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Some Networks that can Learn, Remember, and
Reproduce any Number of Complicated Space-time
Patterns, |l

By Stephen Grossberg

1. Introduction

This paper describes some networks . that can learn, simultaneously remember,
and perform individually upon demand any number of spatiotemporal patterns
(e.g., “motor sequences”” and “‘internal perceptual representations”) of essentially
arbitrary complexity. Because these networks are embedding fields, they can be
given a suggestive psychological, neurophysiological, and anatomical interpre-
tation ([1]-[14]). [14] describes some of the mathematical properties of these
networks using this heuristic interpretation. They include the following:

a) “Practice makes perfect”.

b) Learning occurs by a mixture of operant and respondant conditioning
factors, which can include different network responses to “‘novel” vs.
“habituated” stimuli, the existence of ‘“‘nonspecific arousal” and “internal
drive” stimuli, of “sensory” feedback due to prior “motor” outputs, and
of “paying attention” by the network to those inputs which at any time
help the network achieve its “goals™.

¢) New patterns can be learned without at all destroying the memory of old
patterns.

d) All errors can be corrected.

e) Memory either decays at an exponential rate—which can be made arbitrarily
small—or is perfect until “‘unrewarded” recall trials occur, during which
memory is “extinguished”, In both cases, ‘“‘spontaneous recovery” and
spontaneous improvement of memory (i.e., “‘reminiscence’) can occur.

f) Asingle network “nerve”, with sufficiently many “axon collaterals” activated
successively by “avalanche conduction” can, in principle, learn an essentially
arbitrarily complicated pattern, though in a rote way.

g) A concrete “stimulus sampling” operation occurs in the networks, and
concrete analogs of ‘‘stimulus sampling probabilities’ exist.

h) The network is insensitive to wild “behaviorally irrelevant’” oscillations of
inputs and often has a monotonic response to them.

i) Network dynamics can be globally analyzed.

[12] discusses a related class of networks whose memory is essentially perfect
even during recall trials.
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2. Network equations

We will establish the above properties for a class of closely related network
equations. These include examples chosen from the following two network

types.
xt(t) = “aixl{t) + Z [xm(r - IM:’] - r‘mi]+pmisz(t)
' m=1

= 3 D%t = ) = Tl i+ 10 (1)
and "
Zpl) = —upzul) + vplx At — 1) — Tud ™ xu(0), (2)
or (1) taken along with
2lt) = [—upzp(t) + v xft — 1) — Tpl™, 3)
for i,j,k = 1,2,...,n where for any real number #,

[7]" = max(x, 0)

and introduces various threshold cut-offs. The system (1) and (2) was derived in
[2] and [3], and is reviewed in [1]..(3) differs from (2) only by replacing the decay
rate u, of (2) by '
ujk[xj(t - Th) — rjk]f9 (4)
which, it will appear, produces an essentially perfect network memory. Hence-
forth the system (1) and (2) will occasionally be denoted by (*), whereas (1) and
(3) will be denoted by (**).
The parameters, initial data, and inputs of (1)«3) satisfy the following con-
straints. '
(I) Parameters
(1) All constant parameters are nonnegative, e.g., &, Pjx, I jx, Ujk-
(2) vy is positive only if pj is positive.
(3) All time lags tj are positive.
(4) Pugjx = 0.
(I1) Initial data
All initial data of x{v) and z,(v) for v < 0 is nonnegative and continuous. More-
over we suppose for convenience that z;(0) > 0 if and only if p; > 0.

(ITI) Inputs
All inputs I(t) are bounded, nonnegative, and continuous for ¢ > 0 and vanish
fort <0.
When we say henceforth that parameters, initial data, or inputs are chosen
“arbitrarily”, we will always mean *‘arbitrarily subject to (I)(III)".

3. Cross-correlated flows on signed networks

For every choice of parameters, initial data, and inputs, (*) or (**) describes
a cross-correlated flow on a signed network .#. Since variants of this flow have
been previously described ([1]-[14]), the following summary will be brief.
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A finite directed network G = (¥, E) is determined by its vertices V= {v;:
i=12...,n} and its directed edges E = {ej:j,k = 1,2,...,n}. ey is drawn
as an arrow facing from*the point v; with its arrowhead N touching the point
vy. Henceforth the following heuristic terminology will sometimes be used to
discuss G

v; = ith “cell body” cluster,

e;x = cluster of “axons” from v; to v,

and

N, = cluster of “synaptic knobs” at
the terminal ends of e;, axons.

x{t) is a process fluctuating at v;, and z;(r) is a process fluctuating at N .
Each of these processes has a mathematical, psychological, and neural name.
The psychological and neural names are used to facilitate comparison and con-
trast of network dynamics with the behavior of living organisms. Thus

x4{t) = ith vertex function, or
= ith “stimulus trace”, or
= ith ““average membrane potential”,

and
z;{t) = (j, k)th edge (or interaction) function, or
= “agsociational strength” from v; to vy, or
= “‘average activity of excitatory transmitter
producing process” in N j.

By (I4) of Section 2, either p,; = 0 or g,,; = 0 for every m and i. If p,,; > 0, then
e is called an excitatory edge. If q,,; > 0, then e, is called an inhibitory edge.
Suppose that e,,; is excitatory, then at every time t — t,,; the “average membrane
potential”’ x,,(t — t,,) at v,, creates an excitatory signal (or “spiking frequency”’)
of size

[xm(r - Tmi) - rmi:|+pmi . . (5)

in e,;. (5) is positive only if x,(t — t,,;) exceeds the signal threshold T,;. The
signal (5) flows, or is transmitted, at a finite velocity along e,;, and reaches the
arrowhead N,,; at time t. It thereupon interacts with the ‘“‘transmitter process™
z.it), and a signal of size

[xm(t ._ Tlm') - rml’]+pmizml’(t) (6)
is released from N,;, reaches v; by crossing the ‘“synaptic cleft”” between N,;
and v;, and thereupon perturbs the “average postsynaptic potential” x;. All
excitatory signals from the various ‘“‘presynaptic cells” v,, with p,,; > 0 combine

additively at v;, yielding the second term on the right hand side of (1).
If q,,; > 0, then an inhibitory signal of size

[xm(I = Tmi) —~ rmi]+Qrm' (7)
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leaves v, at time t — 1,,; along the inhibitory edge e,;, reaches v; at time ¢, and
thereby perturbs x;. All inhibitory signals combine additively at v; to yield the
third term on the right hand side of (1). The minus sign before this term shows
that increasing (7) decreases x;, other things equal. Hence the term “inhibitory”.

x{t) also decays exponentially at a rate o;, and is perturbed by the input I,()
which is under the control of an experimentalist, other external environmental
factors, or other control cells. See Figure 1.

Figure 1.

In both (2) and (3), z.i(t) sits in N,,; and cross-correlates the signal (5) received
by N, at time ¢ with the contiguous value x,(t) of v;; hence the condition (I12) of
Section 2. Speaking heuristically, the transmitter production rate is controlled
by cross-correlation of the pre- and post-synaptic potentials. This is the main
learning mechanism of the networks. In (2), z,.(t) also delays exponentially at the
rate u,,;, whereas in (3), z,,(t) decays at the rate (4), which is proportional to the
spiking frequency created by v,, in e,,; 1, time units earlier. Processes in N,; which
are coupled to spiking frequency are interpreted in [3], by analogy with physio-
logical data concerning the action potential, as being triggered by an increase in
Na* and a decrease in K* concentration within N,;. Given this interpretation,
our mathematical results show that coupling the decay of transmitter production
activity to the action potential via Na* and K™* produces essentially perfect
memory.

Each choice of the matrices P = |pu| and Q = ||q;l defines a different
“anatomy”’ for a network .# by picking out the directed paths v; 5 v, or v; > vy
over which excitatory or inhibitory signals, respectively, can be transmitted, and
the relative strengths of these signals. Variations in (P, Q) can dramatically
change the qualitative properties of learning, memory, and recall in .# ([1]-[13]).

4. Space-time pattern learning by an alternative system
The following type of network was studied in [12].

x,(t) = _aixl{t) + il ﬁm[xm(r - Trm') - rmi]+ym.l{r)
- Z=:1 [xm(r - ‘rmi) - rmi]+4mi + I,{t), (8)

n -1
yie) = ijzjk(f)[ 2=:1 ijzjm(t)] » )
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and
z‘ﬂ(t) = —ujkzjk(t) + th[x_,{t — tjk) — ij]+xt([]. (10)

The excitatory signal reaching v; from v,, in (8) depends on y,,, rather than z,,;,
and y,; is a ratio of cross-correlators z,,, as in (9). This property gives the network
a perfect memory even during recall trials for suitable choices of anatomy. It
creates two deficiencies, however, which are easily understood in the special case
of a T-outstar #" defined below.

X1(8) = —oayx.(0) + I,(8), (11)
%) = —axdt) + Blx(t — 1) — T 1" yidd) + Ii(p), (12)
n -1
70 = 20] 200 (13)
and .
214t) = —uzy{t) + v[x,(t — 1) — I1]" x{0), (14)

i=2...,n Since only the excitatory edges ey;, i # 1, transmit signals in (11}
(14), v, is called the source vertex, v;a sink vertex,i # l,and B, = {v;:i = 2,..., n}
is called the border. B, is thought of as a grid embedded in a region £ upon which
inputs play, as in Figure 2. .#® learns by “respondant conditioning”. For

-1

Figure 2.

example, let an intense input pulse (“conditioned stimulus’’) perturb v, and create
excitatory signals in the edges e,;. Suppose that these signals reach the arrowheads
N,; while a spatial pattern (“‘unconditioned stimulus”)

I(t) = 6,d(e) (15)

reaches B,, where 0, is the relative intensity.of the pattern reaching v;, and I(t)
is the total pattern intensity at time ¢. If such a pairing of input pulses to v, and
B, occurs sufficiently often with sufficient intensity, then a later input pulse to v,
alone will recreate the spatial pattern with weights '

6 ={6;:i =2,...,n} on B,.

There exists only one set of weights 6 that .#* cannot learn. This is the trivial
pattern 6 = 0. To see this, let v, receive an input pulse that creates a positive
signal B[x,(t — 7) — I';]" in each ey;. Since, by (13), Y.i_, y:1dt) = 1, the total
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signal received by B, from v, equals

3, (e = 9 = TiTyado) = Plxa(e = 9 = Tl*.

This signal does not approach zero even if the cross-correlators z;(t) approach
zero in response to the zero pattern at B,.

Ability to learn the zero pattern is important when a space-time pattern de-
livered to B, is being learned. Suppose that a space-time pattern is given with total
intensity I(t) = Y _,1,(t) and relative intensities 64t) = I;(¢)/I(t). If I(t) is never
zero, then a sequence of I'-outstars can approximately learn the weights 6(1)
by the mechanism depicted in Figure 3. Figure 3 describes a I'-outstar avalanche

Figure 3,

[12]. The control vertex v, creates a signal in the long horizontal edge which
perturbs a different I'-outstar every ¢ time units. Each successive I'-outstar
MY, k=1,2,..., K, briefly samples the weights 64t) playing -on B, during
successive time intervals. In this way, the I'-outstar avalanche learns a space-
time pattern 6(t) as a sequence

T + k&), k=12...

of spatial patterns, and the kth I"-outstar .#§" learns the kth spatial approximation
T + k&) to the space-time pattern. That is, the “moving picture” 6(t) is learned
as a sequence of “still pictures”. If, however, certain spatial approximations
O(T + k&) with k = my,m,,...,m,, have zero intensity, the I'-outstars .#{",
k=my,...,m, will spray B, with substantial amounts of background noise
on recall trials. The source of this difficulty is the normalization condition
Y i, y1{t) = 1 which keeps the total signal from v, to B, large if x,(t — 1) is
large even when each z,; is small. (*) and (**) eliminate this difficulty.

The second difficulty with (11}+14) is a conceptual one. yy; sits in Ny; and con-
trols the flow from v, to v;. By (13), y,; depends on all z,,, and z,,, sits in N,
How does the z,,, value instantaneously jump from Ny, to Ny; so that y;; can
be computed? [3] discusses the physical meaning of this jumping process in
terms of “‘competition between response alternatives™ and replaces the jumping
process by “postsynaptic lateral inhibition coupled to the presynaptic transmitter
production process”’. This process creates .4'1’s perfect memory.
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The system (*), which lacks y,;, forgets what it has learned at the exponential
rate uj. (**), by contrast, remembers perfectly in the absence of practice and
recall trials. Thus either of two mechanisms can improve the network’s memory :

a) coupling of increases in transmitter production to postsynaptic lateral
inhibition, or

b) coupling of decreases in transmitter production to presynaptic radial
excitation.

Note the dualism in (a) and (b) between the terms
increases
postsynaptic
lateral
inhibition

and the terms

decreases
presynaptic
radial
excitation.

Both (*) and (**) will be seen to have essentially perfect memory of relative associa-
tional strengths y;; in a [-outstar anatomy.

5. I'-Outstars of type (*) and (**)
A T-outstar of type (*) is given by

X1(t) = —ayx4(2) + 1;(2), (16)

X{t) = —ax(t) + Blxs(t — 1) — T 1" z1(2) + I0), (17
and

21t) = —uzy(t) + vlxy(t — ) — T(]7x(0), (18)
i =2,...,n A I'outstar of type (**) satisfies (16), (17), and

24{t) = [—uz () + vx ()] [x,( — 7) — 117, (19)

i = 2,...,n. Henceforth (16)18) will be denoted by .#, and (16), (17), and (19)
will be denoted by .#“*. In both systems, the source vertex function x; merely
provides a sufficiently strong signal [x,(t — t) — I';]™ to drive the associational
strengths z,,(t) and the stimulus traces x(f) towards the values imposed on the
border B, during learning trials. The following systems will be seen to include
both .#®" and .#"" as special cases. Let

X{t) = —a(t)x(t) + b(t)z1t) + I(1) (20)
and
21() = —c(t)z,(0) + d(t)x(¢), (1)

i=2,...,n, where the coefficients a, b, ¢, and d are bounded, nonnegative, and
continuous functions that satisfy the following conditions. There exist positive
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constants K,, K,, and T;, and continuous functions U(f) and ¥(t), with V(z)
nonnegative and bounded, such that for all ¢ > 0:

a) Jwa(v) dv = c0; (22)
1]
b) J.m c(v)dv = o0; (23)
[1]
c) N(t) < U(@®N() + V() (24)
where

N(®) = /D) + )3

with xV =$""_ x;and 2 =37z,

f epr U dé] i < K,, 25)
T v
forall T>0and t> T, and

ij(v) dv = —o0; (26)
0

d) L d(v) exp[- _|‘ (&) dﬁ} dv > K, 27)

fortZ Tl'

All of the conditions (a){(d) can be imposed instead for all ¢ larger than a pre-
scribed, but otherwise arbitrary, positive constant. Any system satisfying (20)+27)
will be denoted generically by .#. It will henceforth be assumed that coefficients
a, b, c, and d are fixed once and for all throughout the discussion of Theorem 1
below.

We will first consider the probability distributions X = {X;:i =2,...,n}
and y = {yy;:i = 2,...,n} defined by

] b |
}’11=21i’: 2 an:[ ’
m=2

which measure relative stimulus traces and associational strengths through time.
We will show that these probabilities can learn the weights @; of any nontrivial
spatial pattern 6, and that for suitable parameter and input choices the outstars
M and 4" are of type .#. We therefore seek an analog of Theorem 2 in [13],
which discusses learning of a nontrivial spatial pattern 6 by a sequence G'*),
G?,...,G™, ... of -outstars. Each G differs from G®~" only by being sub-
jected to a longer presentation of 6§ on B, (i.e., “more practice’”) and possibly a
different input to its source vertex after the I(¢) input to B, ceases (i.e., a different
“recall trial”’). Correspondingly, the following theorem will discuss a sequence

and
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.,{?“’,.‘.,J?_fm, ... of systems constructed from .#, with identical initial data,
such that .#™ satisfies the equations

M) = —a™OxM(1) + BN + 1) (20)
and

#) = — MO + d™M)xN(), (21

i=2...,n where a®™, b™ ¢™ and d™ are constrained as follows. There exists
a nonnegative, strictly increasing function V(N) of N > 1 such that

1) for all N>1 and te[0, V(N)] (the “practice interval”), a®™(f) = a(t),
b)) = b(r), ™) = c(t), and dN(8) = d(1);

2) for all N > 1 and t > V(N), a™(t), b™(¢), c™(¢t), and d™(t) satisfy condition
(c) above.

Motivated by condition (1), we call M an N-truncation of A, and the sequence
MDY, ..., M, ... of N-truncations is said to be derived from .#. To emphasize
that .# is untruncated, one can write .#(® instead of .#. The following theorem
will discuss the probabilities

n =l
X}N) = xsm Z xg\'l:I
| m=2

and

[~ n -1
N
y[ﬁ:] = Z(u) Z Zﬁz]
2

|_m=

of each .#™. Superscripts “(N)” will be omitted where the untruncated system .#
is being discussed. Since Theorem 2 [13] shows how to derive results for truncated
outstars from untruncated outstars, all estimates below will be aimed at the
untruncated case. To avoid trivialities, the sums x(t) =) _, x,(f) and
Z0()) = 3.7 -, Zim(t) will be taken positive at ¢t = 0.

THEOREM 1. Let MV,..., #™,... be any sequence of N-truncations of any
M having arbitrary initial data. Let the inputs I™ of A™ have the form

IN(t) = 6d(Ox(t — UN)), (28)
i=2,...,n where

a) 0 = {0;:i = 2,...,n} is a fixed arbitrary probability distribution,
b) there exist positive constants T, and K such that for every T > 0,

t+T t+T
J. I(v) exp[— J‘ a(é) d§i| dv > K; (29)

T v
Jort > Ty,
¢) U(N)is a nonnegative and strictly increasing function of N > 1;

and

1 t<0
d) x(r)={
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Then
A) for every N > 1, the limits
O = lim X{"Xt)
=+ an

and
PP = lim y{(2)
=00
exist;

B) for every N > 1 and t > U(N), the functions X{™(t) and y{Y(t) are monotonic
in opposite senses with |y{{(t) — X{"(t)| nonincreasing, and are constant on
intervals for which

b™(t) = d(M(z) = 0;

Q) lim m™ = lim M{™ = 6,,

where

m = min(XOUN), WXUN)
and

MM = max(XM(UNN)), yP(UN))).

By (AHC),
fim lim X{%) = lim lim #{2(0) = 6. (30)
—+o0 t a0 oo i
D) The functions y{2,fV =y — XM, and g™ = X' — 6, change sign at
most once and not at all if f™(0)gf¥(0) > 0. Moreover, fM(0)g™(0) > 0
implies f™(H)g™(¢) > 0 for all t > 0.

The proof will follow that of Theorem 2 [13] as closely as possible. The first
step is the following change of variables.
LeMMA 1. X, and yy; satisfy the equations

X; = Ai(y1; — X)) + By(6; — X)) 31)
and
Yii = C(X; — y1i)s (32)
where
bz
Ay = w (33)
I
B, = —, 34
1 x(i ( )
and
d (1)
c, == @39)
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Proof: Summing (20) and (21) over i # 1 yields
M = —ax™M 4 b2 4+ I (36)
and

M = —ez + dxV, (37

1] x{1)
Xi:w xi_xiw >

which by (20) and (36) yields (31). Since yy; = z,/2,

1 51
Yu = 7@ 2y - Zuz—“—) ’

which by (21) and (37) yields (32).

Equations (31) and (32) have the same form as equations (54) and (55) in [13]
for the probabilities X; and y,; of (11)14). Only the coefficients A,, B,, and C,
differ. To prove Theorem 1, it therefore suffices to check that the estimates on
these coefficients used to prove Theorem 2 [13] hold in the present situation.

Clearly A4,, B,, and C, are nonnegative and continuous. Hence the following
lemma concerning memory and recall trials holds.

LEMMA. 2. Let I(t) = 0 for t > to. Then for t > t,,

Since X; = x;/x),

a) X{t) and y,(t) are constant in intervals for which b(t) = d(t) = 0,

b) X(t) and y,{(t) are monotonic in opposite senses with |y;{t) — X(t)| monotone
non-increasing, and thus

¢) the limits Q; = lim,..,, X{t) and P, = lim,_ o, y,{(t) exist and lie in [mi(to),
M{t,)], where

m{to) = min(X{(to), y1ito))

and

Mi(to) = max(Xi(to), yidlo))
Proof: By (31),
X; = Ay(yu — X))
which along with (32) and nonnegativity of 4, and C, readily yields the proof.
See Theorem 2 [13]. _ '

The next lemma studies the oscillations of X; and y,, relative to 0;.

LEMMA 3. The functions yy;, fi = y1i — Xi, and g; = X; — 0, change sign at
most once for t = ty, and not at all if f{to)gdto) = 0. Moreover, f(to)glto) > 0
implies f(t)g{t) > O for t > ty. In particular P,; exists.

Proof: By (31) and (32)

fi= —Dyfi + By (38)

and

gi=—Bgi+ A fi, (39)
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where D, = A, + C,. Since A, and B, are nonnegative, the lemma follows
from Lemma 3 of [13].
By Lemma 3, two cases arise: either

(A) ft)g{t) < 0 for all large ¢, or
(B) fit)g{t) = 0 for all large t.

Suppose (A) holds. Then by (38) and (39), f; and g; are monotonic for all large ¢,
hence have limits as ¢ — oo, and thus the limits Q; and P,; exist. It remains in
Case (A) to show that the existence of Q; and P,; implies Q; = P,;, which in turn
implies Q; = 6;. In Case (B), we must in addition show that Q, exists. The following
estimates on x*) and z'*) are needed to establish these facts.

LEMMA 4. Let (29) hold. Then x'V) and 2" are bounded from above and below
by positive constants.

Proof: The existence of positive lower bounds is proved as follows. By (36),

M > —agx™M 4 |,

and thus

x() > r 1(v) exp[— J’t a(&) d§:| dv,
0 v
which by (29) yields _
x() 2 K3, t 2 T, (40)

(40) along with the positivity of x1X¢) for te[0, T,] proves the existence of a
positive lower bound K, for x*)(t) for t > 0.
By (37),

M > —czM 4+ K d,

and thus

() > K, J‘ , d(v) exp[_ J.‘ &) dé:l dv, (41)
0 v

which by (27) implies
20(t) > K,K, >0, fort> T,.

Hence z(")(t) has a positive lower bound for ¢t > 0.
Upper bounds follow from (24)+26). By (24), for t > 0,

N(f) < N(0) GXP[.F U(v) dv:| - J‘I V(v) exp[Jq U(é) dé] dv.
0 0 v
By (25),

N(t) < N(0) exp|:-"r Uv) dv] + |Vl oK,
0

and by (26), exp[f, U(v) dv] is bounded. The boundedness of N(¢) implies that of
x(¢) and z(¥).

Remark : Any condition that guarantees upper bounds for x*) and z*’ can be
used to replace (24)26).
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Lemma 4 can be used to show that Q; = P,; in Case (A).

LEMMA 5. Suppose Q; and P,; exist. Then Q; = Py;.

Proof: Suppose not, and let Q; > P;; hold for definiteness. Then there exists
a T; such that

X{t) — y1dt) 2 HQ:i — Py) (42)

for ¢t > Ty. By Lemma 4, there exists a positive constant Ks such that x‘“(z)/
2(t) > K for t > 0. Thus by (32) and (42)

. Ks(Qi — Py
) 2 @1 g @
for t > T;. Integrating (43) yields
KsQ;— Py) ("
12y — ydTy) = SB[ gy
Ts
for every t > T;. Thus
'[ d(v)dv < co. (44)
0

A contradiction will now be drawn by showing that (27) implies
'f dv)do = oo (45)
0

by using a variant of Gronwall’s Lemma ([15], p. 31). For any positive K¢ > 0
and t > T, (27) implies

K,E(t) < K¢ + J-r d(v)E(v) dv (46)
0

Et) = exp[J: c(v) dui|.

t
Kzilog(Kﬁ + J. d(v)E(v) dv
dt 0

where

Thus for t > T;,

< d(v),

and

K¢ + J: d(v)E(v) dv < K, exp|:K2‘ o f d(v) dvj|

Ty

where

T
K, =K¢ + d(v)E(v) dv.
0
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By (46), we therefore find
t t
Kz(log K,K7! + f c(v) dv) < | dv)dv
] T

which, by (23), implies (45). A similar contradiction holds if Q; < Py;, thereby
proving Q; = Py;.

The identities Q; = Py; = 0; for Case A are now established as follows.

LEMMA 6. Suppose Case A holds. Then Q; = 6;.

Proof: For definiteness, let f; be positive for large ¢. It can in fact be assumed
without loss of generality that f; is positive for all ¢. Then by (31),

X; > B,(6; — X))

with X; monotone increasing to the limit Q;. Supposing that §; > Q;, we will
deduce a contradiction.
Denoting the finite upper bound of x'*)(f) by Ky ?, then

X = Kq(0; — Q)
or
X(t) > X{(0) + Kg(6; — Q) J: I(v) dv,
for all £t > 0. Since 1 > X (1), 8; > Q, implies
J‘: I(v) dv < o0.

By (29), however, for any Ko > 0 and t > T,

KF() < Ko + f I0)F() do,
0

F(t) = exp |:J.l a(v) dr.].

Arguing as in Lemma 5, using (22), yields the contradiction

where

.[: I(v) dv = oo,

and thus Q; = 6,.

It remains only to treat Case (B). It suffices to consider the subcase of Case (B)
for which y,; > X; > 60; and y,; is monotone decreasing, since the case
0; < X; < y;; can be similarly treated. We can assume without loss of generality
that y,(0) > X(0) > 6; to simplify our formulas.

LEMMA 7. Suppose y,{0) > X(0) > 6;. Then there exists a p€(0, 1) such that
fort > T,,

X{t) = 0; <(1 = p(ndt = T5) — 6).
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Proof: Let X{? = X; — 6;and y{ = y,; — 6;. Then (31) becomes
X = —(Ay + B)XP + Ay,
which can be integrated from any T > 0 to ¢t > T, yielding
X = UL, T) + V¢, T),
where
U, T) = XA(T)Z7'(t, T),

Vi, T) = L AOWOWZ 1, v) do,

Zt, T) = exp|;‘.l (4, + Bl)dv:|.
T

By (33), (34), and (36)

bz + I
D

Ay + By =

)'c(l}

and thus

xM(OF (D)
x(T)F(TY

F(t) = exp I:J: a(v) dv] .

By (51) and the monotone decrease of y{?, (49) implies
Ve, T) < y(T)R(, T),

Z(t, T) =

where as above

where
1 4
R(t, T) = W L A ()xV(v)F(v) dv.

By (33) and (36),
A1 (0)x D (W)F(v) = b(v)z(v) F(v)

d
= 5, XPOFE)] = I0)F©),
and thus
- 1 ‘
R(I, T) =]1-2Z i{t, T] - W)F{t} J.T I(U)F(U) dv.

Since also by (48),
Ud, T) < y(T)Z7'(, T),

149

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)



180 Stephen Grossberg

(47), (52), (53), and (54) imply that

X0 < yO(TPL, T), (55)
where

Pt T) =1 I(v)F(v) dv.

1 t
— xD()F(r) .L

Since x)(1) < K3'?,

Pt T) <1 — KgF(f) f I(v)F(v) dv.
< T

By (29), forallt > T + T,
PE,T) <1 p (56)

with g = K,Kg. (55) with (56) complete the proof. Lemma 7 implies the following
lemma.

Lemma 8. If y{0) > X(0) > 6;, then Py; = Q; = 6.

Proof: P,; exists in this case, since y;(t) is monotone decreasing. Suppose
P,; > 6;. Then by Lemma 7, for ¢ sufficiently large,

y1t) — Xdt) = y1d) — yidt — T) + Y0t — T) — XP()
> it — T) + (ult) — yidt — To))

> Py — 6) — %(Pli - 6)

=%(Pu - 6) >0,

which by the argument of Lemma 5 yields a contradiction. Thus P,; = 6;,.and
hence Q; exists and equals 6.

We have hereby shown that 6, = Q; = Py; in all cases. The application of
these results to spatial patterns truncated at finite times U(N) now follows just
as in Theorem 2 [12]. The proof of Theorem 1 is therefore complete.

Theorem 1 shows that, given any nontrivial spatial pattern 6, and ¢ sufficiently
large, y dt) = 6; or z,(t) = 6,zV(¢). Since z\*)(t) is bounded from above, z,{t) = 0
if 6; = 0. Since z()(¢) is bounded from below by a positive constant (which in-
creases in applications as input intensity and duration increase), the absolute
size of z,t) is bounded away from zero if §; > 0, and will therefore be able to
reproduce the pattern weights 6; on the grid, given a bounded signal from the
source vertex v, with an intensity that is greater than sufficiently small amounts
of noise in the grid. :

Theorem 1 does not consider the case of learning the trivial spatial pattern,
characterized by I(t) = V(t) = 0 in the applications below.

PROPOSITION 1. Suppose I(t) = 0 for t = Tin M. Then given arbitrary initial
data for t < T, x{t) and z,(t) converge to zero as t - 00, i = 2,...,n, in such a
way that X; and y; do not oscillate, and converge exponentially to zero if

jt U(U)dv < K‘IU =3 Kllt (57)

0

with K, positive.
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Proof: By (24),

0 < N(r) < N(T) exp[J.r U(v) dv:|. (58)
& i

By (25), lim,. ,, N(t) = 0, and by nonnegativity of each x; and z,;, each x,--and Zy;
has zero limit as ¢ — oo. The statement concerning oscillations is proved in
Lemma 2. The statement concerning exponential decay is obvious from (57) and
(58).

6. Conditions which imply boundedness

The following corollaries describe special conditions that imply (24)«26), and
which will be used to study .#® and .#“".
COROLLARY 1. (24) holds if U(t) and V(t) are defined by

U=4¥-a—-c+ Jla+ )P —[4ac— b+ d’l} (59)
and V=1

Proof: By Lemma 4.2, p. 56, of [16], (24) holds with V = I if also U(t) is the
greatest eigenvalue of the Hermitian part

—a)) Y60 + d©)
Hipy = 60
PO=N60 + doy -0 =0

of

_[—a® b
AY) = i —co) (61)

which is given by (59).
COROLLARY 2. Theorem 1 holds if (24)~(26) are replaced by the conditions

atc>c¢ (62)
and
dac —(b+d? =1 (63)

for some positive € and 1.
Proof: By (62) and (63), U(t) in (59) is negative and bounded away from zero,
say by U,y < 0. (26) follows immediately. (25) follows by the simple estimates

1 i r t -1 i _ v
L exp[J; U(é) dﬁ] dv = epr.u U(v) dv]LIU(u}l 7 exp[ J‘O U() dé] dv
< |U0|—1(1 — exp[— J“|U(v)| dv:|)
T

< |Uo| ™1

COROLLARY 3. Theorem 1 holds if (24)26) are replaced by the following con-
ditions.
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i) dac = (b + d)* = 0; (64)
ii) b+d—0iffdac — (b + d)* - 0; (65)
iii) a — ¢ = ¢, for some ¢ > 0, (66)

iv) there exist positive functions u(é) and T(6) of & = ||a — ¢| » such that
14
f e~ ¥ =) dv > (o), fort > T(6). 67)
S

Proof: The existence of positive constants K;, and K3 such that
K220(t) < xV(t) < K329() (68)
will be proved, and then used to refine Lemma 4.2, p. 56, of [16]. Let f = x™V)/z(1),

“Then
1., 20
f= Em[xm _ x(”ﬁ]’
from which (36) and (37) imply
f=(C=a)f—df*+ b+ I/z".

The proof in Lemma 4 that z(*’ has a positive lower bound 2~' does not use
(24)126). Thus

—@—c+d)f+b<f<—-@—-of +b+ AL (69)
By (66) and (69),
f<-¢+g
where g = b + Al is bounded. Thus for all ¢t > 0,
S <Kz =f0) + &7 ligl o (70)

By (70),
a—ct+df<éd=la—cle+ Kislldlo
which by (69) implies |
f=—-6+b,
and thus

f() > fe‘"‘"”’b(v) dv.

V]
Since § > |la — ¢, (67) implies that
J(®) = u) >0, t=>T()
S(2) is also positive for t € [0, T()]. Letting
K, = min{u(), f(¢): t € [0, T(5)]}
completes the proof of (68).
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We now refine Lemma 4.2 of [16] using (68). By definition, N(t) = ||y{(¢)|| =

(1)
WO A0, where 1) = (3;1,8 '
Since [y(8)] > 0
o Hd/dy (| 0)?
NO=""hor
and since x'*? and z'V are real-valued,
v () WD)
NO = o

where

o) = AN + B(),
with A(t) given by (61), and B(f) = (ﬁr)] . Thus

N(t) < [A()w(t) - wBIN(2) + I(2), (71)

where w(t) = p(t)/|»(#)|l, and in particular |w(t)| = 1. Lemma 4.2 is proved by
noting that U(t) as defined by (59) equals sup{A(t)w - w: |w| = 1}. A better upper
bound for (71) can be found in the present case, since by (68), there exists an

1 €(0, 1) such that w{t) = #, i = 1, 2, where w(t) = ("‘:18 . Thus by (71),
2
N(1) < U@N(@) + I,
with
U(t) = sup{A(t)w-w: |[w]| = 1, w; = n,i = 1,2}. (72)

We now show that this U(t) is negétive and bounded away from zero. The proof
can then be completed as in Corollary 2.
Transform A(f)w - w to principal axes ([17], p. 23). Then there exists a vector

v
v = ( ‘) with |[v] = 1, such that
vz

_A(t)w-w = U, (twv? + U,(t)3, (73)

where

Uy =${—a—c+Ja+ 9 - [dac — b + a7},
U,=%-a—-c—- \/(a + ¢)* — f4ac - (b + 4%},

and the matrix R = |[|r;;|| such that

v = Rw (74)

is orthogonal; i.e., Zf=1 rry = 0;j = 3. _ Turj- Clearly U, < Uy, and by (64),
U, < 0. Since ||v] = 1, it suffices to show that v{ and U, are bounded away
from zero and that v3 is bounded away from zero if U, approaches zero.
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We first show that v > n* > 0. By (74),
v? = ri wi + rfawi + 2ry rowiw,. (75)
By (73) and (74),
b+d=2Uririz + Usraira)
By the orthogonality of R,
Cb4d=2U, — Upryyriz
= 2r11r12\/(a —c* + (b + a>
Sinceb + d = 0, ry,r;, = 0. Thus (75) implies

v = 0% + i) = 1%

To show that U, is bounded away from zero, note that (66) implies a + ¢ > ¢,
and thus U, < —=&

By (66), U, can approach zero iff 4ac — (b + d)? approaches zero, and thus
by (65) only if b + d approaches zero. By (73), (74), and the orthogonality of R,

b+d=2U; — Upryira,

= +2r21r22\/m fg+—d)2

By (66),
|b + d| = 2e|ry1ras = 0. (76)
Thus if U; approaches zero r,,r,, approaches zero. By (74),
v3 = 13wl + riawd + 2ry rawyws.
Since 1 >w; >#n,i=1,2,
v} > n* — Arairaal.

Thus v3 > 4% if |ryy722] < /4, or by (76), if |b + d| < e4*/2. The proof is there-
fore complete.

7. 4 and #“" are of type 4.

Using Corollaries 1-3, it can be shown that .# and #“" satisfy (20)~27) if
the parameters and inputs are suitably chosen. The following choice of inputs
suffices for many applications.

DEFINITION. An input pulse J(¢) is a nonnegative and continuous function that
is positive on a finite open interval.

Let

10 = T Jult — 00) )

and

10 = 3 1t~ ) 78
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where
(1) The sequences {t,(n):n > 1} and {t(n):n > 1} satisfy
g <tiin+ 1) —ti(n) < e
and
0y <tlh + 1)— tn) <9,
for some choice of positive constants g, &,, d,, and 8, ; and
2
M, () < J,,(t) < Ly(0)
and :
M) < ) < L),

1556

(79)

(80)

(81)

(82)

where M, L;, M, and L are input pulses. The left hand endpoints of the intervals
of positivity of these input pulses are chosen equal to zero, for convenience.
Thus, I,(t) and I(t) dominate and are dominated by a sum of infinitely many

iterations of an input pulse with bounded spacing. Letting
0, t<0
N(@) =< .
'f M (v) e" " dy, t>0
0

we find the following corollaries.
COROLLARY 4. Theorem 1 holds for # if 1, and I satisfy (77)-(82),

INlo > Ty,
and
4o
ry + W —& 2 [X1]o

for some &, > (.

(83)

(84)

Proof: In #Y, a(t) =« b(t) = Blx,(t — 1) — 1]*, «(t) =u, and d@t) =
v[xy(t — 1) — I';]". Thus (22) and (23) hold trivially. To verify (24)—(26), we will

use Corollary 2. Clearlya + c 2 eife = a + u.
Since

dac — (b + d)* = dou — (B + v)*{[x,(t — 7) = [',]*}?
> dau — (B + 0)*(Ix1]o — T1)%
(84) implies
dac —(b+d)? =n
where n = &,(f + v)*.
Hence (62) and (63), and thus (24)-26), hold. (27) requires that

i
J‘ e_""'”)[xl(v — T] — F1]+ dv = K14
0

(85)
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for some K, > 0. By (16) and (81)
x1(0) = x4(0) e ™" + kZ N(v — t4(k)),
=1

where by (83),
[N(- =t (kMo > Ty

for every k = 1, 2,.... Thus (85) merely requires that an exponentially weighted
sum of a positive input pulse that is iterated in time with bounded spacing has a
positive lower bound. This is obvious. (See, for example, Corollary 3 of [7].)
(29) also holds for the same reason.

COROLLARY 5. Theorem 1 holds for 4" if I, and I satisfy (17)~82),

INlw > Ty, 83)
and
(o dou
I'y + min ;,m) — & 2 [x1]lw; (86)

for some g, > 0.
Proof: In .#, a(t) = a, b(t) = Blx,(t — 1) — T1]7, ct) = ulx,(t — 7) — (1",
and d(¢) = v[x,(t — 7) — T'y]*. Thus (22) holds trivially. (23) holds because

f” o) dv > j“’ [ S N~ 7 — t,(k) - rl] "
0 k=1

0

where by (83), each function N (- — 7 — f,(k)) — I'; becomes positive in an open
interval, k = 1,2,....
(24)+26) are proved using Corollary 3. Since

dac — (b + d)* = {dou — (B + 0)*[xy(t — ) — [ ]* }[xy(t — 7) — 1],
where (86) implies
dau — (B +0)*[xs(t — ©) = T]" = &5 + 0)*[x4(t — 7) — T',]7,
4ac — (b + d)? is nonnegative. Since
b+d=(@+v)x(t—1)—T{]",
dac — (b + d)* —» 0iff b + d — 0. By (86),

a—c=u(E—[x1(r-'—t)-—l"l]+ > g,
u
where ¢ = ue,. It remains only to prove (67), or that

13
J. e % x (v — 1) — Iy ]" do = p(d) > 0
0
for t > T(d). Thisis true for every & > 0and some u(d) > Osince [x,(v — 7) — I',]*
dominates the iteration in time with bounded spacing of a positive input pulse.
This completes the proof of (24)26). (27) follows just as in Corollary 4.

The term [x,(t — 7) — I';]" in (17), (18), and (19) can, in principle, be replaced
by any function g(f) = f(x(t — t)) which is continuous, nonnegative, bounded
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and monotone increasing in x,(t — 7). It is also convenient, for purposes of
space-time pattern learning, that g(t) = 0 whenever x,(t — ) < I' for some
I" > 0. The following alternatives are, for example, possible.

log(1 + [x,(t — 7) — I'1]%),
[log(l + x4(t — 7)) — I'y]%,
(1 +xs(t—)° =415, w>1, Ty>1
it — 1) — T 051+ [xy(t — 0 = T4]%)°, o> 1.

These alternatives require trivial modifications of (84) and (86) to ensure boun-
dedness of x") and z(".

Any conditions such as (84) and (86) can be guaranteed for an arbitrarily large
input I; to v; by modifying (16) slightly. For example, let

Xy(t) = —a;x,(t) + (Qp — x.()(t), (87)

with 0 < x,(0) < Q,. Then 0 < x,;(f) < Q, for t > 0 given any nonnegative
input I;, bounded or not. The response of x,(f) to I,(t) if x(t) = 0 is approxi-
mately linear, and x,(t) “saturates” at Q, if very large and prolonged input
pulses arrive. Replacing || x, || , by Q; in (84) and (86) then fulfills the boundedness
conditions for any input I,.

8. Forgetting, extinction, spontaneous recovery, and post-tetanic potentiation

The above corollaries show that .#© and £ are of type ./ in cases of practical
interest. The main constraints on parameters, such as (84) and (86), aim at keeping
xM and z" bounded, as physical intuition—as well as the method of proof in
Theorem 1—require. The constraint on the decay rate u of associational strengths
_zy; is of particular interest. It is important that small values of u be permissible
to allow a slow decay of memory. In both (84) and (86), this can be achieved,
for any choice of input I,(z) satisfying (77), (79), and (81) by choosing the decay
rate o of the grid vertex functions x; sufficiently large. A large choice of a is physi-
cally desirable to allow old perturbations of the grid to decay rapidly and thereby
prepare the grid to receive new perturbations without bias. Speaking heuristically,
Corollaries 4 and 5 show that .#® and .#“" can learn any spatial pattern with
an arbitrarily small rate of memory decay if the response of the grid to perturba-
tions is sufficiently rapid.

The exponential decay rate u for associational strengths zy(t) in #©
is reminiscent of Ebbinghaus forgetting curves ([18], p. 555). The decay rate of
z:{t) in #" is zero whenever x,(t — 1) < I'y, and is positive if x,(t — 1) > T,
and no spatial pattern reaches the grid at time t. In other words, .#“" has a
perfect memory that is “extinguished” on “unrewarded’’ recall trials ([19], p. 727).
In both #® and .#©, a form of “reminiscence” ([18], p. 509) or spontaneous
improvement of memory occurs, since if practice ceases at a time ¢ = T for which
J{T)g{T) = 0, then y,{¢) for t > T will continue to approach 6;.

The interplay between decay of z,(f) and approximate constancy of yl,{t)
during memory or recall intervals helps to understand the phenomenon of
‘“spontaneous recovery’’ of memory after an interval of forgetting or extinction
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([18], p. 733). Since the pattern weights 0; are recorded in the y,/(t), which are
not forgotten, any mechanism that bolsters the absolute size of z"(¢) will create
spontaneous recovery of memory. A sufficiently large and prolonged ‘“presynaptic”
signal x,(t — t) — I'; can, for example, accomplish this. This increase in z; (%)
is analogous to the phenomenon of “post-tetanic potentiation™ ([20], p. 98).
Alternatively, any mechanism that recreates the spatial pattern 6, on the grid
when x,(t — t) > I'y will tend to increase z,(t) as well as to drive y;(t) closer
to 6;.

9. T-Outstar avalanches and stimulus sampling

A space-time pattern 6(t) with continuous weights 64t) = I{z) [E’;',z IAD]" ! can
be approximated by a sequence {6(k&):k = 1,2,...} of spatial patterns, where
if £ is taken sufficiently small, then the approximation becomes arbitrarily good.
Since a I'-outstar .4, can learn any one spatial pattern 0(k&), we will arrange a
sequence My, My, ..., M,...of D-outstars in such a way that the source vertex
vx,1 of the kth I"'-outstar M, is excited briefly ¢ time units after v, _, , is excited [13].
M), will learn from the grid only at times ¢ such that x, ,(t — 7) > I'y, and in this
sense .4, “samples” the grid at prescribed times during which 6(t) = 6(ké).
Such a sequence of I'-outstars is called a I'-outstar avalanche. We remark in
passing that this “sampling” operation is a concrete analog within our networks
of the abstract sampling operation of Stimulus Sampling Theory [21]. A net-
work analog of stimulus sampling probabilities are the normalized associational
strengths y, ;{t) from vy ; to the ith grid vertex.

The following examples illustrate several ways of sequentially activating I'-
outstars, or related network components, to sample an arbitrary continuous
function 6(t), bounded by 0 and 1, as a sequence {6(k&):k = 1,2,...} of spatial
patterns. In particular, a single “nerve’’ with sufficiently many “axon collaterals”
activated by “avalanche conduction” will in principle be able to learn an essen-
tially arbitrarily complicated space-time pattern. The only unavoidable limitation
of learning accuracy will be some smoothing of 6(¢) in memory and recall, which
is, in fact, often desirable for producing smoothly modulated motor performance.
A single “nerve” will, however, perform its space-time pattern in a wholly rote
or ritualistic way. For example, it is known that perturbing a single nerve in
insects can activate significant portions of their feeding, withdrawal, or running
reflexes ([22], p. 8). If less ritualistic performance is desired, the learning mechanism
should be sensitive to feedback created by its own prior outputs, much as notes
previously played by a pianist help to determine the future notes to be played.
To accomplish this, one can encode only a portion of a given space-time pattern
in any one “nerve”. Then these “nerves” must be arranged so that clusters of
them are excited in the proper temporal sequence to reproduce the entire space-
time pattern, where the next cluster to be excited is partially determined by feedback
from the last few clusters to have been excited. In this situation, one must also
rapidly switch off all clusters after they have been played out, and all clusters
that will compete with ongoing performance of the pattern. Otherwise back-
ground noise will accumulate on the grids and interfere with accurate learning
and performance. It has been suggested that, in vivo, the cerebellum is just such
a switching-off, or inhibitory, mechanism of excitatory pattern controls [12].
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Experiments have, in fact, recently shown that the output from the cerebellum
is inhibitory [23].

Figure 4 schematically describes some I'-outstar avalanches.

Type A describes a single “nerve’” with a long edge, or “correlational axon”,
and with clusters of “axon collaterals” spaced regularly along the axon. Different
collaterals in each cluster terminate at a different grid vertex. This avalanche is
said to be homogeneous if each grid vertex receives one collateral from every
cluster. The case in which different clusters sample nonidentical sets of grid vertices
can also be readily studied.

Each axon collateral cluster in Type B perturbs a different grid. The grids are
copies of one another, in the sense that the same input I; is delivered, via axon
collaterals, to the ith vertex v, ; of the kth grid G,. Spreading out the input in this
way eliminates the background noise found in Type A due to activation of prior
clusters while a given cluster is sampling the grid.

Type C is like Type A with one addition. Instead of sending its own axon
collaterals to the grid, the correlational axon in Type C perturbs a I'-outstar,
which in turn perturbs the grid. Type D differs from Type B in a similar fashion.

Type E can accomplish more than Types A-D can, and without as much
background noise. Type E is constructed from rows of correlational axons.
Each correlational axon sends out an axon collateral at regularly spaced intervals
to a single vertex. The pattern to be learned by Type E depends on which vertices
in the sets V; = {v;:i = 1} receive inputs from common sources; i.e., which
vertices distributed perpendicular to the direction of flow in correlational axons
receive inputs with the same phase relations. Speaking rigorously, let S{m, R),
m = 1,2,..., M{R), be the maximal subsets of indices such that

(i) ifj=0:

Todt) = 68" Z Tow(t)

keSg(m,R)
for all i e So(m, R), all t € R, and suitable nonnegative constants " ;
i) ifj = 1:
Liin=oP Y Iy
keS j(m,R)

forallie S{m,R)and all t e R, where the 69" are nonnegative constants such that
Dkes,mr) O = 1. The pattern that will be learned for t € R depends on the structure

of the sets .
Lm = Q S{m(j), R)
j=

parametrized by all functions m such that 1 <m(j) < M{R), j=1,2,...,n,
and as usual, on whether or not an input regularly arrives at the grid vertex vy
as the contiguous associational strength z;(¢) is activated by a signal from its
axon collateral in the ith avalanche. '

For example, let all S{m, R) = {1,2,...n} and R = [0, oc0). Also suppose
that V., only receives an input pulse ¢ time units after V; receives an input pulse,
i > 1, where ¢ is the time needed for a signal to flow between successive axon
collaterals. Then all avalanche control vertices receive the same input, each V;
receives a spatial pattern, and the time lag between arrival of successive spatial
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patterns equals the time lag between activation of successive axon collaterals.
Hence letting y;(t) = z;(6)[D -, z;(6)] "', Theorem 1 guarantees that lim,.,
;it) = 6;; under rather weak conditions.

Another example is depicted in Figure 5, and illustrates the general situation.
In Figure 5, V, receives inputs from two different sources, V| from two sources,

Vo Vi Va V3 Va
’o [ . [ . J . [ .
1 1 | i |
] I ] 1 I
' < I - | 1 b I
! | | | ]
' ’ . s *
< | 1 I Ll [
:————5—1————!-—1-—-——— «:——--—-—— -—-:
; : l . |
L ] - L ] - L ]
1 I ] i '
I 1 [ 1 A
) S WSy SRR SN SRR . S ——
H . . . .
s a jd - o = -
B e e o ey Kk B e o
| | i 1 I
L ] L ] L ] L] -
]: i L i €
i | ]\ ] i L '
I | | 1 I
. L] . . .

Figure 5.

V, from three sources, etc. Forming the intersections %,, the vertices v; with i in
some fixed &,,, can be divided by successive horizontal dotted lines as in the
figure. Between any two dotted lines, vertices in each column receive a common
input from their avalanches and a common spatial pattern from the grid. Thus
the ratios y§(t) = z;(t)[) ses,. zu®] ", for all nonempty &, will learn the
weights 0% = 6;[) ., 0;] ", in cases for which the spatial pattern arrives at
the grid vertices vy, k € #,,, while the axon collaterals leading to these vertices
sample the grid.

Type F is essentially a collection of avalanches of Type B with horizontal
correlational axes rotated 90° to a vertical position, and with axon collaterals
branching out in several directions. The input sources I excite the grid elements
and the input sources I excite the avalanche control vertices.

For completeness, we list the equations of types A-F below, using I'-outstars
of type 4" for specificity.

Type A
Xo(t) = —aoxo(t) + Io(?)
() = —ooxit) + fo 3, [xolt = T — v — k&) — To] " ziod®) + 1(0)

Z,0it) = —uziodt) + volxo(t — T — © — k&) — To]" x(2),
with outputs
0{8) = d[x(t) — I'l",
i=L2...,
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Type B
Xo(t) = —otoxo(t) + Io(t),

o lt) = —ax (8) + Polxo(t — T — © = k&) — To] "z 0t) + 1(0),
Z,0it) = —uzp o) + volxo(t — T — v — k&) — [o]™ xk (1),
with outputs

K
oft) = 6 ,;1 [xe ) — TT7,

Type C
Xolt) = —woxo(t) + o)

Xi1(8) = —ayx1(2) + Polxo(t = T — k&) — Tp]™,
K
x{t) = —oax{t) + B kzl (Xk1(t — ©) — T1]% zi14(0) + Ii(0),

Zi1i(t) = —uzi 1 (t) + vlx1(t — 1) — T'1]" x(1),
with outputs
0i(t) = dx{t) — I'l",
N A n.
Type D
Xo(t) = —oaoXo(t) + Io(t),

Xi,1(0) = — o1 xp,1(0) + Bolxo(t — T — k&) — Io]™,

X lt) = —axi () + Blxua(t — 1) — Tu1"zi1dt) + 1),

Zg1dt) = —uzi 1 () + olxa(t — ) — Ty] x (0),

with outputs

K
Oft) =6 kZ' [y, dt) — TT%,
=1
i=23...,n
Type E
Xx,o(t) = —aoxy olt) + Iio(0),
%) = —axp () + Polxao(t = T — 1 — i&) — Lol ™ zi0dt) + I dt),
Zk0dt) = —uzioit) + volxio(t — T — 1 — i&) — To] " x, (t)
k=12,...,N;i=12,..., M, where the output
O, d{1) = d[xxdt) — I'T*

can be summed over the indices i in some nonempty %,.
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Type F
Xxolt) = —aoxy,0(t) + Iiolt),
X{t) = —ax{t) + Bo kz;,t [Xiolt — T — © — &) — Dol ziodt) + I2),

Z;0it) = —uz; o) + Vo[xj0(t — T — 7 — &) — Tol* x(1),

k=12...,N; jeK;; i=12,...,M. More general parameter choices are
possible, just so long as the parameters chosen give rise to I'-outstars when
relativized to the sets %,. See [13], Section 10, for some more general parameter
choices.

10. Some systems bounded under arbitrarily large inputs

There exist systems which learn spatial patterns in the manner of Theorem 1—
and hence space-time patterns when sequentially arranged in avalanches—whose
variables remain bounded under arbitrarily large inputs. Consider the following
system, for example

%1() = (@ — x1(D1(8) — ayx4(1), 87
X(t) = Q — x{)H{ (8) — x{()H; (1), (88)
Hi (t) = o(I{t) + Blxa(t — 1) — 1] z,1(0)), (89)
HO=a+0{F 1) +Mat-9-T1" ¥ a0} €0

and
20(0) = —uz () + v[x(t — ) = T x(0), (18)

i =2,...,n We perturb this system with any inputs of the form

L0 = $ Jult - ) 77)
and
10 = 6 3, Tt — i), o1)

i=2,...,n which satisfy (79){82), and define the probabilities X (t) and y,(f) in
the usual way. Then the following corollary of Theorem 1 holds.

COROLLARY 6. Given (87)H91) and (18) with nonnegative and continuous initial
data satisfying x,(0) < Q,, x(0) < Q, and

IN|lo > T7y. (83)

Then Theorem 1 holds for the probabilities X; and y1;.

Proof: x{0) < Qimplies x(f) < Qforallt > 0i = 2,..., n. Sincealso x,(0) < Q,
implies x,(f) < Q; for t > 0, z,(t) is bounded. Both x*X(¢) and z")(t) are therefore
bounded. The equations for x*X(¢) and z1)(¢) are

() = —ax™ + 8Q — xV) {I@) + Blx((t — 1) - T, 17200} (92)
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and
#() = —uzV() + 8[x,4(t — 7) — T 1" x(0).
By (92),
() = —(a + SI(t)xe) + QI(¢)
> —(o + O I|| o)x"Me) + 0QU(2),
and thus '

x() = 6Q J: I(v) exp[ — (@ + 8[| 1]l )(t — v)] dv,

which by (80), (82), and (91) proves the existence of a positive lower bound for x'*.
The existence of a positive lower bound for z!!) readily follows.

It remains to check that X; and y,; satisfy equations of the form (31) and (32).
These equations hold with '

Blxi(t — 7) — Iy 1" 2M()

) Al(r) = x(“(f) »
oQll
B0 = Sy
and
N T M

20()

Given the above estimates on x'" and z'") the proof can now be completed in the
usual way.
System (87)-(91) and (18) can therefore learn a spatial pattern given an arbitrarily
small memory decay rate u that is chosen independently from the value of .
Replacing (18) by

z1t) = [—uz( () + vx(O)[x1(t — 1) — T1]7, (19)

we again find a system whose memory is perfect in the absence of recall trials, but
in which u and o can be chosen independently.

COROLLARY 7. Let (87)«91) and (19) be given with any nonnegative and con-
tinuous initial data which satisfy x,(0) < Q, and x{0) < Q,i =2,...,n, and any
inputs of the form (77) and (91) whick satisfy (79}«82) and (83). Then Theorem 1
holds for the probabilities X, and y,;. ) 7

Proof : Since x{t) < Qforallt > 0, z,{t) < 0if z;{t) > vQu~"'. Once again x'"
and z* are bounded, and the remainder of the proof proceeds in the usual way.

11. Arousal and inhibition

[13] suggests that when more than one avalanche sends signals to a given grid
vertex, then inhibitory signals are needed in some form to turn off some of the
avalanches before massive background noise accumulates on the grid and inter-
feres with learning and performance. Also “diffuse arousal” inputs, created by the
“unconditioned stimulus”, are needed in conjunction with the “‘conditioned
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stimulus’’ at the avalanche control vertices to guarantee that a given I'-outstar in
an avalanche practices the same spatial approximant to a space-time pattern on
successive practice trials. Analogs of “novel” stimuli, “habituation”, “‘internal
drive states”, the process of “paying attention”, “feedback inhibition”, etc., also
arise as aids for coordinating the activation and inhibition through time of
avalanche clusters to produce smoothly modulated output behavior that fulfills
the network’s “behavioral goals™. [13] should be consulted for a further discus-

sion of these phenomena.

12. Cerebellar and cerebral analogies?

The horizontally displaced rows of avalanches of Type E are reminiscent of the
lattice-like anatomy of the mammalian cerebellum ([13], and [23]). The correla-
tional axons would then be analogs of parallel fibers, the inputs to the parallel
fibers would be analogs of mossy fibers, and the inputs to the grid vertices would
be analogs of climbing fibers. In the case S{m, R) = {1,2,...,n} with R = [0, c0)
above, we would then say that the somatotopic representations of mossy fibers
and parallel fibers are mutually orthogonal. Experimental data has been collected
which reports such a finding [24]. See [13] for a more thorough investigation of
this analogy. -

The vertically displaced rows of avalanches of Type F are reminiscent of the
columnar anatomy of the mammalian cerebral cortex ([25], p. 437). The vertical
correlation axons would presumably be analogs of pyramidal cells running through
the cortical layers, and the existence of at least two distinct types I and I of input
sources, segregated in different cortical layers, would be suggested, one carrying
unconditioned stimuli and the other conditioned stimuli. Actually a third input
source, carrying diffuse arousal inputs, would also be suggested, and would
presumably be distributed by the horizontal cells of Cajal ([25], p. 435) to the
apical dendrites of the pyramidal cells. A forthcoming paper will discuss this
cerebral analogy in greater detail.
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