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On Learning of Spatiotemporal Patterns by Networks
with Ordered Sensory and Motor Components
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1. Introduction

Many of our sensory and motor organs have linearly ordered components, for
example the fingers on a hand, the tonotopic organization of the auditory system,
the successive joints on arms and legs, the spine, etc. This paper begins a discussion
of some nonlinear networks which can learn complicated spatiotemporal patterns
among sensory and motor organs with linearly ordered components. These
networks will ultimately resemble cerebrocerebellar systems of higher vertebrates,
and can be picturesquely interpreted as an interaction via idealized "subcortical
nuclei" of portions of "cerebral cortex" with "neocerebellum". To the extent that
this analogy is valid, various geometrical (anatomical) and dynamical (physi-
ological) details of the networks can be interpreted as provisions by cerebrocere-
bellar systems for effective learning of spatiotemporal patterns. For example, we
can interpret geometrical statements concerning excitatory "cerebellar" network
components to include:

(a) mossy fiber inputs widely dispersed in a folium and ending in rosettes,
(b) climbing fiber inputs localized among one or a small cluster of Purkinje

cells, and climbing up the Purkinje cell dendritic bush,
(c) perpendicular mossy fiber and climbing fiber somatotopic representations,

.(d) long bidirectional parallel fibers receiving inputs from mossy fiber rosettes,
and delivering outputs via dendritic spines to all Purkinje dendrites by
which they pass,

(e) a segregation of parallel fibers into layers according to length with the
longest fibecrs in the deepest layers,

(t) fastest signal velocities in the longest parallel fibers,
(g) control of cell size and orientation by the spatial distribution of a cell's

averaged inputs via dipole forces.
A forthcoming paper on inhibitory connections will discuss network analogs of
basket cells and Golgi cells.

Among "cerebral" facts, we can interpret network properties to include:
(h) somatotopically organized primary and sensory representations separated

by a central fissure,
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(i) sheets of sensory and motor cortex controlling ever higher associations as
the distance from the central fissure increases,

(j) multiple sensory and motor representations.
A later paper will discuss analogs of the laminar structure of neocortex, including
analogs of pyramid cells, cells of Martinott~ stellate cells, and horizontal fibers.

We also find formal phenomena that resemble the following psychological facts:
(k) spatiotemporal masking,
(1) spatiot~mporal consolidation,

(m) responses controlled by temporally weighted mixtures of simple and
compound associations,

(n) a connection between input energy, signal velocity, learning speed, and
b~havioral reaction times,

(0 ) the impossibility of spatially localizing the cells controlling complicated
spatiotemporal patterns.

One of the properties needed in our construction is that of a spatiotemporally
self-similar cell type. As interpreted, this property helps to construct behaviorally
useful ensembles of cells from individual cells whose only concern is to maintain
adaptive metabolic responses to the environmental signals which they receive.
Comp~tible with the properties of spatiotemporally self-similar cells are

(P) a cell nucleus which can set correct production levels for the entire cell based
on c~ll body membrane excitation, and

(q) thus cell size can increase in response to intense average excitatory inputs,
(r) a signal velocity in axons proportional to axon length, and
(s) thus ensembles of ceUs with given axonal connections can be stretched or

shrunk in a growing brain or in an evolving brain wherein new cell types are
emerging without destroying extant intercellular time lags,

(t) unbias~d learning conditions often arise when the spatial distribution of
cells is in equilibrium relative to the spatial distribution of inputs and
outputs.

A crucial assumption of the construction is that nerve cells capable of learning are
"chemical dipoles". This assumption is briefly reviewed in Section 2. The dipole
property underlies such phenomena as (c1 (g1 (n), and (p) above, and a:lso is
compatible with the va:riability in size of presynaptic endbulbs due to postsynaptic
trophic effects.

The aboye results follow plausibly from behavioral principles which have been
used to derive a new theory of learning called the theory of embedding fields. The
theory is briefly reviewed in Section 2. Given its principles and equations, our
present task can be stated as follows. Suppose that the input sources and output
sinks of a system are arranged in a row. What is the simplest arrangement of
embedding field components between the input sources and output sinks that can
learn spatiotemporal patterns up to a given complexity among their inputs and
outputS? Speaking mathematically, this is a boundary value problem in function

space.
Even supposing that our equations qualitatively summarize important features

of neural learning, our networks need not in all details agree with neural networks
which carry out similar tasks. This is because new neural structures have gradually
been superimposed on older structures which, in turn, have developed in response
to complicated physical influences. The boundary value problems that we pose are
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therefore bound to be vast simplifications of the analogous neural situations. The
fact that recognizable anatomical patterns emerge from these simplified formula-
tions suggests that the forces guiding neural evolutionary development to a
remarkable degree embody a teleology of learning that can overcome irrelevant
environmental trends. Such physical constraints as difficulty of transporting
chemicals, difficulty of connecting widely separated areas, difficulty of con-
structing unbiased systems over more primitive nearest-neighbor or uniformly
connected systems will not in all cases be negligible. Then a realistic anatomical
pattern of cells will only arise if the boundary value problem includes these
constraints.

In fact, a network has been constructed that can learn any number of essentially
arbitrarily complicated space-time patterns [1], namely series of r -outstar ava-
lanches. Moreover, this network uses very few components. Thus the problem
solved by realistic anatomical patterns of cells is not merely one of learning
complicated tasks. Rather the problem is one of "subtlety"-being able to perform
these tasks adaptively in response to subtly fluctuating environmental demands,
including sensory feedback due to prior motor outputs.

2. A brief review

The networks to be constructed obey the laws set down in [2], [3], and [4], which
are summarized in [5]. Our point of departure is the following special case of
equations from [5], whose intuitive meaning only will be needed to draw our
qualitative conclusions. For i, j, k = 1, 2, ..., n,

x;(t) = (X;[P; -X;(t)] + J;+(t) -J;-(t) + I;(t), (1)
and

Zjk(t) = Ujk[Qjk -Zjk(t)] + Vj~[XJ{t -.;) -r;]+[Xk(t) -A:]+, (2)

where
n

Jj+(t) = I P';;[Xm(t -r';;J -r';;j]+P';;j[Zmj(t) -n';;j]+
m=l

n
+ L P:'[xm(t -'C:'J -r:.i] + q:'i,

m=1
(3)

n
Jj-(t) = L p;;,[xm(t -.;;'J -r;;'j] + q;;'j,

m=l
(4)

and the notation [w] + denotes

[w]+ = max(w,O), (5)

and describes various thresholds,
Xi(t) is a process fluctuating in time within a vertex (or "cell body cluster") Vi of a

network.A, and each Zjt<t) is a process fluctuating in time within the arrowhead
(or "endbulb cluster") N jk of the directed edge (or "axon cluster") ejk from Vj to Vi,
See Figure 1.
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Figure 1

I j(t) is the experimental input reaching Vj at time t. This input perturbs the
"average membrane potential" XJ{t) of vi' which is transformed into a spiking
frequency that travels to every vertex Vk for which at least one of the nonnegative
path weights pj1, or q!t, or qjk is positive.lfqit > 0, an inhibitory signal of size

P j- [x j(t) -r jt] + qit (6)

leaves Vj at time t and arrives at Vk at time t + -.jt, thereby perturbing Xk.1f qj1 > 0,
an excitatory signal of size

/>'j+[Xj(t) -rfi]+ qjt (7)

leaves v j at time t and arrives at Vk at time t + 't" jt, thereby perturbing Xko If P jt > 0,
an excitatory signal of size

Pj+[XJ{t) -r/tJ+p; (8)

leaves Vj at time t and arrives at Njk at time t + 't"jk' thereupon activating the
transmitter control process Z jk(t) in N jk and releasing transmitter at a rate

Pt[XJ{t) -r;J+pj1[Zjk(t + 't"j1) -n;J+,

thereby perturbing Xk' Only one of these three signals can ever be positive, since
we choose

+ + + -+ - 0Pjkqjk + Pjkqjk + qjkqjk = .

The signals from different Vj combine independently at Vk, as (11 (3), and (4) show.
All learning within .A occurs at the arrowheads Njk for which P; > 0, since

here Z jk(t) cross-correlates the excitatory signal

pj[Xj(t -'t;) -r;]+pjt (9)

received by N jk from Vj at time t with the value

[Xk(t) -A:]+ (10)
of the contiguous vertex Vk at this time, as (2) shows. In particular, v; = 0 only if
P; = o.

A bounded version of these equations is also discussed in [5].
Given these equations, our task can be stated as follows. Let an experimentalist

S deliver inputs to a subset f of .A's vertices and receive outputs from a subset
(!) of .A's vertices. Let f and (!) be ordered sets. What is the simplest geometrical
arrangement of vertices and edges joining f and (!) that is capable of learning
prescribed patterns of outputs frbm (!) to prescribed patterns of inputs to f? That
is, how should the path weights P;, q;, and qjk ; the time lags 't jt and 't ik ; and the
other parameters of (1H4) be chosen? Before determining exact numerical values
of these parameters, one must study how the ordering of vertices in f and (!)
propagates to ord~rings among interpolated vertices and edges. This information
will already suggest recognizable cell patterns. It will also point out that some
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vertices can profitably be stretched out into complicated cell body shapes with
dendrites, but these vertex deformations will be mentioned only as they are
needed.

3. The input and output vertices are embedded in lines

To motivate the construction of our network, we will often pose our problem
as follows. How do our fingers learn to move in patterns? Once our construc-
tion is completed, "fingers" can be replaced by any ordered ~ystem of
components.

Conscious control can normally be exerted over the motions of each of our
fingers (or finger joints) as a whole, rather than over individual finger muscles.
Hence we suppose initially-and can later readily modify this assumption-that
a single vertex Vi controls downward motions of the ith finger it, i = 1,2, 3, 4,5.
That is, Vi sends an excitatory edge ei to ft over which signals from Vi to ft travel.
To fix ideas, let ft move downward whenever the signal received by ft from Vi is
positive (and ft is not already completely depressed) at a velocity that increases
with the size of the signal at a given finger position. Since the fingers ft are linearly
ordered, the vertices Vi that control them are also linearly ordered. For simplicity,
the output (or motor) vertices (!J = {Vi' V2,'" vs} will be arranged along a line
L((!J) in.,lt. Similarly, a set J = {VI, V2, , Vs} of input (or sensory) vertices
exists, also for simplicity arranged along a line L(f) in .,It, such that J"i receives
excitatory inputs from ft. See Figurc 2.

L(l9')

".
L (.1)

".

fS

Figure 2.
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4. The control vertices are embedded in planes

.It is being constructed to learn patterns of finger motion in which more than one
finger participates. Thus there exist vertices and/or edges in .It that control the
order in which outputs from (!) become positive in response to particular orderings
of inputs to f.

The simplest way to connect inputs and outputs is to draw excitatory edges
directly from f to (!). Each connection Ji'i .:t. Vj then represents a learnable transi-
tion. Very few different patterns can simultaneously be remembered by such
a network ([6], [7]1 and the network's ability to make subtle temporal discrimina-
tions is unimpressive. These deficiencies can be remedied by interpolating new
vertices between f and (!), and thereby making the input-output interaction less
direct. Since these vertices will control the ordering of outputs in response to a
particular ordering of inputs, they will be spatially distributed in a way that
clearly distinguished the orderings of f and (!). This is simply done by placing these
control vertices in rows adjacent to f and (!), and letting the number of rows
increase as the complexity of the pattern to be controlled increases. In other
words, the control vertices can. conveniently be embedded in planar surfaces S(f)
and S«(!) with'bouridaries at L(f) and L«(!), respectively. S(f) and S«(!) collectively
will be denot~d byS. The input vertex Ji'i will interact-,-perhaps on.1Y indirectly-
with the entire strip of control vertic~s in S(f) perpendicular to L(f) at J'i.
Similarly, Vi will interact with the strip of S«(!) vertices perpendicular to L«(!) at J'i.
Using S, the space within .It representing each /; can be greatly extended, thereby
opening the possibility of making dexterous motor correlations in response to
subtle sensory discriminations.

There exist two main arrangements of S(f) and S«(!). These are depicted in
Figure 3.

l (0') , l (J)"

~~~::~ ~
""~~:~~~'~. ~-.S(~) " S(J)

".(01

, .

(b) ' Figure 3.
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In Figure 3a, S(.f) merges with S((!J), and all new controls are superimposed on
older and more direct JI; ~ Vi connections. This arrangement would create severe
space limitations and massive confusions between old and new control sequences.
In Figure 3b, by contrast, the areas of S(.f) and S((!J) can be readily expanded if
new controls are needed, and new input-output connections can be established
between control regions lying ever further from .f and (!J without destroying older
controls. The arrangement in Figure 3b will therefore be adopted.

5. Central fissure and sensory-motor cortex

Figure 3b has a recognizable, though at this stage tenuously established, neural
analog. L(J) and L«(!) will be thought of as analogs of the primary sensory and
motor somatotopic representations of the cerebral cortex. The space between
them is then the "central fissure". S(J) is the "postcentral sensory cortex", which
gradually becomes "parietal cortex" as the distance from L(J) increases. S«(!) is
"precentral motor cortex", which gradually becomes "frontal cortex" as the
distance from L( (!) increases ([8], p. 345).

Figure 3b suggests that the regions within S closest to L will control reflex
activities, whereas those at greater distances from L will control more elaborate
discriminations and learned associations. A qualitatively similar situation holds
in vivo ([8], pp. 442, 488; [9], Chapter 16).

6. Impossibility of localizing learned circuits

The simplest way to control the order of L«(9)'s outputs will now be given. This will
fail to satisfy simple behavioral criteria. This failure will point the way to a better
solution.

The simplest possibility is that a directed chain, or chains, of edges in 8«(9) are
activated step-by-step to order the outputs from L«(9). Consider Figure 4. In

Figure 4.
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Figure 4,. the control vertex V6 is activated. A signal flows to V7 and from V7 to
the output vertex Vs and to the control vertex vs. f s thereupon moves. Vs sends
a signal tov9, which in turn excites V3 and VlO' f3 then moves. Finally Vll and
then Vl are excited, andfl moves.
(A) Existence of independent patterns. Surely each finger can be used in at least two
different patterns of finger motion, but no chain of associations as in Figure 4 can
independently control two patterns that use the same fingers. To see this consider
Figure 5.

5(0') L(~

V6

'Vs

'V4

'V3

Vl2 T Vr

IV12 J--- Ve"'I --
I
II VgI I

VI41--- Via j

'V2

VII

I 

VI

figure 5.

Figure 5 depicts controls for two different patterns. The pattern controlled by V6
aims at movingfs, thenf3' and thenft, and the pattern controlled by V12 aims at
moving V4 and then V2' These two patterns cannot, however, be activated inde-
pendently, since exciting V6 causes all fingers to move whereas exciting V12 causes
all fingers butfs to move.

Controls constructed from chains of edges (associations), as in Figure 4 and 5
are called local conttols, since they use local flows of excitation along channels
within S«(f}). To move at least two patterns independently, either the chainlike
character of the controls or the locality of the flow pattern, or both, will be violated.
The chainlike character of the control will exist in some configuration since it gives
rise to the ordering of the outputs. The locality of the flow pattern will therefore be
violated; that is, our networks will contain edges involved in learning patterns
which directly connect widely separated points in S. See Figure 6.

5(0') L(6')

/
/

,

/
/

/

Figure 6.
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(B) Existence of spatially reordered patterns. The need for these long edges is
strengthened by noticing that signals carried locally through S impose severe
constraints on the positions in S from which control vertices can generate an
output pattern of prescribed timing. Consider Figure 7.

V5

V3

vI

(b)

(c)

Figure 7.

Figure 7 describes three different patterns. In Figure 7a,is, theni3' and thenil
move every w time units. In Figure 7b, is, then i3, and then il move every 2w
time units. In Figure 7c, is, then it, and then i3 move, with i3 following il in
half the time it takes il to follow i3. Thus changing the temporal spacing in a
fixed ordering of outputs changes the spatial distribution of the pattern's local
control, and changing the ordering of outputs changes the distribution of time
intervals between successive outputs. Other serious deficiencies of local transmis-
sion are readily imaginable.

The following sections suggest step-by-step how to violate the local surface
topology of S in a way that is compatible with learning needs. S can be changed
by altering either its vertices or its edges. This paper concentrates on the edges.
A forthcoming paper will suggest how to alter each vertex to achieve a cell distribu-
tion reminiscent of a column of cerebral cortex. This "surface of columns" will be
able to discriminate between more complicated inputs and to give rise to more
adaptive outputs than can a surface of vertices.

7. Perpendicular somatotopic representations

By (2), learning of a transition from a vertex Vj to a vertex Vk at time t requires that
the cross-correlation

[XJ{t -'tj1) -rft]+[Xk(t) -A:]+ (11)

'4,
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be large, or that

XJ{t -t!t) -r!t

and

Xk(t) -A:

separately be large. This is true if Vj creates a high average spiking frequency in ejk
at time t -'t"j~' and Vk has a large average membrane potential at time t. Suppose,
however, that Vj and Vk control different fingers. By Figure 3, Vj and Vk will lie in
different parallel strips of either S or regions interacting with S, as we schematize
in Figure 8, where Fi designates a strip representing.!;, i = 1,2,3,4,5. Since Vj and
Vk never interact, the cross-correlation (11) will never be large, and no pattern
learning between fingers will occur.

F5

F4

F3

F2

F,

Figure 8.

In order that cross-correlations between individual finger representations be
able to become large, without destroying the ordering of the representation, the
existence of another finger representation that interacts with the given one at a
non-parallel angle is suggested. Multiple somatotopic representations will hereby
be implicated in learning within ordered media. Multiple sensory and motor
representations are familiar in vivo, for example in auditory cortex, sensory-motor
cortex, and the cerebellum ([8], p. 467, p. 213).

Our goal is to construct a system in which unbiased learning is possible. In such
a system, the transitionsh ~ fk,j # k, are equally easy to learn, other things equal.
This property idealizes reality, since not all fingers in real life are equally easy to
use, as every student of piano knows. This idealization is useful because it puts in
sharp focus one extreme in the evolutionary development of learning skills from
correlations between nearest-neighbor or uniformly distributed vertices to long-
range correlations between highly structured arrays of vertices. Once idealizations
of these extremes are understood, intermediate cases can be studied as mixtures of
them.

The property of unbiased learning suggests that the two finger representations
interact at right angles, as in Figure 9. This arrangement will be seen to minimize
asymmetries between a given row and all columns.

The representation perpendicular to

F = {F1,F2,F3,F4,Fs}

will be denoted by

FL = {F(l), F(2), F(3), F(4), F(5)},
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F5

F4

F3

F2

F I

F(II pz) F(3)F(4)F(S)

Figure 9.

or ., P -perpendicular". P and pL together will be denoted by :Ii'. Interactions

between P and pL are conveniently discussed using the correlational matrix

C11 C12 C13 C14 CIs

C21 C22 C23 C24 C2S

C = C31 C32 C33 C34 C3S

C41 C42 C43 C44 C4S

CS1 CS2 CS3 CS4 Css.

The entry C jk of C denotes the spatial locus of correlations corresponding to the
transitionh -.Ik between fingers.

The representations P and pL need not be a part of S. It suffices that inputs to
P and pL be created at some stage of processing by an ordered system, and that
outputs from P and pL be fed back into another stage of this system in an order-
preserving way. That is, the interactions within :Ii' will help to learn patterns no
matter how we interpret the input sources and output sinks. These interactions
therefore have a "universal" character, and various copies of:li' can be connected
to different ordered bundles of input and output edges as they are needed.

8. Long axons: learning speeds vs. reaction times

An effective learning machine will learn material that is presented at many different
speeds. An .It will be constructed that can learn lists at essentially any positive
speeds less than some fixed finite, but otherwise arbitrary, constant W This con-
struction exploits the intimate connection between learning speeds, behavioral
reaction times, and the transit times of excitatory signals within edges [3]. This
connection follows readily from (2~ since learning of a transition from Vj to Vk at
time t requires formation of a large cross-correlation Z jk(t). The cross-correlational
process occurs at the arrowhead N jk of e jk, where it receives at time t the presynaptic
signal (9) that left Vj at time t -Tj1, and compares it with the value (10) derived
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from the contiguous Vk vertex. Suppose that the pre- and post-synaptic values are
made large by input pulses corresponding to successive motions of ~ and fk at a
time lag 1:.. These motions can be effectively learned only if 1:. is approximately
equal to tit. 1:. need not exactly equal t~ for two reasons.

(1) The input pulses are spread out in time. Hence the vertex functions are also
spread out in time.

(2) The pre- and post-synaptic values are only correlated at suprathreshold
values (r jt and At , respectively~ and these values are achieved shortly after
the input pulses occur, if at all.

Thus a machine capable oflearning~ -+ A at many different speeds will send edges
between representations of ~ and fk whose time lags t jt take on many different
values.

9. Respondant conditioning via intermittent axonal connections to output cells

Two main ways of connecting edges to output vertices are diagrammed in Figure 10.
The first way provides the richer collection of learning speeds given a fixed number
of edges. In Figure lOa, the excitatory correlational edge, or axon, sends signals
at regularly spaced intervals along its entire length to output vertices via short axon
collaterals. In Figure lOb, the excitatory edge sends signals only to an output vertex
at its terminal point. In both cases, an independent source of inputs to each output
vertex exists. If a large input reaches a given output cell as a large signal from the
excitatory axon passes by, a large cross-correlation will begin to form at the arrow-
head of the axon collateral.

/
/

input

(0)

/
I

/

(b)

Figure 10.

Suppose that a signal travels within a given edge with uniform velocity, and that
the same spatial distribution of edges occurs in Figures lOa and lOb. Then clearly
Figure lOa provides at least as many learning speeds as Figure lOb. Figure lOa
has several other important advantages, which will be discussed in forthcoming
sections; also see [1].
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The networks of Figure 10 learn according to a respondant conditioning
paradigm in which the conditioned stimulus sends inputs to excitatory correla-
tional axons and the unconditioned stimulus sends inputs directly to output cells
[1].

10. Multiple associations in collaterals of long axons:
(ABC) ~ D # (A)(B)(C) ~ D

Axon collaterals allow a single long axon to learn sequences of associations (or a
"compound" association). See Figure 11. In Figure 11, inputs perturb VI at time t,
V2 at time t + '"12, and V3 at time t + '"12 + '"23' where '"12 is the (approximate)
time lag for a signal to pass from Vi to V2' and '"12 + t23 is the approximate time
lag for a signal to pass from VI to V3' As a result, large cross-correlations form at the

Figure 11

arrowheads N 12 and N 13. Thus a subsequent input to VI alone will create outputs
from V2 and V3 approximately t12 and t12 + t23 time units later. A single edge
can therefore learn a compound association and readily reproduce it. See [1] for
some mathematically rigorous examples.

All edges from VI through V2' or from VI through V3' or from V2 through V3 with
the proper time lags will also learn the simple associations

VI --+ V2' or VI -+ V3' or V2 --+ V3'

respectively. Thus the output fromff will result from a temporally weighted mixture
of simple and compound associations activated by previous inputs. Only the
longest edges can, however, learn multiple associations in a single sweep between
widely separated vertices. See [1] and [3], Sections 10 and 11, for a related discussion
of multiple associations.

11. Spatiotemporally self-similar vs. uniform cell types

A virtually unlimited number of learning speeds for ff can be guaranteed by using
(i) axon collaterals, and

(ii) axons whose signal velocity is proportional to axon length.
The proper setting for understanding this fact is imposed by the following question.
Among cell types capable of transmitting undistorted signals between input and
output vertices, which single cell type assures the largest number of learning speeds
for a fixed number of edges? [4J and [10J discuss two main idealized cell types
that can transmit undistorted signals between vertices. Geometrically speaking,
these two types have the following properties.



~118 Stephen Grossberg

(1) Spatiotemporally self-similar (STSS) cell type -
(a) The shapes of any two cells in a given STSS type differ only by a multiplica-

tive factor.
(b) The velocity of signal transmission in a given edge is proportional to the

length of the edge (and also, by (a1 to the diameter of the edge). Thus the
time lag for signal transport through the entire edge is independent of edge
length.

STSS cells can, in principle, shrink or grow without disturbing extant cell con-
nections and time lags. They can therefore be used to coordinate the activities
of widely separated cell groups while the system grows in size or makes room for
new correlational regions. Moreover, production levels set in the cell body by
membrane excitation are the correct production levels for the entire cell.

(2) Uniform (U) cell type
These cells differ from STSS cells primarily by violating (b) as follows:

(c) The velocity of signal transmission in a given cell type is independent of
edge length, and thus the transit time of a signal through an edge is propor-
tional to edge length.

Cell type STSS provides more learning speeds than U for the following reasons.
Let the distance between vertices Vj and Vk be denoted by d(vj, Vk). By (c), type U
can learn .l transition Vj -+ Vk only with time lag proportional to d(vj, Vk) whether
or not axon collaterals exist. Moreover, if

d(vj, Vk) =1= d(vj, vm), (12)

then the transitions Vj -+ Vk and Vj -+ Vm must be learned at different speeds.
By (b), type STSS can learn transitions Vj -+ Vk and Vj -+ Vm satisfying (12) at the

same speed in either of two ways:
(1) Send axons from Vj to Vk and vm that terminate at Vk and Vm, respectively.
(2) Sends axons from Vj through Vk and vm with lengths proportional to d(vj, Uk)

and d(v j' vm~ respectively, and connect these axons to Vk and vm using axon
collaterals.

Although axon collaterals do not add to the learning speeds of type U, they
do the following for type STSS. Let M be the maximum edge length. Then a
transition Vj -+ Vk with

d(Vj, vJ < M

can be learned with any time lags between

d(Vj, vJ d"
-OM -, an 0' (13)

approximately, where () is the signal velocity in an edge of unit length. These
advantages suggest the use of STSS cells wherever possible.

12. Unbiased learning speeds require spatial dispersion of input

Equation (13) shows that unbiased learning cannot hold if the input to Fi arrives
at a localized cluster of vertices. Consider Figure 12. By (13), Cik correlations can
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F(jl F(k)
/---7 r""'-~7/ / / /

/ / /
/ / / /r ""-~""-~ T--r--, /Cij / /Cik"

Figure 12

be learned at fewer speeds than can Clj correlations. This bias in learning speeds
can be overcome by distributing the input uniformly in space and time to all
correlational axons of a given length throughout the strip FI, as in Figure 13.

FIJI F lkl
I I I II I I I

L I I II .JF. '-7 -7'--f--,l--r--r-I--f~-;
1/ / I 1 / III I

I I I I

'---, ,L ,..-,--I--+--+---,f I
I I I I I I II

I I I I I I ( I

aj

Figure 13.

13. Curved gray matter Ys. fast signals in long axons

The various Fu) representations might lie at different distances from the input
source CXi to Fi. Yet all these representations should receive simultaneous signals
from CXi to avoid temporal biases. This spatial bias can be overcome in either of
two ways.

(1) Bend the strip Fi until all branches cxP} of the CXi input have equal length,
A simpler way is given by

(2) Let the axon collaterals cxP) obey STSS. Then the long~st.collateralshave th~
fastest signal velocities, and so the time lags of all cx.\j} can be made the same~

14. Post'synaptic control of axon branches vs. rosettes

The existence of different signal velocities in axons of different length ca~ create
temporal biases. IftXP> is long (short1 it will disperse a rapidly (slowly) travelling
signal among the correlational axons with vertices in Cjj'.This teinporalbias can
be overcome in either of two ways.
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(1) Axon collaterals of uniform thickness: Let all axons IXY> break up into branches
of uniform thickness (and hence the same velocity) once they enter Cij' This
possibility suggests that the average activity of the postsynaptic cells to which
each IXY> sends signals can help to determine the distribution of IXY> terminal
branches. This suggestion is compatible with the idea that average post-
synaptic activity helps to set various presynaptic production levels (e.g., of
transmitter [4]), and thereby presumably to control the volume of the
chemical machine regulating these lcvels and/or the storage space for the
chemicals produced. This postsynaptic influence on a presynaptic cell can
violate STSS in the presynaptic cel~ especially in the cell's most distal axons
and (reversing pre- and post-synaptic labels) dendrites.

(2) Rosettes: Let each IXY) terminate in a spatially localized region RY>, or
"rosette" ([11], pp. 43, 129), to which several correlational cells can send their
dendrites. Then the problem of distributing inputs without temporal bias
to each Cij vanishes, since no longer is the rate of input arrival dependent on
the presynaptic axonal length. Rather it will be seen to depend on the network
analogs of granule cell dendrites. A spatial bias can, however, occur, since
wider axons will deliver large signals, other things equal. This difficulty is
readily overcome by letting volume of RY> oc diameter of IXY>, or effective
surface area for synaptic contacts with R~J") oc diameter of IXP").

Then the excitation density in all rosettes will be the same, other things equal.
This constraint on rosette size does not violate STSS. A hypothetical rosette is
diagrammed in Figure 14.

Fj

Rosette

T~ .I

Figure 14

15. Bidirectional axons: unbiased arrow in time and boundary correlations

In preceding sections, all correlational edges have been drawn facing the right.
This assumption is inadmissible for two reasons.

(1) No right-handed correlational edges send signals to the left-hand boundary
of F i. Thus only weak correlations can be made near this boundary.
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(2) No right-handed correlational edge can learn a multiple association
.I; -+ h -+ Ik if F(k) is to the left of FUJ.

Thus edges facing both right and left are needed to avoid biases. A simple way to
achieve this is to suppose that bidirectional correlational edges exist, as sketched
in Figure 15.

bidirectional correlational axon

Figure 15,

16. Folia, parallel fibers, mossy fibers, and rosettes

A similarity exists between some components of § and known cerebellar objects.
The following correspondence is suggested.

bidirectional correlational axon = parallel fiber
vertex of correlational axon = granule cell
axons CXI and cxp> = mossy fibers
RY) = rosettes,
collection of all cells in F I = a folium

See ([11], p. 5). We will sometimes use this neural interpretation of § to make
suggestive statements about the cerebellum. For example: the needs of unbiased
learning betweertordered sensory and motor media suggest that mossy fibers
terminate diffusely within a given folium in rosettes to which vertically displaced
granule cells with long bidirectional fibers send their dendrites.

17. Pufk1nje cells and climbing fibers

At least two further analogs of cerebellar components exist in ff. Consider Figure
lOa. We adopt the following nomenclature:

output cell = Purkinje cell,

and

input axon to
an individual
output cell = climbing fiber.

Our construction thus suggests that two sources of inputs are needed to guarantee
learning: mossy fibers and climbing fibers. In Figure 10, each climbing fiber has a
localized projection to a given Purkinje cell, or to a localized Purkinje cell cluster
in a given folium. These statements are borne out experimentally [11], Chapters VII
and VIII. Moreover, the climbing fiber somatotopic representation is perpendicular
to the mossy fib~r somatotopic representation to guarantee the possibility of
forming unbiased cross-correlations between the two representations. The per-
pendicularity of mossy fiber and climbing fiber representations has been recently
observed experimentally [12].
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18. Layers of parallel fibers segregated by length

Suppose as above that parallel fibers of equal length have the same signal velocity.
To avoid temporal biases among fibers of equal length, the time needed to deliver
inputs to any of. them should be the same, and the time needed to deliver outputs
from them should be the same. Both criteria can be simultaneously achieved by
arranging parall~l fibers in layers according to length.

It remains only to decide whether long or short axons occur closest to the mossy
fiber input source and to the Purkinje cell body output sink. Since the longest
axons can form the most complicated associations, it is natural to let them occur
closest to the input source, where they can receive input information "first-hand"
and before it is spread more diffusely to higher layers. The longest axons will then
also pass closest to the Purkinje cell body so that the most subtle learned correla-
tions will most powerfully influence the output.

19. Dendritic spines and learning

In Section 8, we noted that each parallel fiber makes functional contact with the
Purkinje cell over which it passes. This contact was assumed for simplicity to occur
via short axon ct>llateralsat regular distances along the axon. Given the separation
of parallel fibers into layers by length, the axon collaterals passing from the upper-
most layer to the Purkinje cell body could interfere substantially with the parallel
course of the long fibers, if a substantial number of fibers exist, and thereby bias
these most useful correlators. To avoid this unpleasant possibility, the mechanism
of parallel fiber and Purkinje cell contact should have three properties.

(1) It should be sufficiently spread out among the parallel fibers to collect signals
from all fibers above a given Purkinje cell.

(2) .It should nonetheless be so thin that parallel fibers can pass by it to other
Purkinj~ cells without deviating from their parallel course.

(3) It should collect excitation in a way that preserves the temporal ordering
sought by segregating parallel fibers in layers according to length.

Clearly the extensive bush of dendrites found above each Purkinje cell body
([11], p. 71) can fulfill all these requirements.

Short axon collaterals from a parallel fiber to an adjacent Purkinje cell dendrite
will cause less interference than before, but even these collaterals will limit the
packing density of parallel fibers. Since the existence of the largest possible number
of learning speeds is a basic requirement, it is not surprising that in vivo the analo-
gous functional contact is made via dendritic spines that invaginate the parallel
fiber and therefore minimally limit the parallel fiber packing density ([11], p. 52).
Thus the

parallel fiber -+ dendritic spine

contact is implicated as a region in which new cross-correlations can be formed.
In particular, presynaptic transmitter concentrations might be expected at such
c()ntac~s, and indeed synaptic vesicles have been observed in these regions ([11],
p. 52), Moreover the number of spines would then increase either as the motor
learning capacities of various species increase through the phyla, or as an individual
organism's motor skills mature. [11 ](p. 314) briefly makes a similar suggestion, but
goes onto say that ''as yet, of course, we have no knowledge of the structural and
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F(j)

functional changes that form the basis of this learned response". We can now assert
that the

mossy fiber -+ parallel fiber -+ Purkinje cell

circuit diagrammed in Figure 16 is suggested by simple formal prerequisites of
unbiased learning within a system of type (lH5) with ordered sensory and motor
components. Section 22 will, however, suggest that ff interacts with another system
rs that contains a richer learning structure, and that ff's primary task is to reduce
behaviorally destructive background noise in rs.

20. Climbing fibers around Purkinje dendrites

By Figure lOa, the climbing fiber creates an input that can be correlated with
signals passing through all parallel fibers over its Purkinje cell. Since parallel
fibers make their contacts via Purkinje cell dendrites, the climbing fiber input
should reach all dendrites. Since the lowest layers receive the most direct mossy

parallel
fibers
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fiber inputs, the best correlatiqns, will be formed if the lowest Purkinje dendrites
receive the most direct climbirtg fiber inputs. Figure 17 describes the resultant
situation, which is similar to the arrangement between climbing fiber and Purkinje
cell that exists in vivo.

21. Equilibrium cell configurations: control of cell size and orientation
by dipole forces

The very fact that only finitely many cells exist often tends to create biased learning
conditions. Two cases of this are illustrated in Fig~re 18. In Figure 18a, parallel
fibers are uniformly distributed in a strip, and in Figure 18b, edges are distributed

/ ~::~~~~~~; --/
/--=~ --/

(c)

Figure 18

with random orientations perpendicular to a bundle of parallel fibers. In both
cases, the boundaries B receive less excitation (or inhibition) than the interiors I,
on the average. These boundary biases can be overcome as follows. The boundary
bias in Figure 18b is corrected in 18d by orienting the cells near B with their edges
facing B and their vertices facing I. Speaking teleologically, this orientation maxi-
mizes the excitatory input which the vertex can receive at a given cell position, and
then disperses the input in signals to B, where they are most needed. The attraction
of vertices to excitation can be qualitatively understood as follows.

Reference [4] suggests that various nerve cells are "chemical dipoles". The cell
body (and dendrites) and the synaptic knobs contain the two ends of the dipole. The
cell body end of the dipole thrives on various electrical and/or ionic fluctuations
created by presynaptic excitation, since this excitation helps to set various produc-
tion levels within the cell. Presumably the spatial orientation of such a cell can be
determi!led by the spatial gradient of these electrical and/or ionic densities. In
particular, the sources of excitation are often the synaptic knobs (or axons) of
other cells, and in this sense opposite ends of the dipole attract and like ends repel.
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In 18a. the orientation of the cells is fixed, but their size is variable. [4] suggests
that the size of STSS cells can, in principle, covary with the average intensity of
inputs to the cell body. Then if cell bodies near I receive more excitation than cells
near B, they will send out long axons towards B and thereby help to bring more
excitation to B.

Dipole cells satisfying STSS can in these ways adapt to changing patterns of
inputs by altering their size and orientation. These geometrical changes presumably
seek a "maximally stable" configuration of cells relative to a given input mechanism.
Fortunately, this equilibrium configuration also helps to lessen biases in learning.

This discussion provides an example of how the laws for individual cells might
help to determine useful arrangements of many cells. Dipole forces, for example,
let each cell body maintain production levels needed to keep up with prior input
demands and to transmit signals between cells that reproduce these demands.
STSS guarantees that the production levels of the cell body are the right ones for
the entire cell. Such a cell is ignorant of all production needs but its own. Nonethe-
less, by satisfying its own production needs, it automatically helps to create
behaviorally useful anatomical patterns with other equally egocentric cells.

Note that the mechanism for reducing boundary biases in 18c introduces a
temporal bias by creating longer parallel fibers from I than from B. To avoid these
boundary biases, the length of a given set F of folia should be substantially (at
least three times) longer than the width of its perpendicular representation Fl-.

Keeping the widest and longest correlational axons closest to input sources and
output sinks helps maintain an equilibrium configuration of cells. The largest mossy
fiber inputs are then carried through the largest parallel fibers to the largest Purkinje
cell dendritic branches. Less direct inputs are carried through finer parallel fibers
to finer Purkinje cell dendrites. See Figure 19.

22. Possible learning speeds

For which presentation speeds of h ~ fk' j # k, will learning occur if
(1) STSS holds in parallel fibers, and
(2) no boundary biases occur in the spatial distribution of parallel fibers.

Leth ~ fk occur with a time lag of~, and suppose for simplicity that inputs repre-
senting these events arrive at F and FJ. with the same time lag ~. The parallel fibers
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that can learn this transition will have large signals in C jk when the climbing fibers
of C jk are active. These parallel fibers will have received inputs from mossy fiber
rosettes approximately ~ time units earlier.

Let W be the longest time lag of any parallel fiber. Let w be the time lag between
onset of the shortest parallel fiber signal and passage of this signal through the
nearest Purkinje cell dendrites. Given (1) and (2), learning is (approximately)
equally easy for any ~ such that ,

W~f.~W,

but becomes harder as f. decreases below w or increases above W. The importance
of wand W is seen in Figure 20. Figure 20 shows that as f. decreases below w or
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increases above W, fewer parallel fibers can carry excitation to C jk when the climb-
ing fibers in C jk are active.

23. Spatiotemporal masking and consolidation

Spatiotemporal masking and consolidation are two consequencesIf (1) STSS in parallel fibers,

(2) arranging parallel fibers in layers according to length (i.e of arranging
parallel fibers in an equilibrium configuration).

Figure 20 shows one kind of consolidation as the speed of 1/~ of the sequence
increases. The volume of the dotted triangular region containing the segments of
parallel fibers used in learning decreases as 1/~ increases.

Consolidation also occurs in another way. Consider learning of the sequence

/;-h-ik
presented with a time lag ~ between successive items. If I:. ~ W; ~hen no single
parallel fiber is long enough to form a multiple association /; -h -fk. At slow
speeds, only sequences of simple associations can be learned. Each of these simple
associations will be formed among a triangular region of parallel fiber segments.
For smaller values of ~, by contrast, the entire chain/; -h -ik of associations
can be encoded in individual long parallel fibers. Only parallel fibers Wijk with
the followi~g ~roperties can form the multiple associations /; -h r fk:

(1) Wijk lIes lD Fi, i
(2) Wijk faces from FU) to F(k), and

I(3) Wijk is at least as long as the distance from pV1 to F(k). ,
See Figure 21.

F(j) F(k)
, / I II /

r '- I I
Fj /

: I--='=-,;,~,~ /L'~/~_~Wijk I r 7-7-- /-
L ,t_L .L/ I I -/- ---

/ I I I

Figure 21

Suppose the long fibers Wijk have learned the multiple association. Then activa-
tion of Fi by mossy fibers creates a signal in Wijk that travels from FU) to F(k)
Purkinje cells faster than the shorter fibers carrying single associations. Moreover
the Wijk fibers end closer to the Purkinje cell body than the shorter fibers. Successive
outputs from FU) and F(k) are hereby created by Wijk before the simple associations
can create outputs. That is, spatiotemporal masking of the simple associations by
the multiple association has occurred. Similarly, the spatial locus of the Wijk
association is a small region of long fibers that lie maximally close to the input
and output cells of Fi rather than in two separate large triangular regions of parallel
fibers in F; and Fj. Spatiotemporal consolidation of the memory trace has hereby
occurred.
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24. Subliminal excitation in upper layers

Since the fastest and most accurate correlations occur in the longest fibers of the
lowest layers, the most diffuse subliminal inputs should send signals to the upper
layers. This diffuse excitation would subliminally excite the total length of Purkinje
dendrites via short parallel fibers to prepare the Purkinje cell and dendrites for
later signals from the long parallel fibers. For example, reticulocerebellar mossy
fibers seem to contact parallel fibers in the upper layers ([11], p. 34-5).

25. Intennodality interactions and inhibitory output from Purkinje cells

Thusfar our construction has been motivated by the special case in which F and F.L
represent the same set of peripheral organs. This need not hold true in general,
because a particular pattern of motor outputs is often determined by sensory
feedback from several modalities. Consider, for example, the motion of a pianist's
fingers over the piano keyboard. Surely the particular sequence of notes played by
a given ordering of fingers will help to determine the next note to be played. We
thus consider the general case in which F and F.L can represent different modalities,
and in particular will often interpret inputs to F.L as intermodality sensory feedback
created by motor outputs from the modality represented by F. In this more general
case, our previous arguments suggest that §" interacts with another region ~
of.lt to produce learning. This is because C jk no longer represents a region that
once activated by h gives rise to outputs to fko Rather, F j and F(k) activation focussed
at C jk means, for. example, that "the finger corresponding to F j has played the note
corresponding to F(k)". Whereas activating the "finger row" Fj can activate the
"frequency column" F(k), outputs from Cjk produce no motor output from.lt-
although they can create internal feedback to a tonotopic representation within
.It. Playing the sequence of "notes" F(1), F(2), F(3), F(4), F(5) using the "fingers"
F 1, F 2, F 3, F 4, F 5 now creates maximal excitation successively in the diagonal row
C11, C22, C33, C44, C55 of regions. Associations such as

C11 -oJ. C22 -oJ. C33 -oJ. C44 -oJ. CSS

should therefore form, and in general non-horizontal associations such as
C"h --to CjV2 --to Cj3i3 --to ...should be possible. But our ordering constraints have
precluded the existence of non-horizontally oriented correlational edges in §!
Hence we are led to consider the possible existence of another region C§ interacting
with § that has these non-horizontally oriented correlational edges. Such a C§
has correlational axons which are distributed in essentially all directions, for
example radially around their source vertices, and joint inputs to C§ and § will
presumably preserve within C§ the ordering of the modalities represented by F and
F.l. But then C§ can readily be endowed with at least as rich a correlational structure
as § possesses. What purpose, then can § serve that cannot be better served by C§?

C§ faces a formidable problem that can be eliminated by interaction with :!F.
Let Gj and GU") be the row and column in C§ corresponding to Fj and Fu") in :!F.
Let Gj receive an input which is also passed along to Fj. In Fj, this input creates
signals that remain in Fj. In Gj, the input creates signals that are carried throughout
large sectors ofC§ by its non-horizontally distributed correlational axons. Although
this wide dispersion of the input is needed for C§ to be able to make intermodality
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correlations of the above type, C§ would quickly become hopele$sly flooded by
background noise if these signals were not rapidly suppressed. Part II of this paper
will suggest that these widespread signals within C§ can be partially controlled by
inhibitory signals from the Purkinje cells of:F: With this interpretation, the cross-
correlated mossy and climbing fiber inputs pick out the spatial foci in C§ that will
receive maximal inhibition. Recent experiments have, indeed, shown that the
Purkinje cell output is inhibitory ([11], p. 71). We will suggest that internal inhib-
itory interactions within suitable C§'s can partially control C§'s large membrane
potentials when excitation is spread rather uniformly over C§'s cells; i.e., when the
entropy of the potential distribution in space is large. When the entropy of the
potential distribution in space becomes small, however, Purkinje cell inhibition
will become an especially important factor in eliminating residual background noise.

The various C§'s interacting with :!i' will be interpreted as various subcortical
nuclei and neocortical regions. Dispersion of correlational axons in C§ will clearly
be richest whenever C§ can make very complicated associations. The veritable
jungle of converging and diverging associational axons in various thalamic nuclei
and between neocortical columns is a manifestation of this need. See [3], Section 20,
for a discussion of how convergence and divergence of correlational pathways
creates subtle associations.

The interpretation of:!i' as an inhibitory mechanism for C§ shifts the burden of
learning from:!i' to C§. For example, if a given column Fj is associat~d at randomly
distributed times with all columns FU) (the same "finger" plays different "notes"),
then the strength of correlations in the regions Cjj will be uniformly distributed
throughout Fj, on the average, and only a general facilitation effect for usage of
the "finger" }; will remain. The correlational axons of C§ can be studied much as
:!i"s parallel fibers have been studied above, but the richer distribution of axons
in C§ will permit a much wider variety of discriminations to be made. .:F itself needs
some internal inhibitory cells to prevent massive outputs that do not represent
behaviorally significant alternatives. These will be discussed in Part II of this
paper.

26. Convergence and divergence of representations

Juxtaposition of various copies of F and F.L can yield subtle graded effects in space
and time. In particular, varying the convergence of signals due to overlap of mossy
fiber projections and of the parallel fibers to which they project can yield signifi-
cantly different effects, some of whose main controlling parameters are listed below.
Let

(a) the length of a single mossy fiber projection in a given folium equal K,
(b) the number of mutually independent mossy fiber sources in a folium length

of K equal L,
(c) the longest parallel fibers in the folium have length M,
(d) the width of each independent source of climbing fiber inputs equal N,

and
(e) the number of adjacent mutually independent climbing fiber sources equal P.

See Figure 22.
Overlap of mossy fiber projections occurs unless L ~ 1. If L ~ 1, this overlap

can have the following effects.
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Figure 22.

(1) Input context affects a ssocia tiona I growth. Let the mossy fibers (Xi" (Xi""" <Xi", be
excited at almost identical times. Then the parallel fibers P(i1, ..., i,.) that send
dendrites to the rosettes of all these mossy fibers will receive the largest total input.
Their ability to correlate suitably timed climbing fiber inputs is thereby enhanced.
If a later input to even one mossy fiber lXij occurs, the strongest outputs will be
activated via P(i1, ..., im).

The number of fibers in P(i1,..., im) will depend sensitively on m and the
distances !(Xii -(Xikl. Consider Figure 23. Figure 23(a, b) shows that exciting
increasing numbers of adjacent mossy fibers can limit the granule cells of P(i1,..., im)
to a narrow band of cells, whereas exciting even a large number of mossy fibers for
which l(Xii -(Xik I > K has no such effects.

,.1'"- ~ ('/ "'\-"'"' ~ L- --

4==,=j:===:!iJ L-k~:=riT~~J c::~:=p
(0) (b) (c) I

Figure 23.

(2) Temporal biases due to spatial summation. If a single mossy fiber source (Xi
perturbs a given folium region, then temporal biases in that region can be eliminated
by the methods of Section 11-19, say by choosing K ~ 3PN and L ~ PN, etc.
Then all transitions h --+ fk' j # k, can be correlated at the same speeds.

Summation of inputs from several contiguous mossy fiber sources (Xii' j = 1,

2, ..., m, with l(Xii -(Xikl ~ K, can reintroduce temporal biases. For example, the
focus of excitation in Figure 23b has much the same effect as the localized excitation
of Figure 12. Thus effective correlations can be made at the highest speeds with the
climbing fibers terminating closest to the excitation focus, by (13). In particular, if
adjacent mossy fiber representations are rapidly excited in succession, a pre,:
disposition is created for them to make the most rapid correlations with an
adjacent climbing fiber representation.

25. Spatially disjoint multiple representations

Useful consequences derive from orienting disjoint multiple somatotopic repre-
sentations at different angles relative to the folia. Consider Figure 24 ([8], p. 213).
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(Figure 133 from Snider, 1952, Res. Publ. Ass. nerv. ment. Dis., 30: 267-281).
Three somatotopic representations A, B, and C appear in Figure 24. The repre-
sentations A and B represent one half of the body each, whereas C represents
both halves. The somatotopic representations in A and B have an orientation
relative to the folia that is approximately perpendicular to the relative orientation
of C. For example, in A the folia run perpendicular to the finger representations
of the right hand, and in C the folia run approximately parallel to the representation
of each finger. Whereas parallel fibers join different fingers in A and B, parallel
fibers join successive joints from finger to hand, to arm, to body, and to the contra-
lateral representation of successive joints in C. These multiple representations
presumably facilitate both learning and performance of motor sequences by
"crispening" the waves of excitation along their respective motor control paths,
say from finger to finger in A and B or from joint to successor join~in C.
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