Pavlovian Pattern Learning by Nonlinear Neural Networks

STEPHEN GROSSBERG

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Mass. 02139

Communicated by Norman Levinson, January 11, 1971

ABSTRACT This note describes laws for the anatomy, potentials, spiking rules, and transmitters of some networks of formal neurons that enable them to learn spatial patterns by Pavlovian conditioning. Applications to space-time pattern learning and operant conditioning are then possible, if the conditioning is viewed as multichannel Pavlovian conditioning in a highly inhomogeneous anatomy. In suitable anatomies, biases in learning because of axon collaterals with nonuniformly distributed diameters can be corrected if one properly couples the action potential to transmitter potentiation, and chooses signal velocity proportional to axon diameter. These anatomies can contain any number of cells. Anatomies exist in which patterns may be learned without their being practiced overtly, whereas persistent recall of old patterns without the learning of newly imposed patterns is impossible. Physiologically, this constraint has the trivial interpretation that signals from one cell to another first pass through the intervening synaptic knob. Mechanisms that control learning rates at times important to the network (e.g., reward and punishment times) can be discussed. Serial behavior like that described by Lashley is possible: this consists of sequential learning and performance of patterns faster than would be allowed by a motor-feedback control, at velocities influenced by arousal level, with the possibility of abrupt termination of performance if conflicting environmental demands arise. Analogs of pattern completion and mass action exist, as do phase transitions in memory (for some rate parameters and anatomies, memory is rigid, for others, it is plastic). The laws limit the ways in which these networks can be interconnected to yield specific discrimination, learning, memory, and recall capabilities.

1. INTRODUCTION

This note summarizes some results on pattern learning by neural networks. The learning mechanism is Pavlovian conditioning [1, 2]. This mechanism is described by systems of nonlinear functional-differential equations that represent cross-correlated flows on signed directed networks, or Embedding Fields [3]. Our theorems discuss the learning behavior of any finite number of formal neurons in suitable anatomies under very weak physiological constraints. They show how these neurons learn arbitrary spatial patterns. Once spatial pattern learning is assured, one can generalize the results to include learning of any number of arbitrary space-time patterns [2, 4], the discrimination of such patterns [5], and various influences of operant conditioning (to be published) on the learning process.

Some conditions are the best possible for the systems under study. They include various unusual mathematical properties having such empirical interpretations as: pattern completion [6]; mass action [7]; recurrent networks that can behave like nonrecurrent networks if the numerical values of spiking thresholds in excitatory recurrent interneurons and the arousal level of the system are properly chosen; mechanisms for rapidly performing complex sequential acts without motor feedback and at velocities depending on the arousal level of the system, and for terminating such performance when more important environmental demands arise [8]; “Now Print” mechanisms for speeding up learning during significant events [9]; cell body ensembles of any size that fire with different time lags, thresholds, and axon path weights without causing long-term biases in learning; phase transitions in memory whereby, for some choices of rate parameters or anatomy, memory is plastic, and for other choices, memory is rigid; and a factorization of system responses into “pattern” variables (“information” variables) and “energy” variables (“power” variables).

2. UNBIASED LEARNING WITH ARBITRARY AXON WEIGHTS GIVEN ACTION POTENTIALS AND CHEMICAL SYNAPSES

We find that two types of anatomy (or network connections) and variants thereof are particularly well suited to pattern learning. Let any finite number of cells (or network vertices) \(\mathcal{S} \) send axons (or directed edges) to any finite number of cells \(\mathcal{B} \). The cases \(\mathcal{S} = \mathcal{B} \) and \(\mathcal{S} \cap \mathcal{B} = \emptyset \) permit perfect pattern learning even if the strengths of the axon connections from \(\mathcal{S} \) to \(\mathcal{B} \) are arbitrary positive numbers. In these anatomies, axon diameters can be chosen with complete freedom, and one can grow axons between cells separated by arbitrary distances without concern about their diameters. More elaborate anatomies are needed in realistic cases. Our theorems delineate some basic principles that can be extended to various such cases. Not all anatomies behave well, however. See refs. 4, 5 and 10 for examples of other anatomies.
made plausible by the idea that even randomly growing axon collaterals that succeed in reaching all other cell bodies of a network can also with high probability reach the mother cell body.

A famous example of Pavlovian conditioning is the following (1). A hungry dog, presented with food (the unconditioned stimulus, or UCS) will salivate (the unconditioned response, or UCR). A bell (the conditioned stimulus, or CS) does not initially elicit salivation, but will do so after pairing CS and UCS several times. We will discuss the interaction (“pairing”) of cells $\alpha = \{v_j: j \in J\}$ activated by any finite number ($\leq |J|$) of CS's with the cells $\beta = \{v_i: i \in I\}$ activated by any UCS spatial pattern. Ref. 10 discusses the empirical interpretation of the following equations for cell body potentials x_i and synaptic knob transmitters z_{hi}.

3. MATHEMATICAL RESULTS

Consider the system

$$\dot{x}_i = A x_i + \sum_{j \in J} B_{ij} z_{hi} + C_i \tag{1}$$

and

$$\dot{z}_{hi} = D_i z_{hi} + E_{ij} x_i \tag{2}$$

where $i \in I$, $j \in J$, and I and J are sets of indices of any finite size. The symbols A, B_{ij}, D_i, and E_{ij} are continuous functionals, not necessarily linear, with all B_{ij} and E_{ij} nonnegative (they represent spiking frequency terms). The input function C_i is nonnegative and continuous in t, and all initial data are nonnegative. The behavior of this system depends crucially on its anatomy. As remarked in Section I, we will choose $I = J$ or $I \cap J = \phi$. Our method is readily extended to cases in which each cell v_j, $j \in J$, sends axons to all v_i, $i \in I$, and other cells: simply relativize all computations to cells v_j, $i \in I$.

Our theorems discuss the response to any spatial pattern $C_i(t) = \theta_i C(t)$, where $\theta_i \geq 0$ and $\sum_{j \in J} \theta_j = 1$. Such an input is called a spatial pattern since, in daily life, the identification of a picture is invariant under fluctuations in total input intensity $C(t)$ over a broad physiological range. The relative intensity θ_i at each spatial point characterizes the picture. Thus we study the limiting behavior of “pattern” variables: the relative potentials $X_i = x_i[\Sigma_{j \in J} \theta_j]^{-1}$ and the relative transmitters $Z_{hi} = z_{hi}[\Sigma_{j \in J} \theta_j]^{-1}$. All their oscillations can also be classified [16]. Once behavior of these variables is established in general, analysis of the “total energy” variables $x = \Sigma_{j \in J} x_j$ and $z = \Sigma_{j \in J} z_{hi}$ can be carried out for particular choices of functionals. Then behavior of x_i and z_{hi} is also known; compare ref. 16.

Our first theorem will be expressed in terms of the function $f(S, T) = \int_0^T \mathcal{C} \exp \left(\int_0^T \mathcal{A} \mathcal{D} v \text{d}t \right) \text{d}t$; the functions $M(i): [0, \infty) \mapsto J$ such that $Z_{m(i)0}(i, t) = \max \{Z_{hi}(i, j \in J) \text{ and } m(i): [0, \infty) \mapsto J$ such that $Z_{m(i)0}(i, t) = \ldots$.\ldots
min \{Z_i(t); j \in J\}; and the functional L defined for every piecewise constant function m: [0, \infty) \to J and every g \in C^\infty(S, T) by

$$L(m, g; S, T) = \int_S^T E_n g \exp \left[- \int_S^t D_n dv \right] dt.$$

Theorem 1

Suppose that

(i) the system is bounded;

(ii) each CS is presented sufficiently often; that is, for every j \in J, L[j, x; 0, \infty] = \infty (also necessary);

(iii) the UCS is presented sufficiently often; that is, \(\int_0^\infty C x^{-1} dt = \infty\) (also necessary); and

(iv) each CS and the UCS are practiced together sufficiently often; that is, for some \(\epsilon > 0\) and each \(j \in J\), there exist increasing divergent sequences \(\{S_{in}\}\) and \(\{T_{in}\}\) such that

$$\sum_{n=1}^\infty L[M(i), f(S_{in}, \cdot); S_{in}, S_{in+1}] = \infty$$

and

$$\sum_{n=1}^\infty L[m(i), f(T_{in}, \cdot); T_{in}, T_{in+1}] = \infty.$$

Then the perfect pattern learning occurs; that is, all the limits \(Q_i = \lim_{i \to \infty} X_i(t)\) and \(P_{ji} = \lim_{i \to \infty} Z_{ji}(t)\) exist globally and \(P_{ji} = Q_i = \theta_i\).

Condition (i) can be removed, but leads to a physically implausible situation. Then the nth appearances of \(\epsilon\) in (iv) are replaced by \(z_{M(i), S_{in}}(S_{in})\) and \(z_{M(i), S_{in}}(T_{in})\), respectively. A counterexample can be constructed if (iv) is violated.

Corollary 1. Conditions (ii)-(iv) are implied by the following conditions: (i),

(v) for every \(j \in J\), \(\int_0^\infty E_n dt = \infty\);

(vi) there exist positive constants \(K_1\) and \(K_2\) such that for every \(T \geq 0\), \(f(T, T + t) \geq K_1\) if \(t \geq K_2\).

Corollary 1 generalizes Theorem 1 of ref. 4.

Theorem 1 discusses the case in which each CS to a cell \(v_j\) is practiced either during a finite time interval, or "sufficiently often" to guarantee perfect learning. The next theorem discusses what happens if some cells \(v_j\) practice the CS at arbitrarily large times but not "sufficiently often". To guarantee perfect learning by the cells that do practice sufficiently often, we need a local flow condition which means, psychologically, that \(\delta\) cells cannot continually perform patterns on \(\delta\) cells without also learning the patterns imposed there by the UCS. By contrast, a pattern can be learned without being performed until later. Physiologically, we interpret the condition to mean that signals from cell body to cell body actually pass through the intervening synaptic knobs, and thus the threshold (if it exists) of \(B_j\) is no lower than the threshold (if it exists) of \(E_j\). Proposition 1 will show that the local flow condition is not superfluous.

The next theorem also uses the following functions. Let \(N(i)\) (0, \infty) \to J(1) be defined by \(Z_{M(i), S_{in}}(t) = \max \{Z_{ji}(t); j \in J(1)\}\), and \(n(i)\) (0, \infty) \to J(1) be defined by \(Z_{M(i), S_{in}}(t) = \min \{Z_{ji}(t); j \in J(1)\}\), where \(J(1) = \{j \in J; \int_0^\infty B \tau x^{-1} dt = 0\}.

Theorem 2

Again suppose that the system is bounded, the UCS is presented sufficiently often,

(vii) the local flow condition holds; that is, for every \(j \in J\),

$$\int_0^\infty B_j \tau x^{-1} dt = \infty$$

and

(viii) those CS's which are performed continually are also practiced with the UCS sufficiently often; that is, if \(J(1) \neq \phi\), then condition (iv) holds with \(M(i)\) and \(m(i)\) replaced by \(N(i)\) and \(n(i)\). Then the potentials pick up the pattern weights and all transmitters learn the pattern at least partially; that is, all the limits \(Q_i\) and \(P_{ji}\) exist with \(Q_i = \theta_i\). If, moreover, a CS is practiced with the UCS sufficiently often, then it learns the pattern perfectly; that is, if (ii) holds for some \(j \in J\), then \(P_{ji} = \theta_i\).

Corollary 2. Conditions (iii), (vii), and (viii) are implied by conditions (i), (v), and (ix) for every \(j \in J\), \(\int_0^\infty B_j dt = \infty\) only if \(\int_0^\infty E_j dt = \infty\). Under these circumstances, if \(\int_0^\infty E_j dt = \infty\), then \(P_{ji} = \theta_i\). Corollary 2 removes a condition imposed in Theorem 1 of ref. 16.

Proposition 1. Suppose (ix) does not hold. Partition \(J\) into subsets \(J(2)\) and \(J(3)\) such that

$$J(2) = \{j; \int_0^\infty B_j dt = \infty\} \text{ and } \int_0^\infty E_j dt < \infty \neq \phi.$$

Suppose that the system is bounded, that (vi) holds, that

(x) there is perfect memory until recall in \(J(2)\); that is, \(D_0 \geq -\gamma_i E_1\) for some constant \(\gamma_i > 0\), \(j \in J(2)\); and that

(xi) average performance energy in \(J(2)\) does not converge to zero; that is, for every \(T \geq 0\),

$$\lim_{i \to \infty} \sum_{j \in J(2)} \int_0^T B_j \exp \left[\int_0^T A \delta \right] dv > 0.$$

Then even if \(Q_i\) exists, \(Q_i \neq \theta_i\), so that even if \(P_{ji}\) exists and \(\int_0^\infty E_j dt = \infty\), \(P_{ji} \neq \theta_i\).

The extension to arbitrary positive connection weights is achieved by the system

$$\dot{x}_i = Ax_i + \sum_{k \in J} B_k \delta_k x_k + C_i$$

(3)
and

$$z_{ji} = D_j z_{ji} + E_j \beta_j z_i,$$

(4)

where the β_j's are positive numbers. To achieve performance of the pattern weights θ_i, it is necessary by (3) that the probabilities $P_{ji}^{(\theta)} = \beta_j z_{ji} \sum_{k \in I_j} \beta_k z_k^{-1}$ converge to θ_i as $t \to \infty$. This will occur under the conditions of Theorem 1 and 2 applied to the variables x_i and $w_{ji} = \beta_j z_{ji}$. The β_j's in (3) and (4) can be interpreted as follows. Let the radius of the axon from v_j to r_i be R_{ji} and let signal strength be proportional to the axon circumference $[12] \approx R_{ji}$. This accounts for β_j in (3). Let the signal disperse throughout the cross-sectional area $\approx (R_{ji})^2$ of the synaptic knob, yielding a density proportional to R_{ji}^{-1}. This accounts for β_j^{-1} in (4). Thus the definition $\beta_j = \beta_j R_{ji}$ yields (3) and (4).

Theorems have also been proved for the general nonnegative systems

$$x_i = A_i x_i + \sum_{k \in I_j} R_{ji} x_k + C_i$$

and

$$z_{ji} = D_j z_{ji} + E_j z_i$$

under conditions which guarantee that they approximate systems of type (1)-(2) sufficiently well as $t \to \infty$ to yield perfect pattern learning.

This work was supported in part by the Office of Naval Research (N00014-67-A-0204-0016) and by the Alfred P. Sloan Foundation (71009).