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Abstract

This article reviews results on a learning theory that can be derived from simple psychological
postulates and given a suggestive neurophysiological, anatomical, and biochemical interpreta-
tion. The neural networks described can discriminate, learn, simultaneously remember, and
perform individually upon demand any number of space-time patterns of essentially arbitrary
complexity. A general theorem expressing this fact is stated in the language of nonlinear
functional—-differential systems. Applications of the theory to various empirical problems are
mentioned; e.g., serial learning, stimulus sampling, lateral inhibition, energy—entropy depen-
dence, reaction time, transmitter production and release, spatiotemporal masking, operant and
respondant conditioning, influences of under- or over-arousal on learning.

1. Introduction

This paper reviews some results concerning various networks, or machines, that
can discriminate, learn, simultaneously remember, and perform individually upon
demand any number of space-time patterns (e.g., motor sequences, reflexes,
internal perceptual representations) of essentially arbitrary complexity. These
networks are part of a nonstationary prediction, or learning, theory which is
called the theory of embedding fields. Speaking mathematically, the
machines of embedding field type are described by cross-correlated flows on
signed directed networks. These flows obey systems of nonlinear functional-
differential equations, and the mathematician’s task is to globally analyze the
limiting and oscillatory behavior of these systems.
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The embedding field equations can be plausibly derived from simple psycho-
logical facts that are familiar to us all from daily life. For example, one makes
rigorous the statement that predicting the letter B, given the letter A, can be
accomplished after practicing the list AB sufficiently often. Once these
mathematical equations are available, one can proceed in at least four directions.

First, one can perturb the systems with inputs that represent complicated
experiences, and check in a variety of cases that the mathematical behavior is
qualitatively similar to psychological data that has been gathered in analogous
experiments. To the extent that the psychological interpretation of these
mathematical systems is valid, one can then say that the more complicated
psychological behavior is merely the net effect, under complicated initial and
boundary conditions, of such simple ideas as: practicing AB allows one to predict
B given A. Some examples of this reduction will be mentioned below. Through
exercises of this kind, the theory tries to show that some seemingly complex and
unrelated psychological phenomena are manifestations of a few simple and
familiar behavioral facts.

Second, one observes that the mathematical equations are already in a form
that suggests a plausible neurophysiological, anatomical, and in some cases
biochemical interpretation. After labelling the mathematical variables in this
interdisciplinary fashion, one invokes the psychologically derived laws governing
these variables; and checks to see whether the resulting neurophysiological,
anatomical, and biochemical statements conform to known data. In some cases,
one finds qualitative or even quantitative agreement. In other cases, one is led to
new predictions, for example concerning possible mechanisms regulating changes
in transmitter production rates.

Third, one investigates the purely mathematical problem of generalizing to the
farthest possible extent the psychologically derived equations. One does this for
two reasons. First, one thereby introduces a large class of nonlinear functional-
differential systems which can be globally analyzed, and are therefore interesting
in their own right. Second, by noting closely related alternative mathematical
possibilities, one sees more clearly the formal advantages of the psychologically
derived equations, including their stability under perturbations.

Fourth, one recognizes that a psychologically derived theory cannot at the
outset incorporate many of the microscopic physiological and biochemical
interactions that are important in brain studies. It is altogether proper that this be
s0, since our psychological experience does not include an intuitive awareness of
the complex biochemical interactions that subserve it. In other words, our
psychological experience averages over individual neural and biochemical events.
One can, however, refine in successive steps the spatial and temporal scales of the
equations, and thereby pick up in a natural way a number of these finer
interactions, such as possible transients in the production and release of
transmitter substances.
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The remainder of this paper will pursue the following strategy. Some results
will be stated in heuristic terminology to illustrate the interdisciplinary breadth of
the theory. These results should be interpreted in the following way. They
colorfully describe mathematical properties of our networks using empirical
terminology. There exists no necessary connection between the mathematical
variables and their empirical interpretation. This limitation holds for every
physical theory, however, and the success of the formalism in so many areas
suggests that some degree of truth ascribes to the particular empirical interpreta-
tion herein.

After stating these results and related references, a terse derivation of the
theory’s equations will be given to illustrate the contact between psychological
and mathematical variables. Then aspects of the physiological and anatomical
interpretation will be noted. Thereafter, a simple way to learn space-time patterns
will be presented, and then the paper will conclude by stating a general theorem
that illustrates the contribution of the theory to functional-differential systems.

2. Review of Some Results

A) Serial Learning. Consider the problem of learning a long list of similar
behavioral events, say the alphabet ABC ... XYZ, by presenting this list several
times consecutively to a leaming subject and requiring the subject to guess the
proper successor of each letter. A large experimental literature exists concerning
such tasks, and our networks qualitatively exhibit some of the remarkable
properties of the data found in these experiments. For example, bowing occurs:
the middle of the list is harder to learn than the beginning or end. Backward
learning occurs: practicing AB also partially teaches the list BA. On the other
hand, if ABC occurs, then the association B - C ultimately inhibits the
association B » A: a global “arrow in time” is induced. Anchoring occurs: the
order in which items are learned proceeds both in the forward and backward
direction around the “anchor” stimulus A; for example AB, then YZ, then
BC, then XY, and so on, might be learned. Chunking occurs: simple
behavioral units are gradually aggregated into composite units as practice
continues. After sufficient practice, the composite units can be performed
without difficulty much as the simple units were at the outset. One can also study
such phenomena as all-or-none vs. gradualist learning, the distribution of
anticipatory vs. perseverative errors as a function of list position, accumulation of
inhibition near the list’s middle, and the dependence of various other learning
properties on intratrial interval, intertrial interval, list length, list position, and
reaction time.

Underlying these observations is the basic dynamical fact that the geometry of
a list, as it is learned in tine, is a space-time geometry which is not isomorphic
with the geometry of the list as a row of symbols on paper. For example, let the
alphabet ABC ... XYZ be presented to a learning subject with a time spacing of
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w between successive letters. What is the earliest time at which the subject knows
what Z is the end of the list? It is not until w time units have passed after Z is
presented that the subject can know that Z is the end of the list. Until that time,
Z is more properly in the (dynamical) middle of the list. In other words, a “time
reversal’ relative to the time scale of the psychological experimentalist then
changes the internal dynamics of the machine. Z can be in the (dynamical) middle
or end, or even the beginning of the list at different times; Reference [1]
discusses the applications of the theory to these phenomena.

Two papers ([2), [31), jointly with James Pepe of M.LT., study the
dependence of serial phenomena on the size of spiking thresholds and arousal
level. It has been proved, that very low thresholds (overarousal) yield easier
learning at the end of the list than at the beginning (recency vs. primacy), whereas
higher thresholds yield the more normal easier learning at the beginning of the list
than at the end (primacy vs. recency). Lowering the threshold has the effect of
ultimately flooding the network with background noise due to past inputs. Since
the network dynamics loses all but the most recent inputs in background noise,
the network is unable to effectively use any but the most recent inputs to
determine its next behaviors. In other words, the ability of the network to ‘“‘pay
attention” decreases as the signal thresholds decrease. Analogous pathological
effects seem to occur in certain manics and schizophrenics.

B) Stimulus Sampling. The statistical learning theory known as stimulus
sampling theory describes changes in the transition probabilities of an organism’s
responses in time as a result of reinforcing events, using the formalism of finite
Markov chains {4]. The theory has succeeded in describing various experimental
data, but is weakened by the lack of a concrete physical interpretation for the
abstract stimulus sampling operation. The present theory behaves much like the
stimulus sampling formalism in simple cases, and provides an entirely concrete
psychological, physiological, anatomical, and even biochemical interpretation of
stimulus sampling probabilities and the sampling operation. This interpretation
involves, for example, laws for the potentiation of transmitter production at
specific synaptic knobs, and for the spatiotemporal distribution of positive
spiking frequencies in the axons of these synaptic knobs. See [5] for a discussion
of these facts.

C) Towards Resolution of Psychological Controversies. The history of
psychology can profitably be viewed as a history of controversies, many of them
never resolved; for example, all-or-none learning theorists vs. gradualist learning
theorists, peripheralists (or contiguity theorists) vs. gestaltists, etc. Why do so
many controversies exist, and why do they persist? Each school of thought is
supported by some convincing data, and it is my impression that various
controversies arose because experimentalists tacitly interpreted their data con-
cerning stimuli and responses using mechanisms which are mathematically too
linear and too local. This was quite natural, since almost all macroscopic physical
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theorizing up to the time this data appeared used linearity and locality in a basic
way.
The present theory is not always linear and local on the state space of stimuli

and responses, but it often has a more linear and local behavior when the data of a
particular psychological school is considered. Aspects of data from each of these

schools is not unfamiliar in our networks due to the inherent nonlinearity and
nonlocality of our systems in the large. From this vantage point, each pair of
schools in a controversy picked out two polar extremes in a particular continuum
of experimental possibilities within the phase space of initial data and
experimental inputs. No two controversies picked out the same continuum, and
no one controversy could be resolved using a linear and local dynamical
mechanism. It is a credit to the remarkable intuition and integrity of these
experimentalists that these controversies and their dynamical lessons have
endured. See [1] and [6] for further discussion.

D) Lateral Inhibition (Hartline-Ratliff). Inhibitory interactions are abundant
in the nervous system. An empirical equation that describes steady-state
inhibitory interactions in the Limulus retina is the Hartline-Ratliff equation [7].
Given the special anatomy found in this retina, our equations reduce formally to
the Hartline-Ratliff equation and provide theoretical formulas for the empirical
coefficients of that equation; see [8].

New aspects of inhibitory dynamics have also been found; for example,
inhibition contributes to the phenomenon of “‘enhancement of associational
strengths” or “spontaneous improvement of memory”, closely related to
“contour enhancement™ due to lateral inhibition [8]. This phenomenon shares
many properties with the Ward-Hovland phenomenon, or “reminiscence”, and is
an example of self-improving properties in the networks. Other uses for inhibitory
interactions are stated in the next paragraphs.

E) Pattern Discrimination. It is well-known that individual receptor cells in
various sensory modalities can respond to many different input patterns; for
example, a single retinal cell can be activated by many different visual scenes. On
the other hand, the nervous system as a whole can discriminate one pattern from
another. How can “local nonspecificity” and “global specificity” of cellular
response be reconciled? Related to this question is the data of Hubel and Wiesel
and their colleagues ([9]-[11]), which has shown the existence of nerve cells that
respond most vigorously to specified patterns at the sensory periphery of perhaps
great complexity.

We have introduced cellular configurations that can discriminate any number of
space-time patterns of essentially arbitrary complexity in a way that permits these
discriminations to create appropriate responses based on past experience, and
which include cells with specific output preferences in a natural way [12]. This
construction uses very few cells, except for the cells in the receptor mosaic, and
can be used to discriminate any patterns, whatever be their sensory interpretation.
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The construction yields some formal insights concerning the following phe-
nomena: uses of nonrecurrent inhibitory interneurons for temporal or spatial
discrimination tasks which recurrent inhibitory interneurons cannot carry out;
mechanisms of temporal generalization whereby the same cells control
performance of a given act at variable speeds; tendency of cells furthest from the
sensory periphery to have the most discriminative response modes, and the least
ability to follow sensory intensities (e.g., on-off and bimodal responses are
common); uses of nonrecurrent on-off cellular fields whose signals arrive in waves
forming “interference patterns,”” with the net effect of rapidly choosing at most
one behavioral mode from any number of competitive modes, or of nonspecifi-
cally arousing or suppressing cells which can sample and learn ongoing internal
patterns of cellular activity (cf., operation of the reticular formation [13]); uses of
specific vs. nonspecific inhibitory interneurons, axon hillock inhibition, presyn-
aptic inhibition, equal smoothing of excitatory and inhibitory signals, possible pro-
duction of both excitatory and inhibitory transmitter in a single synaptic knob,
blockade of postsynaptic potential response, logarithmic transduction of inputs to
spiking frequencies, and saturation of cell body response in nonrecurrent on-off
fields for purposes of pattern discrimination.

Since the same cellular configuration can in principle be used to discriminate
patterns from any sensory modality, the following basic question arises. Why are
the anatomies of pathways in different sensory modalities so different? The
answer seems to lie in the following direction: the sensory anatomies of higher
animals structurally contain provisions for guaranteeing the particular perceptual
constancies of that modality, as well as provisions for making “operant™ as well
as passive discriminations.

It is important to note that knowing the anatomy of a given cellular
configuration does not determine its capabilities as an input filter. One must also
know such physiological parameters as the relative strengths and onset times of
excitatory and inhibitory signals at a given cell, the relative speeds of exponential
averaging at different cells, the spatial distribution of spiking threshold values at
all cells, etc.

F) One Cell One Pattern? The following question is of considerable interest.
What is the minimal number of cells needed to encode the memory of a
space-time pattern, such as a piano sonata? The answer in our networks is “one™!
Unfortunately, such a network exhibits a profound liability: performmance of the
pattern is always ritualistic, or by rote, and once performance of the pattern
begins, it is hard to stop.

The cells which can learn in this way have profusely branching bushes of axon
collaterals. Insects also have some large cells which control performance of large
sectors of important reflexes; e.g., feeding or withdrawal [14]. They also pay the
price of ritualistic performance.

It thus appears that a more subtle performance, tuned to feedback from prior
events, requires the encoding of any given pattern in many different cells, no one
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capable of irrevocably eliciting the entire pattern. Such an encoding creates
another problem; namely, since many different cells will then fire to common
motor control cells in rapid succession, background noise can easily build up at
these control cells and thereby impair performance. To keep the background
noise down, inhibitory interactions are needed which can rapidly be excited by
the excitatory control cells, and thereby inhibit the excitatory signals shortly
after they occur. Consider for example the special, but important, case in which
the sensory and motor modalities have a linear ordering, at least in first
approximation; for example, the fingers, successive joints on arms and legs, the
spine, the tonotopic representation of the auditory system, etc. In the linearly
ordered case a plausible construction of the inhibitory mechanism yields a cellular
configuration that is strongly reminiscent of cerebellar neocortex, and the
inhibitory cells are then interpreted as cerebellar Purkinje cells [15].

G) Energy-Entropy Dependence. The Second Law of Thermodynamics
teaches us that the Universe is heading inexorably towards a maximal entropic
doom. On the other hand, daily experience with living creatures assures us that
powerful forces yielding ever greater order exist in Nature; for example,
Evolution. In our networks, a similar preference for order arises in a special case.

We note first the desirability of having organisms whose complexity of response
is appropriate to the complexity of stimulus demand; for example, a sharp pin
prick more often elicits rapid withdrawal than poetry recitation. Speaking
roughly, simple demands elicit less cellular processing than complicated demands.
One important parameter that influences whether or not many cells will be
activated at any time is the amount of energy that is supplied to the sensory
periphery which reaches internal cells. In special cases of interest, we have proved
that peripheral inputs with minimal entropy maximize the total energy transfer to
these internal cells, and inputs with maximal entropy minimize the total energy
transfer [16]. In other words, the most complicated demands elicit the most
complicated internal response, energetically speaking. This preference for order
can be traced to the learning, or “evolutionary,” mechanism in our open systems.

H) Energy-Learning Dependence: Reaction Time, It is well-known that
increasing the energy of an input can speed up the performance of a suitable
output, and that an input of fixed energy can yield faster performance if the
input-output connection is a familiar one. Model systems are now available in
which the dependence of reaction time on peripheral energy and on the degree of
prior learning can be studied in a unified fashion [8].

I) Transmitter Production and Cellular Control Qur theory suggests that in cells
capable of learning, presynaptic transmitter production in jointly controlled by pre-
synaptic spiking frequency and postsynaptic potential [17]. This control is pre-
sumed to be effected by the interaction of the pairs (Nat, K+) and (Catt, Mgt+) of
antagonistic ions whose binding properties to intracellular sites and enzymes set
various cellular production levels. It is suggested that nerve cells are capable of
learning as “chemical dipoles™. A qualitative behavioral rationale can be set forth
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for such phenomena as the following: joint inward fluxes of Na* and Ca™* due to
membrane excitation; distribution of mitochondria and synaptic vesicles near the
synaptic cleft; sensitivity of RNA activation to Mgt* concentration; stronger
binding of Ca'™ relative to KT within the synaptic knobs; mobilization and depletion
of transmitter by presynaptic spiking; post-tetanic potentiation; excitatory trans-
ients in transmitter release after a rest period; feedback inhibition of transmitter
onto a late stage of transmitter production; transport down the axon of some
lighter molecules produced in the cell body; proportionality of cell body membrane
area to nuclear volume; intracellular tubules as faithful transport mechanisms be-
tween nerve cell body and nucleus, and from nucleus along axon to synaptic
knobs; and division of cell shape into a cell body, axon, and synaptic knobs as a
structural manifestation of the underlying chemical dipole.

J) Phase Transitions in Memory: Mpyelinization. For suitable choices of
anatomy and physiology, there exists a division of the network’s rate parameters
into two regimes, B; and R, .In one anatomy, for example, if the parameters fall
into R;, then all memories are eventually forgotten; if the parameters fall into
R, , then all memories persist with a precision that depends on the numerical
value of a composite of these parameters. In a system with slightly different
anatomy, again all memories persist if the parameters fall into R,; if they fall into
R,, however, then only spatial patterns are remembered, and temporal
discriminations are eventually forgotten. The dividing boundary between the
regimes R; and R, is sharp, and in this sense the memory of the system goes
through a kind of phase transition when it passes from one regime to the next.

It turns out that by speeding up the signal velocity in the network axons (or
edges) one can, given fixed (but appropriate) choices of other network
parameters, carry the system from regime R, to regime R, . That is, speeding up
signals can “rigidify’’ the memory. In vivo, there exists a way to speed up signals
in axons; namely, encase the axon in a myelin sheath. To the extent that these
examples have relevance to the physiological case, one can therefore contemplate
the possibility that myelinization helps to rigidify the memory of past
experiences. One must be very careful in making this proposal, however, since
there exist yet another anatomies—with the very same local dynamics—for which
no phase transitions in memory occur when the signal velocity is varied. See [18]
and [19] for further details. .

K) “Wave-Particle” Dualism: Hidden Inhibitory Interactions. One can simul-
taneously intrepret the theory statistically and deterministically. Deterministi-
cally, one studies the evolution through time of specific inputs and outputs.
Statistically, one studies the evolution of transition probabilities that are formally
associated with the theory in a natural way, and which one can think of as waves
of excitation passing from one state to many other states through time.

This simultaneous interpretation is possible because the wave of excitation is
later acted upon by inhibitory interactions that pick out a perfectly definite
output in response to each input, if any output whatever occurs. The inhibitory



36 STEPHEN GROSSBERG

interactions themselves execute a transformation on the system that is remi-
niscent of the informational functional, and that has the effect of fulfilling the
“principle of sufficient reason”: outputs occur only if they represent distin-
guishable paths in the machine. See [8] and [20] for further discussion.

L) Spatiotemporal Masking and Consolidation. Suppose that two spatially
disjoint points of light are shined on a retina in succession. If the latter light point
is much more intense than the former, then it can totally mask the former light if
the spatial separation of the two light sources is not too great. In another
direction, we know that memories which have lain dormant for many years can
suddenly be triggered with remarkable clarity by suitable fragments of past
experiences. These and related aspects of masking can be studied in simplified
idealizations of the theory [8]. _

One factor that contributes to masking is the consolidation, after sufficiently
many practice trials, of the memory trace into a relatively compact, rapidly
evokable, cluster of cells. Tendencies to reach consolidation can also be studied in
the theory [15]. '

It is hoped that the above heuristic remarks help to illustrate the interdisci-
plinary flavor of embedding field theory. To be sure, the theory will probably not
have the last word on any of the above phenomena. Yet definite progress towards
their understanding seems to have been achieved using the theory, and it is
especially gratifying that all of these phenomena can at least partially be studied
from a unified formal point of view. Below, to keep our discussion brief, we
tersely list some other mathematical facts about learning in embedding fields.

M) Paviovian Conditioning. Learning occurs by respondant, or Pavlovian,
conditioning in our simplest networks, and this conditioning paradigm can be
shown to be mathematically the same as practicing AB to predict B given A.

N) Practice Makes Perfect. The more often the behavior is practiced, the
better will be the prediction. All-or-none learning effects are also possible,
however.

0) Memory. A network exists whose memory is perfect even during recall
trials; no overt or covert practice is needed to ensure perfect memory [20].
Another network exists whose memory decays exponentially at a rate that can be
chosen arbitrarily small; cf., the Ebbinghaus forgetting curve [5]. In yet another
network, memory is perfect until recall trials occur. During recall, memory can
“extinguish” unless it is “rewarded” [5]. In the last two cases, “spontaneous
recovery” of memory is possible, and can occur by a process analogous to
“post-tetanic potentiation”. Also, spontaneous improvement of memory, or
“reminiscence”, occurs after a moderate amount of practice in all three cases [ 5,
20].

Each case above uses a slightly different physiological mechanism. Qur goal is
to classify the behavioral possibilities and some of their physiological correlates. A
large variety of other memory phenomena can also be achieved. For example,
“pattern completion” is readily found.
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P) Errors. All errors can be corrected in suitable networks. Also, if any
number of patterns have already been learned by the networks, another pattern
can also be learned without interfering with the memory of the other patterns, up
to some finite upper bound [18, 15, 20].

Q) Operant Conditioning. The theory suggests that operant and respondant
conditioning are dynamically very similar; they differ primarily in terms of the
total distribution of excitation and inhibition that occurs in different condition-
ing paradigms, rather than in terms of the local learning equations at individual
cells. One can give precise formal examples of such phenomena as “internal drive
states”, “nonspecific arousal stimuli”, “‘paying attention”, “goals”, ‘“‘novelty”,
“habituation”, and “incompatible” vs. “facilitatory” behavioral modes in the
networks. These involve nothing more than specific anatomical constructions
using the same dynamical laws. Some of these constructions can, however, be

rather subtle ([ 18], [22]).

3. Derivation of Some Networks

The derivation to be given will occur in story-book form to emphasize its
intuitive basis. We begin with an experimentalist & who interacts with a machine
i to teach M to predict B given A by practicing AB. Suppose for simplicity that
the experimentalist can present the letters of the alphabet A,B,C,...,X,Y,2
to J one at a time at prescribed instants of time. How can we represent the
presentation of the letter A at time ¢, in Ji?

A) Each Letter Seems Simple. In daily speech and listening, a letter is never
decomposed into two parts. To maintain close contact with experience, we
assume that a single state v A in J correspondsto A.

This assumption does not mean that one cell corresponds to A. As the theory is
refined, one sees that a complicated trajectory of excitation and inhibition over
many cells corresponds to hearing the letter A. How to reach this conclusion
would not be clear, however, without first making the simplifying assumption.
This assumption has a deep dynamical significance which focuses upon the fact
that certain behaviors which seem very complex and spread out in space and time
before learning, seem to be simple and quite instantaneously performed after
learning [6]. The assumption means essentially that I already knows the letters
separately at the time learning begins, even though J does not know any lists of
letters.

In a similar fashion, let vy correspond to B, v, to C, etc. We designate each
v; by a point, or vertex, as in Figure 1.

B) Presentation Times. The times at which letters are presented to JI must be
represented within J. For example, presenting A and then B with a time spacing
of twenty-four hours should yield far different behavior than presentation with a
time spacing of two seconds. Thus various functions of time should be associated
with each vertex. To maintain contact with the ‘“‘one-ness” of each letter, and to
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maximize the simplicity of our derivation, we let one function x,(t) be
associated with v, , one function xg(t) be associated with vy, etc., as in Figure
Zs

£ 72
A — & VA
B > & Vg
c > o V.
Z > & Vz
FIG. 1.
xg(t) Xclt)
xalt) B xz (1)
[ ]

[ ]
® VB VC VZ
Va

FIG. 2.

C) Continuous Vertex Functions. The functions x, (), ..., x, () will be
chosen continuous, and in fact differentiable. Several reasons for this exist, the
most general being that all macroscopic theories have been cast in a continuous
setting. Moreover, our daily experience has a manifestly continuous aspect and it
is this that we seek to understand. More specifically, consider the following
question. What follows ABC ? It is tempting to say D, but really the problem is
ill-defined if the letters are presented one at a time with time spacing w between
successive letters. Ifindeed w is small, say w > 2 seconds, then D might well be the
correct response, but if w ~ 24 hours then to the sound C(= “see’) one can also
reply “see what?”’ That is, as w varies from small to large values, the influence of
A and B on the prediction following C gradually wears off. Since x, (¢) and xg (1)
describe the relevance at time ¢ of A and B in J{, we conclude that these functions
also vary gradually in time. .

D) Perturbations Instead of Presentations. Suppose A is never presented to
Tl . Corresponding to the occurrence of “nothing” is the natural mathematical
predisposition to set x,(t) = 0 at all times ¢. (The equilibrium point 0 can, it
turns out, be rescaled ultimately relative to the spiking thresholds.)
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Suppose A is presented to Ji for the first time at time ¢ =¢,. Then x,(?
must be perturbed from O for certain ¢ > t,, or else N would have no way of
knowing that A occurred. We associate the occurrence of “something” with a -
positive deflection in the graph of x,.(The theory could also, in principle, be
carried out with negative deflections.)

Shortly after A is presented, A no longer is heard by M. That is, x, (1)
gradually returns to the value signifying no recent presentation of A, namely 0.

(A 3 ta) —>  xu(t)

Do

0 | t
ta

4

FIG. 3.

See Figure 3. In a similar fashion, if A is presented at times
g S 2 £ I8 oo 2 {NA’, then we find the graph of Figure 4. The same

constructlon holds. true for all letters. In this way, we have translated the
presentation of any letters A,B,C, ... in the alphabet at prescribed times into a
definite sequence of perturbations of the vertex functions
xA(t), xB(ti. xc(t), e

(AR i=1,2,00 Na ) —Px, (1)

U7 4@ (31 4@
Wota
FIG. 4.

E) Linearity. For notational convenience, we replace the alphabet

A,B,C, ... by any sequence r;, i = 1,2,..., n, -of n behavioral atoms; the
vertices Uy Ug,VUg» '+ -+ by the vertices v;, i = 1,2, ..., n;and the vertex functions
x, (1), xg(1), x5(0), ... by the vertex functions x;(1), i = 1,2, ..., n. Now r; cor-
responds to [v;,x;(0], i = 1,2,...,n

What is the simplest way to translate Figure 4 into mathematical terms? Since
we are constructing a system whose goal is to adapt with as little bias as possible
to its environment, we are strongly advised to make the system as linear as
possible. The simplest linear way to write Figure 4 is in terms of the equations
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;1) = —ax;(t) + 1;(1), (1)

with « > 0, ﬁci(O) 20,and i=12,...,n Theinput I;(¢) can, for example
have the form

N;
k
I = ZJ;.(r - &%,
k=1

where J;(t) is some nonnegative and continuous function that is positive in an
interval of the form (0,x,).

F) After Learning. In order that Jl be able to predict B given A after
practicing AB, interactions between the vertices v; must exist. Suppose for
example that M has already learned AB, and that A is presented to J at time
t,. We expect M to respond with B after a short time interval, say at time
t =t, + 145, Whereryp > 0. 7, is called the reaction time from A to B. Let
us translate these expectations into graphs for the functions x,(t) and x(1). We
- find Figure 5. The input I1,(¢) controlled by & gives rise to the perturbation of
x,(1). The internal mechanism of J must give rise to the perturbation of x(1).
In other words, after AB is learned, xg(t) gets large r4p units after x,(#) gets
large.

XA“} Xa(')

H

> 5
> { , L

FIG. 5.

There exists a linear and continous way to say this; namely, v, sends a linear
signal to vy with time lag r,p. Then (1) with i = B is replaced by

Xg(t) = —axg(t) + Ig(t) + pugx,(t —7,p),
with p,p some positive constant. More generally if r;r; has been learned we
conclude that | :

i’.}(f) = —axj(t) + IJ(” + pjx;(t - rf}') . (2)

If p;j=0, then the list r;r; cannot be learned, since a signal cannot pass from
v; to v;.

G) Directed Paths.The signal p;x,(t —r;.) from v; to v; in (2) is carried
along some pathway at a finite velocity, or else the locality of the dynamics
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would be violated. Denote this pathway by e;; . The pathways e;; and e;; are
distinct because the lists Il and rjr; are dlstmct To designate the direction of

flow in e;;, we draw e;; as an arrow / from v; to v; whose arrowhead N, . touches
v;, as in Figure 6.

X (=) == Py X (t=p ) ===+ % (1)
Vi €ij Nij V]
FIG. 6.

H) Before Learning. Before any learning occurs, if A leads only to B, then
learning would have already occurred. A must therefore also be able to lead to C,
D, or some other letters, as in Figure 7. Thus the process of learning can be
viewed as elimination of the incorrect pathways AC, AD, etc., while the correct
pathway AB endures, or is strengthened.

Vg B
PRACTICE
\\‘A AB VA \.\
—_— N
t "\\
FIG. 7.

I) Distinguishing Order. How does M know that AB and not AC is being
learned? By Figure 5, practicing AB means that x 4 and then xp become large
several times. Saying A alone, or B alone, or neither A nor B should yield no
learning. This can be mathematically stated most simply as follows. If AB occurs
with a time spacing w, then the product x,(¢t — w)xg(#) is large at suitable
times ¢~ 1,7 + w, i=1,2,...,N,. We therefore seek a process in M that
can compute products of past x,(v) values (v<t) and present xg(¢) values.
Denote this process by z,g(1). Note that Zap # 2gy4-

Where in M do past values of x,(v) and present values of xB(t') come together,
so that z,,(t) can compute them? By Figure 6, this happens only in the
arrowhead N Ap- Thus 2 AB(:) takes place in N, 5. But then the past x,(v) value
received by N,p at time : is the signal p AB%A (t ~7,g). The most lmear and
continuous way to express this rule for z,p() isthe 1ollowmg
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with B8 and A positive constant, or more generally for r;r;, we find in N;; the
process

J) Gating Quiputs. The z;(t) function can distinguish whether or not r;r; is
practiced. But more is desired. Namely, if r;r; is practiced, presenting r; should
yield a delayed output from v;. If r;r; is not practiced, presenting r; should not
yield an output from v;. And even if r;r; is practiced, no output from v, should
occur if r; is not presented. In other words, x; () should become large only if
x;(t = r;;) and z;;(t) are large. Again a product is called for, and (2) is changed
to ;

J'cj(t) = —axj(t) + Ij(t) + x;(t - rﬁ)pszij(t). - (4)

K) Independence of Lists in First Approximation. Consider Figure 8. If B is
not presented to M, then in first approximation CA should be learnable without
interference from B. (Not so in second approximation, since a signal could travel
from C to B to A.) Similarly if C is not presented to i, then BA should be
learnable without interference from C, in first approximation. Mathematically
speaking, this means that all signals to each v; combine additively at v i Thus (4)
becomes

n

i=]1

The system (3) and (5) is a mathematically well-defined proposal for a learning
machine that uses only such general notions as linearity, continuity, and locality,
and a mathematical analysis of how a machine can learn to predict B given A on
the basis of practicing AB.

L) Thresholds. One further modification of systems (3) and (5) is convenient;
namely, the introduction of signal thresholds. Here we introduce this modifi-

cation directly to keep background noise down. A more fundamental analysis
would introduce it by first analyzing the need in complex learning situations for
inhibitory interactions, and then by pointing out that learning becomes
difficult without signal thresholds if inhibitory interactions exist.

A possible difficulty in (3) and (5) is this. Small signals can possibly be carried
round-and-round the network thereby building up background noise and
interfering with the processing of behaviorally important inputs. We therefore
seek to eliminate the production of signals in response to small x,(¢) values, in the
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Ve

FIG. 8.

most linear possible way. Thresholds do this for us. Letting [£]* = max({£,0),
we replace (3) and (5) by

m=1
and
where all ' ; are positive thresholds, and i,j,k = 1,2, ..., n. Systems (6) and

(7) complete the derivation of this paper. More general systems, which include

inhibitory interactions and related decay and interaction laws, are discussed in
[5] and [16].

4. Empirical Interpretation
The following empirical labels can be assigned to the mathematical variables.

a) v; = ith cell body (or cell body cluster);
b) e;; = axon(s) from v; to Vs

¢) N;; = synaptic knob(s) of e;;;
d) gap between N;; andv; = (i,)) th synapse;

e) x;(¢) = average cell body potential of v; at time ¢

stimulus trace of r; at time ¢;

il

f) z;;(1) = average amount of available excitatory transmitter (e.g., ACh) in
- N;; at time ¢
= associational strength from r; to r; at time ¢;
g) Ty spiking threshold of e;;;

h) p;; = axonal path weight of e,;; |
i) [xi(” el I“,-J-]* >~ spiking frequency emitted from v; into e;; in the time
interval [t,t + dt].
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Using these labels for x;(#) and z;;(1), for example, one can translate psychological
statements into physiological statements, and vice versa. The new definitions of
“stimulus trace” and ‘“‘associational strength’’ give a rigorous dynamical descrip-
tion of the more heuristic terminology of Hull [21]. Note that equations (1) and
(2) suggest a law for transmitter production that requires joint pre- and post-syn-
aptic influences.

5. Space-Time Pattern Learning

This section describes the simplest anatomy for space-time pattern learning in
our networks. We will describe this network heuristically, since the theorem in
Section 6 includes its behavior, and that of vastly more complex situations, as
special cases. :

First we study the problem of spatial pattern learning in the smallest possible
network. A spatial pattern on a grid of cells v,,i = 2,3, ..., n, is defined as a
vector funct1on I, =61, i =2,8, ,n, of inputs delivered to these

cells, where the 9 's form a probability distribution (6, 2 0 and 29 1),

and I(z) is a nonnegative and continuous function. 6; is the relative intensity of
the pattern at v;, and I(¢) is the total intensity of the pattern at time ¢.

We seek a network having a minimal number of cells that can learn any spatial
pattern by respondant conditioning. The spatial pattern is the unconditioned
stimulus (US), and we can think of the cells v;, i1, as controlling, for
example, a given collection of muscle groups. Clearly we need at least one more
cell v, to which the conditioned stimulus (CS) will be delivered, and whose
excitation can ultimately reproduce the pattern on the cells v, i # 1. This cell
v; must be able to send signals to each v;, i ¥ 1, or else not all patterns could be
reproduced. That is, the edges e;;, i # 1, exist. The situation is diagrammed in
Figure 9. Figure 9a shows that v, sends axon collaterals to all v;, i # 1. Figure
9b idealizes this situation. The network in Figure 9b is called an outstar with
source vertex v, sink vertices v;, i # 1, and border B = tv; ; i # 1].

The main mathematical objects of study are the probabilities

-1

k=2

and
-1

n

¥ () = z,;(1) Eztk(t) .

k=2
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vy

CS

(a) (b)
- FIG. 9.

i=2,3,...,n, Suppose for example that the system starts in a state of
“maximal ignorance” and the CS and US are presented consecutively for a
sufficient amount of time. Then

(1) Limiting behavior.

lim X0 = limy,;(0 = 6, .

t—=@® t—w

That is, the pattern is eventually learned.

(2) Oscillations. The functions f;(8) = X;(t) - 6,, g;(t) = y,;(t) - X;(#), and
¥,;(t) never change sign, so that the approach by y,;(t) to 6; is monotonic
(corresponding to our impression that we are learning better and better with
increasing practice) even though the inputs to the vertices might fluctuate wildly
in time.

(3) Memory and recall. 1f the US is not presented after time ¢t = T, then for
r2T,

X, € Im(T), My(T)]

and-

) € [m(T), MAD)T

where
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and

MAT) = max[X;(T), ,,(T)] .

That is, if X;(T) ~ 6; >~ y,;,(T), then the relative associational strength yﬁ(t) is
remembered even during recall trials for all ¢t 2 T,

(4) Stimulus sampling. 1If x,(t = £ T, where r =r; and T" = T'y; for all
i #1, then y,;(1) = 0. That is, no learning occurs unless the spiking frequency at
N,; is positive. _

To learn the space-time pattern with functions (), define the weights

6;0 = LI , where 10 = ) 1,().
k=2

Since 6,(#) is a continuous function, it can be approximated by the sequence of
its values

6;(k) : k=1,2,..., N}

if ¢ > 0 is sufficiently small. Because of the property (4) of stimulus sampling, a
sequence of outstars can approximately learn the pattern with weights 6,(1) as in
Figure 10. In Figure 10, the cell v, gives off successive clusters of axon collaterals

to the cells v;, i 1. Each successive cluster is excited ¢ time units after the
previous cluster. If a brief signal is emitted from v,, the first cluster learns 6(&),
the second cluster 6(2¢), and so on. Such a nerve is called an outstar avalanche.
See [5] and [18] for details.
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The stimulus sampling property in general allows thousands of synaptic knobs
to end on the same cell body, each synaptic knob perhaps encoding at entirely
different time intervals the potentials playing on the cell through time.

6. A General Global Theorem

The following theorem illustrates two anatomies and a large class of closely
related dynamical systems in which any number of cells can effectively learn by
Pavlovian conditioning. Once these two anatomies are understood, the potential-
ities for learning of a large collection of related anatomies can be analyzed.

Given any finite sets of indices I and J, such that I = Jor I N J = ¢, consider
the following class of functional-differential systems.

10 = AW 0%, + ) B0z, + Cy0), ®)
keJ
and _
2, = D;W,0z;(1) + E;W,0x;@, 9)

where i € I and j € J. W denotes the vector function

W = (x ciel, jed,

z_j’l .

1! 2
and W, designates a functional dependence on all entries of W evaluated possibly
at all times v < t. Thus A(W,,t) in (8) designates a possibly nonlinear functional
of all past values of the system, and perhaps of independent functions of ¢.
AW, t)is however independent of i, and clearly generalizes the exponential
decay —a in (6). Were A(W,,t) to depend on i, we would first decompose the
cells v; with i € I into maximal subsets such that the A’s in each subset were
independent of i. Without some restrictions on indices of our functionals, any
functional-differential system could be written as in (8) and (9), yielding absurd
conclusions.

B, (W,t) in (8) is also possibly a nonlinear functional of W evaluated at all
past times, and of independent functions of time. For example, one can choose

By(W, 0 = [x,(t - 1) - Tl
or

-1
B,W,t = [xk(t ~ 1) Fk]+ Z z,; (1) B

i€
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etc. B, is chosen independent of i to achieve unbiased léarning. This generality
in the spiking frequency term allows, for example, such effects as absolute and
relative refractory periods in spiking, spontaneous buildup of potential, etc., to be
considered. Similar remarks hold for the functionais D; and E;. The cells v; with
i €] thus receive synchronous signals from each fixed cell v v Jed. All source
cells v; can, however, be mutually out of phase, even when they mutually interact

in the case | = J. -
The system (8) and (9) is further constrained as follows, and these constraints
can readily be verified for the special case A = ~¢; B; = (x; (¢ = 7;) - Fj]*Pj;

DJ I= -uj or “Uj[xj(t - T]) - FJ'] )

and E; = [xj(t - 1) - Fj]"qj, except for condition (4) below, which requires
estimates of the numerical parameters.

1) All B;, E;,and C; are nonnegative;

2) f B;(W,, tdt = w Only iff Ej(Wt,t)dt = oo}
0 0

3) All functionals A, B;, E;, D;, and inputs C; are continuous as functions
of ¢t;

4) the system is bounded;

5) C;(t) = 6;C (1) withg,a fixed probability distribution;

t+T - pt+T
f C(v) exp f AWg, £)dE|dv 2 K,
T v

if t2 K, forall T 20 and some positive K, and K, ;and

f CWdy = .
0

Then for arbitrary nonnegative and continuous initial data, the functions
-1

X0 = x; 0] ) 2,0
l kZJ

and
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-1
yjz(t) = zjl(t) szk(t) ’

| 3§

defined for i el and j € d, have limits @, and P;;, respectively, as ¢ .
Moreover, Q; = 6, and, if

Ej(wt‘ tdt = e,

then also Pj; = 0;.

The oscillations of all X;(: and y;(t can also be completely classified
during practice, memory, and recall intervals. The conditions (1)—(5) seem to hold
in all known applications, and are clearly very weak. See [16] for further details.

7. Concluding Remarks

The above discussion hopes to suggest that embedding fields have an interesting
range of interdisciplinary applications, which embraces various empirical as well as
mathematical and philosophical phenomena. This interdisciplinary development
permits empirical facts to suggest new mathematical constructions, and con-
versely. It also brings into the explicit constructs of rigorous science various
philosophical observations whose consequences have previously lain dormant or
relatively unexplored in our daily lives.
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