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ABSTRACT This note describes laws for the anatomy,
potentials, spiking rules, and transmitters of some net-
works of formal neurons that enable them to learn spatial
patterns by Paviovian conditioning. Applications to space-
time pattern learning and operant conditioning are then
possible, if the conditioning is viewed as multi-channel
Pavlovian conditioning in a highly inhomogeneous anat-
omy. In suitable anatomiecs, biases in learning because of
axon collaterals with nonuniformly distributed diameters
can be corrected if one properly couples the action potential
to transmitter potentiation, and chooses signal velocity
proportional to axon diameter. These anatomies can con-
tain any number of cells. Anatomies exist in which
patterns may be learned without their being practiced
overtly, whereas persistent recall of old patterns without
the learning of newly imposed patterns is impossible.
Physiologically, this constraint has the trivial interpreta-
tion that signals from one cell to another first pass through
the intervening synaptic knob. Mechanisms that control
learning rates at times important to the network (e.g.,
reward and punishment times) can be discussed. Serial
behavior like that described by Lashley is possible: this
consists of sequential learning and performance of pat-
terns faster than would be allowed by a motor-feedback
control, at velocities influenced by arousal level, with the
possibility of abrupt termination of performance if con-
flicting environmental demands arise. Analogs of pattern
completion and mass action exist, as do phase transitions
in memory (for some rate parameters and anatomies,
memory is rigid, for others, it is plastic). The laws limit
the ways in which these networks can be interconnected
to yield specific discrimination, learning, memory, and
recall capabilities.

1. INTRODUCTION

This note summarizes some results on pattern learning
by neural networks. The learning mechanism is Pav-
lovian conditioning {1, 2]. This mechanism is described
by systems of nonlinear functional-differential equa-
tions that represent cross-correlated flows on signed
directed networks, or Embedding Fields [3]. Our theo-
rems discuss the learning behavior of any finite number
of formal neurons in suitable anatomies under very
weak physiological coustraints. They show how these
neurops learn arbitrary spatial patterns. Once spatial
pattern learning is assured, one can generalize the
results to include learning of any number of arbitrary
space-time patterns {2, 4], the diserimination of such

Abbreviations: CS, conditioned stimulus; UCS, unconditioned
stimulus; UCR, unconditioned tesponse.
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patterns [5], and various influences of operant condi-
tioning (to be published) on the learning process.

Some conditions are the best possible for the systems
under study. They include various unusual mathe-
matical properties having such empirical interpretations
as: pattern completion [6]; mass action [7]; recurrent
networks that ean behave like nonrecurrent networks
if the numerical values of spiking thresholds in excita-
tory recurrent interneurons and the arousal level of the
system are properly chosen; mechanisms for rapidly
performing complex sequential acts without motor feed-
back and at velocities depending on the arousal level
of the system, and for terminating such performance
when more important environmental demands arise [8];
“Now Print” mechanisms for speeding up learning dur-
ing significant events [9]; cell body ensembles of any
size that fire with different time lags, thresholds, and
axon path weights without causing long-term biases in
learning; phase transitions in memory whereby, for
some choices of rate parameters or anatomy, memory
is plastic, and for other choices, memory is rigid; and a
factorization of system responses into ‘‘pattern” vari-
ables (“information’ variables) and “energy”’ variables
(“power”’ variables).

2. UNBIASED LEARNING WITH ARBITRARY AXON
WEIGHTS GIVEN ACTION POTENTIALS AND
CHEMICAL SYNAPSES
We find that two types of anatomy (or network con-
nections) and variants thereof are particularly well
suited to pattern learning. Let any finite number of
cells (or network vertices) @ send axons (or directed
edges) to any finite number of cells ®. The cases @ = ®
and @ N ® = ¢ permit perfect pattern learning even if
the strengths of the axon connections from @ to ®
are arbitrary posifive numbers. In these anatomies, axon
diameters can be chosen with complete freedom, and
one can grow axons between cells separated by arbi-
trary distances without concern about their diam-
eters. More elaborate anatomies are needed in realistic
cases. Our theorems delineate some basic principles
that can be extended to various such cases. Not all
anatomies behave well, however. See refs. 4, 5 and 10

for examples of other anatomies.
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Only certain types of signal transmission between
cells can compensate for differences in connection
strengths and thereby yield unbiased learning. The
simplest possibility is the following. Let signals (e.g.,
the action potential, ref. 11) propagate along the eir-
cumference of a cylindrical axon to the axon’s synaptic
knob (or arrowhead of the directed edge). Let the
signal disperse throughout the cross-sectional area of
the synaptic knob (e.g., as ionic fluxes). Let local chemi-
cal transmitter produection in the knob be propor-
tional to the local signal density. Finally, let the effect
of the signal on the postsynaptic cell be proportional
to the product of local signal density and local avail-
able transmitter density and the cross-sectional area of
the knob. By contrast, a mechanism whereby signals
propagate throughout the cross-sectional area of the
axon could not produce unbiased learning given arbi-
trary axon connection strengths, or at least such a
mechanism is still elusive. Also, even given an action
potential, unbiased learning would not occur without
the interaction of the signal with the chemical trans-
mitter production step. Electrical synapses alone pre-
sumably could not execute the desired transformation.
Of course, all these conclusions are based on empirical
interpretations of the mathematics, and such inter-
pretations are never infallible.

An important constraint in our theorems is that the
time lag from a given cell for signal transfer to all the
cells in a functionally coordinated unit depend only on
the source cell. How can different axons from the given
cell have the same time lag if they have different
lengths? Clearly, then, signal velocity is proportional
to axon length. But signal velocity is a local property
of signal transmission, whereas axon length is a global
feature of the anatomy. How can this global property
be converted into a locally discernible one? A simple
way is to let axon length be proportional to axon diam-
eter, and then to let signal velocity be proportional to
axon diameter. The latter is often the case [12]. The
former is qualitatively true: longer axons of a given
cell type are usually thicker. Intuitively, this condition
means that one idealized cell of a given type can be
converted into another of the same type simply by
blowing up spatial and temporal scales by a common
factor; that is, “form” is invariant under size changes.
We call this property spatiotemporal self-similarity [13].
Actually the theorems extend to the case when time
lags from a given cell differ, but then the learned pat-
tern is often more complex than a spatial pattern.

Our results are dramatically altered if, for example,
in the case @ = ®, the cells do not send axons to them-
selves. The only known mathematical results in this
case discuss three cells inferacting with zero spiking
thresholds and instantaneous signal transmission be-
tween cells [14, 15]. In fact, these results suggest that
this is a “bad” anatomy for pattern learning. The exis-
tence of self-excitatory dxons in a recurrent network is
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made plausible by the idea that even randomly grow-
ing axon collaterals that succeed in reaching all other
cell bodies of a network can also with high probability
reach the mother cell body.

A famous example of Pavlovian conditioning is the
following (1). A hungry dog, presented with food (the
unconditioned stimulus, or UCS) will salivate (the un-
conditioned response, or UCR). A bell (the condi-
tioned stimulus, or CS) does not initially elicit saliva-
tion, but will do so after pairing CS and UCS several
times. We will discuss the interaction (“pairing”) of
cells @ = {v;: jEJ} activated by any finite number
(Z|J]) of CS’s with the cells ® = {v;: iEI} activated
by any UCS spatial pattern. Ref. 16 discusses the
empirical interpretation of the following equations for
cell body potentials x; and synaptic knob transmitters
24

3. MATHEMATICAL RESULTS
Consider the system

% = Al‘»t + Z Bz + Cf (1)
kEJ
and
£y = Djz“ + Ejx,, )

where {€1, j&J, and I and J are sets of indices of any
finite size. The symbols A, B;, D;, and E; are con-
tinuous functionals, not necessarily linear, with all B;
and Z; nonnegative (they represent spiking frequency
terms). The input function C, is nonnegative and con-
tinuous in {, and all initial data are nonnegative. The
behavior of this system depends crucially on its anat-
omy. As remarked in Section 1, we will choose I = J
or INJ = ¢. Our method is readily extended to cuses
in which each cell v;, 7&J, sends axons to allv,, iE1, and
other cells: simply relativize all computations to cells
vy, 11,

Our theorems discuss the response to any spatial
pattern C,(1) = 6,C(t), where 8; > 0 and Z,c,8, = 1.
Such an input is called a spatial pattern since, in daily
life, the identification of a picture is invariant under
fluctuations in total input intensity C'(f) over a broad
physiological range. The relative intensity 8, at each
spatial point characterizes the picture. Thus we study
the limiting behavior of “pattern’ variables: the rela-
tive potentials X'; = z,{Z, 2,2, ]~ and the relative trans-
mitters Z;; = z;;[Zrezi ] All their oscillations can
also be classified [16]. Once behavior of these variables
is established in general, analysis of the ‘“total energy”
variables z = 2,z and z; = Z,g,2); can be carried
out for particular choices of functionals. Then behavior
of z; and z;; is also known; compare ref. 16.

Our first theorem will be expressed in terms of the
function f(S,T) = SZC exp (fTAdv)dt; the functions
M@@): [0, ) = J such that Zy 1 .() = max {Zﬂ(t):
JEJ} and m@): [0,) — J such that Zimem..(E) =
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min {Z,;(); jEJ}; and the functional L defined for
every piecewise constant function m: [0,«) — J and
every ¢<=C°[S,T) by

T t
L(m,g; §,T] = f E.g exp [— f D,,‘dv] dt.
S S

Theorem 1

Suppose that

(i) the system is bounded;

(i) each CS is presented sufficiently often; that is,
for every j&J, L{jz; 0, ] = o (also necessary);

(iii) the UCS is presented sufficiently often; that is,
J§ Cz-'dt = = (also necessary); and

(iv) each CS and the UCS are practiced together
sufficiently often; that is, for some ¢ > 0 and each
1&], there exist increasing divergent sequences {SM}
and {T,-,,} such that

o~ LIM@@).f(Sm ) SimSsani]l _
n=1 € + L[]‘[(L)yx’ SimSi.n+1]

and

L['m’(i):f(Timr); TimTl.n+l]
n=1 € + L[m(i),l’,‘ TtnyTi,n+l]

Then the perfect pattern learning occurs; that is, all
the limits @, = lim X,(t) and P;; = lim Z,,(t) exist
{—> o

>

globally and P;; = @, = 6,.

Condition (i) can be removed, but leads to a physi-
cally implausible situation. Then the nth appearances
of ¢ in (iv) are replaced by 2z (S.z) and
2y (Tin), respectively. A counterexample can be
constructed if (iv) is violated.

Corollary 1. Conditions (il)—(iv) are implied by the
following conditions: (i),

(v) for every jEJ, fGE,dl = o

(vi) there exist positive constants K; and K, such
that for every T' 2 0, f(T,T + &) > K, if t > K..
Corollary 1 generalizes Theorem 1 of ref. 4.

Theorem 1 discusses the ease in which each CS to a
cell »; is practiced either during a finite time interval,
or “sufficiently often” to guarantee perfect learning.
‘The next theorem discusses what happens if some cells
v; practice the CS at arbitrarily large times but not
“sufficiently often”. To guarantee perfect learning by
the cells that do practice sufficiently often, we need
a local flow condition which means, psychologically,
that @ cells cannot continually perform patterns on ®
cells without also learning the patterns imposed there
by the UCS. By contrast, a pattern can be learned
without being performed until later. Physiologically,
we interpret the condition to mean that signals from
cell body to cell body actually pass through the inter-
vening synaptic knobs, and thus the threshold (if it
exists) of B, is no lower than the threshold (if it exists)
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of I;. Proposition 1 will show that the local flow condi-
tion is not superfluous.

The next theorem also uses the following functions.
Let N(z): [0,o) — J(1) be defined by Zywicn.:{l) =
max {Z,:(t): JEJ (W)}, and n(@): [0, ) — J (1) be defined
by Ziwwiw.«(t) = min {Z;:(1): JEJ (1)}, where J(1) =
{JE€J: fEBzz—1dt = =},

Theorem 2

Again suppose that the system is bounded, the UCS
is presented sufficiently often,
(vii) the local flow condition holds; that is, for every

ied,
f Bjz;x—dt = o only if
0

@ t
f K exp(—f D,-(l'l))dt = o;
0 0

(viit) those CS8’s whiclh are performed continually
are also practiced with the UCS sufficiently often; that
is, if J(1) ## ¢, then condition (iv) holds with A7 (37)
and m(7) replaced by N (¢) and n(7). Then the potentials
pick up the pattern weights and all transmitters learn
the pattern at least partially; that is, all the limits Q,
and Py; exist with Q; = 6,. If, moreover, a CS is prac-
ticed with the UCS sufficiently often, then it learns the
pattern perfectly; that is, if (ii) holds for some j&J,
then P;; = 6,.

and

Corollary 2. Conditions (iii), (vii), and (viii) are
implied by conditions (i), (vi), and

(ix) for every jEJ, f§ Byl = o only if f§5 Kt =
w. Under these circumstances, if f§ K,dl = o, then
P;; =6;. Corollary 2 removes a condition imposed in
Theorem 1 of ref. 16.

Proposition 1. Suppose (ix) does not hold. Partition
J into subsets J(2) and J(3) sueh that

J(2) = {]f Bidt = = :mdf Idl < m} = .
0 0

Suppose that the system is bounded, that (vi) holds,
that

(x) there is perfect memory until recall in J(2); that
is, D; 2 —«;E; for some constant y; > 0, jEJ(2); and
that

(xi) average performance energy in J(2) does not
converge to zero; that is, for every 7 > 0,

4 !
lim sup >, f B exp [f A dg]du > 0.
= eV’ v

Then even if @, exists, @, = 6, so that even if Py
exists and f§ E;dt = o, P,; # 6,.

The extension to arbitrary positive connection
weights is achieved by the system

x, = Az, + Z BBz + Cy 3)
Les
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and
5y = Dz + L85y, )

where the B8;/s are positive numbers. To achieve per-
formance of the pattern weights 6;, it is necessary by
(3) that the probabilities Pf-?) = B2 (ZceiByzin] ™t
converge to 8, as t — . This will occur under the
conditions of Theorem 1 and 2 applied to the variables
z; and wj; = B;2;. The By's in (3) and (4) can be
interpreted as follows. Let the radius of the axon from
v; to v; be R;; and let signal strength be proportional
to the axon circumference [12] (==2R;;). This accounts
for B;; in (3). Let the signal disperse throughout the
cross-sectional aren (=R;2) of the synaptic kuob,
vielding o density proportional to B; 1. This accounts
for 8,;~' in (4). Thus the definition 8;; = B;R,; yields
3) and (4).

Theorems have also been proved for the general non-
negative systems

X o= Atlvi -+ ZkEJBer/ct -+ Ci
and
tp = Dyzji + By

under conditions which guarantee that they approxi-
nmate systems of type (1)-(2) suftficiently well as { —
to vield perfect pattern learning.
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