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I. Introduction

A. EmBEpDING FIELDS: A PsycroprYSI0LOGICAL THEORY

This article reviews results chosen from the theory of embedding fields.
Embedding field theory discusses mechanisms of pattern discrimination
and learning in a psychophysiological setting. It is derived from psy-
chological postulates that correspond to familiar behavioral facts. The
the.ory tries to isolate facts which embody fundamental principles of neural
design, and which therefore imply and illuminate many less evident facts
fmd pf'edictions. The postulates reveal their implications by being translated
into rigorous mathematical expressions. On various occasions, the precision
of this mathematical language has uncovered unsuspected physical proper-
tle.s of the postulates, or corrected erroneous conclusions of prior heuristic
thinking. In particular, the mathematics can be given a natural anatomical
and physiological interpretation. The neural networks hereby derived can
thus be rigorously analyzed both behaviorally and neurally.

B. THe METHOD OF MINIMAL ANATOMIES

The theory introduces a particular method to approach the several levels
of description that are relevant to understanding behavior. This is the
method of minimal anatomies. At any given time, we will be confronted by
laws for neural components, which have been derived from psychological
?ostulates. The neural units will be interconnected in specific anatomies.
th:y will be subjected to inputs that have a psychological interpretation,
“:hwh create outputs that also have a psychological interpretation. At no
given time could we hope that all of the more than 10" nerves in a human
‘bram‘would_be described in this way. Even if a precise knowledge of the
laws tor each nerve were known, the task of writing down all the inter-
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actions and analyzing them would be bewilderingly complex and time-
consuming. Instead, a suitable method of successive approximations is
needed. Given specific psychological postulates, we derive the minimal

network of embedding field type that realizes these postulates. Then we .

analyze the psychological and neural capabilities of this network. An
important part of the analysis is to understand what the network cannot

do. This knowledge often suggests what new psychological postulate is "

needed to derive the next, more complex network. In this way, a hierarchy
of networks is derived, corresponding to ever more sophisticated postulates.
This hierarchy presumably leads us closer to realistic anatomies, and
provides us with a catalog of mechanisms to use in various situations.
Moreover, once the mechanisms of a given minimal anatomy are under-
stood, variations of this anatomy having particular advantages or dis-'
advantages can be readily imagined. The procedure is not unlike the study
of one-body, then two-body, then three-body, and so on, problems in
physics, leading ever closer to realistic interactions; or the study of sym-
metries in physics as a precursor to understanding mechanisms of sym-
metry-breaking; or the study of thermodynamics as a preliminary to
statistical mechanical investigations.

At each stage of theory construction, natural formal analogs of non-

]

trivial psychological and neural phenomena emerge. We shall denote these !

formal properties by their familiar experimental names. This procedure!
emphasizes at which point in theory construction, and ascribed to which
mechanisms, these various phenomena first seem to appear. No deductive !
procedure can justify this process of name-calling, and incorrect naming of l
formal network properties does not compromise the formal correctness of
the theory as a mathematical consequence of the psychological postulates.
Nonetheless, if ever psychological and neural processes are to be unified
into a coherent theoretical picture, such name-calling, with all its risks and
fascinations, seems inevitable, both as a guide to more microscopic theory
construction and as a tool for a deeper understanding of relevant data. The
following pages will attempt to distinguish clearly between postulates,
mathematical properties, factual data, and mere interpretations of network
variables. :

This policy of theory construction has more than practical convenience
to recommend it. Even a routine behavioral act can utilize billions of
nerves distributed along complexly interacting pathways that extend from
sensory receptors to motor effectors. The organization of these pathways—
the global properties of the network—powerfully influence the (mns‘fnmm-
tion of stimuli into responses. To the extent that these propertics are
ignored, one foscs insight inio the behaviorni constiaints which .'_:'-:24!9
neural development and design. Even if one's neural data about individunl
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cells are precise, the meaning of these data can remain obscu}'e until global
information about the role of these cells in behavior is obtained.

C. OVERVIEW

This article summarizes some main results that are distributed in several
papers (Grossberg, 1968a,b, 1969a-f, 1970a,b, 1971a-c, 197?a-d; Grossbcx.'g
and Pepe, 1971). An intuitive description of mathen}atufal results will
replace mathematical details wherever possible. Emphasis will be placed on
theoretical ideas. Relevant data are discussed in the references. -

The theory begins by analyzing simple facts about classic:.ll ) OF I"avlovxa.n,
conditioning (Grossberg, 1969a, 1971a). This form of learmng.xs illustrated
by the following experiment. A hungry dog is presented.thh food and
thereupon salivates. A bell is rung, but the dog does not st?,hvatfa. Then the
bell is rung just before food presentation on severa.l learning t.rmls. There-
after presentation of the bell alone yields salivation. Food is call.efi the
unconditioned stimulus (UCS), salivation is called the tfncondltloned
response (UCR), and the bell is called the conditioned stimulus .((}‘S).
Thus Pavlovian conditioning is & problem in nonstationary predlctl(.m:
The CS eventually predicts the UCR if it is paired sufﬁcient!y often with
the UCS. Alternatively, this learning process can be de.scnbed by con-
sidering an experimentalist, 8, who interacts with a machine, 9, to tez?ch
9N to predict B given A by practicing the list AB. The sensory presentation
of A is analogous to a CS, the sensory presentation of B is analogous to
UCS, and the motor response, B, is analogous to a UCR.

The first derivation of the theory asks how a particular CS — UCR
transition can be embedded in memory by sequential pairing of CS anfi
UCS, and how future presentation of the CS can elicit the UCR. This
derivation is reviewed in Section II. o

Given the derivation, which is based on only the most rudimentary facts
about classical conditioning, a number of psychophysiological and matl.le-
matical surprises ensue. For example, the mathematical systems that arise
alrcady have a natural anatomical and neurophysiological mf.erpretz.lt}on
which includes cell bodies, axons, synaptic knobs, cell potentials, splk}ng
thresholds and frequencies, and transmitter substances. In psychological
terms, one finds such items as short-term memory (STM) tr.aces, long-tfarm
memory (LTM) traces, a stimulus sampling theory, Now Print or Amplifier
mechanisms, imprinting mechanisms, scrial learning phenom.ena, a way to
learn arbitrary patterns, influences of overarousal on paying attention,
aid a teleology for atiacking problems of scnsory filtering and 'nat.tern
discrimination. Pattern discrimination problems will not be discussed
herein. :

wosad fLI R L0 |
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Given this foundation, the theory proceeds in several directions. First,
it studies the minimal anatomy that can learn an arbitrary space-time
pattern, such as a piano sonata or a dance (see Sections IV and V). Only
one command cell is needed to encode the memory of such a pattern,
although there exist larger networks that can also do the job with inter-
neurons. The main liability of such a cell is that performance is ritualistic:
Once performance of the pattern begins, it cannot be terminated in mid-
course even if more urgent environmental demands are made on the net-
work. Anatomies in which sensitivity to environmental feedback exists
typically encode sequences of events using many cells. This fact motivates
a study of learning in arbitrary anatomies (Section VI). The goal is to find
those constraints that make learning in a general context possible, There-
after, one can specialize the anatomy to perform particular tasks. Studies
of serial (or list) learning, and some related problems concerning de-
pendence of serial learning parameters on arousal level, arise as special cases
in these investigations (Section VII).

Next the theory is developed in the direction of instrumental, or operant,
conditioning; namely, it approaches the question of how learning is in-
fluenced by rewards, punishments, drives, cte. (Section VIII). These
questions arise naturally from a closer investigation of classical conditioning.
For example, the time lags between CS and UCS presentation on successive
learning trials need not be the same, since the two events are usually in-
dependent of each other. Also, after learning has occurred, the CS elicits
the UCR on recall trials in the absence of the UCS. These and a few other
simple facts can be used as postulates to derive networks that include
mechanisms of reinforcement, drive, and incentive motivation. In short,
classical and instrumental learning mechanisms are not conceptually
independent. Given these networks, one imposes postulates which are
aimed at preventing the network from seeking previously rewarded goals
that presently lead to punishment, and which permit learned avoidance of
such goals. The above postulates eventually yield networks containing
rudimentary formal analogs of midbrain reinforcement centers. These
analogs include the interaction of two formal transmitter systems, whose
properties can be compared with data concerning cholinergic and adrenergic
effects at midbrain sites. Various other facts and predictions about punish-
ment and avoidance formally emerge in these systems.

The theoretical equations can also be refined in several directions to
provide a deeper insight into possible chemical substrates of network
mechanisms (Section IX), This refinement procedure uncovers various

transient interactions, and suggests an important concept: that a cell
capable of learning is a chemical dipole, with the two ends of the dipole

existing near the cell body and synaptic knobs.
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II. Classical Conditioning

The derivation below (Grossherg, 1969a, 1971a) is given in storybook
form to emphasize its intuitive basis. It studies how an experimentalist,
g, can teach a machine, 91, to predict B given A by practicing the list AB.

A. EacH LETTER SEEMS SIMPLE

In daily speech and listening, a letter is never decomposed into two parts.
To maintain close contact with experience, we assume that a single state,
va, in O corresponds to A. In a similar fashion, let vs correspond to B,
vo to C, etc. We designate each p; by a point, or vertex. (A vertex is not
necessarily an individual cell, but can represent a cell population acting as
a control unit.)

B. PrEsSENTATION TIMES

The times at which letters are presented to 91 must be represented within
an. For example, presenting A and then B with a time spacing of 24 hours
should yield different behavior than does presentation with a time spacing
of 2 seconds. Thus various functions of time should be associated with
each vertex to designate how recently a given letter has been presented. To
maintain contact with the “one-ness” of each letter, and to maximize the
simplicity of our derivation, we let one function zx(t) be associated with
va, one function zp(t) be associated with vg, ete., as in Fig. 1.

C. ConTiNvoUs VERTEX FUNCTIONS

The functions z4(2), . . ., zz(¢) will be chosen continuous, and in fact
differentiable. Several reasons for this exist. One reason is the following.
Consider the question: What follows ABC? It is tempting to say D, but
really the problem is ill-defined if the letters are presented one at a time
with time spacing, w, between successive letters. If indeed w is small, say
w = 2 scconds, then D might well be the correct response, but if w == 24
hours, then to the sound C (= “see”) one can also reply ‘“‘See what?”
That is, as w varies from small to large values, the influence of A and B on

"a“) Xc(')

XA(') ® ® ®
L4 VB Vc ., R g
v
A

Fia. 1. Vertex functions register how recently given events occur



58 STEPHEN GROSSBERG
x{
(a, 1™, i=1, 2,..) >
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Fia. 2. Sequential presentation of an event induces sequentiel perturbation of its
vertex function.

the prediction following C gradually wears off. Since za(t) and zg(f)
describe the relevance at time £ of A and B in 91, we conclude that these
functions also vary gradually in time.

D. PERTURBATIONS INSTEAD OF PRESENTATIONS

Suppose that A is never presented to 9. Corresponding to the occurrence
of “nothing” is the natural mathematical predisposition to set zA(t) = 0
at all times &. (The equilibrium point, 0, can, it turns out, be rescaled
ultimately relative to the signal thresholds.)

Suppose that A is presented to 91 for the first time at time ¢ = ¢a. Then
za(t) must be perturbed from 0 for certain ¢ > ¢4, or else 9N would have no
way of knowing that A occurred. We associate the occurrence of ‘‘some-
thing” with a positive deflection in the graph of za. (The theory could also,
in principle, be carried out with negative deflections.)

Shortly after A is presented, A no longer is heard by 91. That is, z4(¢)
gradually returns to the value signifying no recent presentation of A,
ramely 0.'In a similar fashion, if A is presented at times (A® < K® <
.+« < AW, then we find the graph of Fig. 2. The same construction holds
true for all letters. In this way, we have translated the presentation of any
letters A, B, C,...in the alphabet at prescribed times into a definite
sequence of perturbations of the vertex functions zA(t), za(t), zo(f), . .

E. LINEARITY

For notational convenience, we replace the alphabet A, B,C, ... by
any sequence r;, ¢ =1,2,...,n, of n behavioral atoms; the vertices
va, U, Ug, . . . by the vertices v;, i = 1,2,...,n; and the vertex functions
za(t), zs(t), zc(t),...by the vertex functions z(t), 7 = 1,2,...,n
Now r; corresponds to [vi, z:(¢)], i =1,2,...,n.

What is the simplest way to translate Fig. 2 into mathematical tcm}s?
Since we are constructing a system whose goal is to adapt with as little bing
as possible to its environment, we are strongly advised to make Lh.e sys't.(.:m
aslinear as possible. In Section VI, we shall discuss which of thesc littearitics
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is really essential. The simplest linear way to write Fig. 2 is in terms of the
equations

Zi(t) = —ami(t) + Ci(t) (1)

with a; > 0, 2:(0) 2 0, and ¢ = 1,2,...,n. The input Ci(t) can, for
example, have the form

Nt
Ci(t) = D Ji(t — t:®) (2)
k=1
where J;(¢) is some nonnegative and continuous function that is positive
in an interval of the form (0, \;). Thus z;(¢) decays at the exponential rate
a; unless it is perturbed by an input pulse J;({ — t;®).

F. AFTER LEARNING

In order that 91 be able to predict B given A after practicing AB, inter-
actions between the vertices v; must exist. Suppose, for example, that o1
has already learned AB, and that A is presented to 911 at time £,. We expect
9 to respond with B after a short time interval, say at time ¢ = 5 + 7ap,
where 7as > 0. The term 7,3 is called the reaction time from A to B. Let
us translate these expectations into graphs for the functions z4(t) and
zp(t). We find Fig. 3. The input, Cx(¢), controlled by & gives rise to the
perturbation of z4(t). The internal mechanism of 9% must give risc to the
perturbation of zg(¢). In other words, after AB is learned, zp(?) gets large
TAB units after z, (1) gets large.

There. exists a linear and continuous way to say this; namely, va sends a
linear signal to vy with time lag 74p. Then Eq. (3) withi = Bisrcplaced by

#n(t) = —apzs(t) + Banza(t — ran) + Ca(t) (3)

with Ban some positive constant. More generally, if r;r; has been learned,
we conclude that '

zi(t) = —azi(t) + Bizi(t — 145) 4+ C;i(1) 4)

If 8i; = 0, then the list r;r; cannot be learned, since a signal cannot pass
from v; to v,

xa1)] x g1

1a 1a* Tag

Fia. 3. Traces of sequential A-then-B presentation.
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vij ei] N“ Vl

F1a. 4. Network interpretation of psychophysiological variables

G. DirectED PATHS

The signal 8:;z:(t — 7¢) from v; to v; in Eq. (4) is carried along some
pathway at a finite velocity, or else the locality of the dynamics would be
violated. Denote this pathway by e;;. The pathways e;; and e;; are distinct
because the lists r,r; and r;r; are distincet. To designate the direction of flow
in e;;, we draw e;; as an arrow from v; to v;, whose arrowhead, N;, touches
v;, as in Fig. 4.

H. BerFore LBARNING

Consider the network before any learning occurs. If A leads only to B,
then learning would have already occurred. The letter A must therefore
also be able to lead to C, D, or some other letters. Thus the process of
learning can be viewed as elimination of the incorrect pathways AC, AD,
etc., while the correct pathway AB endures, or is strengthened, In other
words, the connections between all vertices cannot be constant through
time if learning occurs. The constant connections 8;; must be supplemented
by time-varying connection coefficients. (This is a ‘‘connectionist” theory
in the broadest sense, but, it turns out, not a traditional one.)

1. DisTiNngUISHING ORDER

f

How does 9 know that AB and not AC is being learned? By Fig. 3,
practicing AB means that zs and then zp become large several times.
Saying A alone, or B alone, or neither A nor B should yield no learning.
We seek a mathematical way to distinguish the event ““A occurs and then
B occurs” from all other possibilities. This can be done most simply as
follows. If AB occurs with a time spacing of w, then the product
za(t — w)zp(t) is large at suitable times t =2, + w, 1 =1,2,..., Na.
1f either A or B does not occur, then the product will be small. We therefore
seek a process 91 that can compute products of past za(v) values (v < t)
and present zp(¢) values. Denote this process by 2as(t). Note that zas 7 zpa.

Where in 910 do past values of za(v) and present values of zg(t) come
together, so that zap(f) can compute them? (Locality again!) By Fig. 4,
this happens only in the arrowhead Np. Thus z,s(¢) takes piace in Nap.
But then the past x,(v) value received by Nap at time ¢ is the signal
BanZa(t — ran). The most linear and continuous way to express this rule

«
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for zag(t) is the following:
Zap(t) = —vyan2as(l) + Sanza(t — 7aB) 2B ()

with yas a positive constant, and 5,n a nonnegative constant that is
positive only if 8s i8 positive. More generally, for list r,r; we find in N;
the process

2i5(t) = —vij2i(1) + bijxi(t — 1i5)2i(8) (5)

Thus 2;; depends linearly on the crucial product z:(¢ — r:;)z;(t). Note
that the reaction time, r,;, replaces w in Eq. (5), owing to locality. This
fact adumbrates a connection between reaction times and presentation
rates optimal for learning.

J. Gamna OvutpuTs

The z;(t) function can distinguish whether or not r,r; is practiced. But
more i8 desired. Namely, if r;r; is practiced, presenting r; should yield a
delayed output from v;. If r;r; is not practiced, presenting r; should not
yield an output from »;. And even if r;r; is practiced, no output from v;
should occur if r; is not presented. In other words, z;(t) should become
large only if z;(t — r:;) and 2,;(t) are large. Again a product is called for,
and Eq. (4) is changed to

z;(t) = —azi(t) + 2:(t — 14)Buizii(t) + Cy(t) (6)

Thus 2;;'s location in N; allows z;; both to compute products of past signals
from v; and present values at vj, and to gate the signal from v; before it
reaches v;,

K. INDEPENDENCE OF LisTs IN FIRST APPROXIMATION

If B is not presented to 9%, then in first approximation CA should be
learnable without interference from B. (Not so in second approximation,
since a signal could travel from C to B to A.) Similarly, if C is not presented
to T, then BA should be learnable without interference from C, in first
approximation. In other words, it should be possible to practice particular
skills without activating the entire embedded vocabulary of behavioral
units. Mathematically speaking, this means that all signals to each v;
combine additively at v;. Thus Eq. (6) becomes

(1) = —ami(t) + 3wt — ri)Buzalt) + Cs(0) )

Sl

The system (5) and (7) is a mathematically well-defined proposal for a
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learning machine that uses only such general notions as linearity, con-
tinuity, and locality, and a mathematical analysis of how a machine can
learn to predict B given A on the basis of practicing AB. Note that this
system is nonlinear, notwithstanding our efforts to keep it as linear as
possible, owing to constraints (I) and (J).

L. THrEsHOLDS

One further modification of systems (5) and (7) is needed—namely, the
introduction of signal thresholds. Here we introduce this modification
directly to keep background noise down. A more fundamental analysis
would introduce it by first analyzing the need in complex learning situations
for inhibitory interactions—they shut off competing or irrelevant channels,
among other tasks (Grossberg, 1970a, 1972a,b). Learning becomes difficult,
if not impossible, without signal thresholds if inhibitory interactions exist,
since the signs of all functions z; and z;, begin to oscillate in uncontrollable
ways.

The modification can also be motivated by the following possible diffi-
culty in (5) and (7). Small signals can possibly be carried around and
around the network, thereby building up background noise and interfering
with the processing of behaviorally important inputs. We therefore seek to
eliminate the production of signals in response to small z:(f) values, in
the most linear possible way. Thresholds do this for us. Letting [¢]* =
max (£, 0), we replace (5) and (7) by

—aixi(t) + 'IZ [xm(‘ - Tml) - Pn‘]+ﬂmizmi(t) + C((t) (8)

m=1

i(t)
and

2(t) = —vpza(t) + sulxi(t — 7p) — Taltze(t) (9)

where all T'»; are nonnegative (usually positive) thresholds, and i, j, k =
,2,...,n

111. Psychophysiological Interpretation

A. PsYCHOLOGICAL VARIABLES

The function x:(t) is called the ith stemulus trace: it responds to the
sizmulus Ci(t). The function 2;{(¢) is called the (7, k)th memory trace:
it records the pairing of successive events r; and r,. Alternatively, z;(¢)
is called the ith short-term memory trace: it represents bricf activation of
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the state v; either by inputs C;(¢) or by signals from other states v;. Simi-
arly, z;:(t) is called the ( j, k) th long-term memory trace: its record of past
events can endure long after the short-term memory traces have decayed.
Transfer from short-term memory to long-term memory denotes the
operation whereby the z;,’s are altered by the distribution of z.’s. Activation
of short-term memories via long-term memories denotes the operation
whereby signals from a given set of v;’s, modulated in the pathways e; by
the z,,'s, activate a given pattern of z,’s—for example, as in the subliminal
activation of learned predispositions, or ‘‘psychological sets,” in response
to particular sensory cues.

The term I';i is the ( 7, k) th signal threshold: no signal is emitted by v;
into e at time ¢ unless z;(t) > TI'i. The vertex v; is said to sample v, at time
¢ if the signal received at N from v; at time ¢ is positive. The signal strength
at N, at time ¢ is defined by Bu(t) = [z;(¢ — r4) — Tu]*B8ir. The con-
stant 8 is a structural parameter called the path strength of ex. Then X n
matrix 8 = || Bix|| determines which directed paths between vertices
exist, and how strong they are. Otherwise expressed, 8 determines the
“anatomy’’ of connections between all vertices.

B. NEURAL VARIABLES

A natural neurological interpretation of these variables is readily noticed.
This interpretation does not claim uniqueness, however, because there exist
only two kinds of variables, z/'s and z;'s, at this level of theorizing, and
these variables can at best represent averages of finer physiological or
biochemical variables. The anatomical interpretation scems unambiguous:
v:is a cell body (population), e; is an axon (population), N is a synaptic
knob (population), and the gap between N, and v is a (population of)
synapse(s). Part of the physiological interpretation also scems inevitable:
z;(t) is an average potential taken over all units in v; and over a bricf time
interval. The signal Bj;;(t) should correspondingly represent an average
over individual signals in the axon(s) e;; it is therefore assum'cd to be
proportional to the spiking frequency in ejx. The interpretation of z;(t)
is more speculative. The process z;(t) exists either in, or adjacent to, the
synaptic knobs Nj, and, by Eq. (8), zi(t)—coupled to the spiking fre-
quency Bj.(t)—determines the signal from Nj to ve. Thus it is natural to
let 2;:(t) correspond to the rate of transmitter production in Nj, or to
the sensitivity of postsynaptic sites at v, to fixed amounts of transmitter.
The former interpretation is accepted herein for definiteness. Then Eq.
{9) becomes a statistical law for transmitter production. Section IX shows
that, even if z;(¢) is a presynaptic process, it is coupled to postsynaptic
processesg in vy,
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IV. Outstars

A. PavioviaN CHOICES

This section studies the smallest anatomy that can learn a choice by
Pavlovian conditioning (Grossberg, 1968a, 1969b, 1970b). The anatomy
ia shown in Fig. 5. Figure 5a shows the smallest anatomy that can possibly
learn AB, as opposed to the lists AC, AD, etc.; that is, it can learn the
choice B given A, as opposed to C given A, D given A, ete. Figure 5b inter-
prets the same anatomy using the Pavlovian concepts C8, UCS, and UCR.
Figure 5¢ replaces these particularized notations by a purely abstract
labeling of states using indices. The cell population with cell body v; emits
an axon which breaks up into axon collaterals whose synaptic knobs
appose the UCS-activated cells ® = {v; ¢ = 2,3,...,n}. Figure 5d
represents this system in a more symmetric fashion, which suggests the
name outstar for it. Here v, is called the source of the outstar. Each v,
i # 1, is called a sink of the outstar, and the set ® of all sinks is called the
border of the outstar.

The outstar equations can readily be derived from Eqs. (8) and (9).
The main constraint is that only v can send signals to other cells v;. Hence
Bix = 0 unless j = 1 and k ¢ 1. We find the equations

() = —ama(t) + Ci(t) (10)

#:(t) = —aizs(t) + Bulm(t — m1s) — Tdtzu(t) + Cao(t) (1)
and
) £2u(l) = —y1i21i(t) + Sulm(t — 1) — Trltmi(t) (12)

where: = 2,3,...,n.

B. UnBI1asep OUTSTARS

First we consider outstars in which no choice r;, ¢ # 1, is preferred above
any others because of asymmetric choices of system parameters. In other
words, we make the following restrictions on these parameters: (1) sct all
time lags r1; equal to 7; (2) set all thresholds Ty; equal to T'; (3) sct all
decays rates ai(y1;) equal to a(y); and (4) set all interaction weights
Bi:(41:) equal to B(5). The unbiased outstar therefore satisfies the Eqs.
(10), . ‘

) (1) = —axi(t) + plm(t — 1) — TJ*r2(t) + Ci(2) (13)
and
2u(t) = —yeu(l) + 8[aa(t — r) — TTrzu(t) (14)

wherei:= 2,3,...,n
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Fia. 5. Outstar: minimal network capable of classical conditioning.

Inspection of this system readily shows that it is a lincar system of
equations with variable coefficients. Indeed, integration of Eq. (10) yiclds

1(t) = 21(0)e ™ +- /'Cl(v)e_.nu—.) dv
°

Hence the term [z:(¢ — 7) — I']* in Eqgs. (13) and (14) is a known func-
tion of time. System (13) and (14) is therefore a special case of the follow-
ing more general system of equations:

&:i(t) = A()z:i(t) + B()zu(t) + Ci(t) (15)
and
£:(t) = D(t)21:(t) + E(t)x:i(t) (16)

where A(t), B(t), D(t), and E(t) are continuous functionals of ¢, and
morcover B(1) and E(t) are nonnegative. (A functionalis a mapping from
functions to real numbers. A functional can depend on system variables,
cevaluated at past times, in a complicated way.) A rigorous mathematical
analysis of this class of systems has been carried out. Below we list in
intuitive terminology some of the formal properties that have been found.

C. Spamiar, PATTERN LEARNING

What is the most general UCS whose UCR can be reproduced by a C3
nfter Pavlovian conditioning in an unbiased outstar? The answer is a
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Fiq, 6. Classical conditioning of a spatial pattern on a grid.

spatial pattern (or picture). This we define to be any UCS of the form
Ci(t) = 0,C(t), i =2,3,...,n, such that 6; >0 and > %6 = 1. In
other words, 8 = {0;: 7 = 2,3,...,n} is a fixed, but otherwise arbitrary,
probability distribution, and C(t) is a nonnegative and continuous function
of {. A spatial pattern is the unit of long-term memory in an embedding
field.

The intuitive meaning of this definition will be illustrated by an example.
Actually the concept of spatial pattern will arise in more varied circum-
stances than this example might suggest. Consider Fig. 6. Suppose that an
arbitrary picture in shades of black, white, and gray is shown on the region
®. We want 9 to be able to reproduce this picture on ®, with an arbitrarily
good spatial resolution, by Pavlovian conditioning.

How is the spatial resolution prescribed? Suppose that m cells of 91 are
embedded in ®, and that cach cell receives an input proportional to the
intensity of the picture at its position. For definiteness, imagine that the m
cells are arranged in a rectangular grid in ®. As m is increased to ever larger
values, the density of the cells in ® increases, as does the accuracy with
which the picture is represented in 91 by these cells. We shall let these cells
be the border, ®, of an outstar. The mathematical results on learning by
outstars hold for any n = m + 1, or any spatial resolution.

Now imagine a fixed picture, such as the Mona Lisa in shades of gray,
shown on ®R. We can vary the fofal intensity of the light which illuminates
the picture without changing the picture itself. The total intensity can be
steady (and bright or dim), or can flicker between broad physiological
limits, without changing our impression that the Mona Lisa is still being
presented. In other words, the relative intensity of light, not its absolute
intensity, characterizes the picture. Only the relative intensity of the
picture is constant through time. The constant relative intensity at v; is
denoted by 8;. The total intensity, which can fluctuate in time, is C(¢). In
other words, the fact that outstars can learn the weight, 8;, means that
they can pick out the “relative figure to ground” of an input pattern. The
‘outstar can learn such a pattern no matter how we interpret the border,
®, to which it is attached. For example, the border can consist of motor
control cells, interneurons, cells in any sensory cortex, etc.

Thesc assertions are made precise by studying the relative traces, or
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pattern variables, X; = z;( D% xx)~! and Zy; = 21:( 245 2u)~". Mathe-
matical analysis shows that the pattern weight 6; attracts X;, while X;
and Z,; mutually attract each other. Consequently, the relative memory
trace Zy; is attracted toward (“‘encodes’”) the pattern weight 6;. On recall
trials, an input to v (‘“presenting A”’) creates an equal signal to cach Ny;.
In Ny, the signal is multiplied by 2,;, which is proportional to 8;. Thus the
input to v; is proportional to 8;. The learned pattern is hereby reproduced on
the border ® by an input to the source cell v;.

Spatial pattern learning by an outstar has the following properties
(Grossberg, 1968a, 1969b, 1970b).

1. Practice Makes Perfect

The more rir; is practiced, the better can M predict r; in response to .
This learning can be “all-or-none”—occurring in one trial—or “gradual”—
requiring several trials. In an outstar, learning rate is determined by CS
and UCS input rate, intensity, relative timing, the number of response
alternatives, and related factors. These factors influence both the rate with
which Z,; approaches 6, and the size of z,;. In more general anatomies, the
learning rate of a given item in a list of events depends on list position, or
more generally on the context of other events in which the item occurs
(cf. Bection VII). For example, in serial learning of a long list presented at
a rapid rate, the items at the two ends of the list might be quickly learned,
whereas the items near the middle of the list might not be learned at all on
the first few trials.

2. Overt Practice Unnecessary

The machine 9% can remember without overt practice. The potentials and
thus the outputs from 91t can be zero during memory intervals without
destroying the memory; that is, each Zi; remains constant. In fact, positive
potentials (in particular, “‘reverberations’” among the vertices) can destroy
the memory in certain anatomies (Grossberg, 1968b). One must also dis-
tinguish perfect memory of pattern weights Z;; from perfect performance.
For example, in Eq. (14), z;; can exponentially decay even if Z;; remains
constant. If z; decays to the level of network noise, then the memory is
essentially zero.

3. Recall Preserves Memory

Item r; can be recalled in response to r; as often as one pleases with-
out destroying the memory of riri; that is, Z); remains constant during
recall trials. In fact, recall of ry, given ry, can “potentiate’” the memory of
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Fia. 7. Self-improving memory due to coupling of STM and LTM traces.

rirs; that is, 2zy; can grow. There exist anatomies in which this is false: the
very act of recall tends to destroy the memory (Grossberg, 1968b) ; these
anatomies usually reverberate signals in closed loops.

4. Self-Improving Memory

Self-improving memory, or reminiscence, exists. For example, let two
outstars, 9, and M., practice ryr; the same number of times. Let recall
occur T'; time units after practice ceases in 9;, 7 = 1, 2. For certain choices
of Ty < T4, recall is better in 91, than in 9. See Osgood (1953, pp. 509-
513) for & discussion of an analogous experimental phenomenon. Figure 7
illustrates this phenomenon. It is due to a coupling between STM traces
and LTM traces.

5. Contour Enhancement

After practice of a spatial pattern ceases, the memory of dark (bright)
regions of the pattern ean become darker (brighter). The mechanisms for
contour enhancement and reminiscence are the same in an outstar. See
Grossberg (1972b) and Ratliff (1965) for a discussion of contour enhance-
ment due to lateral inhibition.

6. Error Correction

All errors can be corrected. Even after ryr; is learned, ryr; can be learned
instead. The rate of learning ryr; ean depend on such factors as the prior
leve} of ryr; performance and on the total number of response alternatives.
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7. Several Memory and Recall Modes

For suitable choices of the coefficients A (t), B(t), D(¢), and E(t) in
Egs. (15) and (16), different properties of memory or recall can be achieved,
Each choice has a distinct physiological interpretation. One can, for ex-
ample, achieve:

(a) Perfect memory, even during recall trials (Grossberg, 1970b) ; let

n -1
B(t) = pn(t — 1) — I‘]+[E zu(t)] (17)
k=2
This describes a purely “interference” theory of forgetting: All forgetting
is due to active relearning of new sequences.

This choice of B(¢) does not yield an interference theory in all anatomies.
For example, if each v, sends signals to all vertices v;, or to all vertices but
itself, then a “phase transition” can occur (Grossberg, 1968b, 1969¢).
Given suitable numerical parameters, a learned pattern will be forgotten;
given other parameters, it will be remembered. Exactly what is forgotten
depends on the anatomy of the network. One can pass from the forgetting
phase to the remembering phase by (say) speeding up axonal signals at a
critical time; such an operation can “imprint” the pattern that exists at
the critical time. See Section VI,G. This example dramatizes the fact that
one cannot generally infer the global properties of a network from its local
properties.

(b) Exponential decay of memory, at any prescribed rate {Grossberg,
1970b); let C(t) = —+. Even though 2 can spontaneously decay, the
relative traces Z; are changed only by “interference” due to new learning,
or by reminiscence, as in property (4). The net decay rate of zy; itself is not
always v. This rate can be slowed down, or even reversed, by recall trials,
by “spontaneous” rhythmic inputs to », during memory intervals, by
reminiscence effects, etc. Again, a local property—this time a decay rate—
is not necessarily the global one.

(¢) Perfect memory until recall trials, followed by possible extinction of
memory during recall if the predietion is not rewarded or retrained (Gross-
berg, 1970b); let D(t) = —yE(t). Again an interference theory of for-
getting holds for the relative traces Zi;, but not necessarily in all anatomies.

These cxamples point out that important properties of learning are
invariant under changes that allow many variations in the details of learn-
ing and performance. Speaking mathematically, the pattern variables
Xi(t) and Zyi(t) have the same limiting and oscillatory possibilities given
various choices of the cocfficients A (¢), B(t), D(t), and E(t). These cocffi-

cients determine the transient motions of the system, including learning
rates,
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8. Stimulus Sampling

Stimulus sampling theory is a purely behavioral theory that has success-
fully described various learning data using probability models (Atkinson
and Estes, 1963). A physiological mechanism of stimulus sampling and a
physiological interpretation of stimulus sampling probabilities exist in
embedding fields. The relative memory traces Z; = (Zu, Zi3, . . ., Z1a)
are attracted toward the pattern weights 8 = (0y, 05, .. ., 8,) only at times
when the synaptic knobs, Ny, receive CS-activated spikes from v;. This is
the property of ‘‘stimulus sampling” in an outstar: v; samples the patterns
playing on @ by emitting signals at prescribed times. The relative memory
traces, Z,, which form a probability distribution at each time ¢, are the
“gtimulus sampling probabilities” of an outstar (Grossberg, 1970b).
Whenever v, samples ®, the memory traces in its synaptic knobs begin to
learn the spatial pattern playing on ® at this time. If a sequence of patterns
(that is, a space-time pattern) plays on @ while v; is sampling, then v,’s
synaptic knobs learn a weighted average of all the patterns, rather than
any single spatial pattern. Thus if an outstar samples @ while a long se-
quence of spatial patterns reaches ®, then after sampling terminates, the
sampling probabilities, Z,, can be different from any one of the spatial
patterns. On recall trials, a C8 input to v, creates equal signals in the axons
e1i. These signals flow down to the Ny;. In Ny;, the signal interacts with the
memory trace 25; to reproduce at the cell v; an output proportional to Z;;.
In this way, recall trials reproduce at ® the weighted average of sampled
patterns that was encoded on learning trials.

9. Oscillatory Inputs and Monolonic Response

When ryr; is practiced on successive trials, the inputs Ci1(¢) and C.(2)
are highly oscillatory in time. Yet increased practice yields the impression
of a steady increase in learning (see Fig. 8). The probabilities Z,; bridge
the gap between oscillatory inputs and monotonic learned response.

10. Eidetic Memory

An outstar is capable of eidetic memory. This remarkable phenomenon
has been tested by using human subjects in the following ingenious way.
Two pictures are constructed by computer from 10,000 randomly dis-
tributed black and white dots. These pictures conceal a figure in depth that
can be seen only when the pictures are viewed binocularly (Julesz, 1964).
An cidetic woman studies the first picture with one eye on day 1 of the
experiment and returns the next day to study the second picture with the
other eye. She then identifies the concealed figure (B. Julesz, personal
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communication, 1970) | To accomplish this, she must presumably be able to
conjure up in her mind’s eye an almost perfect replica of. the 10,000 dots
shown on the previous day. In short, textural memory with an enormous
storage capacity is possible.

A single cell in our networks can do this formally. Let an outstar (or &
cluster of outstars that fire in unison) send axon collaterals to the correct
visual representation area. If the network can activate the source cell(s)
at will, then it can learn the first picture to an arbitrary degree of. accuracy
on day 1. On day 2, if it again activates the source cell, the internally
produced representation of the first picture will interact with the ex.ternally
produced representation of the second picture to produce t:he bmocglar
effect of a figure in depth (see Fig. 9). Several properties of this mechanism

are of interest.

Binocular
lnlerucﬂon(_ q\:' =
Pyl
Visual b
Representation {I';. Righ Eye Input
Areos Left Eye Inpul
(a0} Simultaneous Binocular Exposure

s
/%‘ \il
Outstar Input  Left Eye Input

(b) Doy One

Binocuk

Interacti ':O
-

Right Eye Inpu!
Outstar Input
{c) Day Two

Fia. 9. Eidetic memory using outstar sampling.
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(a) To learn 10™ pictures playing on 10" visual cells, one needs no more
than 10™ + 10°( <2 X 10me=x(m.m) cells, not 10m+» cells, as is occasionally
claimed. In fact, it will later be shown that to learn 10™ moving pictures
(space-time patterns, such as piano sonatas or dances) playing on 10" cells
of any kind, one needs no more than 10™ + 10~ cells. In principle, one could
learn 10" dances playing on 10" motor control cells without using as many
as 10" cells, and our brains are thought to contain no fewer than 10"
cells. One could also learn a new pattern playing on 10 cells every second
for sixty years using fewer than 2 X 10" encoding cells. The networks con-
tain more than enough storage capacity. None of us seems to know how to
do 10" complex acts, however. Hence we must ask what the extra cells are
doing. Section V will begin to address this question.

(b) To learn eidetically as in Fig. 9, there must exist cells—other than
cells leading progressively from the retina itself—that send axons to the
visual representation areas. Further evidence for the existence of such cells
has been acquired by studying epileptics (Penfield, 1958). An electrode in
the temporal lobe of man can vividly activate a sequence of perhaps very
old memories, including visual and auditory memories. Discontinuing
electrode current while the sequence is being recalled can stop recall.
Reapplying current at the same point can reinitiate recall of the same
sequence. These data suggest that the cells being sought might project
from the temporal lobes to visual and/or auditory representation areas.

(¢) The blessing of eidetic memory also carries with it a possible liability.
Suppose that the visual representation areas received a continual barrage
of nonvisual inputs which were not synchronized with visual inputs to
produce functionally useful results. Then hallucinations and other internal
visual experiences could continually pop into our minds against our will. To
prevent this, such cells should be forbidden from firing to the visual areas
unless there exist functionally desirable stimulus conditions for visual
learning or recall. The ability to fire the source cell at will seems to be a more
remarkable phenomenon than the existence of textural memory per se,
since it resembles the ability to hallucinate specific subject matter at will.

11. Response Generalization: Variable Performance Velocities

Suppose that the UCR sends signals to muscles which contract at a rate
proportional to the signal. Let the UCR be a spatial pattern; that is, the
UCR creates fixed relative contraction rates of the various muscle groups.
An outstar that learns to contract these muscles at a given total velocity
can also contract them—in the same pattern—at many other total veloci-
ties. This form of “response generalization” is the output version of the

“stimulus generalization” property of being able to learn the “relative
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figure to ground” in an input pattern. Not all motor patterns are spatial
patterns, however, and this property is modified when more complicated
motor tasks are imposed, as in Section V.

V. Avalanches

A. Riruanistic LEARNING OF SPACE-TIME PATTERNS

This section studies the following question: What is the minimal number
of cells needed to encode the memory of an arbitrarily complicated space-
time pattern, such as a piano sonata or a dance? The answer is: One! What
could be more “minimal’’? Yet this answer creates a paradox. If one cell
can encode a whole dance, and our brains contain at least 10" cells, why
doesn’t anyone know 10 (or even 10*) dances? What do the extra cells do?

Encoding a space-time pattern with one cell has a severe limitation:
Performance is ritualistic, or by rote. Once performance of the “dance”
begins, the entire dance must be completed, even if the stage on which the
dance is being performed is consumed by flames as the dance progresses.
In other words, such a system is insensitive to environmental feedback;
it cannot adapt to changing environmental demands once the performance
of an act begins. Once we note how to encode a space-time pattern without
feedback, we shall also readily see how to begin construction of systems that
are sensitive to feedback. Such systems will require many more than one
cell to encode the entire pattern.

Study of systems that perform with little feedback is not of purely
academic interest, however. There exist examples of such performance
throughout the phylogenetic kingdom. For example, the seagoing mollusk
Tritonia has individual, large cells, with extensively branched axons, whose
direct electrical stimulation causes a well-organized swimming escape
response (Willows, 1968). Clearly, given such individual cells, it is crucial
that they fire only at appropriate times. For example, Tritonia would starve
if it “escaped” whenever it approached a source of food. Nonetheless,
Tritonia can escape from predators, such as starfish, with considerable
reliability. Thus certain characteristic stimuli at Tritonia’s periphery can
create inputs to its swimming escape cells, but inappropriate inputs cannot.
Such facts motivate the construction of networks that can selectively filter
environmental inputs on their way to prescribed control cells (Grossberg,
1970a, 1972a,b, Hubel and Wiesel, 1968).

Other organisma also have individual cells capable of controlling well-
organized behavioral acts. These include insects (Dethier, 1968, p. 8), and
crayfish (Kennedy, 1968). On a higher level, the ring dove performs a
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ritualistic sequence of acts during its reproductive cycle (Lehrman, 1965).
Successive stages of this sequence are triggered by the previous stage and a
well-defined combination of exteroceptive and interoceptive stimuli, The
maternal behavior of the rat also involves a characteristic sequence of
ritualistically organized acts (Thomas et al., 1968, pp. 266-273). Even man
is capable of performing complex sequences of acts without the benefit of
continuous feedback. For example, a cadenza can be played by a skilled
pianist so rapidly that motor feedback cannot possibly determine the next
note to be played (Grossberg, 1969b, 1970b; Lashley, 1951). On the other
hand, as one ascends the phylogenetic ladder, one finds that ever more
subtle types of feedback can influence behavior. For example, the pianist
can try to escape from a concert hall before it burns down, and can modify
his performance of a piece in exquisitely subtle ways.

B. SEQUENTIAL SAMPLING

Given a finite collection of cells v, 7 € I (I some set of integers), suppose
that an arbitrary nonnegative and continuous input, Ci(¢), perturbs v;.
Consider the weights 8:(t) = C:(t)[ 2rar Ca(£)1™* as they fluctuate in
time. Can we learn these weights to an arbitrary degree of accuracy? We
can do so by using a collection of sequentially activated outstars if we
invoke three mechanisms: (1) stimulus sampling; (2) brief signals from the
CS-activated cell body; and (3) an anatomy in which each CS-activated
outstar sends an axon collateral to each UCS-activated cell, v..

To see this, first note that 0;(¢), as a continuous function of {, can be
arbitrarily well approximated by the discrete sequence

(6:(0), 8:(), 0:(28), 0:(30), . . . , B:(Ny — 1)}

of its values, if the positive number { is chosen sufficiently small; that is,
the “moving picture” is replaced by a sequence of N; “gtill pictures.”
Suppose that a sequence, 91, of outstars is given, j = 1,2,..., N;, such
that (1) each outstar sends one axon collateral to each cell v, 1 € I, and
(2) the synaptic knobs of 91;’s axon collaterals are active only during an
interval of time [(7 — 1)§, (j — 1)¢ + At]. If At is sufficiently small,
then the pattern weights, 6;(t), change arbitrarily little from their values
0.L(j — 1)¢] during the time interval [(j — 1){, (j — 1§ + At Hence
91L; can learn the spatial pattern with weights 6, (j — 1)¢] to an arbitrary
degree of accuracy. The outstar 9; samples only this pattern, by the
property of stimulus sampling.

How can these sampling intervais be guaranteed? Simply let a ce
u1, send out a long axon, and attach the outstar 9; at the axonal position
which is excited by a signal emitted from vy at (j — 1)§ — 7 time ubits
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earlier, where 7 is the time needed for signals to travel from 91; to any v;
(see Fig. 10). Such a system is called an outstar avalanche, or an avalanche,
‘by analogy with avalanche conduction in the parallel fibers of the cere-
bellum (Grossberg, 1969b, 1970b). Physiologically, it is a cell whose axon
emits sequential clusters of axon collaterals which converge on the common
-cells v;, i € I. Performance of the pattern is elicited by a signal from v,
which successively activates the outstar-encoded spatial pattern approxi-
mations to the space-time pattern on the cells »; every { time units.

Note that the avalanche has the minimal number of formal degrees of
freedom needed to learn the pattern perfectly, given a prescribed spatial
and temporal resolution of the inputs: the number | I | of cells »; determines
the spatial resolution of the inputs Ci(¢), and the number N; of time
intervals determines the temporal resolution in memory that is desired.
The minimal number of formal degrees of freedom is | I | N;, which is also
the number of axon collaterals in the avalanche.

A sample set of equations for an avalanche is stated below. Let z, be the
potential of v;, and let z; be the potential of vy, ¢ € I. Let 2;; be the trans-
mitter in the axon leading from the jth outstar to the cell v;. Then system
(8) and (9) becomes

i = —ait1 + C1 (18)
N
& = _ax‘-}-ﬁi[x,(t—- (k — 1)$) — IJ*zu + Ci (19)
k=1 '
and
! 2,'.' = —%Zj + 5[$1(t - (j bt 1)")— P]+2.' (20)
lwhere i€l j=1,2,...,N; Suppose that [z:(t) — I'J* is positive in

'an interval whose duration is shorter than . Then at every time ¢, at most

1

.one term in the sum

N
25 [za(t — (k — 1)8) — TJ*2u
k=1
is positive. At times when the positive term corresponds to k = K, then
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' llll'm. 10. Sequential sampling of a space-time pattern by an avalanche, or command
cell.
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Fia. 11. A command cell that sequentially activates outstar interneurons.

Eq. (19) becomes

£ = —ar; + ﬁ[xl(l — (K —- l)f) - r]+zk4 + C; (21)

and when k = K, the system (18), (20), and (21) is an outstar.

. There exist variations on this theme. For example, a single cell, v;, can
give off sequential axon collaterals to a series of outstars. Figure 10 is then
replaced by Fig. 11, in which the outstars are interneurons between v, and
v, 1 € I. In this anatomy, several different command cells can sample the
same outstar. Perhaps the most abstract anatomical arrangement is that
given by Fig. 12, which shows that the local anatomy alone of the system
does nof, necessarily disclose its function. In Fig. 12a, a parallel series of
axons gives off regular axon collaterals to a rectangular lattice of cells.
What thig system learns depends entirely on what inputs are sent to it. For
example, in Fig. 12b, synchronized CS inputs reach the first three sampling
cell bodies, and (perhaps differently) synchronized CS inputs reach the
next three cell bodies. Figure 12¢ draws the equivalent avalanches for this
case. Next one must determine the distribution of UCS inputs. If, for
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Fia. 12. An anatomy in which input symmétries determine equivalent avalanches.
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example, all cells in a row parallel to the axons receive the same input, then
the system of Fig. 12d can learn space-time patterns much as the system
of Fig. 10 does. If, however, the UCS inputs are the same in each row
perpendicular to the axons, then one learns only redundant copies of a
sequence of perhaps uncorrelated events. In other words, the symmetries of
the input mechanisms determine what the equivalent learning network is;
the local anatomy itself need not reveal these symmetries. Various other
anatomical variations are considered in Grossberg (1970b).

Avalanches of avalanches, or avalanches of avalanches of avalanches,
etc., can readily be constructed. For example, a given cell population can
control motions of a finger, a higher cell population in the hierarchy can
control motions of all fingers in a hand, a still higher cell population can
control motions of both hands, ete. Inputs can, in principle, enter this
hierarchy at any level to activate a prescribed population.

C. SENsITIVITY TO FEEDBACK: COMMAND CELLS A8 AROUSAL SOURCES

How can an avalanche be modified so that sequential performance can
be stopped and switched to more urgent behavioral modes? Clearly this
cannot be done in Fig. 10 because the signal propagates down the entire
axon once it is emitted by v;. To prevent this, successive outstars can be
separated by interpolated cells, as in Fig. 13. Immediately we have gone
from one encoding cell to N; such cells. These extra cells will provide no
advantage unless a given cell, v;, requires more than a signal from v;_, in
order to fire. Namely, it might also require a simultaneous input from
another part of the network which designates that sequential performance
of the given act is still desirable—for example, an “‘arousal” or “nositive
incentive motivational” input (cf. Section VIII). The cell v; should also be
unable to fire if it receives a v;_, signal along with an inhibitory signal from
elsewhere in the network that designates the undesirability of continued
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Fia. 13. A command cell as a nonspecific arousal source supporting sequential sampling.
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Fia. 14. An avalanche whose successive sampling sources are selected by cues and
then learned.

sequential performance—for example, a “suppressor” or ‘“negative in-
centive motivational’”’ input; cf. crayfish swimmerets (Stein, 1971, p. 317).

Not every competing stimulus should be able to terminate ongoing per-
formance. Only those inputs that have greater “significance” to the net-
work should have this privilege. What are “significant” inputs? This
question naturally leads one to discuss the question: What are rewarding or
punishing inputs? In short, what is reinforcement? How does it influence the
network’s arousal level (Grossberg, 1971b, 1972¢,d)?

Note that performance rate can be varied in Fig. 13. Each successive
cell, v;, can have its reaction time (that is, the time lag between input onset
and onset of output signal) decreased, either by increasing the signal from
v;_1 or by increasing the arousal input. Performance rate can thus be con-
tinuously modified by continuously varying the arousal level of the machine.
That is, even if the avalanche-like anatomy encodes the same sequence of
events (the same “information’’) on successive performance trials, nonethe-
less the arousal level of the machine (its “energy”’ level) can modify details
of performance. The same argument holds if no learning occurs at the
synaptic knobs, and the avalanche anatomy merely controls the per-
formance of a sequence of motions. Note that modifying the arousal level
does not require feedback from the avalanche outputs. Successive outstars
can b.e sampled much faster—and at variable rates—than feedback need
permit.

Until this point, we have considered avalanches whose successive outstars
are predetermined by the network anatomy. In general, this need not be
true. Successive links can also be determined by sensory and motor cucs,
including feedback cues. Then one is led to ask: How are these cues filtered

LEARNING BY NEURAL NETWORKS 79

through cell populations with selective response profiles to sequentially
activate particular outstar source cells? If the sequential activation of

- outstar sources is not innately determined by the anatomy, one must also
ask: How does the jth outstar (population) in the avalanche form sequen-

tial connections with the ( j + 1)st outstar (population) in the avalanche?
(See Fig. 14.) Other questions readily suggest themselves. How can brief
sampling pulses be guaranteed in the avalanche in response to possibly
temporally prolonged sensory cues? Such pulses are needed to achieve
accurate sampling of spatial approximants to a space—time pattern, as well
as precise performance (Grossberg, 1970a). How can more than one
sampling pulse be prevented from passing down the avalanche at any given
time, again to achieve accurate sampling and performance? This requires
the introduction of inhibitory signals, activated by the outstars, and
descending toward the input sources. In short, the expansion of ritualistic
avalanches to achieve responsiveness to environmental feedback imposes a
definite teleology on our later constructions. Some of these constructions
yield mechanisms of pattern discrimination, and in particular an analysis of
various uses for nonspecific inhibitory interneurons (Grossberg, 1970a,
1972a, 1973). .

As learning and performance become less ritualistic in an avalanche, the
complexity of the total input to each of its outstar sources increases. The

" itotal input can be a sum of a rapidly fluctuating arousal input, an input

from a complex hierarchy of sensory filters, an input from a previous outstar
source that was itself perturbed by a complex input, etc. Thus we seek
. assurances that learning can occur even if the source is perturbed by very
general inputs. The next section provides such assurances in a rigorous
mathematical setting. Holographic theories of memory, which depend on
the existence of precisely regulated periodic sampling sources, depart
heavily from the spirit of this discussion.

VI. Arbitrary Anatomies and Generalized Physiological Laws

A. OnNE LEVEL IN A HIERARCHY

When an avalanche is modified to permit fecdback adaptations, the cells
vi, i € I, can be sampled by many cells v;, j = 1,2,..., Ne. Below we
thercfore study the following question: Under what circumstances can &

feollvction ofcells@ = [v;,j € J} sample a collection of cells® = {v;, 1 € 1}
in such a fashion that simultaneous sampling of @ by different cells in @
does not irrevoeably bias what these cells learn? We shall find that this is

p.nsﬂil)lo, given any finite number of cells @ and @, under very weak condi-~
tions, The relevant theorems (Grossberg, 1069d, 1971c, 1972b) hold cven if
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the cells @ fire out of phase and in response to wildly oscillatory, and
mutually uncorrelated, inputs. Thus the inputs to cells @ can be constructed
from the outputs emitted by cells at a previous stage of learning or other
preprocessing, and the outputs from & can be used to construct inputs to a
later stage of cells. In this way, a hierarchy of learning cells can be con-
structed. The theorems study one level in such a hierarchy in detail. If
such a mechanism evolved at a given time, it could be adapted to any later
specialization.

B. A GENERAL CLASS OF SYSTEMS

The equations that govern one level of this hierarchy can be substantially
generalized beyond Eqs. (8) and (9) by weakening some linearities in these
equations without changing their general form. These equations are
defined by ,

#: = A+ ) Buzri + C: (22)
keJ
and
2ji = D,‘.‘Zj{ + Ejx; . (23)

i € 1,7 € J, where 4;, Bj;, Dj;, and Ej; denote continuous functionals, not
necessarily linear, with all Bj; and Ej; nonnegative. The input functions
and initial data are chosen nonnegative and continuous. Mathematical
analysis of Eqs. (22) and (23) shows that the classification of limiting and
oscillatory possibilities for the pattern variables of these systems is in-
variant under broad changes in functionals, much as in the study of Eqs.
(15) and (16). As in that situation, transient motions of the systems can
be altered by changes in functionals, and a proper choice of functionals
(including anatomy) must be made to guarantee efficient real-time learning
of particular tasks. The invariance properties show that the systems are
very stable and can be adapted to many particular situations., Below are
reviewed some physically relevant choices of these functionals.

As in the case of Eqs. (15) and (16), the long-term memory decay
funetional, Dj;, can be chosen to guarantee a variety of forgetting possi-
bilitics. The choice of performance functional Bj;, as in Eq. (17), can also
influence how decay due to Dj; shows up in network response to inputs.
Other useful choices of these functionals are listed below.

1. Now Print Signals of Shunting Type

Suppose that a sequence of spatial patterns perturbs the cells ®. There
exist mechanisms that can quickly accelerate learning of the patterns which
arrive during prescribed time intervals. These intervals can heuristically
be ealled Now Print intervals (Livingston, 1967, p. 132). Such mechanisms
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Fia. 15. Nonspecific arousal as a shunt of potentials or signals.

can be activated by arousal inputs that are turned on by the occurrence of
significant events. The first mechanism works by sending synchronized
signals to all cells in @. These signals then interact multiplicatively with
(or “shunt”) the potentials z; (see Fig. 15a).

Consider, for example, the system

& = [—a -+ f(1) Jx; + 6.C

where C is a constant, 0 < f(t) < «, and z;(0) = 0. Let f(f) be constant
in the interval [0, T7]. Then

zi(t) = 6; [L a- e—(a—m)]
a—f
for t € [0, T']. The function
(w) = 1— (1 — e¥)
g = o e

is, for fixed ¢t > 0, a monotone decreasing function of w > 0. Thus, given
ever-increasing values of f € [0, «], z:(f) increases as well; the “shunt”
J has amplified the input intensity C. This multiplicative form of Now
Print mechanism is not, for some purposes, as satisfactory as the additive
mechanism that will be introduced in Section VIII.

Alternatively, the nonspecific shunting signal can act directly on the

~ synaptic knobs that deliver the inputs C; to v; (see Fig. 15b). This would

have the effect of directly amplifying the inputs, as in
= —ax; + 0; f(1)C

The same synaptic knob shunt can influence the memory traces by
amplifying the presynaptic signals that perturb the knobs. For example, let

2ji = —vizis + 8 f() [zi(t — ;) — DTtz
or let

2ji = —vizji + §;[z;(t — ;) — T;(f(1)) ]z

where f() is a nonnegative, monotone increasing function of arousal level,
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and I'(s) is a monotone decreasing function of s = f(¢). These laws mix
exponential memory decay with a cross-correlator that can be shut on or
off at will. Perfect memory until recall can also be modified in a similar
fashion by letting

b = f(O[zi(t = 7)) — T (—vszi + 820)
or

25 = [xi(t — i) = Ti(S (D)) IH(—vsz50 + 8;2i)

Both sampling and Now Print must here be active as a precursor to learning
or forgetting. Various other formal possibilities are special cases of our
analysis; for example, shutting off the Now Print mechanism can prevent
all memory change, whereas turning it on can permit exponential memory
decay and/or new learning, as in the equation

i = () [ =iz + 8ilzi(t — 75) — Tiltzi

2. Local Flow

The signal terms gulz;(t — i) — rpJt and Sp[zi(t — i) — Tiult
in Eqgs. (8) and (9), respectively, can be replaced, say, by

Bia(t) = Ba(t)[zi(t — ra(®)) — Ta(®) 1

En(t) = su()[z;(t — oin(t)) — () I+

which permit different, and variable, time lags, thresholds, and path
strengths in the two signal strength functionals. This includes the possi-
bility of coupling a Now Print mechanism to these functionals, through
either the variable path strengths or the thresholds. Functional Eu(t)
describes the effect of the signal from v; on the cross-correlational process
within N j: that determines z;:. Functional Bj, describes the net signal from
v; that ultimately influences v, after being processed in N j. It is therefore
natural to physically expect that I';y > Q. This local flow condilion says
little more than that the signal from v; passes through N on its way to
ve. Such a condition is, in fact, needed to guarantee that many cells can
simultaneously sample a given pattern without creating asymptotic biases
in their memory (Grossberg, 1971¢, 1972b). This condition has an casily
realized physical interpretation, given the assumption that the process 2;
occurs in the synaptic knob or at postsynaptic membrane sites.. Various
other interpretations for z; do not yield a physical basis for the local flow
condition, and could not realize the possibility of simultaneous sampling
by many input channels. The local flow condition provides examples of
systems that can learn patterns without performing them until later, but

and
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cannot perform old patterns without also learning new patterns that are
imposed during performance.

The functionals B and Ej permit more complicated possibilitics as well.
For example, in vivo, after a signal is generated in ey, it is impossible to
generate another signal for a short time afterward (absolute refractory
period) and harder to generate another signal for a short time after the
absolute refractory period (relative refractory period). Also, some cells
emit signals in complicated bursts. Intricate preprocessing of input signals
can occur in the dendrites of cells before the transformed inputs influence
the cell body. All such continuous variations are, in principle, covered by
our theorems, which say that, whereas such variations can influence
transient motions of the system, the classification of limits and oscillatory
possibilities is unchanged by them. Given that weak constraints such as
local flow hold, what is learned depends on which cells sample what pat-
terns, and how intensely, no matter how complicated the rules are for
determining when a cell will sample.

It is physically interesting that those terms, such as Bj; and Eji, which
describe processes that act over a distance (such as signals flowing along
ep) are the terms in Eqs. (22) and (23) that permit the most nonlinear
distortion without destroying learning properties. The term z; in Eq. (23)
is not of this type. This term is computed in N;; from the value z; in the
contiguous vertex v;.

C. LocaL SYMMETRY AXES

In their final form, the theorems show that unbiased pattern learning can
occur in systems with arbitrary positive path weights B from j € J to
i € I. This is achieved by first restricting attention to systems of the form

&= Az + 2, Bizai + Ci : (24)
keJ .
and
4;i = Djzji + Ejx; (25)

where i € T and j € J. That is, all functionals A;, Bji, Dj;, and Ej; are
chosen independent of ¢ € I, and the anatomy is constrained to make this
possible, These constraints mean that all cells & = {v;: 7 € I} are sampled
by a given cell, vj, in @ = {v;:j € J} without biases due to system param-
olers (B = B, Dj; = Dj, E; = Ej), and that the inputs to all cells & are
averaged by their cell potentials without biases due to averaging rates
(A, = A) (see Fig. 16a). Systems (24) and (25) allow each

AR, AUle . Wybuvlang \&2)

cell to have a different time lag, threshold, and axon weight, as in
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Fia. 16. Constraining an arbitrarily large set of sampling cells by imposing local
symmetry axes.

B;(t) = B[z;j(t — r;) — T';J*. Even if all cells interact, as in Fig. 16b,
no biases in asymptotic learning need occur due to these asymmetries in
signal transfer among possibly billions of cells.

Figure 16, b and ¢, illustrates two extremal anatomies, the completely
recurrent (I = J) and the completely nonrecurrent (I N\J = ¢) cases.
Generalizations of Fig. 16a are also possible. In these generalizations, G
and ® are replaced by sets {@.} and {®,} of subsets such that each cell
in a given ®,; is sampled by all cells in @i. One seeks the maximal subsets
®, for which this decomposition exists. For some purposes, a fixed set
{®:} is determined by structural considerations; for example, each ®:
controls a different motor effector. It is then sometimes profitable to
introduce fictitious cells into the sampling cells @ if some cells in @ sample
two or more subsets .. For example, if cell v; in @ samples ®, and ®,,
replace v; by two cells, vi1 and vy, such that v;; samples only ®;, j = 1, 2,
and cach v;; receives the same inputs, and has the same parameters and
initial data, as the original cell, v;, had. Otherwise expressed, suppose that
a given cell (population) can sample motor controllers of both hands, but
that only the left hand is used to learn a given task. We then want to
study the pattern variables associated with the left hand only, not both
hands. The decomposition exhibits the system in a form suitable to this
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analysis. The mathematical analysis of systems (24) and (25) can be
found in Grossberg (1969d, 1071¢, 1972b).

D. UnBiasEp LEARNING WITH ARBITRARY PosiTive AxoN WEIGHTS
Using CHEMICAL TRANSMISSION AND ACTION POTENTIALS

Let Eq. (24) be replaced by
& = Azi + 2, Bifritri + Cs (26)

keJ
that is, let the path weights, 8;;, from v; to v; be arbitrary positive numbers.
Can we transform Eq. (25) analogously so that learning and performance
of spatial patterns is unimpaired? The answer is “Yes.”
We want the pattern variables
Z9) = Bzi( 3 Buzin) ™
kel

to converge to 6; after sufficient practice. This will happen if Eq. (25) is
replaced by

2ji = Djzji + Eifjiz: (27)
since letting w;; = B,:2;;, Eqs. (26) and (27) yield
#: = Az + ) Boww + C;

keJ

and
u'),-; = D,’wj.' + Ej:'c.'

which are again of the form of Eqs. (24) and (25). A mathematical analysis
shows that our goal could not be achieved by replacing Eq. (25) with

2 = Di?j; + E,'ﬂjizi

which would be the natural thing to do if we supposed that E,8;; is deter-
mined wholly by spiking frequency (Grossberg, 1972b).

How can the g8;s in Eqs. (26) and (27) be interpreted? Suppose that
Bji = N;Rji, where \; > 0 and R;; is the circumference of the cylindrical
axon, ej. Let the signal in e;; [for example, the action potential (Ruch
ctal.,, 1971) ] propagate along the circumference of the axon to its synaptic
knoh. Let the signal disperse throughout the cross-sectional arca of the
kl}()b [for example, as ionic fluxes (Kats, 1966) ]. Let local chemical trans-
mitter production in the knob be proportional to the iocal signal density.
Finally, let the effect of the signal on the postsynaptic cell be proportional
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to the product of local signal density and local transmitter density and the
cross-sectional area of the knob.

These laws generate Eqs. (26) and (27) as follows. Signal strength is
proportional to R;; or to 8,;. The cross-sectional area of the knob is propor-
tional to R};. Hence signal density in the knob is proportional to R;;R7: =
R7i, or to 87}, as in Eq. (27). Thus (signal density) X (transmitter
density) X (area of knob) =2 R7iz;:R}; = Rjiz;i =2 Bjizji, as in Eq. (26).

By eontrast, a mechanism whereby signals propagate throughout the
cross-sectional area of the axon could not produce unbiased learning given
arbitrary axon connection strengths, or at least such a mechanism is still
elusive. The difficulty here is that signal strength is proportional to E};,
signal density is proportional to one, and local transmitter production rate
is then proportional to one. The postsynaptic signal is proportional to
(signal density) X (transmitter density) X (area of knob) =< g}, z;;. Thus
we are led to the system

= Az; + Z BiSiizri + C;
keJ
and
2j = D,‘Z;.' + Ej:t.'

which can be written as

= Az + ) BiBrawni + C:
keJ
and
Wi = Dywji + B,z

in terms of the variables wj; = 8;z;;. This system has unpleasant math-
ematical properties (Grossberg, 1972b).

These observations suggest that the action potential not only guarantees
faithful signal transmission over long cellular distances, as is well known,
but also executes a subtle transformation of signal densities into transmitter
production rates that compensates for differences in axon diameter. Note
also that this transformation seems to require the chemical transmitter
step. Purely electrical synapses presumably could not execute it. Thus our
laws for transmitter production (and/or related processes) not only guar-
antee that learning occurs, but also that unbiased learning occurs, under
very weak anatomical constraints. Section IX suggests another way in
which the action potential contributes to unbiased learning on the level of
individual cells.

The next two sections illustrate some phenomena that occur in networks
with specific anatomies.
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E. TuresnoLp-DEPENDENT PHASE TRANSITIONS IN
RECURRENT NETWORKS

Consider Figs. 16 and 17, Figure 16b is a recurrent network: the cells send
signals to each other. Figure 16¢ is a nonrecurrent network: the cells send
signals only to different cells. Not surprisingly, under certain circumstances,
the memory of recurrent and nonrecurrent networks can differ dramatically.
Less intuitively, a recurrent network can sometimes behave like a non-
recurrent network. Moreover, an anatomist could not tell the difference
between a recurrent network which behaves recurrently from one which
behaves nonrecurrently

Figure 17 illustrates what is mvolved in making this distinction. Figure
17 depicts a recurrent network whose recurrent signals are carried by
interneurons between the signal generating cells. Let the threshold for
signals to leave the cells be Iy, and let the threshold of the interncurons be
Is. Suppose that Ty = I'y = 0. Then any input to a cell v; will create
outputs and signals to other cells v;. These signals will, in turn, create
outputs from v; and feedback signals to v;, and so on. As a consequence,
recall trials can destroy the memory of this system. Suppose, however, that
Ty >> 0. Then an output from a cell can again create signals to other cells.
These signals can in turn, create outputs from these cells without causing
feedback signals. Such a network has a nonrecurrent kind of memory:
Recall need not destroy the memory of the system. During recall, each cell
and its interneurons behaves like an outstar embedded in a larger, but
functionally passive, anatomy in this case. The thresholds thus serve to
localize the memory trace, and to provide a kind of localized “context”
which a given input can activate. Whereas this argument holds during
recall of a spatial pattern or during slow recall of a space-time pattern,
Scction VII shows that it need not hold during rapid recall of a space-
timne pattern.

r

Fia. 17, Influence of interneuronal thresholds on whether a recurrent anatomy be
haves recurrently or nonrecurrently.
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Small inputs to the network of Fig. 17 can make it behave like a non-
recurrent network; even slightly larger inputs can make it behave re-
currently, by creating signals that are sufficiently large to exceed the
feedback thresholds. For example, varying the overall arousal level of the
system can change its behavior in response to fixed externally controlled
inputs from nonrecurrent to recurrent or convérsely. The asymptotic
behavior of the system is a discontinuous function of input and threshold
perturbations: There is a “phase transition” at critical values of these
parameters. Given this possibility, one can argue in the reverse direction.
Suppose that a nonrecurrent type of memory is desired at all times. How
can the total input to the cells be “normalized” so that the feedback
thresholds are never exceeded? Various arrangements of nonspecific in-
hibitory interneurons can accomplish this task (Grossberg, 1970a, 1972d,
1973). ‘

F. PATTERN COMPLETION AND MAss ACTION

In Fig. 16¢, suppose that any fraction of sampling cells is excised away.
The remaining sampling cells can reproduce an entire learned pattern on
the sampled cells if some of the remaining sampling cells were active when
that pattern was being learned (‘“pattern completion”). In Fig. 16b, each
vertex, v;, can encode and perform a different spatial pattern at all the
vertices, if tlie dynamies of the network are nonrecurrent in the sense of
the previous section. By contrast, suppose that sampling cells can sample
only a fixed fraction of sampled cells, and that the sampled cells are chosen
randomly. Then, on the average, excising ever greater numbers of sampling
cells will create a proportional deficit in the ability of the remaining
sampling cells to reproduce a previously learned pattern spread across all
sampled cells (“mass action”). :

G. IMPRINTING AND IRREVERSIBILITY

Mathematical analysis of systems (24) and (25) shows that, once these
systems are factored into pattern variables and total energy variables,
different choices of functionals influence transient motions of pattern
variables, but not the possible oscillations of these variables. In particular,
different functionals, or different values of fixed functionals due to particu-
lar choices of inputs, can determine different numerical limits of the pattern
variables as t — . This section summarizes some results concerning these
limits which have been proved for a particular choice of functionals, but
which should hold for many other functionals chosen in the same anatomies
(Grossherg, 1968b, 1969¢).
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This choice of functionals determines an interference theory of for-
getting in the nonrecurrent outstar anatomy; for. example, let (B;z;) (t). =
Bilzi(t — ;) — T;1*Z;(t) in Eq. (24). In various recurrent anatomies,
however, these functionals do not determine an interference theory. In-
stead, there exists a phase transition in memory, such that one type of
memory prevails if the network’s numerical parameters have certain values,
whereas a distinct type of memory prevails if the parameterf; take on the
remaining values. Consider Fig. 18. Given the anatqmy of Fig. 18a, there
exists an example of the following type. The numerical values of the net-
work parameters—such as a, 8, v, T, T in Eqgs. (8) and (9)—form two
exhaustive and nonoverlapping sets, A and B. If the parameter values fall
in A, then the network can remember everything; i'f the parameter values
fall in B, then the network cannot remember anything. Thus, spontane?us
forgetting occurs if parameter values fall in B, even though, speak.mg
locally, the interaction terms describe an interference theory.of forge.ttmg.
The global anatomy determines this forgetting effect. In Fig. 18b, 'lf th'e
parameter values fall in A, then the network can remember everythmg;. if
the parameter values fall in B, then the network can remfamber spatial
patterns. For example, given A, the network can remem.ber. lls.ts, or space-
time patterns. Given B, the network forgets temporal .dlscrlmmatlons, and
its memory secks the spatial pattern closest to what it has learned. Tl.\us
the global recurrent anatomy not only determines that two phases exist,
but also what the memory characteristics of each phase will be.

(a)

9

(b)

Fia. 18. Imprinting due to a phase transition in memory.
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By varying network parameters, network dynamics can be transformed
from phase B to phase A. Any mechanism that does this will “imprint” the
memory of the input pattern that perturbs the network at the time this
transition takes place. The transition from B to A can be effected, for
example, by increasing the velocity of signals in the network axons. Given
this formal observation, we now note various possible analogs of this
phenomenon in vivo.

Signal velocity can be increased in vivo by laying down an axonal sheath
around unmyelinated axons. Such a sheath can cause signals to jump along
the axon in a saltatory fashion. Various strategies for imprinting a pattern
of axonal connections in a particular subnetwork of a total network hereby
suggest themselves. A nonspecific command signal (for example, a hor-
mone) to this subnetwork to lay down sheaths on all subnetwork axons
would suffice. Alternatively, one could imprint a pattern in the axons of
particular nerves as they became active by coupling the activity of the
sheath-producing cells to that of the nerves.(cf. Orkand et al., 1966). The
order in which various cells imprinted patterns could be determined by
such a mechanism. The interaction between external inputs and the total
network anatomy could establish this order by determining which cells
would reach the critical activity levels for sheath production first; cf.
Grossberg (1969f, Section 19) in the light of Section IX below. Although
the order in which particular nerves or subnetworks are imprinted can be
developmentally predetermined by such a mechanism, the actual patterns
that are imprinted depends on the choice of external inputs. If given cells
do not pass from phase B to phase A, then they retain a plastic memory
which can continue to spontaneously forget old patterns.

Grossberg (1969c) shows that these systems also have various properties
that are of interest from the statistical mechanical point of view. For
example, before such a network is probed by experimental inputs, its
output might be linear, locally reversible (z; = 2:;), and globally re-
versible (Z;x = Z:;). An experimental input can make the output non-
linear, globally irreversible (Z; % Z:;), but still locally reversible. After
the effect of the input wears off, the output can become linear again.
Whether the output again becomes globally reversible or not, however,
depends on the sign of a function of network parameters that cannot be
easily measured by an input—output analysis. Thus the (non)linearity of
the system can be decoupled from its global (ir)reversibility. The decision
whether the system will be become globally reversible or will remain
globally irreversible after inputs cease depends on whether the network
parameters fall into B or A, In all cases where this system is eventually
free from inputs, its asymptotic behavior approaches that of a stationary
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Markov chain. Network dynamics provide a real-time description of the
transient nonstationary behavior of the system as it approaches its sta-
tionary asymptote.

VII. Serial Learning

A. QUALITATIVE DATA

This section discusses the response of a recurrent network to a particular
type of space~time pattern-namely, a list, or sequence of spatial patterns,
in which only one component of each spatial pattern is positive. Section VI
pointed out that a recurrent network can behave nonrecurrently in response
to a spatial pattern if signals from a given vertex do not create feedback
signals to that vertex. Even if parameters are chosen to guarantee this, the
response of the network to a space-time pattern, in particular to a list of
length n, can differ significantly from that of n independent outstars to n
spatial patterns.

There exists a large body of data on list learning. Some of the themes in
these data are sketched below. Our analysis of these data will be heuristic
and will focus only on the effects that arise in the minimal anatomies that
are capable of learning a list. Proofs and extensions of these assertions are

. found in Grossberg (1969¢) and Grossberg and Pepe (1971). A more com-

plete phenomenological analysis of the data on a neural level would study
how list items, and sequences of items, are coded by hierarchically organized
fields of cells with selective response profiles, and in particular of how the
field activity is sustained by short-term memory mechanisms while it is
transformed and transferred to long-term memory (cf. Atkinson and
Shiffrin, 1968; Grossberg, 1973). This section studies one level of recurrerit
interactions in such a hierarchy. The goal is to better understand the
hicrarchical case by first gaining insight into various one-level cascs. Once
this is accomplished, hierarchical anatomies can be more readily synthesized.

1. Backward Learning

Suppose that the list AB is sequentially presented several times to a
learning subject ©. Let B alorie be presented to the subject on recall trials.
Other things being equal, prior practice of AB increases the probability of
gucssing A given B. That is, practicing AB yields at least partial learning
of BA. Relative to the time scale of external events, which flows forward
from A to B, learning both AB and BA, given practice of AB alone, means
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that the internal dynamics of © flow both forward (AB) and backward
(BA) in time.

2. Global Arrow tn Time

Now suppose that the list ABC is practiced with a time lag of w time
units between successive presentations of each letter. After B has been
presented to O, and before C is presented, © has received only the list AB,
and thus the association from B to A begins to form. We know, however,
that ultimately ABC can be learned. Thus the forward association BC
is stronger than the backward association BA, and can therefore inhibit it
to yield a global arrow in time from A to B to C. In this sense, ‘“time” is
flowing both forward and backward within ©, but the forward flow is
stronger and ultimately enables 0 to imitate the direction in time of ex-
ternal events. :

3. Bownrng

The same theme is illustrated by the phenomenon of bowing, which
means that the middle of a serially learned list is harder to learn than either
end, or, more familiarly, that we can often remember how a sequence of
events began and ended but forget many intermediate details, If internal
events in O flowed only forward in time, we might expect the plot of mean
number of recall errors as a function of list position to be monotone non-
decreasing, since at list positions ever deeper within the list, more response
interference can accumulate from previously presented list items. In
actuality, however, list positions near the list’s middle are hardest to learn,
which illustrates that the nonoccurrence of items after the last list item has
somehow made items near the end of the list, which were presented earlier
in time, easier to learn,

4. Skewing

A closely related phenomenon is skewing, which means that the list
position that is hardest to learn often occurs nearer to the end than to the
beginning of the list. This fact recalls the fact that learning in the forward
direction (AB) is stronger than learning in the backward direction.

5. Intralrial versus Intertrial Interval

Many parametric studies of learning difficulty at various list positions
have been reported. The intratrial interval (denoted by w) is the time
hetween presentalion of successive list items. The intertrial interval
(denoted by W) is the time between two successive presentations of the
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Fia. 19. Influence of intratrial interval and intertrial interval on degree of bowing.
From Hovland (Osgood, 1953, p. 506). @—@ W = 6 seconds, w = 2 seconds;
O---0 W = 2 minutes 6 seconds, w = 2 seconds; @- - +@ W = 6 seconds, w = 4
seconds; O——O W = 2 minutes 6 seconds, w = 4 seconds.

list—that is, the time between successive learning trials. Figure 19 illus-.
trates the influence on bowing of varying w and W. Note that increasing w *
from 2 seconds to 4 seconds can substantially flatten the bowed curve,
and that, once the curve is flattened in this fashion, increasing W has little
influence on the rate of learning. Slowing the presentation rate is an ex-
ample of “distributing practice.” Figure 19 shows that distributing practice
reduces the number of learning errors.

When the list is presented rapidly (for example, w = 2 seconds), in-
creasing W substantially reduces the number of errors in the middle of the
list. In short, increasing the rest interval after the practice trial has simpli-
fied learning of the entire list, especially at its middle. This effect also
illustrates the existence of backward learning effects. Increasing W much
beyond the 2-minute 6-second value does not reduce the number of errors
substantially in these data. .

Note that the dictum “Distributing practice improves learning’” must
be interpreted with caution. Letting w approach 24 hours certainly dis-
tributes practice, but makes learning of the list quite unlikely. Thus we
shall seek a list presentation speed, much less than w = 24 hours but
greater than w = 0, that optimizes the benefits of distributing practice.

6. Response Oscillation and Generalization

This phenomenon is closely related to bowing (see Fig. 20). It says that
the gap between the first correct guess and the last error is largest near the
middle of the list. More list intrusions interfere with the correct association
near the middle of the list than at its ends. In fact, a generalization gradient
exists at cach list position such that the probability of guessing an item,
given presentation of a fixed item, decreases as a function of the number of
intervening items presented on a single trial. The shape of this generaliza-
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Fia. 20. Response oscillation. From Hull et al. (Osgood, 1953, p. 503).

.tion gradient depends on list position. Given a sufficiently large intertrial
interval, the gradient is skewed forward near the beginning of the list,
backward near the end of the list, and in both directions near the list’s
middle‘, (?f ten with a broader span near the middle, and an advantage given
to anticipactory rather than perseverative errors (Osgood, 1953), pre-
sumably as a manifestation of stronger forward than backward associations.

7. Anchoring

This phenomenon describes the order in which list items are lcarned
(Atkinson and Shiffrin, 1968). Items are often learned both in the forward
direction and in the backward direction around the “anchor” stimulus, A.
For example, AB, then YZ, then BC and CD, then XY might be the first
associations to be learned, and in the given order.

8. Chaining

By putting the learned fragments around the anchor together, we sec
that list items are often learned in growing chains around the anchor
stimulus. These chains propagate from the anchor in both forward and
backward directions, toward the middle of the list, and can gradually

rfaduce the number of competing items that contribute to response oscilla-
tion at the list’s middle.

9. Chunking

. Suppose that a chain has formed. The chain can be performed—as a
.um't——given presentation of the anchor stimulus and persistent arousal, if
it has an avalanche structure, in which each unit of the chain excites its
motor representation as well as the next unit of the chain (Fig. 14). This
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yields performance of each item, in its proper order, via successive excitation
of the entire chain, unless arousal is withdrawn at an intermediate point. In
this sense, starting with independent list items A, B, C, . . ., Z, practicing
the alphabet (ABC...XYZ) can create new items, such as subscquences
(AB), (ABC), (BCDE),..., etc., of the list. These new items can even-
tually be performed as effortlessly as the original items were. Composite
list units, or “chunks’” (Miller, 1956), are presumably being continually
formed and reaggregated as practice continues until perfect learning is
achieved. Here an analysis of hierarchical coding is appropriate, and in
particular of whether there are sampling cells that are excited only by
particular subsequences of the list.

10. Primacy versus Recency

Typically, the beginning of a serially learned list is easier to learn than
the end, as in Fig. 19; that is, the primacy effect is stronger than the
recency effect, or “primary dominates recency.” In the minimal network,
increasing the arousal level to high values can reverse this effcet. Is there
a corresponding phenomenon in vivo?

11. Inverted U in Learning

Either too little motivation (or arousal), or too much, can hamper
performance. Figure 21 illustrates this typical result in general terms. It is
well described in Hebb (1955). Analogous difficulties occur in the network
below. Given underarousal, there is too little encrgy to drive the learning
process. Given overarousal, there is ample energy to drive learning, but a
high level of response interference is produced by incorrect associations
that are similar either in time of presentation or in meaning to the correct
associations. In other words, overarousal produces “fuzzy response sets,”
and by impairing the network’s ability to focus on the correct association
interferes with “paying attention.” '

PERFORMANCE
INDEX

AROUSAL LEVEL

Fia. 21. Inverted U in learning.
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Recent experiments (Kornetaky and Eliasson, 1969; Phillips and
Bradley, 1970) have investigated the hypothesis that paying attention can
be impaired by overarousal. Kornetsky and Eliasson varied the excitation
level of white rats during a sustained attention task. The task chosen was
for the rats to press the lever on presentation of a specific auditory stimulus.
The experimenters noted any impairment in performance as a function of
excitation level. High excitation was produced by electrically stimulating
the rats’ reticular formation. Low excitation was produced by administering
a dose of chlorpromazine. Both electrical stimulation and chlorpromazine
interfered with attention. The two treatments together resulted in per-
formance indistinguishable from that seen ‘after injections of saline alone.
Presumably electrical stimulation and chlorpromazine antagonize each
other and return the rat to a normal arousal level.

12. Overarousal and Punning

There exist networks in which overarousal weakens the strength of
correct associations at the list’s beginning by foreing them to compete
with incorrect associations formed with later list items. Suppose that the
list is a sentence. By the time the entire sentence has been presented to such
an overaroused network, the earlier portions of the sentence have been
washed away by a flood of competing associations. The meaning of the
sentence is similarly lost. Only the last few list items survive the flood, and
only these can therefore influence responses to the sentence. Structurally
similar words, such as rhymes or puns, can be expected, rather than mean-
ingful replies. Maher (1968) has discussed a phenomenon of punning in
certain schizophrenies who are presumed to be in a continual state of over-
arousal., Various manics also pun. Chlorpromazine can improve the per-
formance of schizophrenics at tasks that require sustained attention, pre-
sumably by lowering their arousal level. Lithium presumably has a similar
effect in manics (Dally, 1967). Inspection of the networks shows that
different mechanisms can produce similar symptoms of overarousal. For
example, unduly large inputs from a nonspecific arousal source, such as
reticular formation, can cause overarousal. Alternatively, pathological
changes in the binding of ions (for example, Cat +) at network cells, none
of which is necessarily a nonspecific arousal source, can cause overarousal
by amplifying all signals in the network. Presumably cures for similar
difficulties in paying attention needed by different patients can be quite
dissimilar.

Different network anatomies respond to fluctuations in arousal level in
different ways. For example, in networks that describe the interaction of
rewarding cvents with internal drives, either under- or overarousal can
produce ‘“‘cmotional depression” by reducing the incentive motivational
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response of the network to emotionally charged cues (Grossberg, 1972¢).
The underaroused network responds “irritably” to sufficiently large in-
creases in such cues, whereas the overaroused network is “indifferent” to
these cues. In networks describing recurrent on-center off-surround inter-
actions of shunting type, low arousal can help the network “choose’” among
many response alternatives, whereas high arousal tends to store many cues
in short-term memory (Grossberg, 1972b). Grossberg (1975) combines
such mechanisms to analyze various attentional and discrimination learning
data.

The remainder of this section qualitatively describes some formal net-
work mechanisms that behave analogously to psychological data such as
that above.

B. BACKWARD LEARNING

Consider the minimal anatomy that can learn AB or BA (that is, Sas > 0
and Bpa > 0), as well as related response alternatives such as AA, AC, BB,
or BC. Suppose that the network parameters are unbiased and that no
association is preferred initially. The very possibility of learning BA in
this context will imply that BA will be at least partially learned when AB
is practiced. Thus backward learning effects can arise simply because
choices exist. The greater learning of AB than of BA will be due to the
existence of better cross-correlations between signals and potentials in the
forward direction than in the backward direction.

Let the network be represented by the following equations for definite-
ness. More general functionals can also be used.

#a = —azs + Blea(t — 1) — TT*zan + Bl2a(t — 1) — TJtzea + Ca
in = —azs + B[zn(t — 7) — T]*zen + Blza(t — 7) — TTzan + Cn
dc = —azc + Lza(t — 1) — TT*zac + BLza(t — 7) — T1*zec + Co
and
2y = —vzi; + 8[xi(t — 7) — T]*a;

where (i,§) = (A, A), (B, B), (A, B), (B, A), (A, C), or (B, C). Present
the serial list once with an intratrial interval of . Then CA(t) = Ca(t + w),
and Ce(t) = 0.

A particular, but noncrucial, choice of w will be made to emphasize the
main effects, To maximize the possibility of learning AB, let the signal
from va to Nap arrive at Np as the input Ca(2) to vp arrives; that is, let
the sampling delay from the onset time of the input Cx, namely,

D(r, T') = r 4 min{t: zo(t) = T, £a(t) > 0}
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satisfy the identity
D(r,T)=w (28)

This yields maximal overlap of the signal g[za(t — 7) — I']* and the
potential zp(¢) for purposes of cross-correlation by zags(t). All knobs Nay,
Nas, and N ¢ receive equal signals from va. The signal from Nac to v is
dominated at vp by the signal from Nxp and the input Cg(t). Thus, after
learning begins, Zap > Zac, where Zi; = 2:( ), za)~". The vertex v, also
receives two inputs—namely, the signal from N a4 and C4(t). Nonetheless,
the correlation between the Naa signal and Ca(t) is not as good as the
correlation between the Nap signal and Cg(t). Thus, Zap > Zar > Zac. A
similar argument shows that Zpx > Zgc after sampling begins at the knobs
Nga and Npe. The correlation between the Npa signal and Ci (¢) is not as
good as that between the N, signal and Cs(f). Choosing between the
inequalities Zpa > Zss and Zpa < Zps requires a study of network
parameters. This is because Npx samples the decaying input Ca (¢) boosted
by self-excitation via Naa, whereas Npp samples the decaying input Cs(f)
boosted by its own self-excitation.

C. OpmiMaL LBARNING SPEEDS
Consider the following network anatomies for definiteness.

1. Complete n-Graph without Loops. This is the minimal anatomy that
can learn any list, r;r;, of length 2 with distinct entries (see Fig. 22a).

2. Complete n-Graph with Loops. This is the minimal anatomy that can
learn any list of length 2 (see Fig. 22b).

3. Two-Layer Graph with Completely Nonrecurrent Sampling. Each input
Ci(t) is delivered to two vertices, v; and vy;. Each vertex vy; can sample all
the vertices vy (see Fig. 22¢); e.g., each vy, is a command population excited
by a subsequence of the list at a uniform rate.

We shall denote a particular network corresponding to a given alphabet
U = {r, rs,...,7a} of behavioral units by ar (). The graphs in Fig. 22
will be assumed to be unbiased for definiteness; that is, all vertices or edges
of a given type possess the same parameters. For an example of an unbiased
complete n-graph without loops consider

= —az;+ 8 E [x;,(t —-7) — I‘]+z;,.- + C{ (29)
foy
Zip = —vZix + 5[1‘,'(1 —7) — I‘]*z.,, J#k (30)
ana
Zjj = 0 (31)

whered,j, k =1,2,. ,n.
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Let a long list ryrs . . . 2 be serially presented to an unbiased complete
n-graph without loops, for definiteness. Thus Ci(t) = Cy(t + w) = +++ =
C.[t + (L — 1)w]. The stimulus sampling probabilities of such a network
are defined by Zji = 24 ( D _mwj Zim)~". Suppose initially that the network is
at rest and that all associations are equally strong; that is, x;(t) = 0 and
Zax0) =1/(n—1),fort=1,2,...,n,j#k and ¢ <0,

Even if the inputs C;(t) arrive through independent input channels, no
learning occurs if w = 0, since then all inputs are equal and, by symmetry,
the memory traces remain uniformly distributed.

Suppose by contrast that w >> D (7, T'). Then v; begins to sample D(r, ?)
time units after it is perturbed by Ci(t). After C(t) becomes zero again,
these sampling signals gradually decay to zero. Only after sampling ceascs .
does Cipa(¢) become positive. Hence [zi(t — 7) — I']J*z;(t) = 0 for all
1, 7, and no learning occurs.

No learning occurs if w = 0 because the potentials are uniformly dis-
tributed, and therefore indistinguishable from each other. No learning

{a}

(b)

I Vi V3 I
(c)

F1a. 22. Some networks in which bowing can occur.
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occurs if w>> D(r, T') because the cross-correlations are poor. Learning is
best given intratrial intervals w such that w ~ D(r, T), at which good
distinguishability and good cross-correlations prevail.

D. Bare FieLp

The description of bowing can be approached in several stages. First,
suitable anatomies must be chosen. The networks of Fig. 22, given unbiagsed
parameters, are smtable examples. When a long serial list is presented to
these graphs, bowing occurs. Thus, the analysis in Section IT of the “two-
body problem” of learning ' AB implies the existence of phenomena, such as
bowing, which occur when “n-bodies” such as the alphabet ABC...XYZ,
interact. For definiteness, we shall restrict attention to Fig. 22a using the
simplest possible functions as in Eqgs. (29)-(31). Let the inputs C;(t) be
presented with intratrial interval w and intertrial interval W on N trials
&i(w, W; L),..., &v(w, W; L) of the list rir,. . . ;. Thus

N-1 .
Ci(t) = U0t — (i = 1w — (L—-Dmw—-mW], i=12...,L

(32)
and
Ci(t) =0, t=L+1,L+2...,n (33)

where J(¢) is an input pulse that is positive in the interval (0, )).

We seck a closed formula for Z & = 2i( 3" 2im)~! as a functional of the
serial inputs C;. Such a formula is not available for the system (29)-(31),
but one can be derived for a closely related system that embodies the main
effect of the serial inputs on the sampling probabilities Z;. This system,
called the bare field of (29)-(31), ignores the influence of the nonlinear
interaction term g Dowi [z (t — 7) — '}z, in (29), which tends to
preserve learned pattern weights except for a certain amount of smoothing
when several vertices are simultaneously active, and the decay term,
=72, in (30), which does not change the equations for pattern variables.
The bare field of a complete n-graph without loops is therefore defined by

&= —axi+ C; (34)
tn =zt —1) = Tz, sk S (35)

and (31), subjected to the inputs (32) and (33). Thus, bowing can be
derived from three properties taken together: (1) exponentially averaged
serial inputs, from (34), (2) delayed cross-correlations of the averaged
inputs, from (35), and (3) the influence of competing associations r; — r,,
m#k on r;—r, from the definition of Z; = zZin(2pn + Zm#k Zjim)™L,
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Rather than state theorems about the bare field, we first present an in-
tuitive argument that clarifies the main effects.

E. AccuMULATION SETS

At what times does learning occur from r; to r,? That is, at w.lmt times
docs Z;.(t) grow? Z;(t) grows if z;(t) grows and the cor.npetmg terms
2in(t), m = k, do not grow commensurately. By (35) this means that
Z (1) grows if

[zi(t — 7) — DPTze(t) > [zi(t — 7) — T za(1), m#k (36)
Equation (36), in turn, can be achieved if

[zj(t —7) = TT*>0, 2(t) >0, - and z.(t) =20, m=k
(37)

Equation (37) shows that the growth of Z;(t) will be influenced b_y the
number of STM traces, z. (), that are large at any given time—that Is, by
the distinguishability of the correct association. We therefore seck a simple
way to count how many, and which, STM traces are large at any tlm.e. For
simplicity, we shall constrain the input pulse, J(t), from which the inputs
C.(t) are constructed by the following conditions:

(1) J(t) is positive only in (0, ), where A < D(r, T). '.[‘.hat is, the
duration of each input is less than the time needed for sampling at v; to

be induced by an input to v,. )
(2) J(t) increases monotonically to a finite maximum and then decreases

monotonically to zero.
B)w<Ww.

Given these conditions, the following proposition holds.
Proposition 1. Suppose that z;(0) = 0,7 = 1,2,...,n. Then

(a) z(t) =mlt— E—Dw], i=12...,L (38)
where
0 t<0
B oz = / Cest-07 (o) db, 0 <1< A (39)
0
Ke =t A< <S(L-Dw+W



102 STEPHEN GROSSBERG

with K = f ) ex*J (v) dv. Moreover
{c) x1 rises monotonically to its maximum in (0, \) and thereafter
decays to zero, at the exponential rate a fort > A,

To count how many potentials are large at time ¢, introduce a criterion
€ > 0 of largeness. For fixed ¢ > 0, let A.(w, W, L; t) denote the collection
of indices 7 such that z;(¢) > e. That is A,(w, W, L; ) tells us which z; are
at least as large as ¢ at time ¢&. For simplicity, we write A,(w, W, L; ¢t) as
A(t), and also let | A.(t) | be the number of indices in 4,(t). The set A,(t)
is called the e-accumulation set at time {, since it contains the indices of all
vertices, v;, which have accumulated at least an amount ¢ of potential at
time ¢. We always suppose in the following that ¢ is fixed in such a way that
0 < e < max{zi(t):¢ 2 0} to avoid trivialities. The following basic facts
concerning A.(f) on the first trial &(w, W; L) are easy conscquences of
proposition 1.

The function | A.(f) | remains zero until the first time ¢ = ¢, at which
2,(t) = ¢. Then | A.(t) | = 1. The index 1 remains in A,({) until the time
t = T, at which z,(t) = ¢ for the last time, since by proposition 1 we can
also assert that z;(¢) > eforalltin[t,, T.]. Since z;(t) = z[t — (1 — 1)w]
foralli=1,2,...,L, the index 2 enters A,(¢) at time ¢ = ¢, + w, the
index 3 enters A.(t) at time ¢ = {, 4+ 2w, and in general the index 7 enters
At) at time t =t + (1 — 1)w, i =1,2,..., L. Each of these indices
remains in A,(¢) for T, — ¢, time units, and none of the indices { = L +
1,...,never enters 4,(1).

The overall behavior of A,(t) as ¢ varies within [0, Lw] depends on two
factors, for fixed w, W, and L. These are the amount of time S, = T, — I,
that a single index remains in 4,(t), and the number of new indices that are
added to A.(t) during this time. To describe the interplay of these quanti-
ties in a precise way, we introduce the following notation.

For any u > 0, let [u] be the greatest integer that does not exceed wu.
Now let Ge(w) = [S/w]. The term G.(w) measures the number of new
indices that can be added to 4,(¢) before an old index drops out. Since S, is
independent of w, G,(w) is a monotone decreasing function of w. We shall
find that the existence or nonexistence of a bowing effect in 91t () during
the learning of a given list £ = rir2. .. r,, can be qualitatively decided by
examining the absolute and relative sizes of G,(w), L, and W. To do this,
we must distinguish two cases.

Case 1 [G.(w) < L — 1]: In this case, A.(¢) accumulates the indices
1,2,...,G{(w) + 1 at a linear rate at the times ¢ = ¢, t, + w, ..., L +
wGe(w). In particular, | A.(t) | jumps by 1 every w time units from its
initial value 0 until it reaches G.(w) + 1. After time ¢t = T,, the “old”
index 1 drops out of A,(2), but at time ¢ = w[G,(w) + 1] the “new” index
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G.(w) + 2 enters A (t). Thereafter, one old index leaves 4,(¢) and one
new index enters A,() every w time units until all indices: = 1,2,...,L
have centered A,(t). Thus, after | A.(¢) | climbs at a linear rate to ils maxi-
mum value G.(w) + 1, it thereafter oscillates with period w between
G (w) + 1 and G, (w) until ¢ = Lw.

Case 2 [G(w) > L — 1]: This case can be treated just as casc 1 was
with the following difference: The list indices 7 = 1,2,..., L all enter
A.(t) as | A.(t) | climbs to the value L. Thus, | A.(¢) | climbs at a linear
rate to the maximum value L, and there is no steady-state oscillatory
behavior with period w.

Cases 1 and 2 exhaust all the possibilities for ¢ in [0. Lw], so that in all
cases A (1) is a connecled set of indices of the form

A(t) = (k@), k() +1,..., k() +r(t)}

where k.(f) and r,(t) depend on w and L. We summarize these facts in the
following proposition.

Proposition 2. On trial & (w, W, L), for t in [0, Lw], A.(t) is a connected
set of indices such that (a) indices are added to A.(t) in chronological order
at times i = ¢, ¢, +w,...,t + (L — 1)w, where t, = min{t: z;(!) = ¢},
and (b) each index remains in 4.(t) for T, — ¢, time units, where T, =
max{t: z:(¢) = ¢}. In particular, letting G.(w) = [(T. — t.)/w], if
G.(w) < L — 1, then | A((t) | increases in unit steps every w time units
until | 4.(¢) | = G.(w) + 1. Thereafter | A.(¢) | oscillates between
G.(w) + 1 and G, (w) with period w, whereas if G.(w) > L — 1, then
| A.(t) | increases in unit steps every w time units until | A,(t) | = L.

We now use proposition 2 to study how changes in w and L produce
changes in the associational strengths Z;(t) through time.

F. Massep vERsus DisTRIBUTED PRACTICE

The association Z;:(t) from r; to rx grows quickly at times ¢ for which
(37) holds. This means that jisin A.(t — r), kisin A.(t), and allm = j, k
are not in A,(t), for some sufficiently large ¢ which we fix once and for all.
In particular, | A,(t) | is a small number, since only j and k can be in A.(¢).

How can we guarantee that | 4,(¢) | be a small number? By proposition
2, the maximum of | A.(¢) | in [0, Lw] is G.(w) + 1. We need therefore
merely require that G.(w) be small. But G,.(w) = [S.,/w], which is mono-
tone decreasing in w. Therefore | 4,(t) | will remain small for all ¢ in [0, Lw]
if w is taken sufficiently large. One way of speeding up learning in 91T()
is thus to slow down the rate with which list symbols are presented—that
is, to “distribute practice.”
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Conversely, if the presentation rate of the list is fast, G.(w) will be large,
and there will exist times ¢ in [0, Lw] at which | 4,(¢) | is large. Indices
that are in A.(¢) at these times will not be incorporated rapidly into new
associations. Thus “massed practice” can slow the learning rate.

Distributing practice will not always facilitate learning. Choosing
w> D(r, T') yiclds bad learning even though such a choice of w certainly
“distributes practice.” The good or bad effects on learning of increasing w
correspond to two different factors:

1. Distinguishability. Increasing w decreases G.(w) and thereby keeps
| A«(t) | small in [0, Lw]. Thus only a few z.(¢) are large at any time, and
these can casily be distinguished from the many small z;(t) by the asso-
ciational strengths, : ,

2. Correlations. Choosing w > D(r, ) means that all products
[z;j(t — r) — TJ*z(t) with k # j are always small, and thus all Za(t)
remain approximately constant.

Distributing practice helps learning only if good distinguishability and
good correlations prevail—that is, if G.(w) is small and w = D(r, T). Since
G.(w) = [S./w], G.(w)issmallandw =2 D(r, T) onlyif S, = w == D(r, T).

G. ConTtigurry VERSUS CONNECTEDNESS

The above analysis shows that contiguous symbols, such as r;, r;, and
ri41, are most likely to enter into associations with one another. This is
because A.(f) is always a connected set. For example, in order that Z;(t)
grow rapidly, z;(t — 7) and z:(¢) must be large, and | A.(¢) | must be small.
Since this is best guaranteed when S, =2 w, no index 7 remains in A.(¢)
much longer than w time units. By proposition 2, we also know that indices
are added to 4,(t) in chronological order. Since fast learning requires that
jbein At —7) and k be in A,(t), we conclude that Z;(!) will grow
fastest if k =2 j + 1—that is, if r; and r; are contiguous.

When w is small [and G, () is large], A.(t) is still a connected set, even
though there exist times, ¢, when it contains many indices. Once again
contiguous nssociations arc the strongest ones, but only in the weak sense
that associations form best at any time ¢t among the indices in the connected
set A.(2). In particular, associations such as Z;,;,2(2), Z;,i43(1), and Z;,;_1(t)
can be of substantial size, thereby reducing the size of Z;,;;1(¢).

These facts show that a decrease in w can cause a smooth change from
contiguity-type conditioning to field effects among closely related items.
Such ficld cffects are closer to a Gestaltist than to a contiguity theoretical
viewpoint, '
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H. TuE BEGINNING AND THE MIDDLE OF A LisT

We can now define the beginning and middle of a list in a way that takes
into account various learning factors. For example, apply proposition 2 to
the case in which w and L satisfy L>> 1 and G,(w) < L — 1. Then three
cases can occur:

Case 1 [G.(w) >0 and G(w) <L—1]: In this case, A.(f) goes
through two phases:

(a) A transient phase at times ¢ corresponding to the monotonic increase
of | A.(t) | from 0 to G.(w) + 1> 0;and

(b) A steady-state phase at times ¢ corresponding to the periodic oscilla-
tion of | A.(t) | between G(w) and G.(w) + 1.

Case 2 [G.(w) >0 and Gi(w) 2L -1} In this case, A.(t) goes
through only a transient phase, as | A.(t) | increases toward L.

Case 3 [G.(w) = 0]: In this case, A.(t) goes through essentially only
one phase, since | A,(t) | oscillates between G.(w) =0 and G (w) +1=1
at all times ¢ in [0, Lw].

Define the (dynamical) beginning of the list ryrs . . . 71, for fixed w and L
at times ¢ in [0, Lw], by the set of symbols r; whose indices ¢ are in the
same phase of A.(t)’s development as the index 1 is. The (dynamical)
middle of the list is the set of symbols r; corresponding to the second phase
of A(t)’s development, whenever this phase exists. We denote the set of
symbols in the dynamical beginning by B, = B(w, L), and those in the
dynamical middleby M, = M. (w, L). When G(w) is large, several symbols
will be in both B, and M.. This ambiguity is in the nature of the problem.

The above definitions of B, and M, have some unusual but informative
consequences. For example, (a) the numerical length of a list’s dynamical
beginning is a function of w; and (b) there exist lists that have no dy-
namical middle, and all of whose symbols belong to the list’s dynamical
beginning. Various experimental bowing effects can be conveniently sum-
marized in terms of these definitions. For example, (¢) symbols in the list’s
dynamical middle are huarder to learn than symbols in the dynamical
beginning.

To sce this, suppose that ¢ enters A, when | A, | is large. Thus v begins
to sample other »; when | 4, | is large. In particular, vi;1 is not readily dis-
tinguishable from the many other vertices with large potentials. Hence
the association r; — ri1 will receive substantial competition from other
associations r; — r, and Z; ;41 will grow slowly, if at all.

By contrast, even if G.(w) is large, z:(¢) is large when | Ad(t) | is small,
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z2(t) is large when | A,(¢) | is only slightly larger, and so on. Learning in

B, is therefore faster than learning in M, if G,(w) is large.

If G.(w) is small, say =0, learning is fast throughout B,, which now
includes all symbols r; in the list, since | A.(¢) | remains small for all ¢ in
[0, Lw]. :

The assertion that learning is faster in B, than in M, confirms the first
half of the experimental bowed learning curve of Fig. 19. The assertion
that case [G.(w) > L—1>0]istransformed into case [L—1>G(w)>0]
and finally into case [G.(w) =2 0] as w increases agrees with the experi-
mental fact that slowing the presentation rate flattens the first part of the
bowed curve.

The definitions B, and M, illustrate the interplay of temporal and
geometrical factors in determining easc of learning. The size of | A.(t) |
when each v; is sampling is the crucial fact to determine. The rigorous
treatment of this system also considers transfer from STM to LTM, and
how this transfer depends on the interplay of presentation rate of list items,
decay rate of STM traces, arousal level, and sampling times (Grossberg,
1969¢; Grossberg and Pepe, 1971).

I. WuEeRe Is THE END OF A List?

We have thus far considered the behavior of 4.(¢) only for ¢ in [0, Lw]
and have based our definitions of B, and M, on this behavior. No dynamical
end exists in the list before time t = Lw, even though the last list tlem was
presented at time t = (L — 1)w. This is not surprising, since a learning
subject cannot know that 7. is the last list item until an extra intratrial
interval transpires followed by no future items. The dynamical end of a list
is created only after time ¢ = Lw, and is due to the interactions of stimulus
traces z,(t) and associations Z(¢) before the list is presented for the
second time. To sce this, let us now consider A.(t) throughout trial
&1(w, W; L), where, as usual, w < W—that s, throughout the time interval
[0, (L — 1)w + W] Itsuffices to consider theinterval [Lw, (L — 1w+ W],
This is readily done, since all z;(t) =0,i =L+ 1,...,n, by (34), and
thus no new indices enter 4.() for i in [Lw, (L — 1)w 4+ W]. O indices
continue to drop out of 4.(¢), however, and consequently | A.(t) | decreases
in unit steps every w time units. We can distinguish two cases.

Case 1 [G.(w) > 0]: The stcady-state phase or peak of the first tran-
sient phase of A,(t) is followed by a second transient phase during the
times ¢ at which | A.(t) | decreases in unit steps at the rate w.

Case 2 [G.(w) = 0]: Since | A.(t) | is always small in [0, Lw], any
decrease in | A,(¢) | due to an uncompensated dropping out of indices is
negligible, and so once again A4.(¢) has essentially only one phase.
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We now define the (dynamical) end of a list as the set of symbols, if any,
whose indices appear in 4.(t) during its second transient phase. Denote the
symbols in the dynamical end by E. = E.(w, W, L). We immediately
conclude that:

(a) Learning is faster in the dynamical end of a list than in its dynamical
middle. The reasoning is the same as that which showed the advantage of
the beginning over the middle. Thus one can show that the middle is harder
to learn than the beginning and end simply by counting the number of
large stimulus traces z;(¢) which the associations Z;(¢) must distinguish
and correlate with z;(t — 7) at any time L.

The distinction between a list’s dynamical beginning, middle, and end is
ambiguous when G, (w) =2 0. This is because A.(t) goes through essentially
only one phase, and all one can say heuristically is that all list symbols are
either in the beginning, or the middle, or the end, and that learning is
satisfactory if also w =2 D(r, T"). [This statement can be modified to take
into account the numerical length, L, of the list when the interactions, and
thus accumulating noise, are introduced into the network. It is also modi-
fied when sequential STM buffers having a maximal storage capacity are
included in'the discussion (Atkinson and Shiffrin, 1968)]. This ambiguity
therefore implies that:

(b) The bowed curve flattens both at its beginning and its end as the
intratrial interval increases, as also occurs in Fig. 19.

J. THE DEPENDENCE OF A LisT's END ON THE INTERTRIAL
INTERVAL AND ASSOCIATIONAL SPAN

"The intertrial interval, W, affects E.(w, W; L) because | A.(t) | has less
opportunity to decrease when W is small. For example, suppose that
W = w. Then trial &(w, w; L) begins right after trial & (w, w; L) ends.
v; receives its second input pulse, J (¢ — Lw), at time ¢t = Luw, and thus the
index 1 enters A.(t) on trial &(w, w; L) not longer than w time units after
L enters A.(t) on trial & (w, w; L). Since each z:(t) with ¢z = 1, 2,...,L
satisfies z:(t) = m[t — (i — 1)w], the indices 1,2,3,..., L enter A.(1)
on trial &(w, w; L) in chronological order at rate w. '

Consider the effect of increasing W step by step when the list has a
middle; for example, let 0 € G(w) < L — 1. If W = 2w, then | A.() |
decreascs by 1 after its steady-state phase on trial &(w, 2w; L). Trial
&:(w, 2w; L) then begins, and | A.(¢) | quickly rises once again to its
steady-state phase. The advantage to Zu(t) of trial &(w, 2w; L) is not
entirely destroyed on trial &(w, 2w; L), but the advantage to Zx(t) on
trial & (w, 2w; L) is slight.
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Now increase W step by step. For a fixed value of W, | A.(t) | decreases
step by step at a rate w for ¢ in [Lw, (L — )w + W] to a minimum value
of max{0, G.(w) + 1 — [W/w]}. If W is chosen so large that [W/wl =
G.(w) + 1, then | A.(¢) | decreases to O before trial & (w, W; L) begins.
Therefore A,(t) will have essentially the same phases on trials &(w, W; L)
through &y (w, W; L) as it had on trial &(w, W; L). In particular, symbols
that are in B., M., or E, on one trial will be in the same dynamical part of
the list on all trials [except for funneling effects (Grossberg, 1969e) ], and
the effects on associations which characterize a given list part will be
cumulative as more and more trials occur.

These mechanisms suggest formal analogs of the major bowing effects

of Fig. 19. For example:

(@) If L =22 and w = D(r, T'), bowing does not occur, since | A.(2) |is
always small.

(b) Bowing occurs when 0 K L < G,(w) or 0 L Ge(w) < L, since then
| A.(t) | achieves large values.

(¢) The bewed curve is flattened, but raised, when 0 K L < G.(w) or
0 € G.(w) < L if W = w, since then all list symbols are usually in M..

(d) If for fixed W > w bowing does occur, then increasing W lowers the
bowed curve near its numerical middle by increasing the numerical length
of B, and E,.

(¢) Increasing W by a fixed amount has less of a lowering effect if w is
large than if w is small, because G.(w) is monotone decreasing in w.

(f) For fixed w, increasing W beyond a Wo such that [Wo/w] =
G.(w) + 1 has little lowering effect on the bowed curve, since | Ao(2) |
decays to zero at the end of each trial for all such W.

(g) 1f bowing occurs but 1 < L — 1 < G.(w), then increasing the list’s
numerical length L, while keeping w and W fixed, can decrease the skewness
of the bowed curve by increasing the numerical length of M..

The list’s associational span and intertrial interval interact to influence
the bowed curve. Consider Fig. 23. The ith associational span is the interval
of sampling by v—namely, the set [¢:zi(t — 1) > T'}. By (34), this
interval is (ér + T, ir + Th), where

t
(1) = / et J(p)dy > T  for te (T, Ta)
0
Only those list positions whose associational span includes times when

| A«(£) | isin its second transient phase are influenced by an increase in W.
In Fig. 23a, these indices include all indices greater than j. In Fig. 23b,
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Fia. 23. Interaction of associational span and intertrial interval.

these indices include indices in B,, M,, and E.. Without all associational
spans being known, the size of | A.| gives incomplete information con-
cerning the way in which the bow changes as a function of W.

K. REsrons® OSCILLATION AND REMOTENESS

Suppose that 1 € G, (w) < L — 1 and that W is sufficiently large for
some bowing to occur, Then at times ¢ when | A,(t) | is small, the formation
of new associations will be restricted to a small number of indices. Thus
learning will begin to show its effects faster in B, and E, than in M., and
competing responses are restricted to a relatively small set of list symbols.
By contrast, for r; in M,, 7 is in A,(t) when | A,(t) | is large. Competing
response tendencies to a symbol in M, are therefore broadly distributed
across the list. Learning therefore takes relatively long to show its effects in
M,, and a long time is needed to eliminate the large collection of com-
peting response tendencies after learning begins. These are the main effects
of Fig. 20. The analysis can be refined by studying the shape of the gen-
eralization gradients at each list position,

L. OveEraRoUSAL AND INVERTED U IN LEARNING

Each v; can sample all »; with k¥ < 7 — 1, but not necessarily any v, with
k > 7+ 1 other than v, That is to say, when associations are being
formed with r;, different information is available in the network concerning
the past than the future. In fact, if J(¢) is a rectangular input pulse of
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intensity J and duration’ ), then the associational span has length

$=\+ llog [(—L - l) 1- e'“*)] (40)

a al’
which is monotone decreasing in the signal threshold I'. As I' decreases,
more forward associations, r;— ¢, k > ¢ + 1, can form, thereby reducing
the relative strength of r;— ri;1. This does not mean, however, that in-
creasing T always improves learning of ri— riy1. If T is too large, then,
even though no forward associations can compete with r; — riyy, nonethe-
less [z:1(t) — I'T* is usually zero or small in value, so that little learning of
r:— 141 occurs, Thus there exists an optimal region of threshold choice
that reduces response interference without unduly diminishing the rate of
learning. Alternatively expressed, this optimal region maximizes dis-
tinguishability of the correct association while providing enough energy to
drive the learning process.

Notice that decreasing J in Eq. (40) has the same qualitative effect a8
increasing T. Thus all our statements concerning threshold regulation given
fixed levels of physiological excitation can be transformed into corre-
sponding statements concerning variations in the level of excitation
(“arousal”) as it compares with the system’s fixed threshold parameters.

M. SKEwWING

The fact that the middle of the list is harder to learn than either end is
the net result of two effects in the bare field of 91 (u). First, as list position
i increases, there always exist more backward associations, ri— i, b < 1,
that compete with r; — ri, thereby increasing learning difficulty. Second,
there exist fewer forward associations, r; — ri,1, thereby decreasing learning
difficulty. However, by varying the associational span, we can guarantee
that no forward association ever competes with r; — rya for any <. For
example, choose T so large that [z«(t) — I']* = 0 whenever x: (t) > 0and
k > i + 1. Then the associations r; — ri never form, and consequently the
major effect on the association r; — rij1881¢ increases is to increase response
interference due to increasing numbers of backward response alternatives.
Apart from such degenerate cases, however, it can be proved that bowing
always occurs in the bare field. Indeed, letting ’

®(1, I') = lim Z;,:11(t), i=1,2...,L—1

one can prove that, for any fixed I' > 0, &(¢, T) either first decreascs ar}d
then increases as ¢ increases from 1 to L, or the degenerate case occurs in
which G (i, T') is monotone decreasing. By definition, for fixed T, the bow
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occurs at the list position M(T') for which ®(z, I') is a minimum. If there
exists more than one such position, we let M(T") be the largest one, since in
the presence of nonlinear interactions, background noise can only increase
as more events are presented.

In the bare field, M(T') is a monotone increasing function of I'. Further-
more, M(0) = ¥4(L — 1) if L is odd and M (0) = WL if L is even (Gross-
berg, 1969e). In the degenerate case above, M(TI') = L for sufficiently
large I'. Thus maximal difficulty in learning can occur at any list position
greater than the list’s numerical middle. Since “normal” learning requires a
positive I', the bow will occur nearer to the end than to the beginning of the
list, and the bowed curve will therefore be skewed.

Attimest < «,let (¢, T, t) = Z;,:1(t), and suppose that min; ®(¢, T, ¢)
occurs at list position M (¢, T') for every fixed ¢ and T. Then for fixed
I, M(t, T') ultimately decreases from M (¢, T') = L to M(t,T') = M(T)
as ¢ increases beyond the time at which r, is presented to infinity (Grossberg
and Pepe, 1971). This happens because the nonoccurrence of the events
TL41, TLy3, - - - 5 Tn gradually decreases the relative amount of response inter-
ference to r;_, — 7, growth, since the future associations r,_y — r, &k > L,
never form as ¢ increases. Thus skewing can depend both on T' and on the
intertrial interval. If T is very large, the intertrial interval effect will be
negligible.

VIII. Instrumental Conditioning

A. AppiTIONAL POSTULATES

The derivation of Section II can be supplemented by additional postu-
lates that lead to mechanisms of reinforcement, drive, and incentive
motivation. The first of these postulates are the following:

Postulate 1. Practice makes perfect.

Postulate 2. The time lags between CS and UCS on successive learning
trials can differ.

Postulate 3. After learning has occurred, the UCR can be elicited by the
CS alone on recall trials. '

Postulate 4. A given CS can be conditioned to any of several drives (for
example, bell — salivation if the UCS is food, or bell — fear if the UCS is
a shock).

Postulate 5. Amount and/or rate of responding is influenced by the state
of deprivation.

Postulate 1 is a truism that will be implemented in conjunction with
postulate 2. Postulates 2 and 3 are observations about the Pavlovian condi-
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tioning paradigm. Postulates 4 and 5 are obvious facts. Such trivialities
would yield little directive in a theoretical vacuum. Applied to the theory
already derived, however, they are powerful guides to constructive

theorizing,

B. UCS-ActivaTED NoNsrEcCIFICc AROUSAL OF CS-ACTIVATED
SampriNGg CELLS

Consider the typical situation in which a spatial pattern to be learned is
embedded in a space-time pattern presented to @, and the space-time
pattern can be different on successive learning trials. Alternatively, one
could let the UCS be the space-time pattern, and could consider the
problem of learning a particular spatial pattern of the UCS perfectly by
practicing the UCS several times. How is a particular event in a stream of
events picked out as significant and learned? To simplify our notation, we
suppose that the same space-time pattern is presented on each trial. Thus,
on cach trial a sequence 8™, §®, §®, 6N of gpatial patterns with
weights 6® = (9,®:7 € I} is the UCS delivered to ®, k = 1,2, . .. , N.
In this situation, an outstar anatomy does net suffice to achieve postulate 1
if postulate 2 also holds; that is, a given sampling cell, »;, in @ cannot learn
a definite spatial pattern, 6™, chosen from the UCS sequence if the CS
alone can fire v; on successive learning trials. To see this, consider sampling
by v; of 6™ for definitencss. The sampling cell »; can learn g only if v;
fires briefly a fixed time before the onset of 0% on every trial, and if the
signals from v; reach @ only when 8 plays on ®. This will not happen if the
CS alone can fire v; while postulate 2 holds, since signals from v; will reach
® on successive trials while spatial patterns 8% other than 6% play on @®.
Thus the stimulus sampling probabilities Z; = (Z;:1 € I ) will learn a
weighted average of the patterns 6 rather than g,

To avoid noisy sampling, the outstar must be embedded in a larger
network. The sampling cell v; must be prevented from firing unless it
simultaneously receives a CS input and an input controlled by the UCS
which signals that the UCS will arrive at ® a fixed time interval later. This
is accomplished in two steps: Let the UCS activate axons leading to v;
that deliver an input to v; a fixed time before the UCS arrives at @ ; and set
the common spiking threshold, T, of all »,’s axon collaterals so high that
v; can fire only if it simultaneously receives large CS- and UCS-controlled
inputs. Then, on every trial, v; can fire and begin to sample the spatial
pattern 6 as it arrives at ®, if also the CS has been presented. Grossberg
(1970a) discusses an inhibitory mechanism that guarantees brief v; outputs
in response to even prolonged CS plus UCS inputs; sampling can therefore
terminate before 92 occurs at @,
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Fia. 24. UCS-activated nonspecific arousal of CS-activated sampling cells,

All cells in the network that can sample ® receive I.ICS—actlvated ftxons,
for the reasons given above. In other words, there exists a UCS-activated
nonspecific arousal of CS-activated sampling cells. These cells are poly}-l
valent cells, or cells that are influenced by more than one r{\odahty, suc
as the sound of a bell (CS) and the smell of food (UC.S). The polyvalent
cells fire only if the sum of CS and UCS inputs is suﬂ“uzlently large. Gross-
berg (1971b) reviews physiological data relevant to this concfapt. )

Some suggestive terminology is now introduced by denoting samphng
cells @ generically by 8, for “sensory cells” or “sensory representat!on,"
and sampled cells @ by 9 for “motor cells’” or “mnl,o.r representation.
This distinction has no absolute significance, of course, since both @ an.d ®
contribute to sensory and motor processing. It is nonetheless convenient

{see Fig. 24).

C. ConbpITIONED REINFORCERS

Postulate 3 is invoked on recall trials. After learning has taken place, the
CS alone can elicit performance on recall trials. Thus the CS alone can fire
cells in 8§ on recall trials. But $ cells can fire only if inputs a.long two axon
paths converge simultaneously on them. The UCS is not ayalluble on recall
trials to activate one of these paths. Only the CS is available. How does
(S-UCS pairing on learning trials enable the CS to gain control over the
UCS — $ pathway on recall trials? This dilemma imposes the con?(‘:pt of
“conditioned arousal,” which will later be specialized as “copdltlor.led
incentive motivation.,” Namely, CS-UCS pairing during learning trla.ls
allows the CS to gain control over the nonspecific arousal ch.anne.l via
Pavlovian conditioning (that is, by cross-correlating presynap.tlc spiking
frequencics and postsynaptic potentials at suitab-le synaptic knobs).

Jonditioning of nonspecific arousal at these synaptic knobs tu!ms place
while specific motor patterns are learned in the § — M gynaptlc knohs:
Consequently, on recall trials, the CS can activate two input channels:
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Fia. 25. Minimal nonrecurrent interaction between external cue and arousal source

unconditioned specific inputs to 8, and conditioned nonspecific arousal
inputs to 8. At cells in 8 where these two inputs converge, the cell potential
cun be driven above its spiking threshold. These cells can fire, yielding
signals along 8 — 9 axons which activate the $ — 91U'synaptic knobs and
reproduce at 9 the patterns encoded in these knobs. In this way, a CS can
acquire UCS properties, and thus aspects of higher-order conditioning
emerge as a consequence of postulates 2 and 3.

After a CS can activate the arousal pathway, it has UCS properties; it
can serve as the UCS for a new CS in a later learning experiment. The
transition from CS to UCS in these networks is effected by an alteration
(not necessarily a strengthening!) of extant patliways, rather than by the
creation of new pathways. Thus both CS and UCS inputs are processed in
parallel pathways (“path equivalence”), except possibly the primary UCS
input (for example, taste of food) on which a chain of conditioning experi-
ments can be built. In particular, “higher-order” UCS inputs, as well as CS
inputs, are delivered to 8.

D. ArousaL CELLS

The cells @ at which conditioning of arousal takes place are neither §
cells nor 9N cells. This is because the $ cells must be aroused before they
sample the activity of 91 cells, and 9 cell activation must await the onset of
sampling—and thus prior firing—by $ cells, or else 8" cannot be learned.
Similar arguments have been used to prove that at least two successive cell
sites are needed in each sensory representation. The first site receives the
CS input and thereupon sends signals to @ and to the second site. The
second site can fire to 91 only if it also receives a feedback signal from,@
(sec Fig. 25). Sensory representations with more than two cell sites are also
possible, but the theory restricts itself to the construction of minimal
anatomies. As new requirements are imposed, the anatomy can be expanded
to include new properties.

LEARNING BY NEURAL NETWORKS 115

The @ cells can be interpreted as network analogs of hypothalamus,
reticular formation, and related brain areas implicated in arousal and
reinforcement tasks. Certainly @ cells are at best rudimentary analogs of
these neural regions. Nonetheless, the formal tasks that G cells perform will
be seen to be strikingly reminiscent of facts known about their neural
counterparts. Moreover, the interactions between @ cells will become in-
creasingly complex and realistic as the derivation continues.

E. EXISTENCE OF SEVERAL DRIVES

The @ cells include drive-activated cells. For example, when a bell (C8)
is conditioned to elicit salivation (UCR), it activates the @ cells corre-
sponding to hunger. Now invoke postulate 4. Postulate 4 directs us to
further expand the minimal network to include several subsets of @ cells,
such that each subset subserves a different “drive.” These @ subsets can
overlap if their corresponding drives are not mutually independent—for
example, hunger and thirst. For convenience of representation, however, we
draw them as individual points in Fig. 26. By postulate 4, a given sensory
event can be conditioned to any of several drive contingencies. Thus, each
$ in the minimal construction will send axons to several subsets of @ cells.
Each @ subset, in turn, sends axons nonspecifically to 8 cells; otherwise the
several drives could not control nonspecific arousal signals from @ to $
capable of releasing signals in particular 8§ — 91 pathways (see Fig. 26).

F. Drive INpUTS

Postulate 5 imposes a new constraint on the firing of @ cells. If an @ cell
can always fire in response to conditioned arousal inputs from $ cells alone,
then an @ cell can always elicit (say) hunger-specific motor activity, even if
0 is not hungry, whenever food is presented. This property would kill o.
The difficulty is formally analogous to allowing an $ cell to fire in the
absence of its CS input. Maladaptive @ cell firing of this kind can be easily
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Fia. 20. Sampling of spatially distributed drive representations.
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DRIVE INPUT |

Fm-. 27. Existence of drive inputs.

prevented, just as in the $ cell case. In the § cell case, an $ cell can ﬁre. to
91 only if it simultaneously receives a nonspecific input from @ and a specific
sensory input. Require analogously that an @ cell can fire only if it simul-
taneously receives a nonspecific input from 8 (for example, a conditioned
input from § or a primary UCS input) and a specific sensory input. In the
@ cell case, the sensory input is interpreted to be a drive input whose source
is within ©. The size of this input indicates the level of this drive in ©
through time. This restriction on @ cell firing is achieved by setting the
spiking threshold of @ — 8 axons so high that only the sum of sufficiently
large inputs from $ and from internal drive sources can fire an @ cell (see
Fig. 27). Now @ cells are also “sensory” cells, but their sensory inputs
describe the internal state of © rather than the external state of the world.

Grossberg (1971b) develops those ideas and cites relevant data. Note-
worthy is the possibility of learning to push:a lever persistently to deliver
electric shocks to a (consummatory) drive representation without reducing
the internal drive input (no “drive reduction”), as Olds and his collabora-
tors have reported (Olds, 1955).

Various psychological terms can be used to describe @ cells. They supply
“incentive motivation’” in support of learned sensory-motor acts encoded
in § — 9N pathways. They resemble the “amplifier” elements of Estes
(1969), the “Go” mechanism of Miller (1963), and the Now Print mecha-
nism of Livingston (1967).

The foregoing construction is supported by rigorous mathematical
theorems. For example, in Fig. 26, any number of cells in § can sample any
number of cells in @, where the @ cells can reccive primary UCS inputs,
internal drive inputs, and/or conditioned inputs. This situation is covered
by theorems in Grossberg (1969d, 1971¢, 1972b) on nonrecurrent sampling.
The same theorems cover the case of $ — 91 sampling. These are the only
places in Fig. 26 where learning oceurs. (Actually, learning in the feedback
pathway @ — § is nceded in more advanced discussions.) It remains only
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to guarantee that thresholds and other parameters can be set to restrict
the times at which $ —» @, @ — 8, and $ — 91 signals occur. Some further
network structure is needed, and is discussed in Grossberg (1972d).

G. SuprPRESSION BY PUNISHMENT

The previous discussion yields a network © which can learn and perform
consummatory responses under suitable constraints. This construction does
not suffice to prevent a consummatory response if environmental contingen-
cies change so that the response yields aversive results. The construction
will now be extended to include this crucial possibility. We shall consider
the following situation for definiteness. Suppose that a CS (bell) which was
once a cue for food is now a cue for shock. How does © prevent itself from
inappropriately carrying out food-consummatory behavior in response to
the CS and thereby getting shocked? To implement our construction we
shall use the following postulate, which prevents © from indiscriminately
learning unsuccessful responses.

Postulate 6. © does not (readily) learn escape responses that do not
terminate shock.

The construction is, of course, constrained by the network that has
already been derived, since the postulates from which this network emerged
still hold. In Fig. 26, consummatory behavior is modifiable by two parallel
conditioning processes: conditioning of nonspecific @ — § arousal via the
B — @ synaptic knobs, and conditioning of specific motor patterns via the
B— 9N synaptic knobs. Which of these conditioning processes must be
upplemented to fulfill postulate 67 We proceed by asking for the minimal
rossible change: Can © recondition the $ — it pathway without altering

-the 8 — @& pathway? The answer will be “No” for the following reasons.

Che s - om pathway can be reconditioned in two ways:

“i. Passive Extinction

Prevent firing of the § — 9 pathway for long time intervals. Then
ransmitter levels in § — 91 synapses can slowly decay to the level of
1etwork random noise. This process takes too long, however, to prevent ©
rom violating postulate 6, and there exist workable transmitter laws in
vhich no passive extinetion oceurs; for example, laws such as

2i(t) = [—=bpzp(t) + enre(t) J[zi(t — 75) — Tal+

2 which perfeet memory cxists until practice or recall trials, or random
wrsts of presynaptic spiking, occur. Also, decay can be retarded or even
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reversed if recall trials intermittently occur when © is hungry (cf. Section
IV)_ Then the § — M nathwav is activated and the $§ — M ﬂynnntin levels

A 2:Ti2 vsaT & o pQALAANVAS A8 [ULIVALLR [V N2 210 S 11RPLIU

are restored to supranoise levels by transmitter potentiation, without
destroying the encoded motor pattern [“post-tetanic potentiation”
(Eccles, 1964) .

2. Interference Theory of Forgelling (Adams, 1967)

Let every occurrence of shock input generate a new UCR pattern at 9%,
which is incompatible with eating. If the CS also occurs at these times, and
© is hungry, then 8 will sample the new pattern at 9, and the $ — I
gynaptic knobs will encode the new UCR pattern. Thereafter, whenever the
bell rings and © is hungry, the new motor pattern will be released, rather
than eating. This mechanism has severe faults during recall trials. First, ©
cannot learn specific avoidance tasks, since the shock—and not a specific
avoidance response—controls the competing UCR at 91 Second, © remains
conditioned to the hunger @ cells. Thus © will indulge in general (for
example, autonomic) preparations for eating without being able to eat.
Third, 0is maladaptively fearless, since only positive consummatory drives
are conditionable to the CS. Counterconditioning along a new §— @
pathway is clearly needed. Denote the new subset of @ cells by @,.

Let shock create an input at the subset @,. Let this input be a monotone
increasing function of shock intensity. Again we are called upon to psycho-
logically interpret a formal operation. In this case, associate activation of
the cells @, by shock with production within © of a comparable amount of
fear. This interpretation introduces fear into the network using & minimum
of network machinery. Given this interpretation, activating conditioned
§ — @, synaptic knobs will yield a CER [conditioned emotional response
(Estes, 1969)7], both by eliciting fear in © and, perhaps, by activating
autonomic expressions of fear through @,. Let @, denote the subset of @
cells that subserves hunger, and consider postulate 6 in this context.

Why is postulate 6 needed? Suppose that it does not hold. Then © can
learn all unsuccessful escape responses. Efficient avoidance performance
would therefore be unlikely, since mistakes are more likely than correct
response during a period of frantic trial and error in a complex experimental
chamber. At best, © would learn to execute the avoidance response as the
terminal response in a long chain of previously learned incorrect responses.
To prevent this from happening, G cells cannot be the only @ cells that fire
to 8 when the CS occurs and shock is on. For, if they were, not only could
maladaptive consummatory responses be performed give the CS and
sufficient hunger, but also all erroneous escape responses could be sampled
and learned by 8 — 91 synaptic knobs with the @ cells as the arousal
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HUNGER FEAR
(a) (b}

F1a. 28. Net incentive-motivational feedback.

source. The effect of @ arousal on $ must be inhibited while shock is on.
The @, cells are the minimal source of this inhibition. Hunger and fear
arousal cells thus reciprocally inhibit each other, as Logan (1969) suggested
in his discussion of net incentive motivation. Figure 28 displays two in-

. hibitory mechanisms. Consider Fig. 28a when the synaptic knobs of n

are active. At these times, the sampling probabilities Z,(t) learna weighted

. average of the spatial patterns 6(t) = [6r(¢), 6,(!)] that reach Ga and @,.

Thus the probabilities learn the net balance of hunger and fear during times
when v, samples @. When v, fires and O is hungry, G» sends excitatory
feedback signals to vs, whereas G, sends inhibitory signals to v,. Cell vs
requires the sum of two excitatory inputs—one from v and one from @—in
order to fire. As the relative strength of the inhibitory signal from G,
grows, it cancels the effect of the @ input and prevents v; from firing. Thus
va cannot sample and learn the motor patterns reaching @ at times when
@, feedback is active. This is true of every sensory representation.

Five conclusions follow: (1) An intense shock can suppress consumma-
tory behavior by competing with @ — § arousal via the inhibitory @, — 8
pathway. (2) This suppression does not extinguish memory of the patterns

-alrcady encoded in the $ — 9 synaptic knobs. (3) Suppression can take

place faster than passive extinction. (4) An intense shock can prevent new
$ — 91 associations from forming by inhibiting releasc of sampling signals
from 8. (5) After $ — @, conditioning takes place, properties (1) through
(4) can be clicited on recall trials wherever the CS input activates § — Gy
8ynapses.

Similar qualitative properties hold for Fig. 28b. Here, however, the @,
and @, signals compete with each other at a second stage of processing
before a signal to § is emitted. It can be proved that only @ can create an
input (excitatory) to 8, and does so only if it emits a stronger signal than
@; does. The competitive mechanisin is called a subtractive on-center
off-surround field. Its mathematical propertics have been discussed
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(Gross_bgrg, 1970a). Figure 28b requires half as many @ — $ axons as Fig.
28a. This represents a considerable saving of axons, since each @ subset
projects nonspecifically to numerous § cells. On the other hand, Fig. 28a
requires fewer cellular processing stations.

H. Avorpance: HeurisTics

The following postulate is essentially a rewording of postulate 6.

Pos.tulate 7. O learns escape responses that do terminate shock faster
than it learns escape responses that do not terminate shock.

This postulate also builds upon mechanisms that are already at our
disposal. In particular, while shock is on, $ — 917 sampling is prevented by
G, — § inhibition. Shock termination removes @,— $ inhibition, but
§ — 9 sampling remains impossible until some excitatory arousal source is
activated. Postulate 7 can thus be reduced to the following question: What
excitatory arousal source releases $ — 91 sampling just after shock is
turned off, and thereby establishes conditioned pathways from the sensory
cues that are available when the avoidance response occurs to both the
active arousal source and the motor controls of the avoidance response?
Speaking heuristically, this arousal source provides the ‘“motivational
support” for learning the avoidance response. We suggest that an experi-
mental analog of exciting this new arousal source is, other things being
equal, an internally perceived “relief”’ from fear (Denny, 1971; Masterson,
1970; Reynierse and Rizley, 1970).

Denote by @,~ the arousal cells which are excited by termination of
shock input to the cells @, which we henceforth denote by @,+. Some
formal requirements must be imposed on @,~ and @,* to ensure that the
arousals work together effectively. First, require that excitation of @,~
by shock termination is transient. Transient response is needed to prevent
irrelevant sensory-motor coordinations from being learned whenever shock
is off. The cells @, are on-cells; they are turned on by shock, and they
remain on until shock is shut off. The cells @, are off-cells; they are turned
on temporarily by shock termination. On-cells and off-cells are familiar
physiological components (Thompson, 1967, pp. 253 and 349). Second,
require that the outputs from G,+ to @,~ reciprocally inhibit each other
before they send signals to 8. Thus these outputs interact to form a con-
sensus between “fear” and ‘relief.” A possible behavioral analog of this
rebound from @,* on-cells to @~ off-cells is the rebound in behavioral
effects reported to occur after electrical hypothalamic stimulation ter-
minates (Cox et al., 1969; Grastyan, 1968; Valenstein ef al., 1969). This
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analogy receives further support from a chemical and anatomical analogy
which is developed in Grossberg (1972d) between the twofold system
(@,*, @) and sites in the twofold system of ventromedial and lateral
hypothalamus.

The network must be expanded once again to allow 8 to become condi-

- tioned to the new arousal source. Thus let each sensory representation, 8,

send axons to @,~ as well as to @+, @, and other @ cell clusters. At any
time, the synaptic knobs of each $ encode a spatial pattern derived from
the patterns 8(2) = [8,+(t), 8,~(t), 6x(t), . . .]. This pattern describes the
net balance of excitatory and inhibitory @ — 8§ feedback that this repre-
sentation controls. It is determined by a weighted average of the spatial
patterns 8(t) that reach @ when the given 8 is sampling.

In summary, the classical notion that instrumental reinforcement is
due to “drive reduction” when shock terminates is replaced by rebound
from negative-incentive motivational on-cells to positive-incentive motiva-
tional off-cells when shock terminates. The balanceof excitation of on-cells
and off-cells can be classically conditioned, perhaps at different times, to
any $ representations. The net @ — $ output, and thus § — 91 firing and
performance on recall trials, is determined by all the $ sites that fire to @
at such times. Even if half of $ fires to @,~, no 8 — 91 channel need be
activated by positive @ — 8 feedback if the other half fires to @,*, since
@, and @,* will reciprocally inhibit each other’s outputs. Similarly, shock
termination yields little “relief” if it is antagonized by a switching-on of
new § — @+, or “fear,” channels. Shock termination per se is not neces-
sarily “drive reducing.”

Recent psychophysiological data and concepts can be qualitatively
analyzed in terms of these network analogs (see Grossberg, 1972¢). These
concepts include aspects of the following: relaxation, or elicitation, theory,
which claims that an unconditioned response of relief precedes reinforce-
ment; the concept of “effective reinforcement,” which notes that shock
offset and onset of fearful situational cues can influence reward in opposite
ways, as is illustrated by two-way avoidance tasks in which a rat escapes a
chamber in which it is shocked by running into another chamber where it
was previously shocked; classical and instrumental properties of a CS+
paired with shock, a CS— paired with no-shock, and feedback stimuli
contingent on the avoidance response, including transfer of their effects
from classical to instrumental conditioning experiments; autonomically
nonchalant asymptotic avoidance performance originally motivated by
fear; forced extinction of the CAR without fear extinction; response
suppression without an avoidance response; relief without an avoidance
response; opposite effects of contingent and noncontingent punishment on
fear and suppression of consummatory responding; punishment hypothesis
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of avoidance learning, describing rewarding effects of terminating proprio-
ceptive cues that correspond to nonavoidance responses; response (or
no-response) generalization from one shock level to a different level; and
rewarding effects of response-contingent reduction in frequency of shock.

The argument leading to an explicit construction of the rebound mecha-

nism falls into eight main stages.

1. Existence of a Tonic Input

When shock terminates, @, emits a transient output. Thus, by Eq.
(22), the potentials z,~ of @, cells grow transiently to suprathreshold
values. In Eq. (22), an input source is required to thusly perturb z,~.
What input source does the job? (The concept of “input source” includes
possible energy sources within the cells themselves.)

In these systems, shutting off one input (such as the shock input to
@,*) does not provide energy for turning on another input (such as the one
driving @,~ rebound). Terminating shock input can, however, unmask the
effects of an internally driven input to @,~ whose influence is inhibited by
shock. The internal source of @, input is therefore neither turned on nor
off by shock offset. It is not turned off by shock onset, since then it would
be off at shock offset, and could not drive @, rebound. Finally, if it is
turned on by shock onset, or is unaffected by shock onset, then it is always
on. The internal input is therefore tonic.

2. Existence of Accumulation—Depletion

Output from @, shuts off soon after it is turned on. How is this done?
No externally driven input is available to do this. The @, output is
depleted by its own activity. In other words, while shock is on, an ac-
cumulation process occurs at @,~. When shock is off, output from @, is
a monotone increasing function of the amount accumulated at each given
time. This amount is gradually depleted when shock is off, until the @,
output vanishes. [The accumulation mechanism that is ultimately used is
derived in Section IX, and is given by Eq. (44).]

3. Consensus between Fear and Relief

We suppose that at most one of the outputs from @,* and @, is nonzero
at any time. In other words, either fear or relief, but not both, can be
“perceived” by the network at a given time. Thus the final state of pro-
cessing in @,* and @,~, before signals are sent to 8, is the resultant of a
competition between the @,* and @, channels due to some form of mutual
inhibition. A
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4. Existence of a Parallel Accumulation Process in the Fear Channel

When shock is off for a long time, outputs from both @,* and @, to 8
are zero. Thus the accumulation process at @,~, driven by its tonic input, is
balanced by a process going on at @;*. The simplest idea is that a parallel
process of accumulation—depletion, driven by its own tonic input which
equals the @, input, takes place in the @,* channel. When shock is on, the
shock input summates with the tonic input in the @,* channel.

This idea is strengthened by the next few arguments, which elucidate the
basic question: What accumulates? Is it potential or is it transmitter?
Several facts favor the latter alternative. Other possibilitics have been
discussed by Grossberg (1972d).

5. The Rebound Is Slow

It lasts at least seconds rather than milliseconds. It is a slow process
compared to network fluctuation rates of cell potentials in response to input
changes. After shock terminates, @,;* and @, receive no externally driven
inputs. Their potentials presumably equalize rapidly. Output from @,
nonetheless continues. Thus there exists a process slower than potential
change that can bias output from @,+ and @, in favor of @,~ after shock
terminates.

6. Both Fear and Relief Are Increasing Functions of Shock Duralion and
Intensity

Data on the effect of CS and UCS intensity on the CER and CAR have
been reported. Thus both channels contain slowly varying processes which
parametrically depend on shock intensity and duration, and which counter-
balance each other when shock is off for long intervals.

7. The Relative Balance of Accumulation Is Changed by Shock

What causcs the @, rebound to shut itself off? Is complete depletion of
the accumulated product at @, responsible for this? Suppose that the
answer is “Yes.” Then the tonic input alone can deplcte @,~. By symmetry,
during shock, the shock input plus the tonic input to &,* could surely
deplete @+, This does not occur, since then fear could not be maintained
by a prolonged shock. A weaker conclusion is necessary: Shock shifts the
relative halance of accumulation in the two channels by depleting the G+
channel more than the @~ channel.
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8. Signal Size I's a Joint Function of Input Size and Amount Accumulated

This argument is crucial. During @,~ rebound, both @,* and @, receive
equal tonic inputs which ultimately balance the amounts accumulated at
G,* and G/, and thereby nullify @+ and @, signals to $. Before this
happens, @,~ output exceeds @,* output because @,~ accumulation exceeds
@, accumulation. In other words, given a fixed input size (the equal tonic
inputs to @, and @,7), output is an increasing function of accumulatlon
level (in the two channels, a,+ and @,7).

. When shock is on, increasing shock intensity increases @,* output, since
it causes an increase in fear. Increasing shock intensity also decreases the
amount accumulated at @,*; this is the basis of the rebound at @,~ when
shock is turned off. Thus, output is not a function of accumulation level
alone, since then increasing shock intensity would decrease @,+ output by
decrensing the amount accumulated at @,+. Output size is a joint function
of input size and accumulation level.

The terms Bjz;; in (22) shows that output size is the product of spiking
frequency and transmitter level. Spiking frequency is an increasing function
of potential, which is an increasing function of input size. This leaves
transmitter accumulation level as the abstract accumulation level dis-
cussed above. This argument commits us to our formalism. We could not
proceed further unless: (i) the amount of accumulated transmitter is a
decreasing function of input size, and (ii) output size is nonetheless an
inereasing function of input size. Fortunately, both (i) and (ii) are true
in embedding fields, and make a construction of the rebound mechanism
possible in this context.

Grossberg (1972d) carries out this construction and rigorously analyzes
the resulting mechanisms. These mechanisms include an analogy with
adrenergic and cholinergic interactions in series with lateral and ventro-
medial hypothalamic sites, dependent on phasic sensory input and tonic
reticular formation input. Mechanisms emerge for such phenomena as:
the lesser rewarding effect of reducing J units of shock to J/2 units than
of reducing J/2 units to 0 unit; a relationship between the rewarding effect
of reducing J units of shock to J/2 units and the possibility of releasing a
conditioned avoidance response in the presence of fearful cues; two kinds of
depressed emotional affect—one due to overarousal, which can also be
associated with massive associational eonfusions and poor paying attention,
and one due to underarousal, which can also be associated with overreactive
fear and relief responses; persistent nonspecific fear which biases inter-
pretation of specific cues, and can “resist’” new learning or “‘repress” old
learning; different effects of gradual and abrupt shock on response supres-
sion ; response generalization from one shock level to another; reduction of
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pain in the presence of loud noise (analgesia) ; influences of drugs such as

cennnlamina 1 amotion al nd

Cﬁ.i‘bﬁﬁ}uu, ubi‘(’)r)uu', and sCopOiamine on conditioned emotional and
avoidance responses, and on self-stimulation via implanted hypothalamic
electrodes; sensory-drive heterarchy that allows changes in situational cues
to release responses compatible with any of several nonprepotent drives;
feedback inhibition of adrenergic transmitter production; potentiation of
adrencrgic production by presynaptic spiking, and by postsynaptic spiking
via a feedback loop that controls higher-order instrumental conditioning;
and learning at cholinergic synapses.

IX. Possible Chemical Substrates of Network Processes

A. REFINEMENT OF SPATIOTEMPORAL SCALES

Equations (22) and (23) are derived from psychological postulates and
yicld an abstract network anatomy whose variables are interpreted as
averages over physiological variables. This scction illustrates a corre-
spondence procedure whereby spatial and temporal scales in the network
are expanded to reveal possible finer processes that are compatible with
Eqs. (22) and (23). Further details of this procedure can be found in
Grossberg (1969f), along with additional references to relevant data. Here
we develop the interpretation of 2;; as a transmitter variable, rather than
as a measure of postsynaptic membrane sensitivity to fixed amounts of
transmitter. Postsynaptic modifications nonetheless arise.

B. CourLing oF K+ 1o ACH RELEASE

Consider the term F;; = Bj:z;; in Eq. (22). The physiological interpreta-

.tion given in Section III suggests a coupling between outward flux of K+

and of ACh (acetylcholine) from synaptic knobs. Such a coupling has been
experimentally reported (Hebb and Krnjevie, 1962; Hutter and Kostial,
1955; Liley, 1956). It is approached as follows: Bj; increases with spiking
frequency, and each spike is associated with an inward flux of Na+ and an
outward flux of K+ (Katz, 1966). Hence an increase in Bj; is associated,
on a microscopie level, with an increased total outward flux of K+. The
term z;; describes the production of excitatory transmitter (say Ach)
within N ;. Fj; = Bj:z;; is proportional to the rate of excitatory transmitter
released from Nj;. Hence, increasing the outward flux of K+ increascs the
rate of transmitter release from N ;.

The argument holds even if Bj; is a functional of spiking frequency or
spike size. This added generality is needed to interpret Bj; if x; hecomes
large. Since F;; represents rate of transmitter release and z;; is proportional
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to total transmitter, B; must have a finite maximum as z;— «; for
example:

ailzi(t — rji) — Ty]*
bji + [zi(t — 75) — Pl
The mathematical development discussed in Section VI includes this
possibility, among many others.

B,'.' =

C. Two Pairs orF ANTAGONISTIC JONS:
(Nat, K*) anp (Catt, Mgtt)

The above interpretation of network variables can be used to suggest the
existence of more speculative couplings. These couplings are also com-
patible with various data, but direct confirmation of their existence scems
to be lacking, if only because the necessary experiments would be very
hard to perform. First note that, in the presence of inhibitory interactions,
Eq. (23) is changed to .

2 = Djzji + E;fz:]* (41)

to prevent negative values of the potential z; from producing negative
amounts of transmitter. How can the product G;; = Ej[z:]* in Eq. (41)
be interpreted? The term Ej; is, along with B;;, associated with spiking
frequency. The most obvious participants in the spike are the antagonistic
ions Na+ and K+*. Hence we assume that increases in E;; correspond, on a
microscopic level, to (a process in parallel with) an inward flux of Na+ and
an outward flux of K+. This process will occur within Nj; if we associate
zj; with transmitter. The product Gj; is then also computed within zj;,
since it determines the rate of transmitter production, by Eq. (41). The
term [z:J* in Fj; corresponds, however, to a process in v;. Thus there exists
a transport of material from v; to Nj;, in an amount proportional to [z:]*,
that enables Gj; to be computed in N;;. What is transported?

Product Gj; is a result of two processes. Process E;; is in parallel with a
pair of rapidly fluctuating antagonistic ion fluxes. The other process pre-
sumably occurs on a similar time scale, and involves chemical species that
are known to interact with these ions. Also the two processes in Gj;: are
treated symmetrically: Gj; is a product of terms which, in the simplest
cases, are both functionals of cell potentials cut off at a threshold (for
example, Gj; = 8;[z;j(t — rii)) — Ty J[=:J%), and it is known in the case of
spike production that the threshold is produced by interaction between the
pair Na* and K+ of antagonistic ions. The simplest assumption is thus that
[z:]* also represents a process (in parallel with) a pair of antagonistic ion
fluxes. This assumption turns out to be compatible with various data. In
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the following discussion of these data, the phrase in parallel with a pair of
airtagonistic ions is critical. Indeed, our macroscopic theory can do little
more than suggest the symmetries of microscopic interactions, so that the
pairs being sought, in principle, need not be composed of ions at all (ef.
amino acids). The formal structure of the argument scems to hold, no
matter how we interpret these chemicals.

The pair of ions associated with [z.J* cannot be (Nat, K¥). If it were,
increases in [z:]* would correspond to an influx of Na* and an outflux of
K+ at v;. The process z;; is, however, influenced only by those aspects of
these fluxes that affect Nj;. These effects are a decrease in Na* and an
increase in I{+. Process Ej; involves the same ions and has the opposite
effect when Ej; increases. How then do these processes affect z;; in Eq.
(41) only through their product? In particular, by Eq. (41), 2z;; cannot
grow in response to even an enormous Ej; value if [z:3* = 0, even though
E;; provides within N ; all the effects that [z;]* can trigger. Thus, if [z:]*
is in parallel with a pair of antagonistic ions, it must be a pair other than
(Nat+, Kt).

In many biochemical processes, the divalent ions Cat* and Mgt+
powerfully interact with Na++ and K+, and the pair (Cat*, Mgt +) is
mutually antagonistic (Dixon and Webb, 1958). We take this to be the
pair being sought. In many reactions, Na* and Ca* *+ act synergistically
(Fruton and Simmonds, 1958). We therefore consider this possibility in
the present context: Let an increase in [z;]+ correspond microscopically to
an increase in Cat + and a decrease in Mg* +.

D. Binping oF Nat anp Cat++ as SyneraisTic COFACTORS
oN TRANSMITTER ProODUCTION SITES

Now term Gj; says that transmitter production sites are activated at &
rate proportional to the product of (processes in parallel with) Na* and
Ca* + concentrations. In particular, we expect joint inward Na* and Ca* *

fluxes to be created by membrane excitation and to thereby stimulate

transmitter production, whereas K+ and Mg* * antagonize Na* and Cat ¥,
respectively, in this role. Analogous fluxes have been experimentally
reported (del Castillo and Engbaek, 1954; Harvey and Maclntosh, 1940;
Hodgkin and Keynes, 1957). Just as inward fluxes of Na* and Ca**
presumably facilitate transmitter production, it is natural to expect that
such fluxes facilitate transmitter release, so as not to cancel out one process
with another. If ACh is the transmitter, then reducing Ca* *+ concentration
around N ;; would reduce ACh release, other things being equal. If Mg* +is
acting as a Ca* + antagonist, then Mg* + should antagonize Ca* + in con-
trolling the amount of ACh release. Compatible experimental reports are
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found in del Castillo and Engbaek (1954), del Castillo and Katz (1954)
Hubbard (1961), Jenkinson (1957), and Liley (1956).

E. A HierArcHY OF INTRACELLULAR JoNIc BINDING STRENGTHS

By Eq. (41), new transmitter production sites are activated only when
Gj; > 0—that is, only if supraequilibrium amounts of (quantities in
parallel with) Nat+ and Cat*+ simultaneously reach these sites. When
equilibrium is restored, G,. = 0. The rate of change in z;; due to Gj; is also
zero during. equlhbrlum the sites remember how much transmitter to
produce.

The following basic questions hereby arise. How can high concentrations
of Na* and Ca* + jointly activate a process that maintains its activity even
after the concentrations of these ions are reduced at equilibrium? Otherwise
expressed, what keeps z;; at the high values needed to produce a memory of
past events even when the sources of these high values are removed as
equilibrium is restored? In particular, why doesn’t the high intra-end-bulb
K+ concentration at equilibrium reversibly inhibit z;; growth, just as Nat
and Cat + excited z;; growth at nonequilibrium?

Since z;; does maintain the high values acquired during nonequilibrium,
and joint coupling of Na* and Ca+ + causes these values, we are led into the
following conclusion: The Nat+ and Ca* + ions which activated the trans-
mitter production sites are not removed from the end bulb when equilib-
rium is restored; a fraction of the free Na+ and Cat* * ions which enter the
end bulb during excitation is bound on intra-end-bulb transmitter produc-
tion sites, and this binding is so strong that it cannot be displaced by the
return of a high intra-end-bulb K+ concentration as equilibrium is restored.
In particular, the intracellular K+ ions are not so strongly bound. We are
hercby led to expect that most of the intracellular K+ exists in unbound
form, whereas higher proportions of intracellular Nat+ and/or Ca* + exist
in bound form. These expectations have been experimentally reported
(Brink, 1954; Ussing, 1960).

F. Tue CoNTrOL OF CELLULAR PRODUC’I‘ION RATES BY IONs
STRENGTH OF BINDING VERSUS ION AVAILABILITY

The above remarks suggest a qualitative answer to a special case of the
following general question: How do cells “know’” how much of a given
quantity to produce in response to external environmental demands?

Our point of departure is the hypothesis that ions such as Na+ and
Ca* +, which presumably activate intra-end-bulb sites (or enzymes) with
considerable vigor, are kept substantially out of the end bulb during
eqilibrium. Only in nonequilibrium periods such that x;(t — ;) > T
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and z;(t) > 0 can these ions penetrate the membrane en masse to initiate
higher levels of intra-end-bulb transmitter production. Since equilibrium
time intervals can, in principle, exceed nenequilibrium time intervals by a
very large numerical factor, the ions Nat and Cat*+, which bind most
strongly, are available least frequently within the end bulb. In other words,
the process of synergistic (Nat, Cat *) binding, having a limited oppor-
tunity to occur, is made effective by guaranteeing that, whenever the
opportunity does occur, the process takes place vigorously and its effects
are long-lasting (cf. Brink, 1954 ; Quastel, 1962).

These facts suggest the following general heuristic scheme for integrating
equilibrium and nonequilibrium phases in the life of a cell, which subsumes
the problem of rendering the cell responsive to fluctuations in its external
environment. The argument can be broken into three main steps.

1. Coexislence of Equilibrium and Evolulion

An equilibrium phase of a cell can, in principle, be characterized by
particular values of prescribed cellular parameters. For example, the
equilibrium of a nerve cell can be characterized by the membrane concen-
trations of such parameters as Nat+ and K+. Suppose that a cell exists whose
equilibrium is characterized by particular values of all its parameters.
Such a cell “forgets” all nonequilibrium values of its parameters when it
returns to equilibrium. In particular, the equilibrium of such a cell cannot
coexist with long-term responses of the cell to brief changes in its external
environment. For convenience, we henceforth call such long-term responses
evolutionary trends.

Certainly not all cells are of this type. Brains can learn! Henceforth we
concern ourselves only with cells whose equilibrium phase can coexist with
an evolutionary trend. We denote such a cell by C. By definition, the
equilibrium phase of C does not require a specification of values for all
cellular parameters. It suffices to specify the values of a fraction of these
parameters. We denote these equilibrium parameters collectively by E.
A particular evolutionary trend in C requires the specification of values for
parameters which we denote by N. Since the parameters N control an
evolutionary trend, they need not always take on the same values when the
parameters E take on equilibrium values.

2. The External Environment Perturbs the Equilibrium Paramelers

The external environment communicates its demands upon C by chang-
ing the values of parameters at C’s periphery, or membrane. Thesc param-
cters are, however, often the parameters E, since equilibrium is a state of C
which is characterized by a particular choice of external environment. For
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example, a nerve cell returns to equilibrium when all excitatory and
inhibitory inputs are zero. We conclude that the cxternal environment
often induces an evolutionary trend in the parameters N by perturbing the
parameters ., The parameters E therefore faithfully communicate to the
parameters N the demands of the external environment. We are hereby led
to the following basic but merely ostensible paradox: If the parameters £
faithfully communicate to the parameters N the external environmental
demands that signal an evolutionary trend, then why don’t the parameters
E also faithfully communicate to the parameters N the external environ-
mental demands that signal equilibrium, and thereby eradicate the evolu-
tionary trend in N whenever equilibrium is restored?

3. The Equilibrium Values Compete with the Nonequilibrium Values of the
Equilibrium Paramelers

Given the natural assumption that the parameters E pass on faithfully
to N all states of the external environment, the following resolution of this
paradox seems natural: The equilibrium values of E do not eradicate the
evolutionary trend in N because they cannot dislocate from N the non-
equilibrium values of E that induced the trend. In the case that the param-
eters E are realized by ions, this means that a hierarchy of ionic binding
strengths exists at the intracellular sites (or enzymes) which alter intra-
cellular demands. The ions that are most available during equilibrium are
bound least strongly to these sites. The ions introduced at these sites by the
extracellular demands are strongly bound as synergistic cofactors to these
sites, and thereby activate them. Proceeding in the reverse direction,
suppose that the ions that bind most strongly to these sites are not substan-
tially kept out of the cell during equilibrium, and are allowed freely to bind
with these sites and thereby to activate them. Then essentially all sites will
always be occupied, and the production rate at these sites will always be in
a state of equilibrium, albeit a very active equilibrium. The evolutionary
trend is hereby destroyed. )

G. Tue M1TocHONDRION AND ION TRANSLOCATION

Given the hypothesis that Na+ and Ca* + are synergistic cofactors in
the activation of sites that contribute to transmitter production, it is
desirable to find candidates for these sites. A cellular system which has a
strong affinity for Na* and Cat * is the mitochondrion, whose importance
as the “power plant” of aerobic cells is well known. For example, Lehninger
(1965, pp. 169-171) reports a striking increase during respiration in both
the relative uptake of Nat+ over K* and of Cat + over Mgt *. To the extent
that this fact is an example of bur theoretical expectations, then ion trans-
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Jocation in ncural mitochondria can be interpreted as a means for setting

mitochondrinl reaction rates at a level commensurate with the intensity and

duration of a positively polarized nonequilibrium excitation phase. These
rates endure long into the equilibrium phase.

H. Provision oF ATP For SYNAPTIC VEesicLES BY MITOCHONDRIA

Suppose that ion translocation in the mitochondrion is indeed an cxar:nple
of the synergism between Nat and Cat+ that contributes to trnns.mltter
production. Then mitochondria should be found clustered near regions qf
high transmitter density. Histological evidence suggests that transmitter 18
stored in synaptic vesicles, and that mitochondria can be found clustered
near these vesicles (de Robertis, 1964, p. 32, and mierographs throughout
the book). Perhaps the activated mitochondria supply the A'I‘P.needed. to
produce acetyl coenzyme A, which in turn presumably reacts with cholfne
under the acgis of the enzyme choline acetylase to produce acetylcholine
(Eccles, 1964 ; Fruton and Simmonds, 1958).

.

1. CONTIGUITY OF SYNAPTIC VESICLES AND THE Synapric CLEFT

The histological investigations (Eccles, 1964; de Robertis, 1964) which
have revealed the existence of synaptic vesicles also show that these
vesicles are often clustered most densely along the end-bulb surface which
faces the synaptic cleft. This location is well chosen for a vesicle .whose
supposed role is to expeditiously release transmitter into t!\e synaptic cleft
to excite the postsynaptic membrane. Yet how does the vesicle kpow !mw to
choose this useful location? Such knowledge will seem mysterious in any
theory that holds that transmitter production depends only on the.past
excitation history of the presynaptic nerve which contains the tran.smltter,
gince the excitation of just this nerve does not provide information con-
cerning the location of the synaptic cleft relative to the end-bulb men.\brane.
Such a theory predicts that transmitter vesicles will be found umfom.\ly
throughout the end bulb, or closer to the presynaptic source of excitation
than to the synaptic cleft, or at best with uniform density along all end-
bulb surfaces. . )

The preferential location of synaptic vesicles near the synaptic cleft: is
qualitatively easily understood in a theory in which transmitter production
depends on both presynaptic and postsynaptic influences. Presumably tlfe
postsynaptic influcnce is carried over the synaptic cleft to the presynaptic
end bulb, so that the region most likely to have all the ingredients needed
for transmitter production lies nearest to the synaptic cleft. The pos.t-
synaptic ionic influence does not spread evenly throughout the presynaptic
end bulb because the Ca* + influence near the synaptic cleft is presumably
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bound within the end bulb as soon as it reaches an appropriate site, and the
amount of Ca* * entering the cell cannot be so large as to uniformly saturate
all sites within the end bulb, or else the desired evolutionary trend will be
destroyed. Indeed, one way to turn a knob capable of learning into a knob
incapable of learning is to open the tight junctions for the transport from
vi to N,;, and thereby bathe the presynaptic end bulb in an ionic atinosphere
that is not driven by postsynaptic events.

J. Binping oF Mat+ By RNA 1N THE CELL Bopy

The Ca* * needed for synergistic binding of Na* + and Ca* + in N}, are
released into the synaptic cleft facing N;; when the postsynaptic cell, v;,
is sufficiently excited. Otherwise, much of the Ca* + in the synaptic cleft is
presumably reabsorbed into v..

This argument fails completely if N;; can provide as much Ca* + as v,,
given a fixed level of excitation, since then E;; would stand for essentially
the same ionic fluxes as [2:]*, and the coupling F;; could not be realized.
Since v; presumably can supply more Ca*+ than N,;, we must find a
rationale for this fact.

Given that [z,]* represents an antagonism between Ca++ and Mg* *,
the fact that Cat* is released when v; is excited means that Mg* + is
needed by v; during excitation. A structure therefore exists within v,—
which is not found in N;—which selectively binds Mg+ + ions when v; is
active and whose binding with Mg+ + is preferred to (or antagonized by)
binding with Ca* +. This argument does not mean that no Ca* + is pro-
vided by Nj;, but only that more Ca*+ is provided by v:. In a similar
fashion, the fact that presynaptic excitation at N; induces coupled Na+
and K* fluxes does not imply that such fluxes are absent from postsynaptic
excitation at v;.

The cell body v; certainly has at least one prominent structure which the
end bulb N;; does not have—namely, the cell nucleus. If this is the structure
being sought, then the cell nucleus, or processes sustained by the nucleus,
ought to sclectively bind Mg+ + jons when the cell body is activated. Among
the most plentiful cell body constituents of this type are the RNA’s. It is
also known that RNA activity depends sensitively on Mg* * concentration
(Boedtker, 1960; Spirin, 1964; Watson, 1965).

K. INTERACTION OF NEURAL EXxCITATION AND RNA

Suppose indeed, that the RNA’s are among the structures that we are
secking to bind Mg+ +. Then learning will be associated with systematic
variations in the RNA’s. Such variations have been reported experi-
mentally (Ifamberger and Ilydén, 1963; Hydén, 1962; Koenig, 1964).
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Once experiments were produced demonstrating variations in RNA
activity in learning situations, it was proposed that individual RNA
strands coded the content of the learning in some fashion, and that one
could, in principle, recover the content of whole segments of. learned
experiences in such a strand if one but had the key for decoding its struc-
ture. This view secms unnecessary from the present perspective. The
RNA’s seem to be needed merely to keep the cell at production levels
appropriate to the metabolic drains placed on the cell by tl}e levels .of
excitation imposed from the external environment. Indeed, if a spatial
pattern is the unit of long-term memory, then an individual cell does not
have enough information to know what is being learned. Nonetheless, the
cross-correlational processes presumed to occur at the cellular level .do
provide enough information for the cell to discriminate whether a learning

type of process is occurring or not.

L. TRANSPORT DOWN THE AXON

The hypothesis that Mg*+ is bound to nucleus-related processes is
further strengthened by the following observation.

Figure 29 schematically represents a presynaptic nerve cell with.nucleus
N; whose excitatory end bulb, N;;, impinges upon the postsynaptic nerve
cell v; with nucleus N;. Suppose that N selectively binds Mg* + in order to
free Ca*t+ for binding within N;; when both N;; and v; are vigorously
excited. If v; and v; are of the same cell type, then Mg** will also be
sclectively bound by N; when v; is vigorously excited. Since v; is connec‘ted
to Nj; by the axon ej;, we must prevent most of the molecules that bind
Mg+ *+ within v; from flowing down the axon to N; or else Nj; will have too
many Mg* +-binding molecules. Thus at least part of the Mgt + mugt- l?e
bound within v, to structures that are so large or so well cemented within
v; that they are never carried down the axon to the end bulb. Macro-
molecules within Nj, such as the RNA’s, are plausible candidates for

.such a role. ‘

On the other hand, whenever v; is excited to suprathreshold values, then
the axon e;; and the end bulb Nj; are also excited. The axon and the end
bulb must be able to recover from this excitation. The postulated mecha-

Mg** ' Ca** Mgt
vj ‘ eji Nji vj

Fiq. 29. Interacting chemical dipoles,
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nism of recovery is activation by (processes in parallel to) Mgt + of the
RNA’s during excitation, leading to higher rates of protein synthesis, etc.
However, the RNA’s are substantially localized within the cell body v;.
Thus the molecules produced by RNA activation, after being produced in
v;, must be able to travel down the axon to the end bulb where they will be
needed to guarantee recovery from excitation. These molecules therefore
might well be lighter than the more immobile RNA'’s, and they might well
be bound to less Mg* + than is bound to the activated RNA’s. A transport
of material from the cell body along the axon to the end bulb exists (Friede,
1959; Ochs and Burger, 1958; Waelsch and Lajtha, 1960; Weiss and
Hiscoe, 1946). Various details concerning this formal transpaort process are
considered in Grossberg (1969f).

M. WuY AREN'T NERVE CELLS SPHERICAL? AN INTIMATE BOND
BETWEEN NEURAL GEOMETRY AND NEURAL DYNAMICS

It is practically a truism that the simplest geometrical objects are as
homogeneous and as symmetric as possible. Thus, among the simplest
three-dimensional and finite bodies are the spheres, and it is useful to think
of the complexity of a three-dimensional and finite body—such as a nerve
cell—in terms of its deviations from sphericity. It is also natural to suppose
that a finite system in nature will assume the simplest shape that is com-
patible with its function. We are then readily led to ask: What features of
a nerve cell’s functions require that it be nonspherical?

Our speculations suggest that the role of nerve cells as mechanisms of
learning requires their nonspherical shape. We link a nerve cell’s ability to
learn with the existence of different chemical affinities at two opposite poles
of the nerve cell—namely, near the cell body and end bulbs; that is, the
nerve cell is presumed to be a chemieal dipole. Were the nerve cell spherical
in all ways, in particular with a spherical nucleus in its center, then sym-
metry arguments would imply that this chemical dipole could not be
realized.

Given the need for a dipole shape, the nerve cell is then confronted with
the formidable problem of carrying signals from its external environment
reliably from one end of the dipole to the other. This problem is formidable
because the functional biases caused by the dipole might well be expected
to distort the signal as it travels along the cell. The cell has solved this
problem in an ingenious, but intuitively simple, way. The signals from the
external environment, which first perturb the boundary, or membrane, of
the eell, are transmitted reliably from one end of the dipole to the other
along this boundary, whereas the chemical dipolé properties of the cell are
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safely ensconced well within the cellular interior, where they can second-

.

arily benefit from external environmental news withou
torting the transmission of this news along the entire cell. Note by Section
VI that this constraint aiming at unbiased signal transfer on the individual
cell level also scems to create unbiased learning on the network level.

mawn withnaod nwafaisndler .I:s=
v lJlUlUullulJ U

N. Two MaIn Steps IN TRANSMITTER PRODUCTION

We now show that the single variable, z;;, represents two processes taking
place at two different rates. These two processes are the following ones.

1. Slowly Varying Transmitter Production Rates. Long-term memories of
past network events are contained in the 2;; functions. These functions
therefore vary more slowly than the events themselves. In particular, if
Gji = 8;[z;(t — 75) — T3 J*[z:]*, then 2z varies more slowly than z;
and z;.

2. Rapidly Varying Transmitler Release. Suppose that

Fii = Bilxi(t — 145) — Tiltzi

for definiteness. At suprathreshold values, Fj is a linear function of
z;(t — 75), and is therefore rapidly varying compared to z;.

The physical interpretation of Fj; leads to the two processes represented
by 2;;. The function Fj; is proportional to the rate of transmitter release
from Nj;, and zj; is the total amount of transmitter in Nj. Why, then,
doesn’t the law (41) for zy read as follows?

;i = Djizyi + Ej[2:]* — Fy

That is, shouldn’t the total amount of transmitter in N;; be reduced by the
amount of transmitter that is released from N;? On formal grounds, this
subtraction procedure is inadmissible; then z;; would be drastically reduced
in size whenever the presynaptic spiking frequency became large, and the
“memory”’ represented by z;; would quickly be destroyed. A conceptual
distinction clearly must be made between z; as “memory’” and z;; as
“releasable transmitter.”
"T'wo problems must simultaneously be resolved:

1. Distinguish z;;, the rate of transmitter production, from y;;, the
amount of transmitter.

2. Show how z;; can represent both variables in the macroscopic psycho-
logical picture; that is, show that, on the average,

yii(t) = ejizsi(t) (42)

where ¢;; i a positive constant. The relation (42) can hold at all times ¢
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only if the transmitter lost from N j; is instantly replenished until it reaches
a level proportional to z;;. This happens only if the rate of repienishment is
infinite. This rate only scems to be infinite on the time scale of psychological
events because replenishment is a rapid process on this scale. We now refine
this time scale by assuming that the replenishment rate is finite, but other-
wise do not change our equations. As usual, we seck the most lincar way to
express our intuitive ideas, while realizing that there exist variations on the

linear theme.
By (42), at times when no transmitter is released from Nji, ;i secks a

level proportional to z;;. Hence, at these times,
7ii(t) = tileiizii(t) — yi(8) ] (43)
where 0 < yj: < €jiz;iand {7 > 0.
If transmitter is released from N;; at a rate H;, then ;;in (43) is reduced
by this amount. Thus, in general,
gis = Csilegizie — yis) — Hy (44)
The term H; cannot be identified with F;; because 2;; no longer represents
the amount of transmitter. Guided by the definition of Fj; = Bjiz; and
(42), we let
Hy = niBiys, i = 61

Thus Eq. (44) merely replaces a process with an infinite reaction rate by a
qualitatively identical process with a finite reaction rate. In the special
case that the transmitter is ACh, a possible interpretation of these variables

is
z;; = total amount of available ACh in N
and

;i = total activity of the choline acetylase (ChAc) system
which controls ACh production (Fruton and Simmonds,
1958; Krnjevié, 1965; Sumner and Somers, 1953).

O. FeEpBACK INHIBITION

Equation (44) has the following chemical interpretation. Write (44)
as a sum of three terms: '
gii=Uj+ Vii+ Wi (45)
where
Uji = tiiejizii (46)

Vie= —{ti¥s 47
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and

Wii = —nuBjiy; (48)
The term (46) says that transmitter production rate is proportional to the
number of active transmitter producing sites. Term (47) says that trans-
mitter production rate is diminished by an amount proportional to the
amount of transmitter—that is, by a feedback inhibition by the transmitter
end product of a prior stage of transmitter production. This inhibition
cannot influence those transmitter-producing sites which are activated by
extracellular demands without destroying the cellular memory of these
demands. Hence a later, or intermediate, stage of transmitter production is
inhibited (cf. Fruton and Simmonds, 1958; Wyatt, 1964). Term (48)
implies that feedback inhibition is reduced by release of transmitter
from Nj;.

It is interesting to compute the response of Eqs. (45)~(48) to a spiking
frequency that is switched to a steady-state level B > 0 at time ¢ = 0
after a long internal of zero spiking. One finds three major effects:

1. A transient overshoot in transmitter release.

2. A progressive decrease in the asymptotic total available transmitter
Y¥ii( ) as a function of increasing B.

3. A progressive increase in the asymptotic rate of transmitter release
H;i( ) as a function of increasing B.

Thus the total amount of transmitter in N,; and the amount of trans-
mitter that is released from N; do not covary as function of E (cf.). This
fact makes it possible to construct the rebound mechanism using trans-
mitter accurnulation-depletion in Section VIII.

P. TrRaANsSMITTER MoBiL1zATION

. The process of refining scales can be continued indefinitcly. For exam ple,
if process z;; takes place within N;; but contributes transmitter for release
from the N; membrane, then transmitter will be transported to the mem-
brane. Various models for this can be contemplated. The simplest again
rely on linearity wherever possible. For example, let

d ¥ii = the total amount of transmitter in N;
an

w;; = the total amount of transmitter in Nj; at the membrane
facing the synaptic cleft

1 h(} rate of transmitter release in this case involves wj;, not y;;, and is
derived much as If;; was derived from Fj;. Thus we find, using lincarity
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wherever possible, that
vie = Ciileiizii — Yii) — niBpwii (49)
and
wyi = 0;:(yji — i) — niBswi — xilwie — Ml (50)
Equation (50) can be understood by writing it as
4 Wy = U;.' + V;.' + W;':‘

with
Ui = 05:(yic — wis) (51)
Vi = —nuBjwy (52)

and
o= —xilwi = M (53)

Term (51) says that transmitter is mobilized at a rate proportional to the
amount (y; — wj;) of unmobilized transmitter. Term (52) gives the rate
of releasing mobilized transmitter from N ;. Term (53) says that mobilized
transmitter can become spontaneously demobilized until only an amount
Aj: of transmitter is still mobilized.

Equation (50) has some interesting properties. If we study its transient
response, then the slowly varying z;; remains approximately constant.
Suppose also that A;; = 0 and {;; = «x;i. Then the equation can be explicitly
integrated. Properties 1 to 3 of the previous section hold, and in addition
the amount of mobilized transmitter is constant through time. The last
property is not generally true if {;; # «j:.

In summary, this paper illustrates a procedure whereby the physiological
equations themselves, and the network anatomy, can be successively
refined to accommodate increasingly subtle psychological postulates. At
each level of analysis, one finds phenomena that caution against arguing
from local to global, or from linear to nonlinear, network properties.
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