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I, Some possible neural mechanisms of pattern discrimination are discussed,
leading to neural networks which can discriminate any number of essen-
tially arbitrarily complicated space-time patterns and activate cells
which can then learn and perform any number of essentially arbitrarily
complicated space-time patterns in response to the proper input pattern.
Among the topics that arise in this discussion are: use of non-recurrent
inhibitory interneurons for temporal or spatial discrimination tasks
which recurrent inhibitory interneurons cannot carry out; mechanisms of
temporal generalization whereby the same cells control performance of a
given act at variable speeds; a tendency for cells furthest from the
sensory periphery to have the most specific response modes and the least
ability to follow sensory intensities (e.g. on-off and bimodal responses are
common); uses of non-recurrent on-off fields whose signals arrive in
waves forming "interference patterns", with the net effect of rapidly
choosing at most one behavioral mode from any number of competitive
modes, or of non-specifically arousing or suppressing cells which can
sample and learn ongoing internal patterns; uses of specific vs. non-
specific inhibitory interneurons, axon hillock inhibition, presynaptic
inhibition, equal smoothing of excitatory and inhibitory signals, possible
production of both excitatory and inhibitory transmitter in a single
synaptic knob, blockade of postsynaptic potential response, logarithmic
transduction of inputs to spiking frequencies, or saturation of cell body
response in non-recurrent on-off fields for purposes of pattern
discrimination.

\ 1. Introduction
Recent electrophysiological experiments, such as those of Hubel & Wiesel
(1965), Lettvin, Maturana, McCulloch & Pitts (1960) and Sterling &
Wickelgren Q969) have demonstrated the existence of nerve cells whose
maximal output is triggered by complex input patterns; for example, by a
line of light of fixed length moving across a cat's retina with a fixed orienta-
tion and a fixed velocity. Many different cellular preferences have already
been described, and more are bound to be discovered in the future. The
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problem of classifying possible common mechanisms underlying these
diverse preferences is therefore an urgent one. Still more important, perhaps,
is the problem of discussing how complex cellular pattern discriminations
are integrated into the ongoing learning behavior of the animal being
discussed.

These problems cannot be separated from the following question, which
is suggested by electrophysiological experiments on many sensory modalities.
How do cells near the sensory periphery, which individually respond to
many different input patterns, nonetheless act together to discriminate
one pattern from another with high precision? That is, how does "local
non-specificity" co-exist with "global specificity" of cellular response?

This paper discusses some mathematical mechanisms of pattern discrimina-
tion that are built up from such familiar neurophysiological ideas as:
existence of an axonal spiking threshold, dependence of spiking frequency
on cell body membrane potential, additive combination of excitatory and
inhibitory inputs at the cell body, exponential averaging of inputs through
time by the cell body membrane potential, positive time lags for flow of
spikes in axons, and-in some cases-saturation of cell response at finite
values. We will find that these simple ideas can be used to create a substantial
variety of pattern discriminators if they are arranged in suitable networks,
or "anatomies".

It is, of course, very difficult, if not impossible, for a physiological experi-
mentalist to simultaneously record from the millions of nerves that might
be used to perform a given pattern discrimination task of even routine
behavioral complexity. This limitation will not hamper our mathematical
analysis, which is in principle as easily carried out for two as for 1010 cells.
The independence of our results from considerations of cell population size
has the empirical interpretation that any pattern resolution can be achieved
by repeating the same mechanisms in more cells. It will also appear that
knowing the anatomy of a given collection of cells does not characterize
the capabilities of this collection as an input filter. One must also know
several physiological parameters of the network, such as the relative strengths
and onset times of excitatory and inhibitory signals at a given cell, the relative
speeds of exponential averaging at different cells, the spatial distribution of
spiking threshold values at all cells, the relative specificity of excitatory and
inhibitory synaptic fields, etc. These parameters are also difficult, if not
impossible, to measure at millions of cells, but again a mathematical analysis
will show that certain combinations of these parameters at individual cells
are compatible with prescribed tasks carried out by millions of cells of the
same type, whereas other parameter combinations are not. Our results
therefore begin a catalog of the mathematical possibilities that can achieve
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prescribed behavioral discrimination tasks. Armed with such a catalog, the
experimentalist can presumably better interpret the behavioral implications
of data collected separately from small numbers of cells.

2. Connection with Learning Theory

The results to be described are part of a rigorous theory of learning that
has a suggestive psychological, neurophysiological, anatomical, and in some
cases 'biochemical interpretation. The networks of the theory are called
embedding fields (Grossberg, 1969a to d). All results herein were motivated
and derived to satisfy formal requirements that make efficient learning of
complicated skills possible in embedding fields. In this sense, the learning
mechanism provides a unifying teleology for constructing pattern discrimi-
nators.. Some previous papers (Grossberg, 196ge,f, 1970) consider this
mechanism in detail. Our first results on pattern discrimination will discuss
networks in which no learning occurs. If such a network can discriminate
a given pattern at one time, it can discriminate the same pattern at future
times. These networks will then be connected to networks which can learn.
Together the entire network can learn to perform any finite number of
output: patterns of essentially arbitrary complex.ity selectively in response
to any finite number of input patterns of essentially arbitrary complexity.
Once these results are before us, various advantages and disadvantages of
including learning, e.g. transmitter potentiation, in the filtering cells them-
selves can readily be noted.

We will work primarily with networks of the form
n n

xit) = -aixit) + L [Xk(t-Tk;)-r kJ+Pki -L [Xk(t-Uk;)-nkJ+Yki+lit),
1=1 k=1

(1)
where [w]+ = max (w, 0) for any real number w, all constant parameters
are non-negative, all initial data and inputs are continuous, and
i = 1, 2, ..., n with n any fixed positive integer. (1) has the following

interpretation.
Let n cell bodies Vi be given with average potential xiI), i = 1,2,..., n.

If Pki > 0 (Yki > 0), then an excitatory (inhibitory) axon e~(ej;;) leads from
Vk to Vi. Denote the synaptic knob of e~(ej;;) by N~(Nj;;). Let the spiking
frequency which is released from Vk into e~(ej;;) in the time interval [I, t+dt]
be proportional to [Xk(t)-r kJ+ Pki[Xk(t)-.QkJ+Yk;). Let the time lag for the
signal to flow from Vk to N~(Nj;;) be Tk;{Uk;), and let the spiking (or signal)
threshold of e~(ej;;) be r kink;). Then by (1), in every time interval [I, t+dt],
a signal with size proportional to [Xk(t) -r 1J+ Pki enters e~ from Vk, travels
to N~ at finite velocity, and creates a proportional signal at N~ that crosses~
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the synapse to VI at time t+ tkl, whence XI( = dxl/dt) increases proportion-
ately. All excitatory signals from some Vk that reach Vi at time t have an
additive effect on XI' as the term

n

L [Xk(t-tkJ-r kJ+ Pki
k=l

in (1) shows. A similar description holds for inhibitory signals in the axons
eki. XI also decays at the exponential rate lXI' and is perturbed by known
inputs II(t) that are under control of an experimentalist or independent cells.
For my purposes, any synaptic mechanism-whether chemical or electrical-
that obeys the above equations will suffice. Equations (1) are supported by
substantial experimental evidence (Grossberg, 1969b, section 12). For
example, they reduce in a special case to the Hartline-Ratliff equation and
yield theoretical formulas for the empirical coefficients of that equation
(Grossberg, 1969b, section 13).

3. Local Temporal Discrimination
It is often necessary for the output of a given cell to have short duration

even though its input has long duration. Consider Fig. I, for example.
Figure 1 describes a respondent conditioning paradigm in a simple network.

,,-

/--
FIG. I.

A conditioned stimulus (CS) activates the cell VI' and an unconditioned
stimulus (US) activates the cells Vi' i ~ 2. It has been shown (Grossberg,
196ge, 1970) that by pairing the CS and the US sufficiently often, then a
future presentation of the CS alone can reproduce in the outputs of the
cells Vi' i ~ 2, patterns previously elicited by the US. Grossberg (196ge)
also shows that the duration of the signal from VI must be brief if the US
fluctuates rapidly in time, or else the synaptic knobs of VI will learn only a
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coarse weighted average in time of all the patterns playing on the cells
VI' i ~ 2. On the other hand, the CS can have a long duration. For example,
in Pavlov's famous experiments on dogs, the duration of the bell (CS) can
in principle be very long. Thus we seek a mechanism that shuts off the output.
from V1 shortly after it is created by the CS, no matter how prolonged the
CS is~ Shutting off the V1 signal while the CS input is still large clearly
requires an inhibitory input.

Two main ways exist whereby this inhibitory input might occur, and
obvious modifications of them can be readily imagined (Fig. 2).

FIG. 2.

,.

In Fig. 2(a), inhibition is recurrent: VI gives rise to an excitatory axon
collateral which perturbs an inhibitory interneuron V2 that thereupon
inhibits VI. In Fig. 2(b), inhibition is non-recurrent: the CS gives rise to an
axon collateral which perturbs an inhibitory interneuron V2 that thereupon
inhibits VI' Only the non-recurrent case -has the desired effect, as we now
prove.

The systems of Fig. 2 satisfy the following equations.

Recurrent
Xl(t) = -aXl(t)- P[X2(t- U)-.o.] + + 1cs(t)

(2)
and

x,.(t) = -yx,.(t)+lJ[Xi(t-T)-r]+, (3)

for suitable positive parameters and CS input Ics(t). r is the spiking threshold
of the Vi axon and .0. is the spiking threshold of the V,. axon. r is also chosen
as the spiking threshold of the axon collateral leading from the Vi axon to
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V2' A larger spiking threshold would only weaken the inhibition exerted
by V2 on Vi' and thereby make our ensuing conclusions easier to prove.
A smaller spiking threshold is impossible unless Vi sends out two independent
axon collaterals, instead of one axon with an axon collateral.

A similar interpretation of rand Q holds for the following system.

Non-recurrent

Xl(t) = -CXX1(t)- P[X2(t-U)-.Q]+ + Ics(t) (4)
and

f
~

X2(t) = -}'X2(t) + I5Ics(t -f). (5)

To illustrate the essential differences between these networks when the CS
is steadily applied for a long time, we consider the case in which the limit
I = lim Ics(t) exists. We also suppose that the CS intensity is sufficiently

t-+",
great to create a signal from Vl at large times; i.e. I> ar. To avoid an
unilluminating discussion of tedious cases, we start the system in equilibrium,
i.e. Xl(t) = 0, -t ~ t ~ 0, and X2(t) = 0, -0' ~ t ~ O. (Any equilibrium
levels Pi for Xi can be discussed in (I) by replacing -aixJt)by -aJxJt)-PJ.)
[See Grossberg (1969b).]

Proposition I (recurrent). Under the above hypotheses, either the limits
xJOO) = lim xJt) exist, i = 1,2, with Xl(OO) > r, or Xl(t) oscillates above

t=",
r infinitely often and at arbitrarily large times.

In short, Xl(t) cannot permanently be driven below threshold if the input
is prolonged and sufficiently intense ever to drive Xl(t) above threshold.
The proof is given in Appendix A.

The non-recurrent case presents none of these difficulties. For definiteness,
three classes of increasingly general inputs will be considered:

(I) Steady state: lcs(t) = I, t ~ O.
(II) Monotonely concave: lcs(t);?:. 0 and ics(t) ~ 0, t ~ 0 (one-sided

derivatives are intended where two-sided derivatives do not exist).
(III) Asymptotically steady state: 1= iim lcs(t) exists. The heuristic

t-+",
importance of (II) is the following. Let monotonely concave inputs perturb
a finite number of cells 't"" I in equilibrium, and let these cells send excitatory
signals to other cells 't"" 2 along axons having arbitrary time lags and
thresholds. Let the cells 't"" 2 in turn send excitatory signals to cells 't"" 3'
and so on. Then the potential of a cell body in some cell collection 't"" /I will,
except for usually brief sigmoidal portions of its growth curve, be monotonely
concave. Thus an essentially monotonely concave input to VI can represent
the net effect of rather general excitatory preprocessing. This fact is sum-
marized in the following simple lemmas.
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Lemma 1. Let the non-negative functions Xj(t) be monotonely concave,
j = 1,2,..., n. Then the function

n

Y(t) = L [Xj(t-tJ-rJ+p,
;=1

is also monotonely concave if all parameters are non-negative.
Lemma 2. Define the sequence of functions Xj(t) by

{ O, t < o
xo(t)= I, t~O

xJt) = -CXjX,(t)+P,[Xt-I(t-t,)-rJ+, (6)

with X,(O) = 0 and i = 1,2,..., n. Then XI(t) is monotonely concave,
whereas each Xj(t), i = 2, 3, ..., n is si~oidal, i.e. Xj(t) ~ 0 and x,(t)
changes sign at most once from non-negative to non-positive.

The proof of Lemma 1 is obvious. The simple proof of Lemma 2 is given
in Appendix B.

The following theorem shows that the non-recurrent network (4) to (5)
can cut off the output produced by a prolonged input. This theorem also
studies the number of oscillations in the output and the time needed to shut
off the output given sufficiently simple test inputs. To simplify the equations,
let t = 0, which synchronized the CS onset at VI and V2, and thereby causes
the inhibitory signal from V2 to VI to lag behind CS onset. In the steady-
state case, for each I, XI(t) and X2(t) will henceforth be denoted by XI(t, 1)
and X2(t, 1), respectively. The functions

8(1) = min {I: X2(t-U,I) =.o.}

T(J) = max {t: Xl(t,J) = r}

will be used to denote the onset time of non-recurrent inhibition at VI' and
the time at which Xl(t, l) is finally driven to subthreshold values by inhibition,
whenever these times exist.

Theorem 1 (non-recurrent). t Let pl5 > y, al5r > y.Q. and I > ar, and
suppose Xl(t) and X2(t) start out in equilibrium. If lcs(t) is asymptotically
steady state, then Xl(OO) < r. If lcs(t) is monotonely concave, then Xl(t)
changes sign at most once from non-negative to non-positive. If lcs(t) is
steady state, then dSjdl < 0 and the limit T( 00) = lim T(J) exists, is finite,

1-+..,
and if a ;C y satisfies the equation

Jl e-yT + v e-«T = CIJ,

t This theorem is proven in Appendix C.
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where
J1 = )1-1(1%-)1)-11%.815 el'a, v = (y-a)-l eau-l.

ro = y-1Pc5-1.

Also in the steady-state case, if cxr ~ pO, then dTjdl ~ 0, whereas if
cxr < pO, then (dTjdJ)(1) ~ 0 for 1 ~ 10 if (dTjdI)(/o) ~ O. Moreover

d
(cx-y) dI (T-S)(1) ~ 0 for 1 ~ 10

if
d

«X-I') d/(T-S)(Io) ~ O.

Remark. The intuitive meaning of the inequalities in the Theorem is as
follows. The inequality po > I' keeps Xi ( 00, 1) bounded from above as
1-.. 00. The condition aor > 1'.0. guarantees that inhibition sets in when-
ever Vi can transmit a prolonged excitatory signal, and that ultimately the
excitatory signal is inhibited away. If I ~ ar, then no prolonged excitatory
signal can occur, even without inhibition. Any monotonely concave input
creates a single rise and fall in Vi'S potential. The duration of suprathreshold
response is essentially a monotonic function of input intensity: only one

sign change in 1'(1) can occur. A similar statement holds for (T -S)" (I) with
the following addition: if inhibition grows more rapidly than excitation
(a < 1'), then (T -S)" can change sign only towards the negative, i.e. then
increasing input intensity tends to "contract" the time scale of suprathreshold
response. This theorem guarantees that a non-recurrent inhibitory interneuron
can limit the duration of the Vi output even in response to an indefinitely
prolonged CS input. As a result, the synaptic knobs of Vi can learn the pattern
weights at the cells bodies on which they impinge with arbitrarily good
temporal discrimination.

The above conclusions are independent of how we interpret the CS.
Suppose we could guarantee that only a prescribed space-time pattern at
the sensory pe~iphery ever creates a positive input at Vi. Then by Grossberg
(196ge, 1970), we could also guarantee that any prescribed output pattern
can be learned in response to the given one by letting Vi be the source of
an outstar avalanche. Moreover, if we were given n cells VI' i = 1,2,..., n,
rather than just Vi' and if each of these cells could respond only to a
prescribed space-time pattern .91, then we could guarantee that any output
pattern can be learned in response to any of the n patterns {jJ I by letting
each Vi be a source of an outstar avalanche. For example, such a network
can in principle learn to play any sonata in response to any moving picture
of external events.
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The simplest networks of this kind will perform their discrimination and
learning tasks in a wholly ritualistic way. Grossberg (196ge) indicates,
however, that teleological factors such as "goals", "internal drive states",
"paying attention", "novelty", and the like can be introduced into the
network by suitably modifying its anatomy. A fuller discussion of such
teleological factors will presumably be facilitated by a clear-cut description
of the minimal mechanisms needed to discriminate and learn complicated
tasks in a ritualistic way.

Non-recurrent inhibitory interneurons can be used as temporal discrimina-
tors in many anatomical situations. The following two examples illustrate
some of the possibilities.

(A) COMPAnBILITY OF DIFFUSE AROUSAL AND TEMPORAL

DISCRlMINAnON

Figure 1 can be augmented as in Fig. 3, which is discussed in detail in
Grossberg (196ge, 1970).

FIG. 3.

In Fig. 3, each US axon send off an excitatory axon collateral to VI. The inputs
delivered to VI by these collaterals are called diffuse arousal inputs (DAI's),
since they arrive at VI a fixed time '1 before the ITS is received by the cells ~,
and at all other cells such as VI that send axon collaterals to a. The DAI
has the following function. Suppose that the US follows the CS by a time
lag of T, on the ith learning trial. If the CS alone can trigger a VI output,
and if T, is not independent of i, then a given synaptic knob of VI can learn
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different parts of the same pattern at .11 on different trials, and hence might
learn no one pattern well as a result of repeated practice. To avoid this
difficulty, require that the CS and the DAI be simultaneously active at VI
before a signal from V1 can be created. This is readily done by choosing a
sufficiently large VI signal threshold once and for all. Then a signal from V1
will occur approximately '1 time units before the US onset on all learning
trials. Thus a given synaptic knob can practise the same part of the pattern
on successive trials, thereby leading to perfect learning.

The inhibitory interneuron V2 in Fig. 3 furthermore guarantees that the
VI signal will have a short duration, since by inhibiting the CS, the inhibitory
signal also drives VI below its signal threshold, given the additivity of all
inputs at VI" Thus synchronizing VI-US onset and achieving good local
temporal discrimination can be simultaneously achieved. This example
illustrates an important general theme: spatio-temporally specific and diffuse
interactions co-existing at the same cells can contribute to the over-all well-
being of the organism.

(B) CEREBELLAR PURKINJE CELLS AS NON-RECURRENT TEMPORAL

DISCRIMINATORS

In Fig. 4, the non-recurrent inhibitory interneuron is controlled by the
US in a gridwork of interactions between perpendicular somatotopic repre-
sentations of two cell collections having linearly ordered components. See
Grossberg (1969g) for background details.

FIJI

FIG. 4.
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Figure 4(a) shows a view from above of two pairs of perpendicular somato-
topic representations: F = {Ft, Fz,...} and F.l = {p(I), P(2),.. .}, and
G = {G1, Gz,...} and G.l = {G(I), G(Z),.. .}. The CSis delivered in duplicate
to the F and G representations, and the US is delivered to the F.l and G.l
representations. A CS to Gj (and thus to FJ excites a strip of parallel fibers,
as in Fig. 4(b), which carry their signals through the strip and thereupon
excite its output cells at different times. The US excites a perpendicular
strip FU). In order to temporally tag the onset of the US, and thereby
restrict the class of parallel fibers in G J which form large cross-correlations
with the output cells of GU), a non-recurrent inhibitory interneuron in FU)
is also activated by the US and rapidly inhibits GU). After learning occurs,
the CS alone should produce an output from r.;. This output will also be
rapidly inhibited due to parallel learning of which inhibitory interneuron
in F should fire to r.;. Grossberg (1969g) points out a possible analogy
between the system F and the cerebellar neocortex. In this analogy, the
non-recurrent inhibitory interneurons from F to r.; are cerebellar Purkinje
cells, whose role as temporal discriminators would be established were the
analogy fully valid.

4. Choices between Incompatible Behavio]rs: "Majority Rule" in
Non-recurrent "Interference Patterns"

In many behavioral situations, a rapid choice between mutually incom-
patible behavioral modes is called for. Non-recurrent inhibitory interneurons
can achieve such a choice between any finite number of behavioral alter-
natives in one processing step. In Fig. 5(a), the ith input sends an excitatory
input to Vi and an equal inhibitory input to Vk, k:;6 i. In Fig. 5(b),
essentially the same process occurs but Dale's Principle is respected, i.e.
the synaptic knobs of one cell are either all excitatory or all inhibitory. We
will show that the total input of at most one cell Vi can ever be positive at
any time, and thus that at most one Xi(t) at a time can be driven up towards
suprathreshold values.

The interpretation of the Vi outputs can be very varied. For example, a
given Vi can serve as a diffuse arousal source 1'or a large collection of cells
j/" I that are used to learn behavior sequenc.es compatible with the ith
behavioral mode, e.g. eating or sex. The cells j/" i can be disjoint from all
cells j/" j' j :;6 i, even if the cells j/" i and j/" j lie very close to another. Keeping
all cells j/" I and j/" j close might be necessary, for example, to give both
behavioral modes equal access to the same motor pathways. On the other
hand, cells which can be aroused by several modes can also be readily
contemplated, but they would presumably control preparatory precursors
of the overt behavioral modes that are mutually compatible.



302 S. GROSSBERG
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11(1)

(c)

FIG. S.

Figure S(c) illustrates a different possibility in the case of two cells V1
and V2. Here again only one cell output can be facilitated at any time.
Whereas V1 subliminally arouses a collection of cells, V2 suppresses these
cells. Suppose that exciting V1 indicates the arrival of inputs 11(t) which
portend good consequences for the organism, whereas exciting V2 portends
bad consequences, e.g. occurrence of food vs. shock. If the instantaneous
attraction of food, as manifested by the intensity of 11(t), is overwhelmed
by the instantaneous repulsion of shock, as manifested by the intensity of
12(t), then the cells which would ordinarily be aroused by, and therefore
learn from, the sequence of ongoing events can readily be suppressed by the
diffuse V2 output. The converse is also clearly true. The intensities of 11(t)

~

~.
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and 12(t) in this case would presumably be partially determined by signals
from internal homeostats.

The simplest equations of embedding field typc~ that have these properties
are given as follows.

xAt) = -~lxAt)+IAt-Tf) -L Ik(t-TJ, (7)
k...

where the output from VI has the form
OAt) = PJXAt)-rJ+, rl> 0, (8)

i = 1,2,..., n. Note that the arrival time of all excitatory and inhibitory
signals with the same source is the same, but that different sources can have
different arrival times. In this sense, the individual input sources create
incoming "waves", and the excitatory-inhibitory interaction between these
waves creates "interference patterns" which Jgive rise to unambiguous
"choices". This restriction on arrival times can be guaranteed by choosing
the signal velocity in axons proportional to axlDnal length, i.e. by spatio-
temporal self-similarity (Grossberg, I 969g).

Analysis of (7) is readily accomplished by defining the functions
"

I(t) = L Ik(t-TJ
k=l

and
£JJt) = IJt- -rJI-1(t),

with the understanding that £JJt) = 0 if I(t) = O. Then (7) becomes
xJt) = -ajxJt) + I(t) (£JJt) -L £Jk(t)),

k..1

(9)

"
and since L (Jk(t) = 1 whenever 1(t) > 0,

k=1
Xi(t) = -CXiXi(t)+J;{t),

where
J~t) = 2I(t)(91(t)-t),

i = 1,2,..., n. Clearly at most one J1(t) is positive at any time t, namely
the one for which 91(t) > t, since the 91(t)'s form a probability distribution
at any time t for which some J1(t) ~ O. Thus, by (9), at most one XI(t) at a
time can be driven up by a positive input. This accomplishes our goal given
any collection of non-negative and continuous inputs /I(t), no matter how
oscillatory each input is.

In particular, if the (J1(t) are constant in a sufficiently long time interval,
then for any positive thresholds r 10 all outputs °k(t) will eventually be zero
unless some 91 > t, i.e. no mode is activated. In this latter case, only °l(t)
can eventually be positive. The rate with which this asymptote is approached
-indeed whether it ever is reached-depends on the intensity /(t). For
T... 20



~104 S. GROSSBERG

(:xample if Xj(O) = 0, then x.(t) = r j at a time t = T for which
T

(20,-1) I e-«,(T-v) I(v) dv = r,.
a

1rhis shows, roughly speaking, that there is an inverse relationship between
relative intensity and total intensity of inputs in determining the system's
reaction time. The chance that all OJ(t) ~ t over long time intervals is
reduced by assuming that the inputs to different modes build up according
to different time scales.

Two interesting papers (Kilmer, Blum & McCulloch, 1969; Kilmer, 1969)
came to my attention after these facts were observed. These papers discuss
competition of behavioral modes in the reticular formation using computer
methods. Systems (7) and (8) represent a highly simplified case of an alter-
native attack on this phenomenon using embedding fields. Hierarchies of
units such as those above can readily be constructed.

The equation (7) can be generalized as follows.
Xj(t) = -cx/Xj(t)+.8jjlj(t-'rV -L Ik(t-'rk).8kj'

k..j
In this general setting, a wide variety of possibilities occurs in which the Vj
are not totally incompatible. For example, in all cases, an input of sufficient
intensity to a single cell Vj creates an output only from Vi' By choosing the
.8kj sufficiently large, however, even an input for which OJ(t) ~ l-e, with
e any prescribed small number, can be so strongly inhibited that VI emits
no signal. Alternatively, two cells Vj and Vj with °i(t) ~ t ~ °J{t) can be so
weakly coupled by mutual inhibition (i.e. .8/j ~ 0 ~ .8 jJ that they can fire
simultaneously.

The system
XAt) = -lXlxAt)+IAt-TIJ -Llk(t-TkJ (10)

k..1
can also yield mutually compatible outputs, even though all excitatory
and inhibitory signals have equal strength. This is seen by defining

n
rl>(t) = L Ik(t-TkJ

k=l
and

(}ki(t) ~ Ik(t-TkIJI(i)(t),
and writing (10) as

Xj(t) = -<XIXj(t) + 2I(I)(t) ((}u(t)-!).

alne then checks that (}jj(t) > ! does not imply (}Jj(t) ~ ! for all j # i, in
gl~neral. Hence the restriction that the input sources create "waves" is of
some importance, and more fundamentally, spatio-temporal self-similarity
is called for.
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5. Local Temporal Generalization: Variable Velocities of
Motor Performance

Suppose that a given pattern of muscular motion can be reflexively pro-
duced at a fixed velocity. Can this pattern also be produced by the same
nerve cells at other velocities? Suppose that the pattern is learned at a
fixed velocity. Can the pattern be performed at several velocities? The
answer to these questions in our networks is "yes". It is also clearly "yes"
in many instances chosen from real life: even complicated piano pieces,
practised at one speed, can be performed at several speeds.

First consider the simple case of reflexively pc:rforming a motor spatial
pattern using the following network:

Xl(t) = -CXIXl(t)+I1(t) (11)
and

XAt) = -axAt)+P[Xl(t--rJ-I"J+Pl' (12)

i = 2, 3, ..., n, where the cell V, sends an axon to an idealized muscle
group .,1(, whose velocity of contraction at time t is V,(t) = YXj(t--r)
(Fig. 6).

FIG. 6.

Suppose that the system starts out at equilibrium, and perturb the source
VI with a positive input pulse 11(t). Then at any time t ~ 0, xAt) = Pl,J(t),
where
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and thus the muscle: groups .I( I each contract at fixed relative velocities P 11
which characterize the pattern. The absolute velocity of contraction is
proportional to K(t), which in turn depends only on the intensity of the
input at the source.. For example, if in addition to a specific input to VI'
VI also receives an arousal input due to'some general threat to the organism,
then the contraction, of the muscles in their prescribed pattern will be
speeded up.

This example can be generalized in many ways. Figure 7 provides a
simple anatomy for controlling performance of any number of space-time
patterns at variable velocities by the same idealized muscle groups.

-~I~- !

Vj

FIG. 7.

Figure 7 describes the system
x,(t) = -CXIX,(t) + l,(t),

and

XJ(t) ,..,!.!J!!'--= ,
Xm(t) Pirnk

where i= 1,2,...,n andj=n+l,n+2,...,n+m. Let the system start
011t at equilibrium :!nd suppose that Vi alone is perturbed by a brief but
intense input pulse, for some i ~ n. Then (14) becomes

N
XJ{t) = -CXXJ{t) + L [XI(t-'t"I-kf.J-r;J+Pilk-

i=l

In other words, Vj is perturbed every "1 time units by an input with relative
weightpui. Suppose that the duration of the signal [Xi(t)-rJ+ is less than
" and that the decay rate CX is large. Then xiI) will substantially recover
from the kth input 'burst before the (k+ l)th burst begins. The response to
the kth burst therefore satisfies



NEURAL PATTERN DISCRIMINATION 307

and thus the muscles can run through the space-time pattern with relative
weights Piji' This is true for any i, so that any number of space-timl: patterns
can be controlled in this way.

Concerning velocity of performance, we can again say that an increase.
in the absolute size of an axonal signal [Xi(t) -r J+ will speed tip perfor-.
mance due to proportionality of muscle contraction rate and Xj(t-t) size.
Another factor enters in the source signal [Xi(t)-rJ+ itself, sin~: increase
of 1i(t) decreases the time it takes Xi(t) to exceed ri and to transmilt a signal,
i.e. decreases the source reaction time. On the other hand, a rat:-limiting
factor also enters; namely the time interval ~ i between activation of successive
clusters of axon collaterals. This time interval is independent of source
energy, and thus pattern performance velocity has a finite upper bound.

All of the above remarks can be carried over to show that a task: learned
at one speed can be performed at several speeds by varying the source
energy. One simply replaces system (13) and (14) by r -outstar avalanches,
as in Grossberg (196ge, 1970). This more complex situation brin!:s with it
more interesting possibilities, e.g. a spontaneous speed-up of muscle con-
traction given a recall input to the source of fixed waveform after a ItIloderate
amount of practice (i.e. motor "reminiscence"), and motor manifes1Ations of
post-tetanic potentiation, listless response due to disuse, or perfect mot9r
memory until "extinction" occurs on unrewarded trials (Grossberg, 1970).

Clearly Figs 6 and 7 do not describe "muscular" control per se, bllt merely
illustrate one way of controlling variable performance rates il1l general
without changing the controlling or learning cells and the pattern they have
encoded. One can readily improve the description of the end-organ being
controlled in specific cases without necessarily altering these coIJlclusions.
For example, in the case of muscular control, a1~ least two improve:ments in
the above discussion are easy to achieve. First, specification of .A'I i'S con-
traction in terms of the velocity Vi(t) = YXI(t.- t) is insufficient, because
when Xi(t- t) = 0, ViCe) = 0 even if the muscle has not returDl~d to its

resting length. Second, some discussion of reciprocity between agonist and
antagonist muscles is needed. The following remarks briefly indi,:ate that
aspects of these phenomena can be built into the discussion in cases where
muscles per se are the central concern. These remarks do not, 110wever,
pretend to exhaust even some simple macroscopic features of motor control.
Our goal is merely to illustrate the flexibility of avalanche and related
controllers.

Let (.,Itt ,.,It I-) be a pair of antagonistic muscles. Let the length of 01(( i+ (.,It I-)
at time t be Lj(t)(Lj(t», and (for simplicity) let the resting lengtDI of .,Iti+
and .,It ,- be Lio. Introduction of Lio means, in particular, that we will here
avoid a discussion of muscle spindles, Golgi tendon organs, and the



Li(t) = -~[Li(t)-L1o]+'}'[XI(t-'t)-xl+(t-'t)] (16)

which describe the non-recurrent inhibitory interaction of Fig. 8(a).
Figure 8(b) can also be used.

.
vI"i

(a) (b)

FIG. 8.

These equations c}.~arly generalize the rule for VI(t) while bringing the
muscles back to a resting length in the absence of external forces, and
accommodating agonist-antagonist reciprocity. In Fig. 6 the cells VI can now
be replaced by the cell pairs (VI+' VI-) without changing our conclusions
about variable per~"rmance velocity. Then we find equations of the form
(11), (15), (16),

Xj-i"(t) = -axt(t)+P[Xl(t-tJ-r J+ pij
and

x,-"(t) = -ax,-(t)+P[Xl(t-TJ-r J+ PI"

i = 2, 3, ..., n. Figtlre 7 can be similarly generalized.

6. Why are SellSory Pathways in Different Modalities Anatomically
DifJrerent if Universal Discriminators Exist?

The next section begins a study of the following question. Let n cells
VI' i = 1,2,..., n be attached to independent peripheral receptors which
create the input 11(:t) at VI' A peripheral environmental event creates a
characteristic pattern of inputs liCt) on the cells VI, It is conceivable that
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events having very different behavioral significance for the orl~anism all
create large inputs to a fixed V" In spite of this "local non-spe<:ificity" of
cellular response, the organism's response to the entire pattern of inputs
can be quite specific. Is there a way to construct a cellular netw'Drk which
can discriminate any pattern playing on the cells V, from any othc:r pattern,
to within a prescribed small error, in spite of local non-specificity'r

The answer is "yes". Because of this fact, several implications imlInediately
follow. First, the same construction will enable the cells to filter OJ1Y pattern
received from the receptors, be its Interpretation auditory, tactile, olfactory,
visual, etc., i.e. the construction is "universal". It is also simple-minded
and uses few cell bodies. Why then do not all the anatomies of sensory
pathways in different modalities look alike? One answer seems 1:0 be that
different modalities preserve different perceptual constancies or in variances,
which improve the ability to make "operant" discriminations. For example,
in hearing there is a pitch invariance, in vision a size invariance" etc. One
can easily in principle imagine networks that include these invariances
simply by joining all the input patterns that should create c:quivalent
outputs by some type of "or" switch. Presumably Nature has chosen a
more subtle path, if only because connecting up all the requisite "or"
switches before they are needed would be very hard to do in 2L growing
brain, and might create undesirable rigidity. Our present construction might
therefore exist in vivo with the least modification in the most primitive
discriminative systems, e.g. smell or taste (Flrank & PfaffmaDn, 1969).
In any case, where anatomically more elaborate discriminators are found,
it will henceforth be profitable to ask as a point of departure: ~rhy is the
universal construction not adequate? Moreover, the same mechanisms are
likely to reappear in some form within these more elaborate anatomies.

Second, the number n of receptive cells can be chosen arbitra;ri1y large.
Surely if n equals a small number, such as two, there might eJust many
different environmental events whose effect on two receptors will be the
same. As n is taken to large values, however, even if individual receptors
differ only slightly in their specificity of response, the chance that Ihe inputs
I,(t) really characterize the environmental event steadily improves. For
any fixed choice of n, the network to be constructed can discrinrlnate the
pattern-as the organism perceives it-with arbitrarily good accuracy.

7. Unselective Filtering of Spatial Patterns 'by Excitatory Ne~'orks

Suppose that a given collection of n receptor cells Vi' i = 1, 2, ..., n is
presented with an arbitrary sequence of spatial patterns at widely separated
onset times. What is the simplest embedding field network having m output

~.
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cell,~ that each respond, to at most one spatial pattern, within some prescribed
margin of error? He:rlceforth, we will set m = 1, since once the problem
of filtering one pattern is overcome, any finite number of patterns can
readily be filtered. Suplpose for example that the given pattern is IJt) = 9il(t)
with weights 9 = (91,92"", 9n). We will construct a network such that
the output cell fires only if the pattern weights 0 = (01,92"", 9n) playing
on the receptors satisfy the inequalities

9i-s < 9i < 91+s (17)

i = 1,2,. .., n for some arbitrarily small s > 0, and if, moreover, the input
pattern is presented 'with sufficient intensity over a sufficiently long time
interval, where of course the minimum effective input intensity and duration
will tend to vary invel:sely with respect to one another.

The simplest networks, conceptually speaking, contain only excitatory
interactions. A routine example will show, however, that such a network
cannot conveniently achieve the selectivity of response that we seek. A
mixture of excitatory and inhibitory interactions will hereby be called for,
and the deficiencies of the purely excitatory network will readily suggest
procedures for conne~ting the excitatory and inhibitory components.

Let the cells VI receive the spatial pattern IJt) = 911(t), i = 1,2,..., n.
We suppose that all 91 are positive without loss of generality, since otherwise
we could simply delete the receptors receiving no input from our con-
sideration. Denote the output cell which will be responsive to this pattern
by Vn+ i. Vn + 1 must be responsive to all weights 0 i of the pattern if ever
it could succeed in discriminating this pattern from others. Signals from
each Vi must theref'Jre ultimately reach Vn+l' If we restrict ourselves to
excitatory transmissions, then either an excitatory signal traverses an edge
el.n+ 1 directly from Vi to Vn+ 1, or else several intermediate stages of excitatory
processing will be jllXtaposed between Vi and Vn+l' These intermediate
sta,ges can smooth the input, or sum it up, or truncate it using thresholds.
We will suppose for simplicity that only direct interactions exist, since the
deficiencies which ari:.e in this case can only be made worse by intermediate
processing. In the direct case, we find the equations

Xi(t) = -:'~lxJt)+OiI(t), (18)
n

Xn+l(t)=-~n+1Xn+l(t)+ L [Xk(t-orJ-rk]+Pk' (19)
k=1

where the output froJIll Vn+l has the form
+°n+l(t) = [Xn+l(t)-r n+J Pn+l' (20)

Let the pattern play lJpOn the receptors with a total intensity that eventually
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becomes steady state. Then I = Jim I(t) > 0 exists, and by (18) and (19),
1-+00

1. ( ) 1 ~ [ -1 0 ] + 1m X"+l t = -L., at kI -r t Pk' (21)

1-+00 a,,+ 1 k= 1

By (20) and (21), an output will eventually arise from V,,+l if I is so large
that "

L [a;;10kI -r k]+ Pt > a,,+lr ,,+1'
k=l

This shows, however, that a sufficiently large input intensity I can create
an output from V,,+ 1 for any choice of pattern weights Dr Excitato~r networks
are therefore unselective if a wide range of total input intensitie:s exists, a
perhaps obvious conclusion, but one which when taken seriously has non-
trivial consequences.

8. Two Stages of Non-recurrent Inhibition for Pattern Discrimination

The difficulties encountered in the excitatory network are twofold, and
can be overcome by two stages of non-recurrent inhibitory int(:raction.

(A) PATTERN NORMALIZATION AND LOW-BAND FILTERS

In the direct excitatory network, as the input intensity I incJ:eases, the
asymptotic membrane potentials XI(OO) increase linearly, and thus an output
from Vn+ 1 can be created by an ever less restrictive class of patterns. To
avoid this, the potentials Xj(t) must eventually approach a finite asymptote,
even if 1-.. 00. Moreover, the mechanism that creates the asymptote must
not distort the recording of pattern weights 01 in each XI(t). We will therefore
seek a mechanism such that Xj(t) ~ Ojn, for some finite constant n, and
large times t, as 1-.. 00. This phenomenon will be called pattern
normalization.

Suppose that we have somehow achieved pattern normalization. This fact
along with the existence of positive spiking thresholds now perJmits us to
forbid an output from VI unless the pattern weight 01 satisfies tfj > (J1-e,
for some e > o. Simply choose the spiking threshold r I of the axon emitted
by VI to equal

rj = O(Oj-e). (22)
Since xt<t) ~ OjO(t) for some function O(t) which satisfies O(t) ~ 0 for
t ~ 0, clearly xt<t) ~ r j unless 8j > OJ-e. One-half of the inequalities (17)
can hereby be achieved.

(B) HIGH-BAND FILTERS

Now the temptation is great to try completing our construl;tion of a
selective spatial pattern by the following simple procedure. Let the outputs
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from each V, convc~rge on a cell Vn+ l' and choose the spiking threshold
r n+ 1 so high that Vn+ 1 cannot emit a signal unless it receives a positive
signal simultaneously from all cells V" Unfortunately, this device does not
suffice. Vn+ 1 will also be able to emit signals in response to patterns with
weights very differeJllt from O.

To see this, note the following facts. Vn+ 1 must surely produce an output
if the pattern weigl1lts satisfy {J I = 0" i = 1, 2, ..., n. In this case, the total
input to Vn+ 1 is asYJ:nptotically approximately

n

L [OiQ-r,]+ = nea, (23)
1=1

by (19), where we have also let all Pi = 1 for simplicity. Suppose that
°t = min {O,: i = 1,,2,..., n} and present the pattern with weights

(Jt = I, iJ, = 0, i # k. (24)

The asymptotic inpl1t to Vn+ 1 produced by this pattern is approximately
n

L[iJiQ-r;]+ =iJ~-rk1= 1
=Q(l-Ok+s), (25)

11' the weights 0, arc~ not close to the weights in (24), than Vn+l should not
respond. By (23) and (25), therefore, whenever the pattern 0 is not concen-
trated at the one cell Vk,

neO 2: .o.(1-9k+8),
or

min {9,: 1 ~ i ~ n} ~ 1-e(n-1). (26)

Fix n at any finite value. To achieve arbitrarily good pattern discrimination,
an arbitrarily small choice of e should be possible. But then (26) implies

min {9,: 1 ~ i ~ n} ~ 1,
which is clearly impossible unless n = I, and if n = 1 no pattern discrimina-
tion whatsoever occurs.

A related deficiency of this approach is seen as follows. To achieve
selective filtering of any pattern, the right-hand side of (26) must be non-
positive. Then e ~ :l/(n-I). But the total input (23) always satisfies

IIns.Q. = L [O,Q- r ,] +
1=1

II

~LOIQ=Q,
1=1

or e ~ tin. These two inequalities imply the contradiction n-l ~ n. Thus
selective pattern filtl~ring of all patterns is impossible for any n.



NEURAL PATTERN DISCRIMINATION 313

These facts show that an additional mechanism is needed to shut off
outputs from °n+1 in response to patterns for which some n~ > j~l+e. In
other words, if the signal from any VI to Vn+ 1 becomes too large, it must be
shut off or competitively inhibited before Xn+l(t) can exceed threshold. If
this is achieved, then each VI can transmit to V.. + Jl either no signal a'l all or a
signal with a finite upper bound. Consequently, we can now ch,oose the
threshold r..+ 1 so that V.. + 1 transmits a signal only if it receives signals
almost simultaneously from all VI. Since r I = .Q«(}I-e), the pattefJt1s trans-
mitting these signals satisfy 111 > (}I-e. By shutting off the signal from VI
to V..+l if it exceeds 2e in size, these patterns also satisfy 111 < (}.+e.

The two stages of input processing: pattern completion, which leads to
low-band filtering, and high-hand filtering can both be accompliished by
non-recurrent inhibition. An important heuristic lesson of this corurtruction
will be that the very same local inhibitory mechanisms acting at two different
stages of input processing can have profoundly different effects on tJtle global
transformation of the input at each stage. Of course, only one stage of
inhibition is needed to discriminate a pattern of absolute input intc:nsities.

9. Specific vs. Non-specific Inhibitory Interneurons, Inhibition at thl~ Axon
Hillock, Presynaptic Inhibition, Equal Smoothing and Dale's PriIlciple

The title of this section lists some of the more detailed considerations that
will arise while constructing our filter. They are listed here to avoid losing
them later in technical details.

Pattern normalization can be accomplished by "non-specific", or "'diffusely
projecting", non-recurrent inhibitory interneurons, whereas hIgh-band
filtering can be done by .'specific" interneurons that are excited by one cell
and inhibit one cell. These specific inhibitory intemeurons can tI..ansform
an input that varies over a large intensity range into an essentially "on-off"
or bimodal output response, the alternative depending on the relative
strengths of excitatory and inhibitory inputs. Analogous input-output
transformations have been found experimentally in the ventral cochlear
nucleus, for example (Whitfield, 1967, p. 80).

It is often important that excitatory and inhibitory signals interact only
after they have been smoothed an equal number of times by prior stages of
cellular processing. Otherwise, it is hard to achieve the proper relative onset
times of excitatory and inhibitory signals, or the proper relative strengths
of these signals, for purposes of pattern discrimination. Analogously, equal
smoothing is also useful in processing the inputs to pairs of antagonistic
.'muscles", as in Fig. 8, so that these muscles act in synchrony.

An alternative to equal smoothing exists. The inhibitory intem'~uron of
Fig. 2(b) can be used if it exponentially smooths its input with a dl~y rate
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which is large relative to the fluctuation rate of the input, and if the input
is magnified before it is smoothed. Then the inhibitory output will be
approximately as smooth as the excitatory input. Hence almost equal smooth-
ing is possible by two pathways with different numbers of intermediate cells.

Small, rapidly r~~sponding, non-recurrent inhibitory interneurons can
accomplish high-band filtering. Rapid response is needed to forbid build-up
of the postsynaptic potential to large values. Small interneuronal cell bodies
can achieve rapid growth of interneuronal membrane potential by avoiding
the dilution of interneuronal input in a large cellular volume. In principle,
high-band filtering c:an be accomplished without an inhibitory interneuron,
as the next paragraI1,h notes.

High-band filtering can also be achieved if local postsynaptic response gets
blocked as presynaptic spiking frequency increases. Also a switch-over
as spiking frequency increases from net release of excitatory transmitter to
net release of inhibitory transmitter would be a very effective mechanism.
This last mechanisml violates Dale's principle, but its efficiency could be so
great that it should lbe kept in mind.

Non-specific inhibitory interneurons can produce pattern normalization
if they terminate either at suitable cell bodies, or at the axon hillocks of
prior cells, or even at the synaptic knobs of prior cells. The latter two locales
for inhibitory inter~lction ~re, at least formally, better than the cell body
termination for two reasons. First, a layer of cell bodies can then be elimi-
nated. Second, the ~LXonal response rate to inputs is presumably at least as
rapid as the r~sponse at the axon's cell body, because the axons in our network
faithfully replicate in their spiking frequencies the "slow potentials"
fluctuating in the (:ell bodies. The inhibitory input is consequently less
smoothed by axon 11il1ock and synaptic knob potentials than by cell body
potentials, and thus the cell's net output is more faithfully tuned to input
events. In a similar fashion, axon hillock and synaptic knob inhibition is
advantageously located to block totally the signal of a large cell body; the
same inhibitory sigrlal acting directly at the cell body could be lost in an
ocean of excitatory influences. Experimental reports of axon hillock and
synaptic ktiob inhi[bition have appeared (Eccles, 1964; Eccles, Ito &

Szentagothai, 1967).
The mathematica1. results below on pattern filtering are true under weak

constraints on cell body parameters. The main constraints are: the build-up
of inhibition is at le;ast as rapid as the build-up of excitation; the inhibitory
time lag-discountiJ:lg threshold effects-is no longer than the excitatory
time lag; the inhibitory threshold is higher than the excitatory ~eshold;
and the axonal time scales are no slower than th~ time scales for slow poten-
tial fluctuation in ,cell bodies. Give.n these constraints, one can almost
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say that simply by "throwing together" excitatory and inhibitory components,
some patterns will be selectively filtered. To guarantee that many patterns
will be filtered, one can, for example, organize the cells into successive layers
whose profusely branching axons flow mainly away from the: periphery
with a wide distribution of spiking thresholds: Some networl: examples
which illustrate the above remarks are listed below, w~ere i = 1,2,..., n.

Type I
x;(t) = -ax,{t)+pl;(t), l,{t) = /111(t), (27)

n
Xn+1(t) = -'}'xn+1(t)+c51(t), l(t) = L lk(t), (28)

k=1

xn+ 1+I(t) = -CXn+1 +,{t) +77[X,{t-TJ-rJ+ -K[Xn+1(t-T2)-r n...J+ (29)
X2n+1+I(t) = -).x2n+1+I(t)+P[Xn+1+I(t-T3)-r n+1+']+, (30)
X3n+1+,{t) = -VX3n+1+At)+f.[Xn+1+;(t-T4)-r n+1+']+, (31)

n
X411+1(t) = -PX4n+1(t)+U L [X2n+l+k(t-Ts)-r 2n+1+t]+

t=l
n

-XL [X3n+:I+k(t-T6)-r3n+1+t]+, (32)
t=l

and
°4n+1(t) = W[X4n+l(t)-f'4n+J+

This network is pictured in Fig. 9, where n = 2.

II (I)

In,
IV,

1-\..'.
VI v3

-J'
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12-(;)1,(') 12 (f) 11 (t)

(0) Axon ihillock

inhibition
(b) Synaptic knob

inhibition

(c) Mixed transmitters in
synaptic knobs

FIG. 10.

Type II illustrates what happens if some of the exponential averaging steps
occur so quickly that 1:~~Y can be approximated by algebraic transformations.

~rype II

.Use (27), (28)
OAt) = 17[Xj(t-tI)-r,J+ -1C[Xn+1(t--rJ-r R+J+, (3~)

n
Xn+2(t) = -AXn+Z(t)+p. L [O1(t--r3)-r n+1+1]+

1=1
n

-v L [O1(t--r4)-r 2n+1+1]+, (35)
1=1
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and
°n+2(t) = ~[Xn+2(t)-r n+J+. (36)

Some Type II networks are illustrated in Fig. 10, where n = 2. All axonal or .

synaptic knob inhibitions are presumed in };'ig. 10 to occur very rapidly
compared to exponential averaging rates at the cell bodies. Double synaptic
knob inhibition is also possible, if (35) is changed to

n
Xn+2(t) = -Axn+ 2(t) + JL L [Ot(t-t3)-V[Ot(t-t4) -r 2n+ 1 +t]+ -r n+ l+t]+.

t=l

The resultant network is shown in Fig. 11.

Type m and IV networks illustrate some possibilities if all e,;ponential
averaging steps occur so quickly relative to the input fluctuation rate that
they can be approximated by algebraic transformations.

Type III ":

Let
+Pit) = a[lit-TJ-r,]+ -fJ [tt1ItCt-T2)-r.+

Qit) = y[Pit-T3)-r .+1+']+ -15[Pit-T4)-r 2.+1+']+'

and let the output be

Type IV
Use (37) and (39) along with

QAt) = nP,(t-f3)-I5[PI(t-f4)-r 2n+l+J+ -r n+l+J+
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A study of Type I networks will readily suggest how the other, simpler
types behave. In a Type I network, the pattern 1i(t) = °11(t), already

n.eurally encoded, is transferred in a «specific" point-to-point representation

along the excitatory pathways
+ +

1At) -jo Vi -+ VII + 1 +i.

Each 1At) also rea<:hes the "non-specific" inhibitory interneuron VII+ 1 via
axon collaterals. Hence in (27), the input to V; is 8;1(t), whereas in (28), the

II

input to VII + 1 is L OkI(t) = I(t). The non-specific cell VII + 1 thereupon inhibits
k=l

each V I' and the total input to VII + 1 +; in (29) is given by

JAt) =: '7[XAt-tJ-rJ+ -K[XII+l(t-tJ-r 11+ J+, (41)

which is also the net output OAt) from Vi in (34). Each VII + 1 +; sends excitatory

signals to V211+1+1 and V311+1+1. Each V211+1+i, in turn, excites the output
cell V411+1, whereas I~ach V311+1+1 inhibits V411+1, as in (32). The output from

V411+ 1 is given in (3:1). The inset in Fig. 9 points out that the input receptor

itself can be a compound organ with excitatory and inhibitory components,

cf. Ratliff (1965).
The general remarks of section 10 are realized in Type I networks as

follows:

(A) NON-SPECIFIC YS. SPECIFIC CELLS IN PATTERN NORMALIZATION

The cells Vi and Vn+ 1 + i are "specific" cells, since they preserve the spatial
separation and ordering of the individual inputs Ii(t). The cell Vn+l is a
"non-specific" cell, since it averages all inputs Ii(t) and then diffusely
inhibits all cells VII + 1 + i' This non-specific cell will produce the pattern
norn1alization.

(B) 01JTPUT THRESHOLDS AS LOW-BAND FILTERS

The cut-off of OlLltputS for which OJ < OJ -8 will be accomplished by
the thresholds r. = r.+1{o.-s) in (29).

(c) SPECIFIC INHffilTORY INTERNEURONS ACTING ON A COMMON
IDUTPUT CELL AS HIGH-BAND FILTERS

Equations (29) to (32) will forbid any 1j(t) from creating a positive input
to V411+1 if OJ> OJ-rB. The cut-off is accomplished by the inhibitory inter-
neurons V311+ 1 + ,. TIllS could also be accomplished by (34) and (35), or (37)

and (38), etc.
Thus a substanti:ll conceptual difference exists between the non-specific

inhibitory interneuron VII + 1 and the specific ones V3n + 1 + j: Vn + 1 normalizes
patterns, whereas V~n+ 1 + I creates a high-band filter.

~
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(D) THE CONTINUUM BETWEEN "AND" AND "OR" IN THE TERMINAL
THRESHOLD

The threshold r 4n+ 1 in (33) can be chosen so large that the output from
V4n+ 1 is positive only if all I;(t) create positive signals to V4n+ 1. Then r 4n+ 1
acts like an "and" switch. Were we to let r 4n+l approach zero, thl~ "and"
switch would be smoothly deformed into an "or" switch when r 4n+ 1 = 0,
and °4n+l(t) would be positive if any signal to v4n+l were positive. This
is one reason why the anatomy of the network by itself does not Sllffice to
tell us what tasks the network is performing. In a similar way, all our results
would change were the inhibitory signals too weak, or too slow, etc.

(E) EQUAL SMOOTHING

The excitatory cells Vi and the inhibitory cell Vn+l each smooth tht: sign~
reaching Vn+l+i once. The excitatory cells V2n+l+i and the inhibitory cells
V4n+l+i each smooth the signals reaching V4a+l once. Type II, III and IV
networks replace some of these smoothing steps by input amplification and
rapid decay.

(F) MULTIPLE-THRESHOLD VS. SINGLE-THRESHOLD CELLS

A paper by Wickelgren (1969) appeared as this paper was being written,
and describes some possible uses of neurons with multiple thresholds. From
the vantage point of the present formalism, anything that a multiple-tllreshold
neuron can discriminate or learn can also be discriminated or learned by a
suitable juxtaposition of single-threshold units. The main formal advantage
of a multiple-threshold unit is that, once its design as an input filter is
perfected, it can readily be replicated wherever it is needed, e.g. the pyramidal
cells of the cerebral cortex. The question therefore seems to be one of
evolutionary efficiency and miniaturization of control rather than of absolute

.formal superiority of one or the other type of system. Our networ1( opera-
tions can, in fact, be interpreted as interactions between small me:mbrane
patches and associated cell volume segments in multiple-threshold neurons
if one so desires. If this is done, then several filtering steps could ta]lce place
in the dendrites of the multiple-threshold cell, or in any region whose time
scale is faster than the scale of slow potential fluctuations.

10. Pattern Normalization in Type I Networks

To prove that pattern normalization is accomplished by equations (27)
to (28), we study the inputJAt) to Vn+l+i, as defined in (41), when the spatial
pattern n is presented. Supposing that Xi and Xn+l have zero inil:ial data

T.B. 21
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(i.e. start out in equilibrium), Ji(t} can be written in the form
JJt} = '1[J((X, UiI,t--rJ-rJ+ -K[J(y,I, t-T2}-r 11+1]+

by redefining several parameters and using the notation

1<0
J(ICO, K, t) =

e-m(t-v) K(v) dv, t ~ O.

The following LemDla illustrates pattern normalization in Ji(t) for a con-
venient choice of parameters.

Lemma 3. Let a =: ')I, 'f1 = 'f2," ~ 11, and ri = rn+1((}i-e). Let 'f1 = 0
for convenience. Let. I(t) be any bounded, monotone non-decreasing, and
continuous function with 1(0) = O.

If Oi ~ (}i-e, then JAt) ~ 0 for all t ~ o.
Suppose OJ> (}i-e. Then JAt) = 0 until the first time t = T1 at which

J(a,I,t) = OJ-1rn+1((}i-e) (42)
and

d
(jtJ(a,I,t) >0. (43)

Thereafter J;(t) is monotone non-decreasing and satisfies the equation
.f;(t) = ,,[t1jJ(a,I, t)-r n+l«(}j-e)]+ (44)

until the first time t := T 2 at which (43) and

J(a,I, t) = r n+l (45)

hold. For t > T 2, J;(t) is monotone non-increasing. Thus

J;(t) ~"r n+l[t1j-«(}j-e)]+ (46)
for t ~ 0, and

Jim J;(t) = ,,[a-1t1jI -r n+l«(}j-e)]+ -,,[a-II -r n+ J+, (47)
,-+~

where I = Jim I(t).
, '-+00

Lemma 3 can easily be modified to include inputs which rise so rapidly
that both excitation :!nd inhibition set in before the input begins to decay,
as proposition 2 will show. The parameter choices a = '}' and 'fl = 'f2 will
ultimately be generallized to a ~ '}' and 'fl ~ 'f2, since the excitatory and
inhibitory cells cannot in vivo be certain to have equal parameters and
times lags. The present case illustrates some basic phenomena with a minimum
of technical detail, aI1ld is studied in Appendix D.

By Lemma 3, the input to Vn+l+j is positive only if t1j > (}j-e and if
I(t) is sufficiently intense that sup, J(a, I, t) > r n+ 1 (OJ -e). Even for arbi-
trarily large I, the input is bounded above by r a+l[t1j-«(}j-e)]+ and
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oscillates at most once. Thus pattern normalization and low-band filtering
have occurred.

For a general total input I(t), the following proposition holds.
Proposition 2. Let a = y, 1"1 = 1"2 = 0, /C~: '1, and rj = r n+1(Oj-e).

Let l(t) be any bounded, non-negative, and continuous function with
1(0) = o.

If OJ ~ OJ-t, then J,(t) ~ 0 for all t ~ O.
Suppose n j > OJ -t. Then corresponding to every rise and fall in

l(t), J(a, I, t) can rise and fall at most once, and thus the following osc;illations
in J,(t) can occur.

(a) (Unimodal). Suppose J(tX, I, t) continues to rise until (42) and (43)
hold, but falls before (45) holds. Then J,(r) rises and falls with

Sign-
dd J,(t) = Sign-dd J(tX,l,t).

t t

(b) (Bimodal). Suppose '10j < /C and that J(a, I, t) continues to lase until
(43) and (45) hold. Thereafter J,(t) decreases as J(tX, I, t) increases, and
J ,(t) increases as J(tX, I, t) decreases until (45) holds again, after wInch Jj(t)
decreases towards J,(t) = o.

(c) (On-Off). Suppose '10j = /C; i.e. OJ = 1 and '1 = /C. Let J(tX, I, t) rise
and fall as in (b). Then J,(t) rises with J(tX, I, t) until

J(a,I,t)~rn+1. (49)
For all t such that (49) holds,

JAt) = '1r(l-fJ,+s).

Thereafter JAt) decreases until zero is reached. See Fig. 12.

~j-:::. rn.I~ '-!. -! rj ~

t
-'l.L:~~~~-

t

srn+,
.-
:;: rj

I
(b) Bimodal (c) On-off(0) Unimodol

FIG. 12.
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Proposition 2 is proved using the method of Lemma 3. The condition
r 1 = r n+l(OI-e) in these statements amounts to nothing more than the
inequality r I < r n+ 1 written in a convenient fonn that shows which pattern
weights can pass thJ,ough.

The general case a ~ y, -rl ~ -r2," ~ PI, and rl < rn+l requires a study
of the input

J;(t) = PI[lijJ(a, I, t--rJ-r n+ l(Oj-e)]+ -K[J(y, I, t--rJ-r n+l]+. (50)

The condition -rl ~ -r2 is needed to avoid a gap of -r2--rl time units during
which Ji(t) can approach 00 as 1-. 00 before inhibition sets in. The con-
dition a ~ y guarantees that the inhibitory potential grows no slower than
the excitatory potential, and therefore will be sufficiently strong to eventually
drive Ji(t) to zero if Tl ~ T2' The absolute, as well as the relative, sizes of
a, y, Tl, and T2 and influence the fonn of Jl(t). If Tl = T2 but a ~ y, for
example, then the inequality

J(a,l,t-TJ ~ J(y,l, t-TJ,

which holds for an~' non-negative and continuous input I, guarantees that
pattern nonnalization occurs. On the other hand, the difference
[J(y, I, t-TJ-J(a, I, t-TJ] at any time t can depend strongly on the past
shape of the input, ;and thus Jj(t) can remain non-positive even if the input
is at times intense. .J ;(t) will better reflect instantaneous fluctuations of the
input if the input is magnified and rapidly smoothed. The next proposition
proves that this will happen if the input fluctuations have a certain amount
of regularity; for ex:1mple, if the input is the output of another cell.

Proposition 3. Givl~n any t ~ 0 and 8 > 0 suppose that there exist functions
R(e) > 0 and T(t, e) ~ 0 such that

t ~ R(e)+T(t,e) (51)
and

II(v)-I(t)1 ~ e if v e [T(t,e), I]. (52)

Let B(a) be any non-negative and continuous function such that
(f) = lim a-1 B(a) exi:~ts with 0 < (f) < 00. Then

«-+m

laJ(a,I, t)-I(t)1 ~ 1111\ e-«R(e)+e, (53)

where 11111 = sup {1/(t)\: t ~ O}, and obviously

1im J(a, B(cx)I, t) = (J)I(t). (54)
.-om

Remarks: The function B(cx) magnifies the input as the decay rate cx
increases. (53) shows: that if I(t) fluctuates ever more slowly, then less magni-
fication and slower decay will suffice to keep J(a, B (cx)/, t) close to (J)1(t).
The simple proof is given in Appendix E.
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Propositions 2 and 3 are applied to JAt) below, where we va!)' '7 = '7(a)
and" = "(y) as functions of a and y, respectively.

Corollary 1. Let a ~ y, " ~ '7, and ri = r n+l«(J/-e). SUppOSI~ that the
finite positive limits Jl = lim IX- J'7(a) and v = lim y-l,,(y) exist, and let

«-+'" ,.-.",

O~tl-t2~min{R(~),R(i)}. (56)

Then for IX and}' sufficiently large, IJAt)-MAt)1 ~ e, where MAl') ~ 0 for
all t ~ 0 unless Oi> ay-J«(J/-e). If Oi > ay-l«(Ji-e), MAt) is either uni-
modal, biomodal, or on-off on anyone oscillation of I(t- t J.

The proof is given in Appendix F. Corollary 1 shows that incrl~asing the
relative growth rate of inhibition to excitation increases the minimal pattern
weights Oi which give rise to an output signal from Vi' unless tlJle relative
threshold size r ir;; 1 is changed to compensate. Also decreasing the input
fluctuation rate allows an increase in the maximal permissible gap between
the inhibitory and excitatory time lags. The decrease in input fluctuation
rate can be achieved, other things equal, by letting the input source be an
ever larger cell body. In other words, an increase in the spatial scale of the
input source can allow an increase in the temporal scale of the relative
excitatory and inhibitory signal onset times.

11. High-band Filters

Specific inhibitory interneurons will now be used to cut off signals to the
output cell when these signals become too large. It suffices to let r n+ 1 +, = r(1),
r 2n+1+' = r(2) and r 3n+1+' = r(3) for all i == 1,..., n. For collvenience
of exposition, we also introduce the notation 't(2) = 't3 + 'ts and 't(3) := 't4 + 't6'
Then (30) to (32) can be written in terms of the functions

K,(t) = [Xn+1+,(t)-r(1)]+ (57)
and

LAt) = u[JLJ(J.,Kj, t)-r(2)]+ -X[.;-J(V, K" t+-r(2)--r(3»-r(3)]+
as

X2n+l+i(t) = jLJ().,Ki, t--1'3),

X3n+l+lt) = 'f.J(v,Ki,t-o1'4)'
(59)

(60)
and consequently

X411+1(t)=J(P,LL/,t--'t(2», (61).
ifx211+1+., X311+1+/, and X411+1 have zero initial data.

Suppose we could show that each summand L.(t) in (61) will. be non-
positive if K. becomes too large. Then by choosing the threshold r 411+1
sufficiently large, the output °411+1(t) in (33) would remain zero if any K/
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is too large. We therefore consider LAt) as a functional of Kj. LAt) can be
rewritten in the form

LAt) =: 'I[J(A.,Kj,t)-.Q]+-,,[J(v,Kj,t+or)-r]+

where 'I = UJl., ,,= xC;, .Q = ur(2), r = Xr(3), and or = or(2)-or(3). To
accomplish our aim, we approximate LAt) by an input of the form

N..(t) = 'I [A. -1 Kjt:t)(l-e-~-.Q]+ _,,[v-1 KAt)(l-e-v(t+t»)-r]+.

As in Proposition 3, 1:his can be done if KAt) has uniformly small oscillations
in very small intervals, by magnifying KAt), smoothing it quickly, and
choosing or sufficiently small. In fact, for very fast smoothing rates, NAt)
can be further appro:{imated in sufficiently small intervals by

PAt) = 'I [A. -1I(1-e-~-.Q]+ _"[V-1 I(l-e-V(t+t>}- r]+,

i.e. by a constant input I smoothed once by the excitatory and inhibitory
cells. The approxima.tion PAt) holds even for slow smoothing rates if the
input KAt) is of "on--off" type, as we can guarantee by Proposition 3 at the
pattern normalizing stage of non-recurrent inhibition. Hence we consider
the function PAt) below.

Proposition 4. Suppose ). ~ v, r >.0., vr > ),.0., " ~ 'I eVt, and or > O.
Then PAt) ~ 0 for all t ~ 0 unless I < 10, where

( ;..0.)1/.1.( vr)-1/V 1 -I; 1 -~ = et. (62)

The proof is given in Appendix G.
At least partial hig!l1-band filtering is also possible if the integrals

t

f e-OI(t-lI) KAV) dv
0

with w = )., v are not very close to w-t l(l-e-OIt), due to the following simple
inequalities, which hold whenever A. ~ v and KAt) is monotone non-

decreasing:
J(J."K1,t) ~ J(J.,K1,t+-r) ~ J(v,K1,t+-r)

and

._~.

12. Discrimination of Space- Time Patterns
The above constf1Jlction yields cells that can respond only to a given

spatial pattern, or to patterns differing from the given one by a prescribed

Nonetheless, a precise: control of maximal output size is not readily available
in the general case.
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error, if these patterns are presented with sufficient intensity and duration.
It is now simple in principle to construct cells which respond only to a

prescribed space-time pattern. Let a space-time pattern with weights

°i(t) = fAt) [kt!k(t)] '-I

be given. For sufficiently small values of f. > 0, the continuous function
OAt) can be arbitrarily well approximated by a sequence

{OAkf.): k = 0,1,2,.. .,N}

of its values. For each k, the weights

O(kf.) = {OAkf.}; i = 1,2,. ..,n}

form a spatial pattern. To guarantee a good approximation of O(t) by the
patterns O(kf.) let f. be chosen such that each OAt) changes slowl:y in time
intervals of length f.. Given such a f., let total input intensities be specified-
the "suprathreshold" intensities-which can create an output sign:ll from a
cell V(k) in response to the pattern O(kf.}, and to no distinct pattern. In other
words, the cells V(k), k = 1,2,..., N, divide all spatial patterns into N+ 1
classes-the N classes which are close to some pattern O(kf.}, and the class
of all the other patterns.

It is now readily seen that the output cells V(k), k = 1,2,..., N', for any
finite N, can receive their inputs from the same receptive cells (or "retina")
Vi' i = 1,2,..., n, as in Fig. 13, where we have chosen n = N' = 2 for

simplicity. In Fig. 13, each receptive cell Vn+l+i sends out an axon with two
axon collaterals. One collateral from each vn+ 1 + i will lead towards one of the
cells V(l). The same normalizing cell Vn+l can be used to normalize all the

I. (f) 12(f)

FIG. 13.
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spatial patterns. Tllis is not necessary, however; one normalizing cell can
normalize several p'atterns, or several normalizing cells can normalize one
pattern. Given a specific spatial distribution of normalizing cells, one can
then determine frolm the thresholds of the Vn+ 1 + I axon collaterals which
pattern class will excite each V(k).

In a clear sense, this construction uses the fewest possible cells to filter
spatial patterns, Th,e n cells at the first layer characterize the level of sensory
discrimination that is desired. The N cells at the last layer characterize the
number of pattern classes to be discriminated. All intermediate cells can,
if desired, be replaced by processes of smoothing, input additions and
subtractions, and threshold cut-offs taking place on dendrites, axons, or
synaptic knobs of t:hese n+N cells, perhaps at the price of violating Dale's
principle.

Now that any finite number of spatial patterns O(k~) can be discriminated
by cells V(k) leading from the same receptors, discrimination of the space-time
pattern OCt) can be achieved by constructing a cell fj which produces an
output signal only if all the cells V(k) are stimulated one after the other with
a time lag of ~. This can be done in many ways. The most direct way is to
let V(k) send an axon to ii whose time lag is .(k). Suppose .(k) = .(k-l)_~ ~ 0,
k: = 1,2,..., N, and use non-recurrent inhibitory interneurons to guarantee
that fj fires only if it receives signals (almost) simultaneously from all cells
V(k). This completes the construction.

Since any combination of events at the sensory periphery is a space-time
pattern, any combination of events can be discriminated by an application
of the above simp1e mechanisms. These mechanisms will not be used in
precisely the given form in all sensory filters, if only due to differences in
perceptual constanciies between modalities, and because the above "passive"
discriminations mui,t be supplemented by "operant" discriminations in
realistic behavioural interactions. Such refinements will be considered in
another place, in sw:table idealized cases.

1.3. Velocity and Orientation Detectors

To illustrate the above construction, we sketch a possible anatomy for
two hypothetical cells that can respond only to lines of fixed length
moving with a presc:ribed velocity and orientation (Fig. 14). Each dendrite
in the dendritic bush D1 receives inputs from a different "retinal" cell,
and the retinal cells fall under a straight line of fixed length and orienta-
tion on the retina. Each input Ij(t) sends an excitatory signal to some
dendrite and a nol1DaIizing non-recurrent inhibitory signal to the region
R1 at which local spike potentials carry excitatory signals from the cell



:.." .
~-

NEURAL PATTERN DISCAIII{INA TION 327

:;,';:-::
".". :-,:

FIG. 14.

body enlargement C11 to C12' The threshold of R1 can thus be <:hosen so
that a signal reaches C12 from C11 only if all dendrites in D1 1Jlave been
almost simultaneously excited, i.e. if a line of prescribed length and orienta-
tion has perturbed the retinal cells. R1 also send!; an excitatory sign;a1 to C22,
which is normalized at the C22 axon hillock by a non-recurrent inhibitory
interneuron. The time lag of this signal is ~. The threshold of C22 is chosen
so that an output occurs only if signals from R1 and R2 arri,re almost
simultaneously at C22. Suppose that the line moves from the re11nal cells
that perturb D1 to those that perturb D2 in ~ time units-say at :! velocity
V(~). Then V{2) will fire. If the motion is from 1>2 receptors to D1 receptors,
then v{1) will fire. No other input can fire these cells.

One can in a similar way get v{1) to fire in rc~sponse to a statiotlary line,
V{2) to fire only in response to a line moving from D(1) to D(2) re(:eptors at
velocity V(f;), and v(1) not to fire if a line moves from D(2) to D(1) a,t velocity
V(f;) but will fire if the motion proceeds at other velocities. OIlly minor
changes in threshold, and the use of non-recurrent inhibition from R2 to
C12 are needed. More complicated discriminators can be imagiined with
equal ease.

14. Alternative Mechanisms of Pattern Noirmalization: Saturating
Potentials in an On-Off Field, or LogaJrithmic Transducenl

Pattern normalization by non-specific inhibitory interneurons can formally
be replaced by at least two other mechanisms. In other words, a variety of
mechanisms might seek a common functional g~:>al in vivo.

T." 22

'J~f.:
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(A) SA'ruRAnNG POTENTIALS IN AN ON-QFF FIELD

Given n cells V" i = 1,2,..., n, let the excitatory input I,(t) to V, be
delivered with equ2l1 strength as an inhibitory input to all V J, j =1= i as in
Fig, 5(a). Suppose 'that X,(t) responds linearly to the excitatory input I,(t)
when X,(t) has small values, but approaches a finite constant M if I,(t) persists
with very large values in the absence of competing inhibition. Also let X,(t)
respond linearly to the inhibitory couplings -x,(t)IJ(t), j =1= i, and let X,(t)
decay exponentially to equilibrium (= 0) in the absence of inputs, Then the
output of each v, is normalized.

By hypothesis,

(63)

Let 1;(t) = lJ,l(t), and define the variables
n

x(t) = L Xk(t)
k=l

X;(t) = x;(t)X-l(t).

Then (63) yields the equations
X;(t) = A(t)[O;-X;(t)] (64)

and
x(t) = MI(t)-[a+I(t)]x(t), .(65)

where A(t) = MI(t);(-l(t). To illustrate our main point let I(t) be monotone
non-decreasing with I = lim I(t) > 0, and start the system in equilibrium.

r-+~

Now by (64), Xj(t) monotonically approaches the limit 8j. In particular, after
initial transients d~C;lY,

(B) LOGARITHMIC TRANSDUCERS

This alternative is ironic in that it works well formally, is compatible with
some data about 1(Jlgarithmic transduction from inputs to frequencies in
individual cells (Granit, 1955), but seems hard to build into the interaction
between cells unless linear and logarithmic transduction laws are mixed.

Suppose that the peripheral input IJt) is logarithmically transduced when
it reaches VI' i = 1,2,..., n. Also let all the peripheral inputs combine
linearly at a cell Vn+ l' whereupon the total input is logarithmically transduced.
let vn+llinearly inhibit each VI. Then the output from each VI is normalized.
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By hypothesis, the transduced input to VI is

1;(t) = log IiCt}

= log 9II(t)

.=log91+logI(t). " "j;
."

The total input to V,,+l is L Ik(t) = I(t), which is logarithmically trE.nsduced
k=l .

yielding In+l(t) = log l(t). In+l(t) then linearly inhibits V, yielding the
net potential

Ij(t)-ln+l(t) = log OJ,

which is normalized. The non-linearity of the transformation 0, -+ log 9,
does not interfere with the selectivity of the filter. It is only necess;ary that
thetransfoimation be one-to-one.

The preparation of this work was supported in part by the National Science
Foundation (G.P. 9003), the Office of Naval Researc:h (NOOOl4-67-A-Q204-0016)
and the A. P. Sloan Foundation.
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APPENDIX A

Proof of Proposition 1
Suppose Xl(OO) a.nd xz(OO) exist. If Xl(OO) ~ r, then by (3), xz(oo) = O.

But then by (2), x:t(oo) = «-11, which is a contradiction since I> «r by
hypothesis. Hence )Cl(OO) > r if Xl(OO) and Xz(OO) exist.

In a similar faslJLion, Xl(OO) > r if either limit Xl(OO) or Xz(OO) exists,
since the existence of one Iiri1it clearly implies the existence of the other by
integrating (2) and 1(3).

Suppose neither limit Xl(OO) or Xz(OO) exists. Then by the above remarks,
the inequality Xl (I) > r must hold at arbitrarily large times, or else by
integration of (3), the existence of xz(oo) will follow. In fact Xl(l) must
oscillate above r infinitely often: if Xl(l) has fixed sign at all large I, then
Xl(OO) exists, since the solution of (2) and (3) is clearly bounded and
continuous.

APPENDIX B

Proof of Lemma 2

Clearly xo(t) is monotonely concave for t ~ O. Integrating (6) yields
t

Xj(t) = PI e-.,(t-o) [Xt-l(V-tJ-r,]+ dv. (Bl)

Given any integral of the form
t

f(t) = f e-~(t-") g(v) dv
0

with g(v) piecewise Itwice-difIerentiable and 0(0) = 0, successive integration

by parts yields

](t) = f e-«(t-u) g(v) dv
0

and

f(t) = 1(0) e-a: + e-«(t-f1) g(v) dv.

By (B2), if g(v) ~ 0 for v ~ 0, then 1(0) ~ 0 for t ~ O. By (B3),
1(0) = 1(0) ~ o. Thus if g(v) changes sign at most once from non-negative
to non-positive the S~lIne is true of/(t). Applying (B2) and (B3) toj(t) = XI(t)
and g(t)=PI[Xi-ll(V-T,)-r,]+ iteratively for i=1,2,...,n proves
Lemma 2.
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APPENDIX C

Proof of Theorem 1
Let

J(t) = Ics(t)-P[K(t)-!lJ+,

I-a
where

K(t) = c5 e-y(t-a) eY" Ia;(v) dv

for t ~ 0", and 0 otherwise. By (4) and (5)
,

Xl(t) = f e-«(I-V) J(v) dv
0

since X1(0) = O.
If Ics(t) is asymptotically steady state, then (C3) implies

X1(OO) = ~-1I(1-y-1po)+lx-1pO.

We must check that X1(OO) < r. Given po > y, this is equivalent to

I(y-1po-l) > po-cxr,
which is true for all I > ar if

cxr(y-lpo-l) > pO-ar, ,. ,
or cxor > yO, as hypothesized.

Suppose Ics(t) is monotonely concave. To show that Xl(t) changes sign
at most once from non-negative to non-positive, note by (C3) that

t

Xl(t) = f e-«(t-lI) J(v) dv,
0

since Xl(O) = O. It thus suffices by Lemma 2 to show that J(O) ~ 0 and that
J(t) ~ 0 for t ~ to if J(to) = O. Since J(t):= lcs(O) ~ 0 for t s [0, 0'],
J(O) = lcs(O) ~ o. The inhibitory term is eventually positive since I>. o-lyO.
Let t1 = max {I: K(t) ~ .o.}. Note that for aU t ~ t1, K(t) ~ ;Q, since

by (II),
t-u

K(t) = b" e-)'(t-u) J e)'11 lcs(v) dv ~ O.
0

For I ~ 11' (Cl) implies

J(t) = lcs(t)-fio e-y(r-a)
r-,

em" lcs(v) dv.

Suppose- 1(to) = 0 fOf some to. Then 1(t) ~ 0 fOf t ~ to if J(to) ~ O~ Since
t-a

J(t) = ics(t)-p£5Jcs(t-u)+')'po e-J/(t-a) J e1"lcs(v)dv,

0
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(C4) implies
J(to) = Ics(tO)+11cs(to)-plllcs(to-u).

Since [cs(t) ~ 0 for all t ~ 0,
M 1

1J(to) ~ 1(1-1- Pll) cs(to-u),
and since pll > 1 and lcs(t) ~ 0, J(to) ~ O. Thus Xl(t) changes sign at
most once towards the non-positive.

Suppose fcs(t) is steady state. Then (C3) becomes
r

x1(t, I) = IX-II(l-e-~-p e-at

where by (5),

e~" [X2(V-U,I)-.Q]+ dv,

X2(t,I) = y-lc5I(l-e-i"). (C6)

Substitution of (C6) into (C5) and integration of (C5) for t ~ S = S(1)
yields

Xl(t,I) = a-l1(1-e-'"')-a-lp(y-lc51 -.{).)(l-e-«(t-S»

+y-l(a-y)-lpc51 e-i'(S-~) [e-i'(t-S)-e-~(t-S)], (C7)
where we have chosen a ~ y to avoid the simpler case. By (C6) and the
definition of S,

')'-1c5I[1-e-1(S-a)] =.<1,and thus
e-Y(S-,) = <5-11-1«51 -1.0.). (C9)

Substituting (C9) in (C7), we find
xl(t,J) = a-I 1(1-e-«')+y-lP«51 -1.0.) [ -a-l(l-e-~(t-S»+

+(a-y)-I(e-,(t-S) -e-~(t-S»]. (CIO)
To compute dSjdI, differentiate (C9) and find

dSd/ = -1-1«51 -1.0.)-1.0. < O. (CII)

To compute dTjdI, set xl(t,1) = r in (CIO), let t = T, and differentiate
with respect to I. The result, after some rearrangement of terms, is

dT B -1=A ,
dI

+ (CX-y)-I(e-«(T-S) -e-7(T-S»] -(CX-y)": 11-1 pa[e-«(T-S) -e-7(T-S)]

and

where
A = -a-l(1-e-mT)+y-lP6[«-1(1-e-m(T-S»)+
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A can be further simplified, since
-IA = a-1I(l-e-«~+1-lP(CI -')'.0.)[ -a-l(l-e-«{T-S»+

+(a-y)-l(e-y{T-S) -e-«{T-S~] -a-lp.o.(l-e-«{T-S»,
and thus by (CIO)

(CiS)

A = -1-1[r-a-lp.o.(1-e-«(T-S»].

B can be simplified as well, since by (CIO),

aB = at Xl(T,I)

and thus B < 0 whenever T is defined. Letting
~ 1, w > 0

II 0, w=O

.-1, w<O,

sign (w) =

(CI2), (CI4) and (CIS) yield

dTsign dI = sign [r-cx-lpn(l-e-«(T-S»]. (Cl6)

In particular, cxr ~ pn implies dTldJ ~ O. In general (dTldI)(J) ~ 0 for
I ~ 10, if (dTIdJ) (10) ~ 0, since by (CI6) it suffices to show that

d
dI [r-cx-lpn(l-e-«(T-S»]~ 0

if dTldJ = 0, or that (d/dJ)(T-S) ~ 0 if dTldJ = 0, which follows from
(Cll). In both cases, T(J) is monotonic for large I. Thus T( 00) = lim T(J) ~ 00

[-+(X)

exists. To show that T(oo) < 00, set t = T in (CIO) and let 1-+ 00.
If T( 00) = 00, this yields the contradiction r = -00, since p~ > ')'.

To study the dependence of (d/dI)(T-S) on the sign of a-')', manipulate
(Cll) to (CI4) to find

where
C = -(151 _y,Q,)-l,Q, e-~T +1-1{r-«-lp,Q,(1-e-~(T-S»+

I +«<-Jl)-lp,Q,[e-Y(T-S)-e-~(T-S)]} (Cl7)
and thus

(C1S)

To prove that
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implies

sign [(a-'Y) ~ (1' -8)(1)] ~ 0

for 1 ~ 10, it suffices to show that

sign (~) = sign (y-a) if C = 0, (C19)

since before (djdI)(T-S) can change sign from :I:: I to + I, it must pass

through zero, where, by (CI9), it will be deflected to the sign of y- (1;.
To prove (CI9), write the first term on the right in (CI7) as

(c51 _y.Q)-l.Q e-«T = (c51 _y.Q)-l.Q e-«(T-S) e-«s

and apply (C9). Then

(151 _y.Q)-l.Q e-~T = (c5J)-~/JI.Q e-~cr(c51 _y.Q)(~/JI)-l e-~(T-S). (C20)

Differentiate (C20) subject to the constraint (djdJ)(T-S) = C = O. Then

-~ [(c51 _y.Q)-l.Q e-«TJ
dl

= y-1(c51 _y.Q)-l.Q e-«T [(1;1-1- (a-y)I5(151 _y.Q)-l]

= 1-1(c51 _y.Q)-l.Q e-~T [1 +(y-cx).Q(c51 _y.Q)-l].

Also note by (C17) that C = 0 implies

~{1-1 [ r -cx-1p.Q(1-e-«(T-S»)+(cx-y)-lp.Q(e-Jl(T-S)-e-~(T-S»)]}
dl

I = -1-1(c51 _y.Q)-l.Qe-«~
I

Combining these identities shows that

dC
d1 = (')I-tX)n2e-«T I-1(c51 _y.Q.)-2

if C = 0, which yields (C19).!

Thus once either of the terms
Rj(t) = {OjJ(cx, 1, t)-r,,+ l((}j-S)] +

.APPENDIX D

Proof of Lemma 3
Since l(t) is monotone non-decreasing,
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or

S.(t) = [J(a,l,t)-rn+J+
in JAt) becomes positive, it remains positive. i

If O. ~ (J.-e, then SAt) becomes positive no later than RAt) does. Until
RAt) > 0, JAt) ~ O. Once RAt) becomes positive,

d d
dt J.(t) = (,,0,-,,) dt J(IX,I, t) ~ 0, (Dl)

so that JAt) ~ 0 for all t ~ 0 in this case.
If o. > (J.-e, then SAt) becomes positive before RAt) does. In fact, SAt)

becomes positive after t = T 1, and RAt) becomes positive after t = T %.
The equation (44) thus holds for t ~ T %, whence JAt) is non-decreasing
during these times, whereas fo~ t > T %, (Dl) holds. The remaining; assertions
of the lemma follow readily from these facts.

APPENDIX E

Proof of Proposition 3
First we prove (53). Clearly

a[J(a, I, t)-1(t)J(a, 1, I)] =a.J(a, 1-1(t), I).
Thus

(El)IIXJ(tX,I,t)-I(t)1 ~ 11111 e-at+lXJ(tX,I-I(t),t).
Denoting T(t, e) by T, note that

lXJ(tX,I -I(t), t) < e+ 11111 [e-«(t-T)-e-at],
which along. with (£1) implies (53).

By (£1),
IIXJ(IX,wI,t)-wI(t)l;s; wllill e-«R(.)+ws

for any w > O. Given any c5 > 0, choose s ;S; c5f2w and then

a> R-1(s) log (2c5-1wlllil)
to find that

IcxJ«<,C1J[,t)-C1J[(t)1 ~ b;
i.e.

Jim aJ(lX,o>l, t) = o>l(t).
.-+~

Since also
J(cx,B(cx)I,t) = cxJ(cx,cx-1B(cx)I,t)

and clearly
Jim a./«<, «-1 B«<)l, t) = Jim a./«<, rol, t),

R-+~ R-+~

(54) follows.

~
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APPENDIX F

Proof of Corollary 1

By proposition 3, for sufficiently large (X and y,

s
IJ,(t)-K,(t)1 ~ 3'

where
K;(t) = ,,[U11X-1J(t-fJ-r 11+1(91-8)]+ _,,[y-1J(t-'t"2)-r 11+1]+'

Define
M;(t) = ,,[iJ11X-1J(t-fJ-r 11+1(0;-8)]+ _,,[y-1J(t-fJ-r 11+ 1]+'

Since by (51), (52) and (56),

IJ(t-fJrJ(t-'t"2)1 ~ j min (1, V-i),

for sufficiently large IX and y,!
2s

IK;(t)-M;(t)1 ~-.
3

We have therefor~: shown that IJ;(t)-M;(t)1 ~ 8 for sufficiently large IX
and y. The properties of M;(t) as I(t-'t"J oscillates once are easily proved
as in proposition 2.

APPENDIX G

Proof of Proposition 4

First we show that PAt) > 0 for some t ~ 0 only if the excitatory signal
arrives before the inhibitory signal does, i.e. only if there exists a time
T ~ t such that

;'-11(1-e-J.T) > n
and

v-1I(1-e-Y(T+,» ~ r.
These two equations are equivalent to the inequality /(1) > eo, where

( A!1)11J.( vr)-l/Y 1(1) = 1 -I 1 -I .

The only other way for N1(t) to become positive is for inhibition to set in
before excitation does, but not so strongly as to keep N;(t) non-positive.
If this were to happen, then N ;(t) would remain non-positive until the first
time t = T at which

;'-lJ{l-e-)'T) = n
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and
V-I I(l-e-v(T+f» ~ r.

At such a time, however. we readily find that
sign N;(t) = sign [" e-AT -K e-V(T+f)]

~ sign [" -K e-v'] ~ 0,

whence N/(t) is always non-positive. Thus Nit) > 0 for some t ~ 0 only
if f(J) > ef.

It is readily checked that for 1 ~ ill.
signJ(J) = sign [)j}-vr] < o.

Thus if there exists an 1 = 10 such thatf(lo) = ef, as in (62), thenf(J) > ef
only ifl < 10. Such an 10 exists, sincef(vr) = oo,f(oo) = 1. and or > o.


