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Contour Enhancement, Short Term Memory,
and Constancies in Reverberating Neural Networks

By Stephen Grossberg*

A model of the nonlinear dynamics of reverberating on-center off-surround net-
works of nerve cells, or of cell populations, is analysed. The on-center off-surround
anatomy allows patterns to be processed across populations without saturating
the populations' response to large inputs. The signals between populations are
made sigmoid functions of population activity in order to quench network noise,
and yet store sufficiently intense patterns in short term memory (STM). There
exists a quenching threshold: a population's activity will be quenched along with
network noise if it falls below the threshold; the pattern of suprathreshold popula-
tion activities is contour enhanced and stored in STM. Varying arousal level can
therefore influence which pattern features will be stored. The total suprathreshold
activity of the network is carefully regulated. Applications to seizure and hallucina-
tory phenomena, to position codes for mo~or control, to pattern discrimination, to
influences of novel events on storage of redundant relevant cues, and to the
construction of a sensory-drive heterarchy are mentioned, along with possible
anatomical substrates in neocortex, hypothalamus, and hippocampus.

1. Introduction
Recent experimental studies of the hippocampus (Anderson et at. 1969) have
suggested that its cells are arranged in a recurrent on-center off-surround anatomy.
The main cell type, the pyramidal cell, emits axon collaterals to interneurons.
Some of these internueurons feed back excitatory signals to nearby pyramidal
cells. Other interneurons scatter inhibitory feedback signals over a broad area.
Recurrent on-center off-surround networks are found in a variety of neural
structures other than hippocampus; for example, neocortex (Stefanis, 1969) and
cerebellum (Eccles et aI, 1967). What does this fundamental principle of neural
design accomplish? What can a recurrent, or reverberating, network do that a
non-recurrent, or feed-forward, network cannot? In the special case of the hippo-
campus, one can in particular ask: How does this anatomy contribute to seizure
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activity in response to topical application of either strychnine or penicillin crystals
(Anderson et ai, 1969)? Can one functionally interpret the suggestion that afferent
fibers to the hippocampus excite the inhibitory interneurons directly (Anderson
et ai, 1969), thereby creating a feed-forward inhibitory action, in addition to the
recurrent inhibition activated by pyramidal cell output?

This paper describes mathematical results that seem to be relevant to these
issues. We study a model that emphasizes the properties of interacting populations
of cell 'sites. These populations can be interpreted either as populations of small
membrane patches on individual cells, or as populations of whole cells. The
model is perhaps more general since it is defined by mass action laws involving
excitatory and inhibitory processes. As in the paper of Wilson and Cowan (1972),
we assume that the cell sites in a given population are distributed in such a fashion
that their interactions are spatially random and densely distributed within each
population and between population pairs. Our equations differ from those of
Wilson and Cowan, however. Their excitatory and inhibitory interactions combine
additively before they are further processed; our interactions are of shunting
type (Hodgkin, 1964; Sperling, 1970; Sperling and Sondhi, 1968). Differences in
the applicability of these eq uations are discussed in Section 5.

Denote the average excitation at time t of the ith population Vi by Xi(t), i = I,
2. ...,p1. We will study how these averages are transformed through time by
recurrent on-center off-surround interactions (Figure 1); that is, each population
excites itself and inhibits other populations via the system of eq uations

Xi = -A'~i + (B -xJf(xJ -Xi I f(.~J + Ii'
k~i

where i = I, 2, ..., n, and Xi( S B) is the mean activity of the ith cell. or cell popula-

tion, Vi of the network. Four effects determine this system: (1) exponential decay,
via the term -AXi; (2) shunting self-excitation, via the term (B -xJf(."(J: (3)
shunting inhibition of other populations, via the term -xiLk=if(xJ; and (4)
externally applied inputs, via the term Ii. The function f(w) describes the mean
output signal of a given population "as a function of its activity ,~." In vivo, f(w) is

.+ +

RESPONSE TO EXTERNAL INPUT
ro Vi AS SEEN FRor.I ABOVE

Figure 1. Recurrent on-<:enter off.surround network.
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often a sigmoid function of w (Kernell, 1965a, b; Rail, 1955a-<:). The mathematical
results below will show that this is an important property of the above model for
the effective processing of signals in noise.

First, why is an on-center off-surround anatomy needed at all? It has been noted
that such an arrangement permits contour enhancement of sensory information
(Ratcliff, 1965). We will show that a more basic property can be achieved as well.
In many neural systems, noise cannot be avoided, if only because they operate
near the quantum range, as in the case of sensory systems. Also cells, and therefore
cell populations, have finite saturation levels in response to external inputs.
Given these facts, consider the processing of a pattern of input signals delivered to
an ensemble of noninteracting cell populations. If the signals are too small, they
can be lost in the noise. If they are too large, they can saturate their respective
populations, thereby creating a uniform pattern of excitation across populations
and destroying all information about the input pattern. In short, noninteracting
cell populations are caught between two unsatisfactory extremes. To avoid these
extremes in the noninteracting case, input intensities must be restricted to a very
narrow range, and one loses the ability to process arbitrary patterns with fluctuating
input intensities. On-center off-surround interactions solve this problem: they
permit effective processing of arbitrary input patterns across populations, without
saturation, even if the inputs are large.

Recurrent on-center off-surround anatomies are capable of short term memory
(STM); that is, th~y can reverberate a pattern of activity distributed over cell
populations for an indefinite interval of time: This reverberation can also be
switched off rapidly by inhibitory inputs if a new pattern is delivered by external
sources; the decay rates of individual cells can be large after the excitatory rever-
berating loop is broken by inhibition, even if the reverberation through an active
excitatory loop is long lived. See Figure 2. A single layer of nonrecurrent on.
center off-surround network has limited STM capabilities. Such a network can
store a pattern only if it has small decay rates. It will therefore also recover slowly

11 (t)

Figure 2. Input inhibits old reverberation as it imposes a new pattern to be reverberated.
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from inhibition aimed at shutting the pattern off. Consequently, its response to
new inputs will be biased by the lingering traces of old inputs. In a psychological
cont~xt,. the use of reverberation as a mechanism of STM has been suggested
(Estes, 1972; Grossberg 1971a). For example, from operant conditioning experi-
ments, one is led to seek reverberatory processes that can maintain in short term
storage internal representations of sequences of external events until later rewards
or punishments occur and transfer the memory of these sequences to long term

storage (Grossberg, 1971a). The interplay of reverberatory and arousal processes
on this transfer process has been discussed on various levels, for example neuro-

physiologically (John 1966) and psychologically (Grossberg, 1971a, 1972a,
1972b).

The STM capabilities of recurrent networks carry with them possible difficulties.
If these networks can reverberate patterns imposed by external inputs, then why
don't they also reverberate their own noise indefinitely, thereby flooding the
network with its own noise? The answer is that they do, if the signal function f(w)
is improperly chosen. For example, if f(w) is a linear function of w, or a function
that grows slower than linearly, such as f(w) = w(l + W}-I, then noise will be
amplified and reverberated. Note that if f(w) is linear, then no contour enhance-
ment will occur; the f(w) that does provide contour enhancement is chosen, first
and foremost, to prevent amplification and reverberation of noise. If f(w) grows
faster than linearly, such as f(w) = w2, then this problem is avoided. Sufficiently
small noise values will dissipate through time. If a brief, but sufficiently intense,
input pattern is imposed on the noise, however, then two things happen. First,
all populations which receive the largest input in the pattern will suppress the
activity in all other populations, including the noise. Second, normalization occurs:
the total activity x(t) = D= 1 Xk(t) of all the populations approaches a fixed
positive limit through time. The first property shows that an extreme form of
contour enhancement occurs: only the peaks of the input pattern survive. If one
population of the network receives more input than any other, then the network
"chooses" this population and quenches all others. The second property shows
that the system precisely regulates its total activity, and can store the activity of
certain populations indefinitely in STM by reverberating their activity through
excitatory recurrent interneuronal loops.

The first property is too strong: too much of the pattern is suppressed in the
attempt to suppress the noise. How can this be avoided? The way is to choose f(w)
so that it grows faster than linearly for small values of w, and (approximately)
linearly at larger values of w. Then noise dissipates, and there exists a quenching
threshold. This means that, given a sufficiently energetic pattern of inputs, the
activities of populations which fall below the threshold are quenched (including
noise) and those which fall above the threshold are contour enhanced and stored
in STM.

In the subsequent discussion,' let the existence of a constant quenching threshold
be assumed. Then the determination of which populations will be quenched, in
the presence of sustained inputs, depends on the total strength I = I~ = Ilk of the
input to all populations. Consider Figure 3. In Figure 3, a nonspecific arousal
input J A combines with a specific input J i at each population Vi. Two important
cases arise. In Case 1, J A and Jj combine multiplicatively to influence the activity
level ,Xi' Input J A is said to shunt the activity level (Grossberg, 1973). In Case 2,
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Figure 3. Interaction of arousal and specific inputs.

J A and Ji combine additively to influence the activity level Xi. Consider Case 1 for
definiteness. Then the input J A does not change the relative input levels to the
various populations. (In Case 2, a large J A tends to uniformize any pattern of J i'S.)
Let J A be parametrically increased to ever higher levels. One hereby increases the
number of populations that receive enough input to exceed the quenching threshold
and are stored in STM. Conversely, reducing J A decreases the number of popula-
tions that will be stored. Thus, given an input pattern in which many inputs are
close to each other in relative size, one way to "make a choice" between popula-
tions is to lower the arousal level of the input until only one population exceeds
the quenching threshold; in common parlance, put the network in a quiet place.
By contrast, one way to make as many cues as possible relevant to further network
processing is to substantially increase the arousal level. Thus, suppose that a
"novel" stimulus excites the network's nonspecific arousal source. Then all
recently presented cues can have their network representations brought into
STM to playa part in further network processing, including the sampling and
subsequent learning of motor responses (Grossberg, 1973). In this way, novel or
unpredictable events can bring all possible information about presently available
cues into an active state, to enhance the network's ability to deal with the unexpected
situation. Using this mechanism, one can approach the problem of how redundant
relevant cues are learned (Trabasso and Bower, 1968).

A particularly interesting case arises when the input Ji, unbolstered by a suffi-
ciently large value ofJA, is too small to drive Xi above the quenching threshold.
Then any mechanism that inhibits the action of J A at a given population can pre-
vent this population from reverberating in STM. Figure 4 provides two examples
that illustrate this concept. In Figure 4a, the inhibitory input prevents arousal
from activating Xi' but Xi'S excitatory recurrent collateral bypasses the inhibition.
Thus, if population Vi is already reverberating, it continues to do so when the
inhibitory input is activated. By con~rast, suppose that a new input pulse to Vi
occurs simultaneously with inhibition of arousal. Then the afferent inhibition
controlled by the new input briefly inhibits the reverberation to allow the new
input to begin reverberating without bias due to the previously reverberated input.
The new input cannot reverberate, however, because inhibition of arousal prevents
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Figure 4. Arousal inhibitors can preserve old reverberations but prevent new reverberations.

it from exceeding the quenching threshold. In short, this type of arousal-inhibition
can prevent transfe-r of new inputs into STM, but permits storage of old inputs in
STM. By contrast, in Figure 4b, inhibition of arousal also inhibits STM of old
and new inputs.

The above properties have many possible interpretations. For example, suppose
that each population in the network responds to lines (Hubel and Wiesel, 1968),
orientations (Blakemore and Campbell, 1969), or other geoIJ1etrical features of
external objects. Then varying the arousal level and/or arousal-inhibitors can
determine whether a unique geometrical feature of the visual scene, or some
particular combination of features, will control motor behavior.

In a similar fashion, particular features of a spatial pattern, such as its boundary,
can be stored by the network, while other parts of the pattern are quenched.
Suppose for example that the n interacting populations Vi form a rectangular
grid in a plane. Choose n very large, and pack the populations closely together to
achieve a good spatial resolution of external inputs. Let external inputs be delivered
to the populations as follows. If an excitatory 'input is delivered to Vi, then in-
hibitory inputs are delivered to all Vk in a small circular region around Vi (non-
recurrent on-center off-surround input field). Suppose that the strength of inhibi-
tion depends on the distance of Vk from Vi' and let the same be true for all i = 1,
2, ..., n. Let a filled triangle be presented to the field. One readily computes that
the populations that are excited by the triangle's vertices receive the largest net
excitatory input, the populations that are excited by the remainder of the triangle's
boundary receive lesser excitatory inputs, and the populations excited by the
deepest parts of the triangle's interior receiv.e the smallest excitatory inputs. If the
arousal level is sufficiently high, this pattern can be preserved as delivered to the
network, apart from the occurrence of normalization. Smaller arousal levels can.
however, either quench the interior of the triangle and contour enhance its boun-
dary, or can quench all but the triangle's vertices.

AROUSAL
INHIBITOR
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We have delivered external inputs via a nonrecurrent on-center off-surround
input field having a limited off-surround to suggest what might happen when the
recurrent off-surround itself falls off with distance; namely, we suggest that if the
triangle excites a recurrent field of this type, then the field can contour enhance the
triangle boundary, especially its vertices, and can then preserve either vertices,
boundary, or the entire contour enhanced pattern. The contour enhancement and
quenching of significant features in other geometrical figures can be similarly
analysed.

Whereas variations in arousal level can yield useful changes in network pro-
cessing in the present context, overarousal can create inefficient network process-
ing in certain anatomies. For example, it can create massive response interference
and an inability to "pay attention" in networks capable of learning long lists
(Grossberg and Pepe, 1971). It can produce "emotional depression" in networks
which describe aspects of the interaction between drives and rewards (Grossberg,
1972b); the depressed state corresponds to a reduction in the network's incentive
motivational response to emotionally charged cues.

The flattening of a sigmoid f(w) at large values of w (beyond the approximately
linear range) can, in principle, cause amplification of noise, if the network is
overaroused. Such a flattening cannot be avoided in vivo because cells have
finite maximal firing rates and other bounded constraints on their operating
characteristics. It is proved below, however, that robust choices of parameters
exist for which the flattening of the sigmoid does not deleteriously affect network
processing. The functionf(w) is determined by such parameters as the distribution
of signal (or spiking) thresholds and of afferent synapses per cell within each
population (Wilson and Cowan, 1972). The above results show that varying the
function f(w) can dramatically change the pattern features that are stored by the
network in STM. Thus, by changing the relative number of cells having a given
threshold within each population, one can change the pattern features that will be
stored by interactions between populations.

A variant of the overarousal theme is embodied by the question: how can such a
network go into seizure? Any operation that creates enough activity in a population
to exceed its quenching threshold will cause the population activity to be amplified
anq maintained in STM. This can be done by creating a sufficiently large excitatory
signal (or other perturbation of the population), or by reducing spiking thresholds
the.reby indirectly increasing noise levels), or by removing inhibitory feedback.
If, for example, such cell populations subserve particular sensory impressions,
such as in the visual cortices, then these impressions can be created in the absence
of external sensory cues if the quenching threshold is exceeded by any other
mechanism. If such cell populations control the elicitation of sensory memories,
such as in the temporal cortices (Penfield, 1958), then such memories, or memory
fragments, can be elicited in the absence of external sensory cues whenever the
quenching threshold is exceeded. These "hallucinatory" effects (West, 1962) can
be created (say) if sensory deprivation or drugs create a reduction in inhibitory
controls, an increase in arousal level, or a decrease in cell spiking thresholds.

The property of normalization creates stable overall activity levels at which the
network normally operates in its suprathreshold range. This property can be used
to accomplish a variety of tasks by hooking up the network as a component in
different overall input processing schemes. For example, it can establish position
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codes for motor control. This use addresses the question: how does one prevent
overshoots and undershoots of orienting responses to localized lights and sounds
using our eyes, head, and neck, when these cues have fixed positions but variable
intensities? An idealized ex~mple is sketched below to convey the basic idea without
a pretense of physiological completeness. Consider a network of n populations
whose inputs differentially excite a given subset of populations in response to a
particular pattern of sensory excitation. For example, suppose that a spot of light
in a given retinal position excites a particular population preferentially. Let each
population send axonal connections to the various eye muscles, and let the
strength of each connection depend on the retinal position represented by the
population. The problem is to construct connections which will guarantee that
the eye moves towards an arbitrary, but fixed, peripheral spot and fixates on the
spot. In this context, normalization prevents undershoots or overshoots in response
to a spot of fixed position but variable suprathreshold luminance by factoring out
fluctuations in total input intensity. The position code for eye movements is then
established by differential relative excitation of populations and by the strength
of their axonal connections to the eye muscles.

In a similar fashion, such a mechanism can, in principle, maintain a fixed
posture in agonist and antagonist muscle pairs. See Figure 5 for an idealized
example. In Figure 5, Vi sends a fixed input to the (abstract) muscle M i' i = 1,2.

The relative sizes of the inputs can be changed by descending inputs Ii that move
the muscles. In the absence of such descending inputs, the pattern of Vi -+ M i
signals is fixed. In the absence of descending inputs, the fixed total output from
VI and V2 can maintain a fixed total muscle length in agonist plus antagonist during
maintained postures. The muscle spindles can prevent external forces from altering
the muscular position imposed by the signals from Vi (Matthews, 1971).

I, 12

Figure S. An idealized mechanism for maintaining a posture in the absence of continual inputs Ii
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Normalization has other uses as well. An analysis of instrumental conditioning
(Grossberg, 1971a; 1972a, 1972b) shows that the total input from sensory process-
ing areas !f1 (such as neocortex) to internal drive processing areas';) (such as
hypothalamus) should ha ve an upper bound independent of the number of sensory
channels which are active at any time. This upper bound is needed to prevent the
firing of cells from~ to.:/ except when they receive a suitable combination of inputs.
See Figure 6. In Figure 6, a sufficiently large input from internal homeostats
designating that a particular drive needs satisfaction and an input from a condi-
tioned reinforcer in .:/ that is compatible with this drive must combine at cells
such as V3 in ~ before these cells can fire. If inputs from .:/ alone could fire V3'
then the network would seek to persistently satisfy an already satiated drive;
hence the bound on total .:/ -+ !!} input.

""

cs

// oU
DRIVE

Figure 6. Two nom1alizers are needed to regulate total input.

The output from f) to fI' supplies "incentive motivation", or a "Go" mechanism
(Grossberg, 1971a; Logan, 1969; N. Miller, 1963), for activating the motor output
at vI( controlled by the conditioned reinforcer in fI'. An upper bound on total
Pi -+ fI' output must also exist to prevent cells, such as V2' in fI' from firing at
unappropriate times and learning irrelevant sensory discriminations or motor
acts at vii. These two upper bounds can be achieved by recurrent on-center off-
surround networks. .

These on-center off-surround networks can perform other important tasks in
addition to guaranteeing the upper bounds. As noted above, the network that
bounds fI' -+ ~ output can also influence which of the cues represented by fI' will
reverberate in STM. .The network that bounds ~ -+ fI' output can also prevent
learning except in response to sensory cues which are compatible with the network's
drive needs at any given time; d., hippocampus (Olds, 1969). Such a network can
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create a sensory-drive heterarchy (Grossberg, I 972b). Consider the situation in
which a student regularly eats meals in spite of the prolonged absence of a sex ual
partner. A positive, but non prepotent drive can control motor behavior in the
presence of compatible sensory cues (e.g., eating food ifhungry), if cues compatible
with the prepotent drive are unavailable (e.g., absence of sexual partner). The
combination of sensory cues and drive level which controls behavior at a given
time can be normalized and stored in STM by the recurrent network. A steady
baseline of incentive motivation to activate compatible motor output can hereby
be achieved. Interruption of ~ -+ .:1' feedback by ablation or other means can
prevent transfer from STM to L TM by preventing the sampling by cells in ..'f' of
the patterns to be learned at .,I( (Milner, 1958).

Normalization can also be used as one stage in the construction of anatomies
whose terminal cells respond only to prescribed features of a sensory pattern
(Hubel and Wiesel, 1968; Grossberg, 1970, 1972c). It does so by averaging away
fluctuations in total network activity and allowing the network to process a
pattern's relative weights. In special cases, this construction yields cells whose
responses exhibit color or brightness constancies (Grossberg, 1972c), sensitivity
to particular velocities (Grossberg, 1970), etc. These examples illustrate that an
on-center off-surround anatomy has properties which take on significant, and
sometimes surprising, meanings when the network is hooked up at different
locations in the overall processing of neural information.

We note in passing that the systems herein are examples of "dissipative struc-
tures" (Nichols, 1971), and contribute to the discussion of how patterns of activity
can develop and be self-sustained within an interactive system.

In Section 2, the equations that define our networks are presented. Section 3
qualitatively outlines the main phenomena to be reported. Section 4 states the
theorems that justify the comments in Section 3. These theorems are proved in the
Appendix. Section 5 compares the equations of Section 2 with those of Wilson and
Cowan.

2. Network equations

In general, each population Vj contains both excitatory (Vj"') and inhibitory (Vj-)
subpopulations of cells. See Figure 7, Consider the excitatory cells Vi+ for definite-
ness, Suppose on the average that the cell sites in Vj+ receive randomly distributed
afferent pathways from within each subpopulation of the network. Let there be bj
excitable sites in Vi+, and let Xi(t) be the number of active sites at time t. Three
effects determine our equations:

(1) Spontaneous decay of actu'ity.. Active sites become inactive at a fixed rate.
Hence Xj(t) decreases at a rate proportional to .~.{t), say aj.~j(t).

(2) Shunting inhibition.. Active sites are inhibited at a rate jointly proportional to
the number of active sites and to the total (randomly distributed !) inhibitory input
I i- (t). This rate is proportional to xi(t)I j- (t),

(3) Shunting excitation.. Inactive sites are excited at a rate jointly proportional to
the number of inactive sites and to the total (randomly distributed!) excitatory
input Ii+(t), This rate is proportional to (bi -xj(t})Ij+(t). In all,

Xi = -(aj + Ij-)xj + (bj -xJlj+, (1)
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Figure 7. Interactions between excitatory and inhibitory subpopulations.

i = 1,2,..., n. The initial data satisfy the inequalities

O~xi~bi, i=I,2,...,n. (2)

Inspection of (1) shows that the inequalities (2) then hold for all t ~ O.
A similar analysis applies to inhibitory cells. Let Yi(t) be the number of active

sites in the inhibitory subpopulation Vi- at time t. Let the total excitatory (in-
hibitory) input to Vi- at time t be J i+ (t)(J i- (t)). Then Yi is governed by an equation of
the form

.Iii = -(Ai + Ji-)Yi + (Bi -yjJi+,
(3)

j = 1,2,. , n, subject to the constraints

0 :S Yj :S Bj, i = 1,2, ,no (4)

The above equations have the same form as passive membrane equations (Hodgkin,
1964; Sperling, 1970; Sperling and Sondhi, 1968); in this context, the inputs
Ii+, Ij-,Jj+ and Jj- represent (average) conductance changes. Thus our analysis
formally applies to suitable interactions either between individual cells or between
cell populations. ,,-

Total inputs are often sums of inputs from other cells (or cell populations) and
external influences. For example, let

(5)

(6)

.
Ij+ = I F;;(,Xk) + Kj+(t),

k=1.
1;- = I Fki(Yk) + Kj-(t);

k=1.
J;+ = I G;;(,Xk) + Lj+(t).k=1 (7)

and

n

Ji- = 2:: Gii(Yk) + Lj-(t). (8)
k=l

The!unctions Kj+(t), Kj-{t), Lj+(t) and Lj-(t) are external inputs. The signal strength
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functionals F~. F kl, Gki, and Gkl determine how mean activities within the excita-
tory and inhibitory subpopulations of Vk are converted into mean excitatory and
inhibitory signals to the excitatory and inhibitory subpopulations of Lt. For
example, one can choose

dv,

or

VkiYk(t -tkJ

Wki + Yk(t -tkJ'
[Fki(yJJ(t) =

L..J
etc.

This paper studies influences of varying signal strength functionals in a setting
that minimizes other effects. Hence we consider the special case in which the
excitatory and inhibitory subpopulations of each population have the same
parameters and receive the same inputs. That is, the excitatory and inhibitory
subpopulations of a given population are indistinguishable with respect to every
input source, and contain the same number of membrane sites constructed from
similar materials. Then al = Ai' bj = BI'

F:1(w) = G:1(w), F;;(w) = G;;(w), Kj+ = Lj+, and Ki- = LI-'

In this situation one readily proves that the differences ('XI -yJ(t) converge
exponentially to zero as t -+ 00, given otherwise arbitrary inputs. Hence the
excitatory and inhibitory subpopulations can be lumped together.

We furthermore impose a recurrent on-center off-surround anatomy on the
lumped model. See Figure 1. This anatomy is made as homogeneous and simple
as possible by imposing the following assumptions:

(1) all numerical parameters are independent of population'
(2) all signals are transmitted instantly; the signal strength functionals are

functions.
These constraints lead to the system .'"

XI = -(A + II-)XI + (B -.xJlj+, (9)

i = 1,2, , n, where

Ii+ = f(xJ + Ki+(t} (10)
and

Xi =-

lj- = L !(.Xk) + Kj-(t}. (11)
k*i

To study reverberations of system (9HII), we always set the external inputs Kj+
and Kj- equal to zero, yi~lding the nonlinear system

A + L !(Xk~ .Xi + (B -xJ!(.xJ, (12)
k*i ~

i = 1,2,.. .,n. Once reverberations are understood, the inputs Kj+ and Kj-
can be switched on during a finite time interval [ -7: 0]. Given prescribed initial
data at t = -7: these inputs will determine a particular distribution of terminal
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values Xj(O), i = 1,2,..., n. The results on reverberations can then predict how the
values Xi(O) will be transformed as t --00.

System (12) says that each state Vi excites itself and inhibits all other states with
equal weight. This situation can arise even if the inhibitory fields of all populations
do not coincide. For example, consider Figure 8. In Figure 8, only the populations

X.--j-

Vii' j = 1,2,..., m, receive excitatory inputs Ii: at times -7: 0]. Before time
t = -7: all populations in the network have returned to their zero equilibrium
values. The inhibitory fields of each excited population Vi inhibit all other excited

J

populations Vi". Inhibited populations which do not receive excitatory inputs can
be deleted from the network, since they start out with essentially zero activity and
are inhibited thereafter. Thus system (12) includes anatomies in which inhibitory
fields of different populations are not the same, but those populations which are
excited by external inputs in a given time interval all inhibit each other. System (12)
also includes cases in which the strength of inhibitory interactions decreases as a
function of distance, if we assume that the excited populations are sufficiently
close to each other that their mutual inhibitory interactions are approximately
equally strong. Effects of inhomogeneous anatomies on widely separated popula-
tions will be considered in another place.

The results derived for system (12) carryover, with small modifications, to the
more general system

ii = -A(Zi -U) + (V -zJIj+ -(Zi -W)Ii- (13)

where W ~ U < ~ Ii+ = F(zJ, and Ii- = L*i F(Zk)' Passive membrane equations
generally contain the extra parameters U and ~ Defining Xi = Zi -~ B =
V -~ C = A(U -W), andJ(xJ = F(W + xJ, (13) becomes

A + L J(Xk)] Xi + (B -xJJ(.~J + C. (14)
k*i
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System (14) differs from (12) only in the terms C ~ 0, which act like a uniformly
distributed tonic input. These tonic terms tend to uniformize the distribution of
random noise across populations (compare Theorem 8). The uniformizing effect
can be overcome by sufficiently large external inputs (compare Theorem 9).
The size of external inputs needed to drive the total activity x(t) = Li= 1 '~i(t)
above the uniformizing range depends on the size of C, and in turn on the size of
U -~ The term U -W is generally much smaller than B = V -~ which is
the maximum possible value of x(t).

L J
3. Summary of results

We will study how the choice of f(w) influences the answers to two main ques-
tions:

(i) Under what circumstances is the reverberation persistent? transient?
(ii) How is the initial pattern of activity, that was laid down by previous external

inputs, transformed as time goes on? Is there a limiting pattern of activity, or
does the pattern oscillate indefinitely?

These concepts are made precise by the following definitions:
DEFINITION 1. The total activity is the function x = L7= 1 Xi.
DEFINITION 2. The ith pattern variable is the function

X -Ii = XiX.

DEFINITION 3. The reverberation is persistent if there exists an e > 0 such that
x(t) ~ e for all t ~ O.

DEFINITION 4. The reverberation is transient if limt-aJ x(t) = O.
If the limit limr-aJ Xj(t) exists, it will be denoted by Qi. If the limit limr_~ x(t)

exists, it will be denoted by E. Below we define the major limiting distributions and
tendencies that will arise in our discussion, and thereby set the stage for this
discussion.

DEFINITION 5. The limiting distribution is fair if

Qi=Xi(O), i=I,2,...,n.

DEFINITION 6. The limiting distribution is uniform if

Qi=!' i=I,2,...,n.n

DEFINITION 7. The limiting distribution is locally uniform if pi} = 11m, j =
1,2, ..., m, where 1 < m < n.

DEFINITION 8. The limiting distribution is 0 -I if Qi = 1 for some i.
DEFINITION 9. The limiting distribution is trivalent if each Qi assumes one of

three values.
.DEFINITION 10. The limiting distribution exhibits quenching if Qi = 0 for

Jj = 1,2,..., m.
DEFINITION 11. Let M(t) = max{X;(t):i = 1,2,..., n} and m(t) = min{X;(t):i =

1,2,. .., n}. The limiting distribution exhibits contour enhancement if 1\1(t) ~ 0 and
rillt) ~ 0, and neither of these derivatives is identically zero.

DEFINITION 12. The limiting distribution is uniformized if 1\1(t) ~ 0 and riI(t) ~ 0,
and neither of these derivatives is identically zero.
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DEFINITION 13. The reverberation is normalized if there exists a unique positive
E1 suchthatE = E1.

The following paragraphs illustrate these definitions.

(A) Fair Distribution. Suppose that f(w) is a linear function of w, as in Figure 9.
Then Xj(t) is constant, j = 1,2,..., n. Moreover, the reverberation is either

transient or normalized. The conditions under which the reverberation is persistent
are independent of the initial data Xj(O). In other words, given persistence. the
network can preserve an arbitrary pattern indefinitely. Moreover, if x(O) is too
small, the network will amplify the total activity until E 1 is reached, whereas if
x(O) is too large, activity will dissipate until E 1 is reached.

f(w)

PATTERN BEFORE PATTERN AFTER

Figure 9. Fair distribution.

The fair signal function unfortunately amplifies noise in the absence of signals
as vigorously as it amplifies signals.

The existence of normalization in recurrent networks constrains the possible
sensory codes that these networks can sustain. Measurement of the absolute sizes
of spiking frequencies given off by a cell, or cell population, in a recurrent network
can be misleading. A code based on relative sizes of spiking frequencies across
populations focuses on pattern transformations. To determine such a code, an
experimentalist must simultaneously measure from a sample of populations.
Fluctuations in signals from a single population need not be due to changes in
X i(t), as this example shows; only x(t) need be changing. In some of the examples
below, both x(t) and Xi(t) can change through time, although the limits E and Qi
are ultimately approached, with E determined independently of the pattern Qi.
Thus, later readings of the relative spiking frequencies are often functiqnally more
revealing than readings which are taken immediately after the offset of external
input pulses. Macrides and Chorover (1972) describe results in the olfactory bulb
which are in the spirit of this approach. The olfactory system is known to contain
recurrent interactions (Freeman, 1969).

Previous papers (Grossberg, 1971b, 1972a) show that the learning capabilities
of various networks are compatible with such a relative code. These networks can
learn the pattern of relative excitation across an ensemble of cells, or cell popu-
lations, by classical or instrumental conditioning. They can reliably reproduce the
learned pattern with an absolute intensity that depends on a complex interplay
of various factors.

Deviations from a fair limiting distribution are due to whether f(w) grows more
slowly or more rapidly than linearly for various values of w; that is, whether the
function g(w) = w- 1 f(w) is monotone decreasing or increasing.
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(B) 0-/ or locally uniform distribution. Suppose that f(w) grows faster than a linear
function, as in Figure 10. Again the reverberation is either transient or persistent.
It is not necessarily normalized, however, unless g(w) is convex. If the reverbera-
tion is persistent, then the limiting distribution exhibits an extreme form of contour
enhancement and quenching whenever the initial pattern X ;(0) is nonuniform:
All pattern variables such that X ;(0) < M(O) satisfy Qj = 0, while the maximal
pattern weights (Xj(O) = M(O)) receive all the weight asymptotically.

w PATTERN BEFORE PATTERN AFTER

Figure 10.0-1 Distribution.

In this example, when noise alone is present in the network, it continually
dissipates (the reverberation is transient). If a sufficiently energetic pattern is
imposed upon the noise, then the highest peaks of the pattern actively suppress
both the noise and lesser pattern weights. Simultaneously, these peaks are ac-
centuated, and the total energy of the pattern approaches a positive limit, which is
unique if g(w) is convex.

(C) Uniform distribution. Let f(w) grow slower than linearly, as in Figure 11.
Then pattern uniformization occurs. The reverberation is either transient or nor-
malized. In the latter case, the limiting distribution is uniform.

w PATTERN BEFORE

Figure 11. Unifomt distribution.

PATTERN AFTER

Pattern uniformization can have unfortunate consequences in the presence of
noise. Then all states which receive either external inputs or random noise will
asymptotica.lly have equal importance.

Functions f(w) exist which combine all the three tendencies listed above; for
example, the sigmoid function in Figure 12. S~ch a function f(w) gives rise to a
quenching threshold. Uniformly distributed tonic signals produce yet another
uniformizing region. This region tends to uniformize the distribution of noise
across populations, and thus to reduce the probability that noise can accumulate
in a given population, and thereby create a persistent reverberation in the absence
of signals. See Figure 13. Section 4 provides a rigorous discussion of how these
regions interact to determine limiting distributions that are combinations of 0-1,
fair. and uniform tendencies.
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f (WI

w

0- I FAIR UNIFORM

Figure 12. Sigmoid signal function.

f(wl

w
UNIFORM 0-1 FAIR UNIFORM

Figure 13. Tonically based Sigmoid signal function.

Xi =-

4. Mathematical results

This section lists results whose proofs are given in the Appendix. First the system

A + L f(XJ ] 'Xi + (B -xJf(.xJ, (12)
~ i~i

i = 1,2,..., n, withf(w) continuous and nonnegative, is transformed to show how
the total activity x = I;= 1 Xi and the pattern variables Xi = XiX -1 interact.

Below we assume that x(O) and all Xi(O) are positive to avoid trivialities. These
assumptions imply that .x(t) and all X i(t) are positive for t ~ O. If some X i(O) = O.
then X i(t) = 0 for t ~ 0, since Vi receives only inhibition in this case. Such a Vi can
be deleted from the network without loss of generality. The notations g(w) ==
w-lj(w), gi =. g(Xk)' and G = L;= 1 X"gi will be used below.

PROPOSITION 1. (Pattern Variables). The following equations ~old.

n

Xi = BXi L Xi(gj -gk), (15)
i=l

= 1,2,...,n,and

(16a)
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or alternatively

x=xG(B-AG-t -x). (16b)
Alternatively, (15) can be written as

Xi = BXi(gi -G)
( 17)

or as
n

Xi = BXj L Xk[g(XjX) -g(Xkx)]. (18)
k=l

Remarks.. (1) By (15), the influence of Vk on Vi' namely X jX k(gj -gJ is the nega-
tive of the influence of Vj on Vk, namely XkXi(gk ~ gJ. Thus the interactions
between pattern variables are antisymmetric.

(2) By (17) and (16a), the direction of change of each Xi and x depends on the
size of gi andA/(B -x), respectively, compared to G = I~= 1 X~(Xkx). which is a
weighted average of all pattern variables and x. For example, suppose that g(w)
has the graph in Figure 14. If gj ~ G, then by (17), Xi ~ o. This is depicted in
Figure 14 by the arrows facing right. If gj < G, then X j < 0, which yields arrows

g(w)

Figure 14. Convex g(w) with fair intermediate range.

facing left. The collision of arrows to the right tends to produce a uniform distribu-
tion at large values of Xi. The parting of arrows to the left tends to produce
contour enhancement of intermediate Xi values and quenching of small (for

example, noisy) Xi values. The mathematics is complicated by the fact that an
increase in Xi does not necessarily imply an increase in Xi' since .x can be de-
creasing rapidly. In particular, even if Xi is increasing rapidly, X can be decreasing
so rapidly that Xi is dragged down into a region where Xi begins to decrease.
Thus the interaction between total activity and pattern variables can produce
oscillations, as Proposition 4 illustrates. The results below study how these
oscillations -can be controlled.

PROPOSITION 2. (Preservation of Order). Suppose the states Vi are labelled in
such a way that X1(O) ~ X2(O) ~ ...~ Xn-l(O) ~ Xn(O). Then X1(t) ~ X2(t) ~
...~ Xn- I(t) ~ Xn(t) for all t ~ O.

Remark: Consider the pattern depicted in Figure I5a. Proposition 2 says that
no matter how the relative sizes of pattern weights are transformed, say as in
Figure I5b, their ordering is preserved. This property does not hold in arbitrary
anatomies. Henceforth, states will be labelled so that the inequalities X 1 ~ X 2 ~
Xn-1 ~ Xn hold.
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QUENCHING
THRESHOLD -

PATTERN BEFORE

(a)

PATTERN AFTER

(b)

Figure 15. Preservation of order.

The next proposition describes an important condition under which limits of
pattern and total activity variables always exist.

PROPOSITION 3. (Pattern Limits and Energy Normalization). Let all Xi' i = I,
2,..., n, vary in a region where g(w) is monotonic. Then all the limits Qi =
lim/_a) Xi(t) and E = lim/_a) x(t) exist. Suppose g(w) is monotone decreasing or
constant. If g(O) ~ AIB, then E = O. If g(O) > AIB, then E equals the unique
positive solution of the equation

"
L Q~(Q,.x) =

k=l
(19)

A

B-x

Suppose g(w) is monotone increasing. E can equal zero only if g(O) < AIB. If
E # 0, then E is a positive solution of (19). For general monotone increasing g(w),
(19) can have any number of solutions. If however, g(w) is convex (as in Figure 9)
then (19) has a unique positive solution if g(O) ~ AIB and two positive solutions if
g(O) < AI B. The smaller solution is unstable; the larger solution is stable.

Remarks: (1) Ifg(w) is increasing, then (19) can have any number of solutions
unless g(w) is convex. In physical situations, convexity (or near convexity) is a
likely property, since f(w) is often sigmoid (Kernell, 1965a,b: Rail, 1955a,b,c;
Wilson and Cowan, (1972) and the simplest g(w) that can achieve this shape is
convex, as in Figure 14. (2) The case g(O) ~ A,IB is undesirable, since even small
noise values can be amplified and preserved indefinitely by the network. The
inequality g(O) < AI B allows noise to dissipate, but sufficiently large signals in the
noise can persist. Theorems 2 and 4 describe systems in which signals can quench
noise, and can, use the noise to accentuate the contours of the pattern that is
imposed on the noise. This contour enhanced pattern can then be preserved
indefinitely by the network.

The following results show how particular choices off(w) determine the limiting
distribution Qi' The crucial fact is whether f(w) grows faster or slower than
linearly, or linearly, for particular values of w; that is whether g( w) is increasing,
decreasing, or constant. There exist f(w)'s with the followi~g property: given a
fixed initial pattern X.{O) and fixed f(w), more than one limiting pattern Qi can
occur. The particular pattern Qi that occurs depends on x(O), or the initial "arousal"
level: varying the arousal level can change the type of information processing
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that occurs. For example, one can either preserve a given pattern orin.duce contour
enhancement and quenching of this pattern, simply by varying x(O):

THEOREM 1. (Fair Distribution). Let f(w) = Cw for some C> O. Then Qi =
Xj(t) = Xj(O) for all t ~ O. Let D = BC -A. If D > O. the reverberation is per-
sistent. If D ~ O. the reverberation is transient. In fact, if D ~ 0,

i

Xj(t) = Xj(O) exp(Dt) ,-_.
1 + x(O)CD- I [exp(Dt) -1]'

whereas if D = 0,

Xj(O)x/(t) = 1 + X(O)Ct" \LI}

In particular, if D > 0, then lim,"",«) x/(t) = X/(O)(B -AC-I), and thus energy
normalization occurs as t -+ 00.

Remark: Given a linear f(w), if any pattern can reverberate persistently, then
even small values of noise will reverberate albeit with small relative weight in.the
presence of large signals. This can be a liability in such systems, since in the absence
of signals, noise will be amplified, and wiil receive a large relative weight.

The next theorem shows that if f(w) grows faster than linearly, then noise can
dissipate, and large values can quench small values before they are amplified and
maintained. To discuss this situation, we again use the notation M(t) = max {X i(t):
i = 1,2,...,n}andm(t) = min{X/(t):i = 1,2,...,n}.ByProposition2,ifX/(to) =
M(to), then X/(t) = M(t) for all t ~ to. Similarly for m(t).

THEOREM 2. (0-1 Distribution). Let f(w) = wg(w), where g(w) is continuous,
nonnegative, and strictly monotone increasing. If M(O) = m(O) = l/n, then M(t) =
m(t) = l/n for all t ~ O. Otherwise, M(t) is monotone !ncreasing faster than any

function X/ < M, and m(t) is monotone decreasing. Suppose moreover that the
reverberation is persistent. (It is if g(O) ~ A/ B, or if g(O) < A/Band x(O) ~ x.,
where x is the smaller root of

A(n -K)M(O)g(M(O)x) =
B -x

(g convex) and XK(O) < M(O) = XK+l(O).) Then the limiting distribution is 0-1
or locally uniform, and satisfies Ql = Q2 = ...= QK = 0 and QK+ 1 = ...=
Qn = (n -K)-l.
A wide variety of functions are special cases of Theorem 2; for example,

CX)

f(w) = L akwk
k=l

(22)

with all ak ? 0 and 0 < Lw=2 akBk < 00;

(23)

with C, D, E > 0; and

f(w) = w(A + Bw + C~2~
D + Bw + CW2 (24)

with A, B, C, D > 0 and D > A.
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'. if f( w) increases 'slow.er than linearly, then the opposite tendency occurs; the
initial 'distribution is uri~formized.

THEOREM 3. (Uniform 'Distribution).. Letf(w) = wg(w), where g(w) is continuous,
noI:lnegative, and. strictly 'monotone decreasing. Then the function M(t) is mono-
tone decreasing and m(t) is monotone increasing. Suppose moreover that the
reverberation is persistent (that is, g(Q) > A/B). Then all Qi = l/n, and E equals
the uhiql!e positive solution of

g(~) = (25)
A

B-x

Some special f(w)'s are listed below, for definiteness. An important class of
functions is defined by

w
f(w) = ,00 b w"

L...k=O k

where bo > 0, bk ~ 0 and 0 < L~=1 bkBk < 00.
For example, :

Cw
D+w

with C, D > 0; or

(26)

with C, D, E > 0 (contrast (23)); or

f(w) = r -.." ,Cwexp(-Dwm)

with C, D, E, F > 0 and m,n ~ 1. .
Remark: Not all of the above f(w)'s are monotonic; nonetheless Theorem 3

holds. For example, f(w) in (26) increases at small values of wand decreases to
zero at large values of w.

Theorems 1-3 suggest how to construct functions f(w) that will combine 0-1,
fair, and uniform tendencies. For example, define a continuous, positive g(w)
that is strictly increasing at small values of wand is strictly decreasing at large
values of w. Theorems 2 and 3 suggest that 0-1 and uniform tendencies will be
included in this way. A "fair" intermediate region can be constructed by choosing
g(w) constant (or, for all practical purposes, approximately so) between its in-
creasing and decreasing values, since thenf(w) is linear in this range. See Figure 14.
More complex combinations of these three tendencies can be included by defining
a g(w) that oscillates finitely many times. This procedure can also be reversed.
Given a function f(w), define g(w) = W-l f(w) and test where g(w) increases,
decreases, and is constant to get an idea of f(w)'s 0..:1, uniform, and fair tendencies.
The next theorems discuss various combinations of these possibilities. First we
consider an f(w) that combines 0-1 and fair tendencies. In this situation, three
possibilities occur. The reverberation can be transient or persistent. If the rever-
beration is persistent, the limiting distribution can be fair; in both cases the limiting
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distribution can combine contour enhancement and quenching tendencies. The
choice between fair'or contour enhancing and quenching tendencies can be con-trolled by x(O). .

.THEOREM 4,. (Fair, or Contour Enhancing and Quenching). Let f(w) = wg(w),
where g(w) is continuous, non-negative, and strictly monotone increasing for
0 ~ w ~ x('r)~and g(w) = C for w ~ XII). (See Figure 16). Then all limits Qj and E
exist. The function M(t) increases monotonically and no slower than any X j < M,
and the function m(t) is mQnotone decreasing. If xl(t) ? XII), then all Xj(t) = O.
If gj(t) = gjt) = C, then (d/dt) (X jX j- I )(t) = Q. I

L..J

XCI) w

Figure 16. Fair, or contour enhancing and quenching.

Suppose moreover that the reverberation is persistent. (It is under the conditions
given in Theorem 2.) Define K by X K(O) < M(O) = X K + 1 (0). Then either Qi = 0
or g(QjE) = C, i = 1,2,..., K, and Qi = 1/(n -K) or g(QiE) = C, i = K + 1,...,
n. In part.!cular, if

X L(O) min( B -D:~fto)C, X(O)) ~ x( II,

then X j ~ 0 and (X jX j- I r = 0 for t ~ 0 and i,j ~ L. If

XI(O)min(B -AC-I,x(O)) ~ X(I),

then Qi = Xi(t) = X.{O) for t :? 0 and i = 1,2,..., n. If however

X l(O)(B -AC-1) < X(l),

then Ql = O. If

Xi(t;)(B -AC-1) < XIII

for some su'fficiently large time t = ti' then Qi = O. Moreover if

B -AC-1 < Nxll) (31)
with 1 < N ~ n, then QI = Q2 = ...= Qn-N+ I = O.

If the limiting distribution is 0-1 or locally uniform, then E satisfies the equation

g(Q".'t) = r- (32)
A

Unot, then E = B -Ac-1
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Remarks:
(1) Condition (27) provides a condition under which contour enhancement

occurs without quenching all but the highest pattern weight.
, , "

(2) Condition (28) shows that all patterns whose weights satisfyXj(O) ~ 01 can
be preserved by choosing the initial arousal level x(O) sufficiently high if ()I =

x(')(B -AC-1)-1. Condition (29) shows that ()I is a threshold value for preserving
patterns, since if (29) holds, then some pattern quenching and contour enhance-
ment occurs. If the inequality Xj < () 1 persists, then by (30), X j is treated as noise
and is quenched. " I

(3) Condition (31) shows that the amount of patt~~n quenching can be regulated
by a judicious choice of numerical parameters. For example, if N = 2, then the

network "chooses" the dominant state and quenches all others.
(4) Energy normalization occurs if the reverberation is persistent, and yields

the same value B -AC- 1 whenever some nonmaximal states are not totally

quenched. Thus, if an initial pattern contains enough energy to guarantee per-
sistence, then the pattern will be contour enhanced, and the contour enhanced
pattern will be normalized and preserved if} short term memory as long as it is
needed. I

(5) The fact that (d/dt)(XjX; I)(t) = 0 if gi(t) = gJ{t) = C has an important

effect on the asymptotic slope of patterns as they are distributed in space. Whenever
gj = gj = C, the relative growth rates of X j and X j remain fixed. If this happens,
then the slope of a pattern in space is steepened as more pattern quenching occurs,
but pattern shape of unquenched states is otherwise unchanged. Not all indices i
are equally likely to satisfy the equation gj = C, however. Since Xl :S X 2 :S
...:S Xn-l :s Xn, the identity gn = C holds most often, gn-1 = C holds next
most often (and only if gn = C), and so on. If gi < C while gj + 1 = C, then (d/dt)

.(XiXj~\) < O. The relative growth rate of Xj+l as compared to that of Xj is
increasmg. This creates effects such as those in Figure 15. Note that straight lines in
Figure 15a become curved inwards in Figure 15b due to the greater relative growth
rates of larger pattern values.

The next theorem describes the possibility of mixing fair and uniform tendencies.
THEOREM 5. (Fair or Unijormizing). Let f(w) = wg(w), \\.here g(w) is continuous,

nonnegative, and g(w) = C for 0 :s w :s X(2) whereas g(w) is strictly decreasing for
w > X(2). (See Figure 17). Then all limits Qi and E exist.

The function M(t) IS monotone decreasing, and m(t) is monotone increasing.
If xn(t) :S X(2), then all k i(t) = O. If gdt) = gJ{t) = C, then (d/dt) (X jX j- 1 )(t) = O.

0 (w)f (w)

X(2)X(2) ww

Figure 17. Fair or uniformizing.
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Suppose moreov~r that the reverberation is persistent (that is, g(O) > AI B).
Then either all Qi ~..l/n Or all g(QjE) = C.l~ the former case, E equals the uniqueroot of ..

L.J

g(::) =~. I
n B-x

,

In the latter case, E = B -AC-1. In particular, if

X,,(O) max(B -AC-1,,;x(O) ~ X(2), I

then Qi = X i(t) = X ~O) for t ~ 0 and i = 1,2;.',:, n. If however

X1(O)E > X(2), (

where E is the unique root of (25) and g is convex, then all Qi = I/n. Indeed if

E > nx(2) f

and g .is convex, then all Qi = l/n.
Remarks: As in Theorem 4, there is1a condition, namely (33) guaranteeing

that all patterns that satisfy a given constraint will be preserved. In this case, if all
X;(O) ~ 82 = x(2){B -AC-1)-I, and the initial arousal level is sufficiently small,
then the patterns will be preserved. Energy normalization also occurs. By contrast,
a proper choice of numerical parameters can guarantee a uniform limiting dis-
tribution.

Now we consider functionsf(w) that combine 0-1, fair, and uniform tendencies;
for example, sigmoid functions. See Figure 18. The influence of these f(w)'s on
the limiting distribution depends on particular choices of the parameters x(O)
defined by g(xo) = g(B), X(I) = min{w:g(w) = C}, and X(2) = max{w:g(w) = C}.

Before making such choices, we note the following proposition.

f (w) g (VI)

I 1",\

--l l-~
I I I

-' I I I I ~

xlO) XII) X(2) ew

f (w) 0('-)

X(I) x(O) X(I) B

Figure 18. Important numerical parameters in g(w).
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PROPOSITION 4. Let f(w) = wg(w), where g(w) is. '.;nuous, nonnegative,

strictly monotone increasing for 0 ~ w ~ XII!, equal t. .!..,... -:'1) ~ w ~ X121, and

strictly monotone decreasing for X12) ~ w ~ B~ If all Ii: ,(:- .;;t, then the limit E
also exists. Moreover there exists a K ~ 0 such that ~ .' i .;; 1,2,..., K, and
g(QjE) : g(QjE) if ;,j > K. Ifg(O) ~ AjB and g is coriVI;.\, then E is the unique

solution of

Ag(Q"x) = -
B .., ,-x

Ifg(O) < AiB and g is convex, then E equals 0 or one of the two solutions of (32).
The smaller solution is unstable; the larger solution is stable.

In particular, if XC!) = XC2) in Figure 13, then there exist integers Land M,
L ~ 0, M ~ 0, L + M ~ n, such that

0 if i ~ L

C; .

(32)

LJ

Qj = If L + ;..;.;~L+Nf!v!; + (n -L -!v!)1]

'1
if L+IW<i~1:

L M; + (n -L -I\'f)rr

where ~ and '1 satisfy g(;) = g('1). Moreover E = 0 vr ~."f; + (n -L -.\f)'1J.
Remark: The proposition shows that, if a limiting distribution exists. then.

supposing that .~(I) < .~12). it is either fair (gj = C for i = 1,2,..., nand c ~ 0). or
uniform (Qi = Qj' i,j = 1,2,...,n), or 0 -I(K = n -;). or contour enhancing
and quenching (0 < K < n -1 and g(QiE) = C, i > K), or trivalent (as in (361)
If .~(I) = .~(21, then only trivalence is possible, including the uniform, 0 -1. or

locally uniform cases. The existence of values ~' for which J(~') is linear sub-
stantially enriches the limiting possibilities.

Belov,' v,'e constrain .~(Ol, .~( I), and .~(2) to guarantee suitable subclasses of limitir,~
possibilities. These constraints will be relevant to the follov,'ing observations.
The slope of many realistic signal functions f(\~'), such as sigmoid functions. even-
tually becomes horizontal. if only because the cells in a population have maximl1n1
response rates and other finite properties. The above results show that the flatten-
ing of f(\~') can yield a uniform distribution. In the presence of noise, a uniformizing

J(~') imparts equal weight to essentially all states t.j. whether they are excited b:..
signals or not. aft~r sufficient reverberation has taken pl:lce. The flattening of
f(\~') can thus be disadvantageous r,:~ffective signal processing. We will shov,' that
suitable choices of .~(Ol, .~( II. and :-.i,::; !.:an prevent uniformization even if the maxi-
mum value B of .~(t) exce~ds .~I:I and'therefore lies in the uniformizing range,

THEORE~f 6. Let g(\~') be continuous, nonnegative. strictly monotone increasing
for 0 oS ~' $ :",), equal to C for .~II' .:; ~. ~ .~(:), and strictly monotone decreasing
for X(2) ~ ~' ~ B.

(I) Fair: If

/361

.\ 1(0) min(B -AC-I, .'t(0)) ~ .'tlll (3i
and

.\",,(0) max(B -AC- I, .~(O)) ~ ."t(;). /38)
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then Qi = Xj(t) = Xj(O), i = 1,2..:'.,n, andx(t) approaches E = B:- AC-I
monotonically. :

(II) Fair, or Contou~Enhancing and Quenchil;1g.. Let
': I

'..1 xIO'+xI2.!?max(Bc:.AC"I.x(O»), (39)

hold throughout this section. Then all Qi exist, M(t) is monotone increasing faster
than all X; < M. and m(t) is monoto~e decreasing. The limiting distribution is
either fair. 0-1. locally uniform (only if several X ;(0) = M(O)), or contour en-
hancing and quenching; no uniformization occurs. If moreover. for some L < n,

" I

XL(O) min( B -!7:~4~o)C"X(O)) ~ XII), (27)

then j( j ~ 0 and (X jX i-I)' = 0 for t ~ 0 and i, j ~ L, so that contour enhancement
occurs. If

XI(O)min(B -AC-I,x(O)) ~ XII),

then Qi = Xi(t) = Xj(O), for t ~ 0 and i ,:;= 1,2,..., n. If, however, the reverbera-
tion is persistent, and .

B-AC-l<N.\"(11

with 1 < N S nand X,,-.'i+l(O) < X,,(O), then QI = Q2 =
that quenching occurs. If

= Q.-.V-I = 0, so

(40)
X I(O)(B -AC-1) ~ XIO).

the reverberation is persistent, and XI (0) < X .(0), then Q 1 = o. If

Xi(tJ(B -" AC-1) ~ x(O) (411

for a sufficiently large t = ti' then Qj = 0 if.¥ j(tJ < X .(tJ and the re\"erberation is
persistent. If .x( 1) = .X'1) and the reverberation is persistent, then the limiting
distribution is 0-1 if X.(O) > X.-1(O) and locally uniform otherwise. -

(III) Qut'nching: If

,'( .(0) max(B -AC-1, .'(0)) ~ XIOI, (J,21

then X 1 ~ 0 for t ~ O. If moreover X 1(0) < X,,(O) and the reverberation is per-
sistent, then Q 1 = O. If (41) holds for ti sufficiently large and i < n, then .t j ~ 0 for
t ~ tj, and Qi = 0 if the reverberation is persistent and ,'( i(tj < X,,(t.).

(IV) Quenchi1,1g: If
,

(/I -.l).'t'QI + Xl:) > max(B -:- AC-1, .'t(O)), :.+3 )

then j( i :5 0 for t 2:: O. If moreover Xl (0) < X .(0) and the reverberation is per-
sistent, then Q 1 = o.

(\1 Uniformi:ing: If for some K.O < K < n.

'- ",~ (/1 -K + 1).~(2) ~ max(B -AC-I,.~(O») (4-+)
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and

XI(O)min(B -r~~4JO)c'X(O») ~ X(I), (45)

then all Qi exist with QI < I/n < Qn, even though Xi ~ 0 and Xn :s; 0 for t ~ O.

Remarks: (I) Theorem 6 provides readily computable conditions under which a
given f(w) will not uniformize or contour enhance. For example, consider the
sigmoid function

DW2f(w) = £+-;I'

By (39), if

E + Bft > B max(x(O), B -2AEI!2D-I),

then uniformization is prevented.
(2) The results in (II) hold for large t, rather than all t ~ 0, if x(O) is replaced by

X(3), which is defined by g(X(3)) = g(B -AC-1). In making this definition, we
assume that X(2) < B -AC-1. Otherwise all Xi will fall into the monotone
nondecreasing range of g(w) for large t, and Theorem 4 holds for large t.

.Although Theorem 6 provides practical constraints on x(O), X(I), X(2) that guaran-
tee functionally useful behavior, it has not yet been proved in general that all Qi
exist in the absence of constraints. Such a theorem would be of particular interest
in pathological conditions where x(O), X(I), and ;x<2) might deviate from normal
values. Can sustained oscillations occur in pathological cases? Interaction between
x and (X l' X 2' ..., X n) can produce oscillations, but whether these oscillations
always dissipate remains to be proved. Such an oscillation is described in the

following proposition.
PROPOSITION 5. (Oscillation). Let

XI(O) > X(2) > B -AC-1 > 0 (46)

and suppose that X 1(0) < Xn(O). Then X 1(0) > 0 and Xn(O) < 0, but asymptotically
X 1 ~ 0 and Xn :?; 0 with X 1 <:: 0 and Xn > 0 unless all gi = C.

An important class of functions f(w) such that f(O) = 0 are those that can be
written as ratios of absolutely convergent power series. Given such an j(w), it is
instructive to expand (15) in the form

n

Xi = L Lik(Xi -Xk), (47)
k=1

and to note the influence of the coefficients Lik on the limiting distribution in
special cases. Thus we introduce the class {R. = {I} of functions defined by f(w) =
N(w)D-1(w), such that

oc

N(w) = I amwm ~ 0,
m=!

<X)

D(w) = L bmw'" > 0,
m=O

00 00

L lamlBm < 00, and. L IbmlBm < 00.
m=l m=O

Introducing the notation N j = N(.-cJ and Dj = D(.-cJ, we find the follo~.ing theorem.
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THEOREM 7. If f(w) is in~, then

n

Xi = L Lik( x i-X k)
(47)

with Lik = UikJ-ik, where

(50)

Ujk = BxXjXk(DjDJ-1,

a)

~k = L: am Wm(Xj, xJ,
m=1

m-2
Wm(Y, z) = L: br(yz)'Sm-r-1(Y, z)

r=O

a)

-L: br(yz)m-1Sr-m+I(Y,Z),
r=m

and

S,(y, z) =

0 ifp=O

1 if p = 1

yP-1 + yp-2z + ...+ yzp-2 + Zp-1 ifp> 1.

-Thus if Lik ~ -£, k # i, for some £ > 0, then the limiting distribution is uniform.
Suppose that

LjjX j-r ~ e (51)

for some e > 0, r ~ I, and all i andj such that Xj(O) = M(O) > X J{O). If M(O) > t,
then the limiting distribution is 0 -I. If Lik ~ L jk whenever X j = M > X j and
k ;= i, j, then the limiting distribution is 0 -I or locally uniform even if M(O) < t.

Remark: Theorem 7 shows that the limiting distribution is determined essen-
tially by the sign of each Lik' and thus by the signs of the summands Wm(Xj, Xk)' In
(50), the summands Wm(Xj, Xk) can be composed of positive and negative terms.
Herein lies the main sources of mathematical difficulty in studying arbitrary
functions in fJf..

Uniformly distributed tonic signals (as well as uniformly distributed excitatory
tonic inputs) tend to create a uniform limiting distribution. For example, we have

THEOREM 8. (Tonic Signals Uniformize). Let

f(w) = K + wg(w), K > 0 (52)

where g(w) is a continuous, nonnegative, monotone nonincreasing (not necessarily
decreasing) function. Then the limiting distribution is uniform and energy nor-
malization occurs, such that E is the unique positive solution of

nBK ( x )A + nK = ~ + (B -x)g ~ .(53)

Remarks: (1) Uniformly distributed tonic signals can uniformize the distribu-
tion of random noise;- -and thereby prevent fluctuations in noise from unduly
favoring any ~n population of cells. A price is paid for this additional stability,

~
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however: the tonic level of activity never dissipates. This activity can be prevented
from sending signals to cells further downstream by interpolating a nonrecurrent
on-center off-surround field between the recurrently interacting populations and
the cells downstream (Grossberg, 1970).

(2) Functions f(w) exist that are not manifestly of type (52); for example, the
linear fractional transformations

A + Bwf(w) = C + Dw

with A, B, C, D > 0 and BC ~ AD are of type (52).
(3) If in (52), g(w) is strictly monotone increasing, then the tonic signal K and the

phasic signal wg(w) create opposing limiting tendencies. Given small values of w
(or of x(t»), uniformization is favored, whereas for large values of w, contour
enhancement is favored.

The following theorem illustrates this competition between uniformizing and
contour enhancing tendencies in a special case.

THEOREM 9. (Tonic vs. Phasic Signals). Let n = 3 and

f(w) = ao + a1 w + a2w2 (55)

with ai > 0, i = 0, 1,2. Choose Xj(O) = xJ{O) and let Ybe the common value of Xi

and X j at every time t. Then

sign Y = sign(t -Y)(Y -U)(Y -V), (56)

where

U = lil + Jl -8aoai1x-2] (57)

and

v = ![I -.jl -8aoail.~ -2]. (58)

Thus if.~ ~ v'8~' the system tends towards a uniform distribution. In the
limiting case x = 00, the system tends towards a 0 -I distribution with Q3 = I
if Y:;: ~d towards a locally uniform distribution with QI = Q2 = t if Y> j.

If .j8aoai1 < x ~ B, the system exhibits mixed 0 -I and uniform tendencies.
Figure 19 illustrates the flow patterns that can be achieved given various values

of x(t). A point on the triangle codes particular values of the three functions X I' X 2'
X 3. The system is at the ith vertex JI; of the triangle at time t if X i(t) = I. The system
is at the midpoint of the edge Li opposite JI; at time t if t = X j(t) = X k(t), where
{i,j,k} = {1..2,3}. Note that XJ{to) = Xk(to) implies XJ{t) = Xk(t) for t ~ to.

Thus if the system starts out on the line through JI; and the midpoint of Li, then
it remains on this line. The distance from JI; on this line increases as Xi decreases.
All three bisecting lines interact at the point where X I = X 2 = X 3 = j. Arrows
along these lines denote the direction in which the system flows given various
values of x. Closed circles denote stationary points of the system (that is, points
where all j( i = 0).

Consider Figure 19a for definiten~ss. Note that distributions close to the
uniform distribution are attracted towards the uniform distribution; distributions
a little further away are attracted towards the 0-1 distribution but never reach it;
and distributions close to the 0-1 distribution tend to be uniformized somewhat.
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Figure 19. .Interaction of un iformi zing tonic signal and contour enhancing quadratic signal

Thus there are two uniformizing regions separated by a contour enhancing
region. In Figure 19b, this situation is reversed: patterns close to the uniform
distribution are contour enhanced, whereas those close to the 0-1 distribution
are uniformized.

The structure of these regions becomes correspondingly more complex as the

degree of the polynomial

m

f(w) = L akwk
k=O

is increased beyond the value m = 2 of (55). For example, if m = 3, (56) is replaced
by a polynomial of degree 4, with a corresponding more complicated diagram

replacing Figure.19.

5. Comparison with the Wilson-Cowan equations

The Wilson-Cowan equations have the form

Xi = -ai-xi + (bi -xjF(LXkCki -L_"'kdki + ej
k k (59)

and
Yi = -AiYi + (Bi -YJG(LXkCki -LYkDki + EJ. (60)

k k

The function Xi(yJ describes the activity of the ith excitatory (inhibitory) sub-

population. Consider the right-hand side of (59) for definiteness. The activity Xi
decays at a spontaneous rate ai-~i' The term

(hi -.~JF( L XkCki -L Yk dki + eJ
k k

has the following interpretation. F(w) is a sigmoid signal function. It sums up

excitatory inputs (Lk XkCkJ. inhibitory inputs (- Lk Yk dkJ. and the external
input (eJ before computing the signal F(w) as a function of the resultant

w = LXkCki -LYkdki + ei- (61)
t t
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Thus all input contributions combine independently before they generate the
population signal. No shunting inhibition occurs, and shunting excitation, via the
term (bi -xJF(w), occurs only after excitatory and inhibitory inputs combine
independently. How can such a system be physically realized?

An approximate way is pictured in Figure 20. The inputs (61) to Vi are delivered
to independent branches of the dendritic tree(s) of cell(s) Vi: then they send signals,
perhaps electrotonically, to the cell body (or bodies) Vi with a net strength deter-
mined by F(w). At Vi' there exist bi excitable sites. At any time t, Vi is excited at a
rate proportional to the number [hi -Xi(t)] of unexcited sites. Activity Xi(t) also
spontaneously decays at rate aixi(t). Linear output signals from Vi feed back to the
dendritic trees of the cells Vk'

ADDITIVE
SIGNAL
FLOW

Figure 20. Graphical interpretation of Wilson-Cowan equations.

The mixture of independently combining inputs and shunting excitation
seems to require a formal diagram such as that in Figure 20, whether or not we
interpret the input receiv:ng stations as dendrites. This diagram means that the
interactions between excitatory and inhibitory inputs are so "weak" that they can
be approximated by independent increments, without mutual shunting terms.
Correspondingly, individual inputs will have a small effect on the cell body. Also,
since the summands in (61) are linear functions of population activity, the outputs
from each population are linear functions of population activity. Only after these
outputs combine independently is a sigmoid function of their resultant computed
in (59) and (60). This fact does not seem to be compatible with the interpretation
that the output from each population is a sigmoid function of that population's
activity,

The systems studied herein contain both shunting excitation and inhibition,
such that the output of each population can be a sigmoid function of its activity.
These systems thus permit "strong interactions" between excitatory and inhibitory
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inputs, whether at the cell body, or between cell body and dendrites. A marriage
between two experimentally verified phenomena-passive membrane equations
and recurrent on-center off-surround anatomies-is hereby demonstrated.
Whereas the present systems are, in a naive sense, "more nonlinear" than those
of Wilson and Cowan, their particular nonlinearities blend harmoniously with
an on-center off-surround anatomy, thereby making possible the rigorous mathe-
matical theory presented herein.

Appendix: Proofs of results

The notation/; = f(xJ, F = Lz= I ft, and Fi = /;F-1 will be used below.

Proof of Proposition 1: First we show that

Xi = P(Fi -XJ, (62)

where P = BFx-l. By (12),

Xi = -(A + F)Xi + BJ;,

which when summed over i shows that

x = -(A + F)x + BF. (64)

Apply the identity

(UV-1)'= V-1(U -UVV-1)

to U = Xi and V = X and find

Xi = X-l(Xj -XiX). (65)

Substituting (63) and (64) into (65) yields (62) after cancellation and rearrangement
of terms. Now F j -X j is computed as follows:

Fj -Xi = Xigi(Lx~k)-l -.Xj(LXk)-l
k k

= Xj(FX)-l L X,(gi -gk).
k

Substituting this result into (62) yields (15). Equation (17) follows from (15) and
the fact that Lk Xk = 1. Equatic;>n (18) is obvious.

To derive (16), write (64) as

oX = -Ax + (B -x)F

and note that F = xG. QED.

,Proof of Proposition 2: Suppose for definiteness that Xi(O) < Xi+ 1(0). By the
continuity of the functions Xi and Xi+1, the inequality Xi(t) > Xi+1(t) cannot
hold at any time t unless Xi(to) = Xi+ l(tO) at some time to < t. By (15), the identity
Xi(to) = Xi+1(tO) implies Xi(t) = Xi+1(t) for t ~ to. Hence ordering is preserved.

QED.
Proof of Proposition 3: First we prove the existence of all limits Qi. Recall the

definitions M(t) = max{Xi(t):i = 1,2,...,n} and m(t) = min{Xi(t):i = 1,2,...,
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n}. Suppose that g(w) is monotone increasing. Then by (15), M(t) ~ 0 and riI(t) ~ 0
for t ~ O. If g(w) is monotone decreasing, then (15) implies M(t) ~ 0 and riI(t) ~ 0
for t ~ O. In both cases, the limits QI and Qn exist, and QI + Qn > o. If g(w) is
monotone increasing, then Qn > O. If g( w) is monotone decreasing, then Q I > O.
Consider the former case for definiteness.

Using the fact that Qn exists, we will prove that Qn- I exists. Using the existence of
Qn and Qn -I , we will prove that Qn -2 exists, and so on.

Integrate (15) from t = S to t = 7: Then

IT n

Xn(T) -Xn(S) = B Xn L Xklgn -gkl dt (66)
S k=1

Let T -+ 00 and note that for all t ~ 0, Xn(t) ~ Xn(O). Then (66) implies

n
Qn -Xn(S) ~ Xn(O) L hn.k(S), (67)

k= I

where

XJgm -gkl dt

Letting S -+ 00 in (67) shows that

lim hn.k(S) = 0,
s-:x>

k = 1,2, (69)., n.

Now consider X.-1o By (15), for any T ~ S ~ 0,

II-I

L Xklgll-l
k=1

By (68) and Proposition 2,

h";k(S) ~ h"-I,k(S) ~ 0, k = 1,2, ,n -

Thus (69) implies that

implies that
limhn-2.k(S) =0, k,cn-2.S-oc

Iterate the argument until the existence of all Qi is proved.
Now the existence of E is proved. Consider the function H(.x) = I:= 1 QkE(QkX),

H(.x) is monotonic since g(w) is monotonic. Since G = L:= 1 Xkg(Xk.X), limt_~ (G -
H) = O. Thus (16) can be written in the form

x = .x(B -X)( H(.x) -~) + B(t)
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where lim,-+(X) e(t) = O. As t -00, the sign of x becomes essentially equal to that of

H(x) -A/(B -x). This situation is graphed in Figure 21 for various choices of
g(w). The arrows indicate the direction in which x moves at various of its values.
Clearly E equals zero or is a solution of the equation H(x) = A(B -x)- 1, which
is (19). The distribution of E's values, given specific choices of g(w), can be read off
from graphs such as those in Figure 21. Figure 16c uses the fact that if g(w) is
increasing and convex, then H(x) is also increasing and convex. QED.

(0) g(w) DECREASING

B
(b) g(w) INCREASING

B

(c) O(w) INCREASING AND CONVEX

Figure 21. Equilibrium points of .\:(1) as I --OC.

Proof of Theorem 1: Since f(w) = Cw, g(w) = C, and (15) implies that Xi = 0,
and that every X i(t) is constant for t ~ O. Thus '"Ci(t) = X i(O)X(t), and it suffices to

study x(t). By (16),

x =. x(D -Cx) (71)

where D = BC -A. Equation (71) is of Riccati type. It can be routinely solved
using the change of variables x = y(Cy)-I, yielding (20) and (21) (Bellman, 1967).

The proofs of Theorem 2 and 3 make use of the following Lemma.
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LEMMA 1. The following equations hold.

(Xi -XjT = Ri(Xj -X) + Sj{gi -g) (72)

"
Rj = B I Xk(gi -gk)

k=1
(73)

Sj=BXj, (74)

Proof: By (17),

Xi = BXi(gi -G)

Xj = BXJ{gj -G).

Subtract these two equations and use the identity

Xigi -Xjgj = (Xi -Xflgj + X;{gj -gflo

A rearrangement of terms yields (72). QED.
Proof of Theorem 2: If M(to) = m(to) = l/n, then (15) implies X ;(to) = O.

Hence M(O) = m(O) = l/n implies M(t) = m(t) = l/n for t ~ O.
Suppose M(O) > m(O). If X J{to) = M(to) > X ;(to), then also gJ{to) > g;(to), and

by (15), X J{to) > X;(to). Hence M(t) is monotone increasing faster than any Xi < ,\1.
By (15) and Proposition 2, m(t) is monotone decreasing.

We will show that the limiting distribution is 0-1, given a persistent reverbera-
tion, in the special case that X.(O) > X.-1(O): that is, Qn = 1. The general proof

is essentially the same. By (73), Rn ~ o. SiQce also Xn > X j' j :;t: n, (72) and (74)
imply that

(Xn -X)" ~ BX j{gn -gj)' (75)j # n.

Consider gn -gj in the light of three facts:
(i) g(w) is strictly monotone increasing;
(ii) Xn -Xj ~ Xn(O) -XJ{O) > O,j;6 n;

and
(iii) x(t) varies in a positive closed interval.

Thus there exists a b > 0 such that for any j ;6 n,

gn -gj = g(Xnx) -g(X jX) ~ tJ.

By (75),

(Xn -Xj).2:. c>BXj, j;&!: n.
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.
Integrating this inequality from t = 0 to 00, and using the fact that all Xi satisfy
0 ~ Xi ~ 1, yields the inequalities

::x:I > (fJB)-1 ;?; fo'" XJdt, j # n.

The function X j is also a nonnegative function which, by (15), has a bounded first
derivative. Hence Qj = 0 for every j # n, and thus Q. = 1.

We now prove that the reverberation is persistent if g(O) < AIB and x(O) ;?; x
where x is the smaller root of (22). If XK(O) < M(O) = XK+l(O), then X.(t) =
X.-1(t) = ...= XK+ l(t) = M(t) > XK(t), and M(t) > O. In particular,

n

G ~ L Xjg(Xjx) = (n -K)Mg(Mx) ~ (n -K)M(O)g(M(O)x).
j=K+l

Thus if X is a root of(22), then by (16), x > 0 if x = x. Hence if x(O) ~ X, then x(t) ~
x > 0 for t ~ 0, which proves persistence. QED.

The function in (24) can be written as f(w) = wg(w) with g(w) strictly increasing

by defining
g(w) = 1 + (D -A)(A + Bw + Cw1-i

Proof of Theorem 3: By (15) and Proposition 2, M(t) is monotone decreasing
and m(t) is monotone increasing. Thus the limits M(oo) and m(oc) exist. We now
show that M( 00) = m( 00), and thus that all Qi = l/n, if the reverberation is per-

sistent. By Proposition 2, M E X" and m E X I. If X 1(0) = X,,(O), we are done.
Suppose that X,,(O) > X 1(0). By (73), R" :$ O. Thus by (72),

(X" -XI]:$ SI(g" -gl).

By (74),
S 1 = BX 1 ~ BX 1(0) = £ > 0

Thus

(XII -X I). ~ -e(gl -gll).

By the monotone decrease (increase) of XII(X I),

(XII -X 1). ~ -e[g(m(oo).x) -g(i\1(X)X)].

Suppose M( 00) > m( 00). Then since g( w) is strictly monotone decreasing, and x
varies in a positive closed interval, there exists a <5 > 0 such that .

(XII -X 1). ~ -<5 < O.

This implies the contradiction 1 ~ Q 1 = 00. Hence M( x) = m( oc).
To prove that E satisfies (25) if g(O) > A/B, it suffices to note by Proposition 3

that the reverberation is persistent if g(O) > A/B, and thus that all Qk = l/n.
Hence

Substitution of this expression into (19) yields the desired result. QED.
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Proof of Theorem 4: The statements about monotone increase or M(t) and
decrease or m(t) follow as in the proof of Theorem 2.

Ir x ,(t) ~ x( 'I, then all gj = C, and by (15), all j( j(t) = O. If gj(t) = gj(t) = C, then

by (17),
.-I .-I(X jX j )(t) = C -G(t) = (X jX j )(t).

Since

...

(X.X-:-1 )' = X1X-:-1(X.X:-1 -X.X:-1 )I J J I I J J '

it follows that (dldt)(X jX j- 1 )(t) = O.

Suppose that the reverberation is persistent, By (18), if Xn(O) > Iln, then

n

Xn ~ BXn(O) L Xj[g(Xnx) -g(X1x)] > o.
1=1

Integrate this inequality and use the inequalities 0 $ Xn $ 1 to conclude that

foCX)Hjdt<OO
(76)

1,2, , n, where

Hi = Xj[g(XnX) -g(XjX)] ~ O.

Inequality (76) implies that H j approaches zero arbitrarily closely at arbitrarily
large times. Since all Qi and E exist,

QJg(QnE) -g(QjE)] = O.

Either Qi = 0 or-g(QiE) = g(QnE). Suppose that i ~ K. Then Qi < Qn. Since
g(w) is strictly monotone increasing until w = X(II, the identity ~(QiE) = g(QnE)
implies that g(QjE) = C. Suppose that i > K + 1. Then g(QjE) = g(QnE) because
Qj = Qn' If moreover Qi # 1/(n -K) then QK > O. Thus g(QKE) = g(QnE),
which implies that g(QKE) = C. Since Qi ~ QK for i ~ K, also g(QiE) = C for
i ~ K.

Suppose that (27) holds. By (17), to show that j( j ~ 0 for t ~ 0 it suffices to show
that Xj ~ X(II and thus that gi = C ~ G for t ~ O. Suppose that i ~ L, where L is
defined by (27). At any fixed time t = J: the inequalities

n

G ~ L Xig(X;.X)
;=L

n

~ L Xi(O)C
i=L

hold ifxL(t) ~ X(!) for t :$; 7: Let t = Tbe the first time that

A
x(t) = B -~~- X.

(O)C'L... -L .
(77)

By (27), then

XL(t) = XL(t)X(t) ~ XL(O)X(t) ~ Xli) (78)
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for t ~ 7: Consequently
" A

G ? L Xj(O)C ? -
i=L B -x

at this time, and by (16), x(T) ? O. The same argument is valid at every time t
such that (77) holds, and thus x(t) is increasing whenever (77) holds. This shows
that

X(t) ~ min (B -r~~4~)C, X(O») (79)

for t ~ O. Inequality (77) implies that (78) is true for t ~ O. Since Xi ~ ,XL ~ XiI)
for all i ~ L, also j( i ~ 0 for t ~ 0 and i ~ L.

A similar argument shows that if (28) holds, then XI ~ X(I) for t ~ 0: thus all
gi = C for t ~ 0, and by (15), all Xi are constant for t ~ O.

Suppose that (29) holds. Since G ~ C, (16) shows that for every e > 0, there
exists a 4 such that

x(t)~B-AC-I+e, t~1;. (80)

By (15), X I ~ 0 for t ~ O. Thus for sufficiently large t, (80) implies that

xl(t) = X1(t)x(t) ~ X1(0)(B -AC-I + e) < XCI);

thus g is bounded away from C for t » 0 ;g(QIE) < C; and finally QI = O.
This argument can be successively applied to X I' X 2, ..., Xi to show that

QI = Q2 = '" = Qi = 0 if (30) holds. Suppose that we have already shown that
QI = Q2 = ...= Qi-1 = O. Then the terms Xk(gi -gk), k ~ i-I, in (15)
approach zero as t -+ 00. The terms X k(gi -gk) with k > i are nonpositive.
The term X,,(gi -g,,) is moreover bounded away from zero at t = ti » 0, since by
(30) and (80),

,Xi(tl) ~ Xi(t;)(B -AC-l + e) < .X(I)

for some e > 0, and hence C -gi ~ <5 for some <5 > 0, while the gap between Xn
and Xi increases as t -+ 00. Thus Xi(tJ < O. This argument can be repeated at all
times t ~ ti to show that Xi(t) ~ Xi(tJ(B -AC-1 + e) < X(ll; thus g(QiE) < C;
and finally Qi = O.

Suppose that (31) holds. If for arbitrarily large t, .Xn-.\"" l(t) ~ .X(l), then

n
x(t) > L ,Xi(t) ~ NX(I) > B -AC-l,

i=n-.\'+ 1

which contradicts (80). Hence for sufficiently large t, Xi(t) ~ .X(ll + <5 for some
<5 > Oandalli ~ n -N + 1 ;thusg(QiE) < C;andfinallYQi = O,i ~ n -N + 1.

If the limiting distribution is locally uniform, then E satisfies (32) because
lim,_oo[G -g(Q".x)] = O. If the limiting distribution is not locally uniform, then
some QK such that XK(O) < ~f(O) exceeds zero. Thus g(QKE) = g(QK+1E) =
...= g(QnE) = C. This is true for every such K. Hence lim,_x G = C, and

E=B-AC-l.QED.
Proof of Theorem 5.. The first few statements of the Theorem follow from

Proposition 3 and arguments in the proof of Theorem 3. If x,,(t) ~ .X(2), then all
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x j(t) = 0 because all gj(t) = C. If gj(t) = g)t) = C, then (d/dt)(X jX j- I )(t) = 0 by

the same reasoning that was used in Theorem 4.
We now show that, given a persist~nt reverberation, either all Qi = I/n or all

g(QjE) = C. We use the facts X I ? 0, X" ~ 0, and the existence of all limits Qj and

E.By(15),

..

.
B-IXI = XI L Xk(gl -gk)

k=1

? X I X.(g 1 -g.)

? Xf[g(X IX) -g(X.X)]

? Xf(O)[g(QIX) -g(Q.X)] ? 0, (81)

If QI = Q., then all Qi = I/n and we are done, Suppose QI < Q., Integrate
inequality (81) from t = 0 to t = 00, Since 0 ~ X I ~ I and X 1(0) > 0,

f 0'" [g(Q IX(t» -g(Q.X(t»] dt < 00.

Thus the nonnegative function [g(Q1X) -g(Q.x)] approaches zero arbitrarily
closely at arbitrarily large times. Since E exists, g(Q1E) = g(Q.E), Since Ql ~
Qi ~ Q., g(QiE) = g(Q.E) for i = 1,2,..., n.

Ifall Qi = l/n, then lim,_",[G -g(x/n)] = O. Hence E satisfies (25). IfalIg(QjE) =
C, then limr-~ G = C. and E = B -AC-I.

Suppose that (33) holds. Since G ~ C, (16) shows that

x(t) ~ max(B -AC-1, x(O)) (82)

for t ~ O. Since X,,(t) ~ 0 for t ~ 0,

x,,(t) = X,,(t)x(t) ~ X,,(O) max(B -AC-1, x(O» ~ X(2).

thus all Xj(t) ~ X(2) for t ~ 0; allgj = C; and finally all Xi are constant.
Suppose that (34) holds. If g is convex, then

~ f !(,Xk) ~ ! (~~ ),
nk=1 n

1 " x ( x
)-L X~(Xk) ~ -g -,

nk=l n n

and finally

G = t X~k ~ g(~). (83)

By (16) and (83), if the reverberation is persistent, then for every e > 0, there
exists a 1; such that

x(t) ~ E -e for t ~ 1;

Since X1(t) ~ 0 for t ~ 0,

'~I(t) ~ X l(t)X(t) ~ x 1(0)(£ -£) (84)
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for t ~ 1;. By (34) and (84), there exists a 15 > 0 such that XI(t) ~ XI21.+ 15 > 0
for all sufficiently large t. Thus g(Q,E) < C, and all Qi = tin.

Suppose that (35) holds. To prove that all Qi = tin, we argue by contradiction.
Let Qn > tin. Then .

Xn(OO) = QnE > (Iln)!!; > X(l);

hence g(QnE) < C, and all Qi = Iln. QED.

Proof of Proposition 4: The proof imitates that of Proposition 3 as much as
possible. The limit E exists because limr- x (G -H) = 0, where H(x) = L~= 1 Qi X
g(QkX). Thus E = 0 or is a solution of(19).

By (15), for every i = 1,2,..., n, ..
n

limr_", X;(t) = BQJg(Q;E) -L Qkg(QkE)].
k=1

These limits must all equal zero, since otherwise some X ;(t) will be unbounded as
t -+ 00. Either Q; = 0 or

"
g(QiE) = L Q,.g(QkE).

k=1

In particular, if QiQj > 0, then g(QiE) = g(QjE). Since Qi ~ Qi+ I' then exists a K,
possibly zero, such that QI = Q2 = ...= QK = 0 and g(QiE) = g(QjE) ifi,j > K.
In particular lim,-ao [G -g(Q"x)] = O.

Suppose that g(O) ~ A/B and let g be convex. Then G(O) ~ A/B, and since
limr_~ [G -g(Q"x)], E is a solution of(32). Since g(Q"x) is convex and A/(B -x) is
concave, (32) has a unique solution. If g(O) < A/B and g is convex, then (32) has
two solutions.

If XCI) = XC2)'I then g(w) has no constant interval. Hence the equality g(QiE) =
g(QjE) can occur only if Qi = Qj, or if QiE = ~ and QjE = /1, for some c;- and /1
such that g(c;-) = g(/1). This readily yields the trivalent distribution of (36). QED.

Proof of Theorem 6.. This proof uses ideas similar to those used before: hence
we merely sketch the main arguments below.

Impose (37) and (38). The main effect is that

min(B -AC-1, x(O») ~ x(t) ~ max(B -AC-1, x(O),

for t ~ O. At time t = 0, XII) ~ xl(O) ~ x,,(O) ~ X(2); thus all gj(O) = C, and all
Xj(O) = O. The bounds (85) on x(t) cause these inequalities to propagate to all
t ~ O. Thus G = C, and E = B -AC-I > o.

Consider (39). This condition implies that gi ~ g" for t ~ 0 and i = 1,2,..., n.
To see this, note by (39) and (82) that

x(O) + X(2) ~ x(t), t ~ o. (86)

If for any T ~ 0, x,,(T) ~ X(2), then all xi(T) :$; x(O), i = 1,2,..., n -1. Suppose
not. Then some Xj(T) >' xIO), and

x(T) ~ Xj(T) + x,,(T) > xIO) + xI2),

which contradicts (86). Consequently, by definition of xlO) and xI2), gi(T) :$; g,,(T)
for i = 1,2,..., n. If for any T ~ 0, x,,(T) :$; xI2), then since g(w) is monotone
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increasing for 0 ~ w ~ X(2), and since all Xj(T) ~ x.(T), again gj(T) ~ g.(T) for
i = 1,2,..., n. In all cases gj(T) ~ g.(T), whence by (15), X. ~ 0 and X I ~ 0 for

t ~ O. The arguments of Proposition 3 can therefore be used to show that all
limits Qj and E exist with M(t) monotone increasing faster than all Xj < M, and
m(t) monotone decreasing.

Condition (27) is treated here much as it was in the. proof of Theorem 4, but its
use here is more subtle. By (27), XL(O) ~ X(I) > x(O). Thus by (39), x.(O) < X(2,. By

interpolation, for every i ~ L, X(2) > Xj(O) ~ X(l), and consequently gj(O) = C.
By the continuity of the functions Xi' there exists a time interval (0, T] such that
gj(t) = C if 0 ~ t ~ T For 0 ~ t ~ 7: therefore, X j(t) ~ 0 and (d/dt)(X jX j- 1 )(t) = O.
We now show that T = 00.

For 0 ~ t ~ 7;
~...

In particular, if for any t, x(t) satisfies (77), then x(t) ~ 0, so that, by (27), (79) holds.

Moreover, by (27) and (79), for every i ~ L,

Xj(t) = Xj(t)x(t) ~ X.{O)x(t) ~ XII) > xIO). (87)

Consequently, the inequality Xl\(t) > X12) is impossible, since when the function
R(t) = X,,(t) -X(2) changes sign from negative to positive, all Xj(t), L ~ i ~ n -I.

would have to instantaneously jump from values ~ X(I) to values ~ x(O) in order
to satisfy (39). This they cannot do, since they are continuous. Thus the inequalities
X j(t) ~ 0, i ~ L, (79), and (87) maintain each other for t ~ O. A similar argument
shows that all X j are constant if (28) holds.

Suppose that (31) holds. To show that Q"-N+ I = 0, we argue by contradiction.
IfQ,,-N+, > 0, then by Proposition4,g(Q"-N+ IE) = g(Q"E). By (39),g(Q"-N+ I) =
C. Thus for i ~ n -N + 1,

xi(X} ~ X.-N+ I(:X:) = Q.-.v+ IE ~ XII),

and

/I

L
j=/I-,V+ I

E~ Xj(X) ~ NX(I) > (B -AC-l).

This contradicts (80).
The statements involving (40) and (41) are proved as in Theorem 4.
Suppose that XII) = X(2) and that (39) holds. Then by Proposition 4, either Qi = 0

or g(QiE) = g(QnE). The latter can hold only if Qi = Qn. Hence the limiting dis-
tribution is 0-1 or locally uniform.

The assertions in (III) based on (41) and (42) are proved as in Theorem 4.
Condition (43) implies that X I ~ 0 for t ~ 0, since either an Xj(t) ~ X(2), or

Xn(t) > X(2), which implies that XI(t) ~ x(O) by (43). The other assertions of (IV)
follow readily from this.

Condition (44) implies that (n -K + l)x(2) > x(t), t ~ 0, and thus that at
most (n -K)Xi'S can exceed X(21 at any time. In particular, if

XK+ I(t) > X2(t) ~ X(2) (88)
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then Xj(t) ~ X(2), i = 1,2,..., K. Condition (45) guaran.tees that Xl will increase
and Xn will decrease just so long as Xli) ~ Xj(t) ~ XI2), and thus 8j(t) = C, for
i = 1,2,..., K. By (88), these inequalities hold for t ~ O. Using the monotone

increase of X I' the existence of all limits can be proved as in Proposition 3. The
inequalities QI < l/n < Qn hold because XI(t) is bounded away from X(2} by (44).
QED.

Proof of Proposition 5: By (46), Xi(0)~XI(0»X(2},i= 1,2,...,n: all Xi begin
in the uniformizing region, so that if: 1(0) > 0 and X n(O) < O. By (46) and (80), for t

sufficiently large,

Xi(t) ~ X(t) < B -AC-I < X(2);

all Xi end up in the contour enhancing region, so that j( I < 0 and j( n > 0 unless
all gi = C. QED.

Proof of Theorem 7: First we prove equations (47H50). By (62), we must

compute Fi -Xi.

:X)

""' b ( X.X )m-l (Xr-m+ 1
L.. r'l k 'i
"=m

-~-m+ 1)

The identity
p-l

yp -Zp = (y -z) I .~,q.'(p- I-.,
q=O

is now applied with y = Xi' Z = "(k' and p = ::t(m -r -1). Then this expression
is multiplied by P = BFx-l, as required by (62), to yield (47).

The proofs yielding uniform, 0-1, and locally uniform distributions are much
like those in Theorems 1-6. Consider the 0-1 case for definiteness; thus let Xn(O) >
Xn-l(O). By (47) and (51),

,,-I
X" ~ B L X~(X" -Xk).

k=1
(89)

Suppose that Xn(O) > t. Since Xn ~ 0 and I~=l Xk = I, there exists aD> 0
such that

(90)

which implies Q. = 1

F.-X / = N/D/-1- x/
I ~"N D -1 ""

L...k=1 k k L...k=IXk
1 '"' "

-
F Lam L (XkX~ -xix;D/D; I)

X m=1 k=1

1 "'" [ (X)'" = F- D L am L XiXkD;1 X~-I L br~ -X:-1 I. brx~

X im=1 k=1 r=O r=O

1 (X) " rm-2
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Suppose that L"j ~ Lkj for all j ~ k, n. By (48H50), L"k = Lk". Thus by (47)
applied successively with i = nand i = k, we conclude that X" ~ Xk, k ~ n.
The positive functions X" -X k' k ~ n, are therefore monotone increasing.
Define

"a

<5 = e-1 min{(X" -Xk)(O):k # n} > O.

Then (89) implies (90), which implies Q" = I. QED.
Proof of Theorem 8: The proof is essentially the same as that of Theorem 3.

Equation (15) is modified by adding an extra term D(I/n -X J to its right hand
side, where D = nBKx-l > O. This term pulls Xi towards I/n even if g(w) is
constant.

To prove (53), one computes

x = x[ -(A + nk) + (B -x)G + nBKx-l],

notes that lim/_", [G -g(x/n)] = 0, and checks that x = 0 only if (53) holds.
(53) has one solution because its right hand side is a monotone decreasing function
ofx. QED.

Equation (54) defines a function of type (52) if K = AC- 1 and

g(w) = (BC -AD)C-1(C + DW)-I.

Proof of Theorem 9: By (62), we must compute Fj -Xi, premultiply by P =
BFx-l and find an expression equal to Xi, The result is, for any n > I,

"
Xj = U(I -nXJ + VXi L Xk(Xj -Xk), (91)

k=l

where U = aoB.x-l and V = a2B.x. Let n = 3. Suppose Xj(O) = X jO) for some
i and j, i # j. Then X ,{c) = X J{t), t ? O. Denote the common value of X j(t) and
X J{t) by Y(t). Then X k(t) = I -2 Y(t), where k # i,j. Letting W = 6a2Bx, equation
(91) becomes

Y = U(l -3Y) + VY(l -2Y)(3Y -1)

= W(t -y)[y2 -t y + aO(2a2X2)-I]

or
y = W(t -Y)(Y -U)(Y -V), (92)

Since w> 0, (92) implies (56). Equations (56), (57), and (58) show that the value
of x determines the limits to which Y converges. In particular, letting L =
(8aoa; 1 )1/2, (56) implies that

sign Y = sign(t -Y) if 0 :s; x < L,

sign Y = sign(t -Y)(Y -1)2 if x = L,

sign Y = sign(t -Y)(Y -U)(Y -V)

with

0 < V< i < U < t if L < x ~ B,

and
sign Y = sign(Y -t) if x = (X)
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These changes due to progressive increase in x are pictured in Figure 22. If .x < L,
the limiting distribution is uniform. If x = L, Y = ! is an unstable critical point;
hence Y( 00) = t or !. If B ~ x > L, this unstable critical point branches and
creates two stable and one unstable critical points. Either U or t is the unstable
critical point, depending on which is smaller. As x increases, the limiting case of
x = 00 is approached. Here, if Y> t, then Y( 00) = t, which defines the locally
uniform distribution Pi = Pj = t, whereas if Y < t, then Y( 00) = 0, which defines
the 0-1 distribution Pk = 1. QED.
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