

We cannot expect the limit J; to take on the same value for all initial data
of (5) because of the appearance of an arbitrary constant in the integrated
form of (18) as ¢ — 0. Thus the nonuniqueness of the limits Q; in (*) trans-
forms in (5) to the statement that g,(¢) behaves for large ¢ like the solution w,(t)
of the second order equation (18) which has no term containing w,(t).

In step (V), we imitate the method used on (10) as far as poss1ble on (11).In
this way, we show that the ratio

Hj = hy [Z ha'm]—l
me]
obeys an equation of the form

Hik = Aj(ij - Hik) ) ' (19)

where
d
(@) 45=logT; |
(b) I can be written in the form
I = el + e M)

for_‘_some ## 0, k >0, and bounded M; ; and

. O+ 0;
c) G has th lmt
() ik S € limi —f—nQ,

These facts suffice to prove the exponential convergence of Hj; to B, .
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(1) The Variational System in Component Form

The computation leading to (10) and (11) is straightforward but tedious.
Hence we merely give two examples of how the uniformity of U, enters into it.
In terms of the n(n -+ 1)-vectors

g = (gl 3oy gn ’ 511 yeecy é‘nn)
N == (N1 yeees T » M1t 9eees Mnn)s

the vector f = f(£&, 1) = (f1 s Ju » J11 »-+» Jun) has components

fi= ﬁ@m—~w§+ﬁzma4zaﬁ

k=1
and .
o=l m) = —ubp 4 Bt -
Clearly
o Bn;
: ’fam fii ’
g ol DL
so that by the uniformity of U, ,
— Dyt — 1)
2wy vte — = = =gt =,
which is independent of 7 and j; and
~ ofs _ _ Béu
(2) a77:)' o 217:1:1 g:im ’
so that
of; _B
LW vt = =7,

which is constant.

(11) Egquations for h and H

(12) is derlved by summmg over 7 in (10) and noticing that in both
r—1X _1 H, and Z © 1 ks Hy , each hy; occurs exactly 7 — 1 times.

(13) is an immediate consequence of summing (11) over7,j =1, 2,..

(I11) Uncoupling the Functions h; From the Functions h;,

The derivation of (15) and (16) for g; = (h;/h) — (1/n) depends crucially on
the fact that % and H are independent of the distribution of the 4;’s and A;;’s.
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First we derive an equation for A; = Z,/h. Since

EH A

we have by (10) and (12), using the notation G; = (n — 1)H; — >, ., H, that

= [ e =+ BT 6 (o B

__ B — T)(.__) Bt —7)

n T nh Gi.

Letting D = Bh(t — 7)/h and E = By(t — 7)/n25h, we immediately find (15)
since g; = A, . (16) is derived as follows. By (11),

Gi=("“1)Hi— Y H,
ki

= —uG; + B(n — V[ny(t — 7} b; + vh(t — 7))

—B [mlt =) T b+ (= Dyt — )]

k#i

Cancelling terms, we find

Gy = —uGy +fry(t — ) [(n —~ Vb — ¥ hy]
. k%l
= —uG,; + Bn*y(t — 1) hg,
= —uG; +Fyg,;,

where F = Bn%y(t — 7) h is independent of the distribution of ,’s.

(IV) A4 Second Order Equation for g,
Differentiating (15), we find

gi = ‘—Dg.‘ -_ Dg., + EGl + EG‘ . (20)
Substituting (16) into (20) yields

= (BF — D) g, — Djs + (£ — uE) G, e

|
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G, is eliminated from this expression through the use of (15), which when
substituted into (21) gives

&+ AR g +Bt)g: =0, (17)
where
E@)

A(t) = D)+ — 505

and
B) = Dt (u — ) + D) — EOFC).
That is,
A(t) = Bh(th— 7) tu— -‘-id?log V(th; 7)

and

O L

cp(My B

In order to describe the behavior of A(t) and B(¢) for large ¢, we need the
following lemma.

Lemma 1. Let y and 8 be any solutions of the equations (6) and (7),
respectively, whose initial data s continuously differentiable in [0, ] and,

moreover, K (y) 5= 0. Then

=T prstn
}Lm ”0) ), (22)
i @
and -
}}ﬁ yz(;(t_)' T) —_ 3}0,(,,_) sl (24)

If y, and y, are any two solutions of (6) chosen in this way, and 8, is a solution of
8,(t) = —ud,(2) + Bnit — 7) (o),
then

lim dtl ”28)8“)) ofr) = e _ (25)
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There also exists a ty > O such that

f : | Y(?/(;)T) —e ™ | dy < oo, (26)
[l &
[ forelocn
and
[Jamigag comole<e @

Proof. The proof is based on the standard representation of y as an
infinite series

©
'y(t) — z Cmes,,.t,

m=1

where $;, S3,..., are the zeros of R,(s) == s+ a — fe~"* arranged with
Re(sm) = Re(Snp1)s m = 1, 2, ([5], p. 109). From this can be derived the
closed form representation

te) = o [F T )] (30)

where p = Re(s;) — Re(s,) = s(r) — Re(s;) >0, and H is bounded ([3],
Lemma 3).
(22) is an immediate consequence of (30). (23) follows from

dyt—r7)_yt—7) [7"(f-f)_2(t_)
Y

dt (1) At) bl—7 A
and "
7(t) _ By(t — 1)
0 B O B
since then
dyft—7) _ Byt —7) [y(t —2r) ot — T)]
dt y(t) y(t) Lyt —1) ONEN
and the result follows by invoking (22).
(24) follows from

(1) = et [pyem + B[ o =y de], 12
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where
(v — 7) y(v) = 27 ¢,? 4- =PV R(v)]
and R is bounded. Thus '
8(t) = e [8(r) e + oo (

galnt __ goln)7
0'(1') )
t
+ 'Be—-rs('r)f e(a(‘r)—ﬁ)vR(‘v) d.v]
and

Bcl2e—'rs(1)eo(7)t

B(t) — g-ut [ U(T) + k + e(a(‘r)—P)tRl(t)] ,

where .
B = 8(r) e — Be¥(o(r)) ertutstnd
and R, is bounded. Along with
Yt —7) == g2s(nitg=2rstni[p2 | e=PIR,(1)],

where R, is bounded, we readily find (24).
(25) follows from the identities

d, vit)8(t)

dt log yi(t — 1)

— 7s() Sl(t) _ nt —1)
veot)  8i(t)  wnlt—7)

iy [Ve(t — 1) +?’1(t —1)nl) _ ni —21)] .

o(t) 3,(t) 7t —17)
=8 [yz(;z(:) 2 + ( ‘ylﬂgl(; 2 )( '}’12;1(‘1:‘) 7) ) B );’ll((tt:z'"g)] %

along with (22) and (24).
To prove (26), note that for ¢ sufficiently large,

V(t —"’_.T) — TS = es“)(t_?)(cl + e_p(t—T)H(t - 1')) —

—78{T)
) SO, T e H(E) e
_ e—-rs(‘r)(l + e—-MO(l» . e—-rs('r)
= ¢~PO(1).

(26) follows immediately. (27)~(29) can be proved in an identical way.
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Lemma | implies that the limits 4 = lim,_, A(¢) and B = lim,_,, B(?)
exist and are approached at an exponential rate as ¢t — co. 4 and B are
readily found to equal 4 = &(r) + o(7) and B = 0, where we have set
k(7) = Be~msn.

We can therefore compare the behavior for large ¢ of g; with the behavior
of w; in

@; + Aw; =0, (18)
by [6], Chapter 2. Since the characteristic roots of (18) are & = 0 and —4,
wit) = Cy + Coe™4,

where C; and C, are constants. Since w,(t) thus converges at the exponential
rate 4 to Cy , it follows that all g(#) converge at the exponential rate 4 to
constants as ¢ — 00, and thus there exist constants §, such that

n -1
2o ()] = 0u ez 631
=1 )
The fact that

—s(1)t — Qie—”(T)K'r(Z::t=l hm)
ht)e =

+ O(exp[—min(p, k(r) + o(7)) t]), (32)

i =1,2,.., n, follows by substituting (30) for -1 hi() into (31) and rear-
ranging terms. )

It is easily seen from the above argument that the limits 0; exist for all
values of A, and hence for all real choices of o, 8, and # with § > 0. 4 >0,
which occurs whenever o(r) > 0, merely guarantees that these limits are
finite.

(V) An Equation for Hy, = hik[z‘:‘n=1 him] 72

Let H9 =Y by . Then Hy, = hy/H?, and

) 1 R H&
Hy = HO (hjk — by -ﬁ(—,y) >

where, by (11), H' obeys the equation

H® = —yHD 4 By(t — 7) b + nyh(t — 7).
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Thus,. again by (11) :

Hiy, = Hlm [ uhy, + Bly(t — 7) by + yhi(t — 7))
— )k h{t —r
—hy ( B(Y(t ‘ ) H—[‘_’)ny (2 )))]
= Tﬁ?) DAt — ) i + At — 7) — an(v(t — 7Y h 4 nyh(t — )]
= 4Gy — Hp), . ‘ (19)

usifig-the definitions
A = .B[Y(t—f)h-l—ﬂ}’h(t"“f)]

7 - HW
and
_ Yt —7) Iy + vhit — 1)
. G = y(t — YA + eyt — 1) ° (33)
Letting .

10 = HOO) +6 [ ello = b+ mhfo—do,  (34)

we can write /; in'the form :
d
4; = i log I'; . (35)
We have defined I;(#) by integrating from 0 to ¢ rather than r to ¢ to avoid
carrying an extra factor of e*-in forthcoming computations, and apply all
representations of y and % in [—r, 7] as well as in (r, ). Our conclusions
will not be hereby altered, since we are concerned only with limiting behavior
as t — 0.
To prove that

Halty = 9t g, + O, 36)
we first show that ’
Gutt) = 2L 1 Ofexpl—(ote) + Ko 1D, 37)
+ nQ; :

This we do by dividing numerator and denominator of G;,(t) by (¢t — 7) k(%)
and then invoking the definition A; = A;271. (33) becomes’

y h{t—1)
RS e
N Y )
9
C h Vz(t At — )

1+ yé't(t i A — )‘
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By Lemma 1,
yh{t —7) _
iy Al
and by (31),

M2) = 0: + Ofexp[—(k(r) + o(r)) £]),

i =1,2,..,n (37) follows immediately.
We now prove (36). Write (19) as

gin=24 (Gfk — &it)s . (38)
in terms of :
O +0;
=H, —=k 1 2]
ik ik 1 +n Qj
and

6o, 00
1+ n0;
Integrate (38). Then

) = exp (=" 4,00)e + [ Gty exp (] 4,0)].

By (35), exp [[. ¢ A; dw] = Ij(¢) I';}(w), and so gj, can be written as
ginl(t) = Ault) + Bul2), (39)

if we let

4;(t) = gal0) T{0) I7(2), (40)

and

Balt) = IO [ 14(0) Gio) do.

We wish to show that g;,(¢) = O(e~—*'"?). First we show that
Ap(t) = Oe=)
by proving that I'j(t) = O(e°™*). By (30),

¥(t) = e™c, + e H (t)]
and
' h(t) = e*MYc, + e PHH, (1)),

where 6#0%#¢,,p,>0,0,>0, and H, and H, are bounded. (34)
therefore implies

I t) = HO0) + pertnt [‘ (?3 (1 — ety 4. e—PtRj(t)] ,

where R, is bounded, and so A;(2) = O(e—*"").
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Now consider By . Since by (34)
I'(w) = Belylo — 7) b+ myhfo — 7],

we find

I(0) = Ber[e,e + e MD)),

where M; is bounded. Thus

~1(4 —otr) (t—2) ¢ o + e M(v) i
L 70 = ¢ S (7 — gmotity |- 1 HO(0)e-ot* + ePtR(1)
o(7) B
~and given any sufficiently small ¢ > 0, we can find a T(e) such that
t > v = T(c) implies

| Iy0) I < expl—olr)t — o) [—{—f—i_—}

IR AL SR

o(7)

Let € = | ¢,¢, |/20(r) and T = T(c,c4/20(7)). Then By, can be broken into a
sum of the two parts

Calt) = T | :1”,.(@) Giulo) do
and
Dy(t) = I7°0) | ;1“,.(@) Gixlv) do.
Obviously Cyu(t) = O(e*™*), whereas
| D)l < (1 + 2600 [ expl—o(r)t = o)} | Gulo)] o
and so by (37), Du(t) = O(e=o™") as well. From the equation

HO) = e [HOO) + B [ elyo — 1) h + myh(o — Ao — )] do

along with g = O(e~e*"%), it now readily follows that

e (@5 +0y) K (S hm) K(y)
ha(t) grRamt = 35 : (1 + Pre- sy

+ O(exp[—min(p, k() + o()) t]),
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- for allj, & == 1, 2,..., n, and thus by (32) that

K ()
1+ lg,re—fs(‘r')

+ O(exp[—min(p, k(7) + o(7)) t])

This completes the proof of Theorem 3.

hjp(t) e 2ot = () + Bil2)) et

3. THE VARIATIONAL SYSTEM OF (*¥*)

Our study of the variational system of (**) imitates the previous develop-
ment as far as possible. Again we motivate our analysis by a comparison of an
arbitrary positive solution U of (**) with a suitably chosen positive uniform
solution Uy of (**). Since all 2;; = 0 in (**), we consider only the »* dimen-
sional vector function ) '

U = (%3 yeres X 5 B12 50003 Zin reees Znd reeer Fnne1)s
which we call a positive solution if all of its entries are always positive. Simi-
larly, a positive uniform solution of (**) is one of the form

Up = 00 75 8yeeny O)-

S ——

ntimes n(n — 1) times

With these slight modifications in the definition of positive solutions in mind,
we again form V = U — U, and study the variational system derived
therefrom. We denote the solution of this system, which is again of the form

W(t) = fe(U(2), Uglt — 7)) W(2) + f(Us(t), Uglt — ) W(t — ),

by W = (hy ..., By, Byg ey By nq). We will prove the following theorem
concerning W.

THEOREM 4. Suppose the varational system of (*¥*) is given with any
n > 2, and any v 2= 0 such that o(r) > 0 and

Ke) + ofr) > g a1 + ro(r)), @)

n —
where k(r) = Be~™8"). Let U, be any positive uniform solution of (**). Then
there exist positive constants wy and w, such that for any initial data satisfying

KT(Z::ml hm) # 0’ -
WO % hnlt)] " = 1+ 0 @)

me=1

|
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and
)] 3, 1l = 57y + 0 @)

m=1
msj

Before proving Theorem 4, we state the following corollaries to illustrate
the meaning of the condition (41).

CoROLLARY 4. Theorem 4 holds for all n > 3 when v = 0 if o(0) > 0 and
Py MOEZ -
Proof. Then (41) becomes

B+00) > L1,

which is automatically fulfilled if o(0) > 0, and
K, (z h,,,) = 3 h0)-
me=1 m=1

Remark. Theorem 2 proves that for 2 =3 and = =0, the following
limits hold if 2;;(0) = 2;0), 4,7 = 1,2,3:

fim )] 3 5a0)] =3 ()
and
fim =) 3 smlt)| =5 45)
o

By Proposition 1, (42) is the linearized analog of (44) for n > 3, and (43) is
the linearized analog of (45). Thus Theorem 4 suggests that the limits of
Theorem 2 hold in (*¥) for r = 0 and all » > 3 with = replacing 3 in (44)
and (45). Moreover, Theorem 4 holds for arbitrary positive U, not only U’s
constrained by 2;;(0) = 2;;(0) as in Theorem 2.

CoROLLARY 5. For every v > 0 with o(r) >0, there exists an n = n(r)
such that Theorem 4 holds for = and n().

Proof. Since ofr) >0, k(r) + o(r) > 0. Let n increase until (41) is
satisfied.

- COROLLARY 6 (Stability is Graded in n). Suppose Theorem 4 holds for
n = nyand 7 = 7y. Then it also holds for alln > ny and 7 =7, if a(ry) =2 0,
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Proof. The right hand side of (41) is a monotone decreasing function of .
These corollaries can be strengthened in the case « > 8 > 0, for which
our prediction theory has a sensible interpretation.

CoROLLARY 7. If u > 2(a — B) > 0, then there exists an interval [Q, A(n)],
where Mn) is monotone increasing in n and lim,_,, Mn) = oo, such that
Theorem 4 holds for n and all € [0, A(n)].

Proof. If « > B >0, then s(r) <0 and s(v) is monotone increasing in
>0 [3]. Thus o(r) = 0(0) = u + 2(8 — «) > 0, which along with
Corollaries 5 and 6 yields the desired conclusion.

4, Proor oF THEOREM 4

The proof is carried out in six steps which imitate the proof of Theorem 3
as far as possible. We will use a similar notation to that of Theorem 3 to
highlight analogies between the two theorems. Step (I) consists merely in
writing out the variational system in component form. The result is

o= —aby - P (0 — ) Hy— H - H)
+o B B9t — ), (46)

where H; = Y, ihs, HY =, 0y, H=3,; by, and B =3, h;5
i
and '

By = —uhy, + By(t) bt —7) + By(t — ) By . 47

Step (II) shows that once again the sum & = Y,_, h,, obeys the linear
equation
k(t) = —ah(t) + Bh(t — 7), (48)
and that the sum H obeys the equation

H(t) = —uH(t) + B(n — D) At — 7) + ¥(t — 1) A(E)).  (49)

Step (I11) seeks an equation for g; = A4~ — 1/n by uncoupling the &,'s
from the A;.’s. The result is the following pair of coupled equations for g;
alone.

& = Ig + Jgt — ) + KG; (50)

J—"
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and . .
G; = —uG; + Lg; (1)

where the coefficients I = —Bh(t — 7)/h, | = —Bh(t — 7)f(n — 1) A,
K = By(t — 7)[(n — 1) kS, and L = Bn(n — 2) y(t — =) h are independent
of the distribution of &;’s and Z;’s.

Step (IV) transforms (50) and (51) into a second order equation for g;,
namely

g+ AN+ B@) gt — ) + Ct) g + D) gt —7) = 0. (52)

Comparing (52) and (17), we find one basic difference between (**) and (*)
in linearized form, since (52) is a difference-differential equation, whereas (17)
is merely a differential equation. (52) is therefore considerably more difficult
to analyse than is (17).

In studying (52) we are again fortunate that the limits 4 = lim,_, 4(?),
B = lim,_, B(t), C = lim,_, C(t), and D = lim,_,, D(z) exist and are
approached at an exponential rate. Thus we can compare 2:(¢) for large times ¢
with the solution z;(2)) of the following equation with constant coefficients.

%, + Aw; + Bibft — 1) + Cw; + Dw(t — 7y = 0. (53)'

It will actually be more useful to make a change of variables in (52) and (53)
to £; = geM and 9 = w,et where A is a sufficiently small positive constant.
In terms of the new variables ¢; and 7, , we find equations of the form

LA &+ B —n+CO &+ DR EE—7) =0 (54
and
UH + Eﬁi -+ E”?i(t - "') -+ é”’)i + D”)i(t - "') = 0. (55)

We compare equations (54) and (55) to show that £, is bounded whenever 7;
is bounded, and in (V) we show that 7, actually converges to zero as { — ©
because all zeros of the exponential polynomial

GOy =+ s+ (Bs + C)em* + D (56)

have negative real parts under the hypotheses of the Theorem. From these
facts, it readily follows that

= |3 | =2 = 0l
g =Ny z Lin 71— »

m=1

which is the first conclusion of the Theorem 4.
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1n step (VI), we use this fact to imitate the method used on (46) as far as
possible on (47), much as we did in step (V) of Theorem 3.
(1) The Variational System in Component Form
The variational system is
W(t) = f(Unlt), Uglt — 7)) W(2) + F(Usl®), Up(t — 7)) Wt — 1),
where the vector function :
f=fl&n) = (froeorJnsrz s faina)

of £ = (‘fl seees €y 512 yeees §n.'n—1) and n = (’71 1oy Ny M12 5000y 77n.n—1) is given
by

ki Ak

fi=flén) = —at; +8 z Nbri ( Z é:kj)—l

and
fiw = filésm) = —ubs + Bnér, j F k.

The computation needed to derive (46) and (47) is again straightforward but

tedious, and so we merely give two examples of how the uniformity of U,
enters it.

(1) Clearly

_a.IL_Bi[Zu#ifiu—‘fji]

Yol S it jAi=k

Thus

o, _ B =2yt —7)
o (T Ol =)= ey

which is independent of 7, 7, and % just so longasj £ ¢ = k.
(2) Clearly

U _ B s
87),~ - Zk;ﬁj fik (1 8”)'

Iixus
3 (U(t), Uglt — 7)) = _E_ (1—2
o0y UO‘ , Uy == - o)

which is constant.

|
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7 h=S0 hand H=T;1 hn.

(I1) Equations for the Sums i1 Z; :k i ‘
To see that & obeys equation (48), sum over i = 1, 2,..., n in (46), and
apply the identities :

=1

(n— 1)y Hi—nH + L HO =0
i=1 .
and

T Bt — 1) = (2 — 1) bt — 7).

=1

Equation (49) for H is an immediate consequence of summing over both
indices j and &, j 7= &, in (47).

(111) Uncoupling the Functions h; from the Functions hiy .
Let G, =(n—1)H; —H -+ H®@, Then (46) becomes

. Byt — ) B g — o), 57

G. contains all the terms /;; on which #; depends. To uncoup.le k; from the
te;ms h;; , we must express G, in terms of only &j’s. In particular, we can
express G; in terms of k, alone because, by (47) and (49),

G; = —uG; + pH. —H + H®),

where o
B=@—DyYhit—7+0E— 12 y(t — 7) hs
i#i
=~ — Dbt =) = (= Dyt =D b
and

A9 = (n — 1) yh(t —7) + y(t —7) ;i h; .

Adding the first terms of these three functions gives zero. Adding the remain-
ing terms gives

Wt =) [ = D — = D+ T 1

i#t
— it — D =12 — Vb — (n = 2) ),
= (n — 2)y(t — 7)[nh; — k),
= (n —2)ny(t — 7) hg; .
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Thus

G,' = —uG" +Lg1 N (51)
where L = Bn(n — 2) y(t — 7) k. G; depends only on 4, , since 4 is independ-
ent of the distribution of the &;’s, by (48).

We now transform (37) into an equation for g; alone. First we derive an
equation for A; = h;/k, which is by (48) and (57)

o= (i)
I e O

_ —B h(t }—1— T) )‘i + iy(t — ‘r) ﬂh(t — 'r) /\(‘)(t _ T),

T T a0k
where A® = A#/h, Since A =1 —A,,

1 — At —7)
n—1

By(t — 1)
(n — )%k

f— B =) .

- )+ G;.

From this equation, we readily complete our transformation using the facts

1 -2t —1) _
——;T‘—gi-%-

Ai n — lgi(t - f)
and A; = g; . Thus,

& = Igi + Jgt — 1) + KG;, : (50)
where I = By(t — 7)/(n — 1)? k3. Since, by (51), G; depends only on g; , we
have indeed uncoupled the %;s from the Z;’s.

(IV) A4 Second Order Equation for g; .

In order to eliminate G, from (50), we differentiate (50) and then use (50)
and (51) to eliminate terms involving G; and G;.

This computation is straightforward and yields
&+ AW S + B4t —7) + C & + D) et —7) =0,  (52)
where _ :
A(t) = —I(t) + u — K(t) K-Y(2),
B() = —J@).
Ct) = —I()—K(t) L(t)—I(t)(x — K(2) K7(),

1
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and
D@y = — J(©)— Jo)w — K(t) K@)

In terms of the functions %, v, and 8, these expressions become

Bh(t — ) d B
b

A(t)_—-_— —}—u—{-ElOgm,

N B(t)— B h(t;’r)’

c(t) =B [(ﬂtT—J) Bn(n = 2) yl)(t8 — 1)

h(t ;l—'l') (u +2 log (hs T))]’

and

D(t) = - £ . [(”(t__h—_l)) i (ﬂt.ili))(u + %mg ;_’—(thi T))] .

Since K, (7)) 7 0 and K (y) 3£ 0, we can invoke Lemma 1 to conclude that
the limits 4, B, C, and D of A(2), B(), C(2), and D(t), respectively, exist as
¢ — oo. To evaluate these limits, we let k(r) = Be~™*" and 6 =1 [(n — 1)
for notational simplicity.

Then ,
A=k +u+(—u+ a(7))
= k() + o(7),
B = 0k(7),
C=258 [0 '_(%(_n;:—l)?_ o(r) e + e u —u + cr(-r))]
| n—2
— ) o) (1 — _’(’fl—_—l)g—)
= 6%k(7) o(7),
and

D — BO'(T) e—‘rs('r)
n—1

= Ok(r) o(7).
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Because the limits 4, B, C, and D exist, it is natural to try to compare the
behavior of g; for large ¢ with the behavior of w; , where

@, -+ Adb; + Bt — 7) + Cw; + Dwft — 7y =20 (53)
For technical reasons, we instead compare the functions & = g€ and

n; = weM, where A is 2 sufficiently small positive constant. To derive an
equation for £; , multiply (52) by * and use the equalities

gt = fz - 2'\561' + A%¢;

and
gt = éi —Aé;.
We find
L+ AW E+ By b —n) +C0) &+ D) E(t—m) =0, (54

where

A(t) = A(t) =2\,

B(t) = B(p),

C(t) = C(#) +3 — M),
and

D(t) = D(t) —AB(t).

Similarly, 7; obeys the equation

3 4+ A + Bt — 1) +Cns + Dt — 7) =0, (55)
where |
A=4-—2
=k4o—2A
B=8B
= bk,
C=C+XX—-2M
= %o + A2 — Mk + 0),
and
D=D-—AB
= Ok(oc — A).

I
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If we can show that £ is a bounded function, say | & | < &, then
| g:| < ke~*t and since A > 0,

g =i — - = 0™, (58)

which is the first claim of the theorem. To do this, we wish to compare th‘e
behavior of & for large t with that of 5, . If we can do this rigorously and if
n; is a bounded function, our proof of (58) will be complete. We now show
that this comparison can be carried out and that the bound.ec'iness of 5; can
- be guaranteed by showing that there exists at least one positive A such that
all zeros of the characteristic exponential polynomial

GP(s) =5+ As + (Bs + D)er + C (56)

of (55) have negative real parts. ' ‘
The theorems which we will need to accomplish these aims are applicable

to (54) when it is written in the matrix form
Zi+ (Vo + Vo) Zi + (V1 + Vi) 2t — 7) = 0, (39)

where

2 _ \

BT ST}
1 | 0 0

0= (ey—c aw-a = Oy 50-5)"

(55) has the matrix form
Wi+ VW, + VWit —7) =0, (60)

where W, = (39). The first theorem which we shall need is the following

1

5], p. 312). ‘ .
¢ .:!A zufﬁcient condition in order that all continuous solutions of (59) be

bounded as t — oo is that all solutions of (60) be bounded as ¢ — oo, and
that

[Tivandt <w, i=01,

to

for some ¢, > 0. The integrals f: | V{2)|| dt are certainly finite for suf_ﬁciently
large t, by the inequalities (26)~(29) of Lemma 1. It' therefore remains only
to show that all solutions of (60) are bounded. We will be able -to show more
than this. In fact, by [5], p- 190, all solutions of (60) with sufficiently s_mooth
initial data converge to zero as ¢ — <o iff all zeros of Gj),(s) have negative real
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parts. We now show that all zeros of G%.(s) have negative real parts for a
suitable choice of B, #, 7, and A,
(V) The Zeros of G (s).

We will show that all zeros of G{¥,(s) have negative real parts if

1
n—1

k(r) + o(t) > k(7)1 4 ro(r)) and A>0

is chosen sufficiently small. This fact relies on the following lemma.

Lemva 2. Suppose that the coefficients of the exponential polynomial
Gonls) = s* + As + (Bs + Dye= + C

are positive and A > B + zD. Then all zeros of G (s) have negative real
parts.

Proof.  'The proof closely follows [7], in which the closely related exponen-
tial polynomial

az* 4 bz 4 Pze~* + ¢

is studied. Letting 2 = 5, 7 > 0, the equation G{) (s) = 0 becomes

Anv
=2+ Ex+(Fz+H)er 4 ] =0,

where E = Ar, F = Br, H = D%, and | = Cr2 The zeros of f(z) are the
same as the zeros of Gf) (s) for all 7 > 0. For 7 = 0, it is obvious that all
zeros of Gg;(s) = 0 have negative real parts if A is chosen sufficiently small,
by the positivity of 4, B, C, and D. In the following, we therefore consider
the zeros of f(z) for + > 0. In this case, E, F, H, and J are all positive if A is
sufficiently small.

The main fact used in our analysis is Cauchy’s Index Theorem : Suppose
w = f(z) is an analytic function of z in a simply connected domain D bounded
by a closed curve C, where f(2) 54 0 for 2z € C. If 2 traverses C in a counter-
clockwise direction, then f(2) will traverse a closed curve in the w-plane and
the number of zeros of f(z) in D is equal to the number of times the
w-contour encircles the origin.

The zeros of w = f(z) are studied using this theorem in the following way.
As z traverses C in a counterclockwise direction, may cross the real axis.
Let 8, be the number of times that  crosses the real axis in a counterclock-
wise direction relative to the origin (i.e., from quadrant IV to quadrant [ or
from quadract II to quadrant 1II), and let §_ be the number of times =

|
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crosses the real axis in a clockwise direction relative to the origin. The number
of zeros of f(z) in D then equals }(8, — 5_).
We apply Cauchy’s Index Theorem to the semicircular domain
D :Re(z) >0 and |zl <R

in the z-plane. If | 2| > R and Re(z) > 0, where R is chosen sufficiently
large, then

| 22| > | Ex +(Fz+Hye?+ ]|

and 2% =~ 0. Rouche’s theorem therefore implies that f(2) 7= Ofor|2z| =R
and Re(z) > 0. D is fixed once and for all by making a choice of a sufficiently
large R. For this choice of D, all the zeros of f(z) in the right half plane will
lie in D.

To apply Cauchy’s theorem to this domain D, we divide its boundary
¢urve C into two parts :

C;:Re(z) =0 and |z} <R
and
C,: Re(2) >0 and |z|=R.
Consider C; . Then z = iy and
f@y) = —y* + Hcosy 4 Fysiny -+ J
+ i(By + Fy cosy — Hsiny),

where J >0 and E = F + H by hypothesis. If y = 0, then
fO)=H+J>0.1f0<y < R, then

Im(f(®)) =» (E + Fcosy — Hm;y)
=0,

since | sinyfy | < 1. Thuswisin either quadrant I or quadrant IL. f(iR) is in
quadrant IT if R is sufficiently large. If —R <y <0, then Im(f(y)) <0
and = is in either quadrant III or quadrant IV. Since also f(0) is a positive
real number, as z traverses C; from iR to —iR, w crosses the real axis once
in a clockwise direction relative to the origin.

Now consider f(2) as = traverses C, from —iR to +4R. Since R is large, f(2)
behaves essentially like 2. Thus the net number of times that f(2) crosses the
real axis in a counterclockwise direction relative to the origin is once. We
have therefore shown that (5, — 8_) = 0, and that f(=) has no zeros in D,
or for that matter in the right half plane. This completes the proof of the
Lemma.
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We remark that [7] goes on to give necessary and sufficient conditions for
his equation to have zeros only in the left half plane even when the inequalities
analogousto J > 0and E = F + H are not satisfied. These conditions seem
to be difficult to apply in the present case.

We now apply Lemma 2 to the present example. When 7 = 0, the zeros
of G§,(s) obviously have negative real parts for sufficiently small A > 0 by the
positivity of 4, B, C, and D. Consider the case + > 0, where X is chosen so
small that A, B, C, and D are all positive. The condition J > 0 is satisfied
since C > 0 and = > 0. The condition E > F -+ H becomes A+ > Br + Dr?
or A = B + +D. Since

d = k() + ofr) =24, B = 6k(+), and D= Bk(7)(o(r) —A),

this inequality becomes

K(r) + o(r) =22 = k()1 + 7(a(r) — A)].

n—1
If, as hypothesized, k(7) - o(r) > (n — 1)72 k(7)(1 -+ 70(7)), we can cer-
tainly find a sufficiently small positive A for which £ > F + H. This shows
that all the zeros of G)).(s) have negative real parts if

k(r) + o(r) > (n — 1) A(r)(1 4 70(7))

and A is chosen sufficiently small. For A = w,; chosen in this way, we can
therefore conclude that
hi(t) 1

— - = Oe—1?t
O (e

This completes the first part of the proof.

Remark. The condition 4 > B <4 7D needed to guarantee the negativity
of the real parts of Gy ’s zeros gets harder to fulfill as = increases. When
A < B 4 7D, the condition needed to guarantee the same result contains
oscillatory terms. No such difficulty arises in treating the variational system
of (*), since all terms in the equation for g; which contain the time lag = are
independent of the distribution of %,;’s and A;,’s.

(V1) An equation for g, = hip[2msi bim] — (n — )71

We now prove the existence of an Qz > 0 for which

me=1
m#j

B [ 3% hinlt)] = 2y = O, )
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for all j 7= k. This we do by deriving an equation for gj; of the form
& = 4G — &) (61)

where Gj;, converges exponentially to zero as £ — 00, A; has the form

A; =——1ogI",, (62)

and I satisfies suitable growth estimates as ¢ — 00. We can treat (61) in the
samé way as we did (19), and therefore we merely exhibit the relevant

formulas. .
To derive (43), we first derive an equation for Hj, = hu/H?, where

H® = ZM;éa im By (47)
HO — —uHO B — 1) yhi(t — ) + Byt — ) B (63)
" Thus by (47) and (63),
. 1 HW
By = e [foe = )
= Iﬁ,‘) [vhi(t — )+ y(t — ) by
— Hyl(n — 1) yhst — 7) +o( — ™) KM,
from which follows
g:ik == Hik .
= 'j.]§6)— 37":‘@ — 7)oyt =) e — (ij - n—_f)
“[(n — 1) yhi(t — 'f) + y(t —7) A1)
— e =)+ e =9

FRPSI Y

I

. - =gl -1 yhit — 1) + y(t —7) hm]g .
\ Letting
Bl(n — V) kit —7) + ¥t — 7) h9]
Ai H®
and
1 )
_—T hD
G, = " ) [ n—1 ] )

(n — ) yh(t — 1) + — R
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we find (61). (62) is also true, because 4; = dJdt log I';, where
T
() = H90) + BJ e[(n — 1) yhiv — 7) + Ao — 1) A9] dv.  (65)
0

To show that G, converges exponentially to zero ast — 00, divide numer-
ator and denominator of (64) by y(¢ — 7) #. Then

1
A== (=2

G =
(n — 1) /é’t(t )}Z)\(t—--r)—{-(l —)
gk+—i-i'gi
(1) /?t(t )T,Z(gj(t—fH%) e

Since g; and g, converge exponentially to zero 2s f-—» o0, whereas
(vh(t — 7)[y(t — 7) h) converges to 1, the result is proved.

It is readily seen, just as in step (V) of Theorem 3, that I’, can be written
in the form

It) = H‘”(C) + gotnt [_0_2_:7 (1 — ety e-"‘R,.(t)] ,

where u £ 0, k > 0, and R; is bounded. (43) then follows in the same way
as in the proof of Theorem 3. This establishes Theorem 4.
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