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Abstract N

Developmental mechanisms for tuning of visual cortex are
derived from adult learning mechanisms: an adaptational property
of shunting on-center off-surround networks that prevents satu-
ration of parullel processed patterns at high input intensities, a
contrast enhancement and short-term memory mechanism, and
plastic synaptic strengths that compute a time average of pre-
synaptic signals and postsynaptic activities and multiplicatively gate
signals. The mechanisms can generate fields of feature detectors;
e.g. line or picture detectors. A developing hierarchy of such fields
cun be synthesized in which successive critical developmental periods
are triggered as a dynamic equilibrium is established between short-
term memory and long-term memory at cach stage. Shunting
aduptation cin account for some data on spatial frequency adap-
tation. Shunting network properties resemble properties of certain

reaction-diffusion systems that have been used to model develop-

mental dat in various species; eg. Hydra, Xenopus retina, slime
molds. For example. positional information due to regulation in
reaction-diffusion systems is analogous 1o constancies due 1o net-
work adaptation. firing of u developmental gradient is analogous
10 contrast enhancement. and maintenance of “a pattern of
morphogens is analogous to short-term memory.

1. Introduction

Two recent theoretical papers discuss the develop-
ment of specificity in primate visual cortex (Von der
Malsburg. 1973; Pérez, Glass, and Shlaer, 1974). Both
papers use analogous mechanisms to derive their
results. One of these mechanisms {plasticity of cross-
correlational  synapses) has been mathematically
proved capable of learning arbitrary acts in a wide
variety of circumstances (Grossberg, 1967, 19704,
1971a. b, 1972a—d, 1974). A second mechanism (on-
center off-surround anatomy) is believed to exist in the
adult sensory processing areas, such as retina (Kuffler,
1953; Werblin, 1971) and neocortex (Eccles, 1965;
Phillips, 1959, Stefanis, 1969), of many species. A third
mechanism (attenuation of small signuls in a recurrent
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network) has recently been shown necessary to prevent
amplification of noise in networks capable of short-
term memory (Ellias and Grossberg, 1975; Grossberg,
1973; Grossberg and Levine, 1975). A fourth mecha-
nism (conservation of total synaptic strength at each
cell) can be replaced by an adaptational property of
on-center off-surround networks undergoing shunting
interactions (Grossberg, 1973). This paper thereforé
argues that the formal mechanisms which have been
suggested for the development of specificity are also
mechanisms that are needed for efficient learning in the
mature organism. This theme has become increasingly

" popular since Wiesel and Hubel (1963) demonstrated

that abnormal early visual experience can induce
abnormal development of afferent connections to the
visual cortex; ef, Mark (1974). Our synthesis of formal
developmental and learning mechanisms clarifies the
results of the Pérez et al. and Von der Malsburg com-
puter studies by making available mathematical
results that impose similar design constraints embody-
ing natural properties of the adult learning process. It
also shows that the conservation of total synaptic
strength, which has also been used to model spatial
frequency adaptation in the visual cortex (Wilson,
1975), can be generated as a global property of network
interactions; in other words, there need not exist a con-
servation mechanism at each cell if the network has an
on-center off-surround anatomy undergoing shunting
interactions. Indeed, this global property, which make
possible the emergence of selectively tuned feature
detectors in the developmental models, also makes
possible selective attention by these feature detectors
to particular cues in models of adult Sensory processing
(Grossberg, 1975a). Moreover, the conservation law,
as stated in the developmental models, is not com-
patible with rudimentary learning postulates, whereas
the global property of network interactions is. The
developmental mechanisms that select for frequently
experienced features in the immature network also
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allow the activity of populations which represent in-
frequently experienced features 1o be totally sup-
pressed. or masked. in the mature network. The latter
populations exist because they might be needed oc-
casionally to code the 6ceurrance of infrequent features,
but their existence need not interfere, say via noise
effects, with the efficient coding of frequently ex-
perienced features,

A final observation relates the roles in develop-
ment played by recurrent on-center off-surround shunt-
ing networks and by systems of reaction-diffusion
equations in which activators and inhibitors interact
(Gierer and Meinhardt. 1972: Meinhardt and Gierer,
1974). A striking formal analogy exists between these
systems in which, for example, self-regulation in the
reaction-diffusion system corresponds to total activity
adaptation in the network, and maintenance of a pat-
tern of morphogens in the reaction-diffusion system
corresponds to short-term memory in the network. By
comparison with the network, the reaction-diffusion
system uses relatively slow and short-range dif-
fusional mechanisms to establish its on-center off-
surround interaction. The network mechanism is capa-
ble of "long-range order” that can be rapidly activated,
and it can supplement slow electrotonic interactions
with rapid wave-like regulation of activity patterns
across its cells. In this formal sense, the network is a

. more sophisticated example of evolution than the re-

action-diffusion mechanism. This observation sup-
POrs 4 two-stage concept of the developmental process
in sensory fields: first, the development of a recurrent
on-center off-surround network under the guidance of
a reaction-diffusion, or formally similar, mechanism
that also establishes a map of positional information,
as in the case of the amphibian retina (Gaze, 1970:
Hunt and Jacobson, 1972, 19734, b); and second, the
development of selective tuning in network cells using
the recurrent network interactions for guidance. Apart
from tacitly assumed genetic commands and cross-
correlational synapses, the only formal concepts that
occur in this description are on-center off-surround

_interactions of one form or another.

2. Review of Developmental Network Models

Both models address the same issue: what mecha-
nisms control the development of visual cortical cells
that selectively respond to particular features in the
visual environment, such as lines of prescribed orien-
tation? The model of Von der Malsburg will first be
reviewed (see Fig. 1), Von der Malsburg arranges his
retinal and cortical cells in a hexagonal array. His
retina contains 19 cells r; that are each connected to

=

Fig. 1. Cross-correlational synapses from retina to cortex
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Fig. 2. The standard set of stimuli presented to the retina. Large
and small dots represent active and non-active cells respectively
{von der Malsburg, 1973)

169 excitatory cortical cells ¢; by a pathway with
strength z;;. Initially, for each fixed s the strengths z;;
are randomly distributed across cortical cells ¢j. The
retina is sequentially presented with the patterns
depicted in Fig. 2. If a given pattern excites cell ra
then r; emits a signal of unit strength into all of its
retinocortical pathways. Otherwise no signalis emitted.
Denoting the signal from r; by R(t), the total retinal
signal to cell ¢} is ZiR;zi; as in Grossberg (1971b).
Denote the output signal from ¢i by Cfr). Four
mechanisms are imposed on this general framework:

I. Learning at Cross-Correlational Synapses

The connection strength z;; grows at a rate pro-
portional to the product R,C}, as in Grossberg (1971 b).

1. Synaptic Conservation

The total connection strength 2z, at each cell ¢}
is constant through time. Thus strengthening one con-
nection z;; automatically weakens other connections
LA
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111, On-Center Off-Surround Interaction

The cortex is composed of a hexagonal array of cell
pairs: an e\cxtatory cell ¢/ and an mhxbuory cell ¢
constitute a pair. Each actwe cell ¢f excites the i xm-
mediately neighboring ¢, cells with strength p and the
immediately neighboring ¢; cells with strength r. Each
active ¢/ cell inhibits its next-to- immediate ¢; neigh-
bors w nh strength ¢. This arrangement simulates a
recurrent on-center off-surround interaction pattern
in which both excitatory and inhibitory connection
strengths diminish as a function of distance.

IV, Atrenuatred Cortical Feedback

The signal C (1) is definable as follows. Given any
function fi{n). let

F¥0= {fj(r)—@j ‘1f fin>e
0 otherwise.

The number ©; is the signal threshold ofj Let E(/))

be the activity of the j* excitatory (mhlbltory) LOI‘UCd]
cell. Then C;= E¥, where

Ej=Y kaj Efpy=3u Ita+2x Rizyj

and the coefficients p,; and q,; equal p and g, re-
spectively. or zero. depending on whether a given pair
Aeg . o) of cortical cells excites, inhibits, or does not
influence ¢} .

A learning trial is defined by a single presemation
of every input pattern depicted in Fig. 2, and in the
prescribed order. After sufficiently many learning
trml:. Von der Malsburg finds that most of the cells

; fire preferentially in response to a line of a given
oriemzuion, and that nearby cells fire preferentially to
lines of similar orientation (see Fig. 3).

The paper by Pérez, Glass, and Shlaer also uses the
basic mechanisms (I} and (I1). In fact, this paper reports
that without (II). their results have not yet been
generated. Instead of using a signal threshold, as in
(111), they use a sigmoid, or S-shaped, signal function
(sce Fig. 4). As Fig. 4 illustrates, both signal functions
attenuate small values of w and respond approximately
lincarly to intermediate values of w. Thus both models
use positive feedback generated by the total input to
¢j to drive the learning at =, and this feedback is
attenuated at low total input levels.

Instead of using a recurrent on-center off-surround
ficidin the cortex, Pérez et al. assume that their retino-
cortical inputs are organized in an on-center ofl-
surround fashion. This has a similar effect on the
distribution of excitatory and inhibitory signals to the
cortex. Given these assumptions, Pérez et al. study the
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Fig. 3. View onto the cortex after 100 steps of learning. Each bar

indicates the optimal orientation of a given ¢ cell. Dots without a

bar are cells which never reacted to the standard se¢t of stimuli
{von der Malsburg, 1973)
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Fig. 4. Threshold and sigmoid signal functions

response of the cortex to various randomized series of
straight line inputs to the retina. They also impose
various constraints on the distribution of connection
strengths z;; at time t=0; e.g., random, highly polarized
in a given orientation, or intermediate. In all cases,
after sufficiently many learning trials, cortical cells
tend to respond most vigorously to lines of a fixed
orientation, although the particular orientation that
develops can depend on the initial distribution of
connection strengths z;;.

In summary, both models use cross-correlational
synapses as their learning mechanism, a recurrent feed-
back within the cortex to drive the postsynaptic part of
this mechanism, an on-center off-surround anatomy to
regulate the input distribution, and a conservation law
in the total synaptic strength. We first show that the
conservation law can be replaced by network inter-
actions.

3. Adaptation of Total Activity in Shunting On-Center
Off-Surround Networks

A basic constraint on the design of sensory systems
can be used to replace the conservation of total synaptic
strength at each cell. This constraint describes the
adaptation, or normalization, of total activity in a
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sensory field. It is illustrated below by showing that the
totalactivity of certain shunting on-center off-surround
networks can be bounded above by a fixed constant
value. independent of the number of cells in the net-
work or the intensity of inputs to the network. Indeed,
the total activity can even converge to a unique
positive value as t— . This property is derived below
from a thought experiment concerning the ability of
certain systems to do parallel processing of input
patterns in the presence of noise. Because of the
generality of this problem it is not surprising that the
resulting mechanism can be used to discuss pattern
discrimination (Grossberg, 1970b): color and bright-
ness constancies (Grossberg, 1972¢); problems in
decision making, short-term memory, and contrast
enhancement (Grossberg. 1973); problems in reinforce-
ment theory (Grossberg. 1972b); problems in attention
and discrimination learning {Grossberg, 1975a); and
problems in constructing position codes for motor
control (Grossberg, 1973, 1975a). The normalization
property was originally derived from a property of net-
work learning mechanisms (Grossberg, 19704, 1972d,
1974): namely. a network cell can learn the relarive
intensities of an activity pattern distributed across a
given field of cells; i.e., a spatiul pattern is the unit of
long-term memory (LTM). In order to construct cells
further downstream in the network that can dis-
criminate during performance trials what has been
learned from the field, it is necessary to normalize total
field activity, so that the relative intensities can be un-
ambiguously deciphered. In effect. this argument notes
the futility of an evolutionary mechanism that pro-
duces discriminative cells whose data cannot be en-
coded in memory. and conversely. We will illustrate
the normalization property using the simplest on-
center off-surround networks whose interactions are of
shunting, or passive membrane, type (Hodgkin, 1964
Sperling. 1970: Sperling and Sondhi, 1968).

The systems are formally derived as follows, Con-
sider n cell populations vy i=1,2,....n, whose re-
sponses x;(f) to inputs /(1) are linear, decay linearly to
an equilibrium value in the absence of inputs, and have
a fmite maximum. Let the equilibrium value equal
zero, for convenience, and let the maximum value be B,
Then

Xj= = Ax;+(B—x), (1)

with 0 S x(0)< B. Let x[1) be the average number of
active sites, or average polential, of v at time 1, and let
B be the total number of excitable sites in ;. Then
term (B—x;)1; in (1) says that inactive sites are activated
atarate jointly proportional to the number of inactive

I (1)

Fig. 5. Nonrecurrent on-center off-surround interactions

sites (B—x;) and the excitatory input size. This is a
mass action law for exciting the inactive sites,

Two deficiencies of such a system are apparent. Let
the inputs (1) have fixed relative sizes @,; i.e., define
Ii{n)=0,l(1) where ©,20, Yi., ©,=1, and I(1) is the
total input strength. The parameter ©; measures the
relative importance of the feature coded by v; in the
entire pattern of input features. Can this system pre-
serve a record of how important each feature in the
pattern is as the total input I(t)=1 is parametrically
increased? The answer is “no™ because the equilibrium

value X;=0 of (1) is

.. _Beu
T aAver

which converges to B as I becomes large. Thus the @,
values are obliterated because the responses x; saturate
as [ increases. If noise exists in the system, then the ®;'s
are distorted by the noise if / is chosen too small. Both
at small and large I values, such a system cannot
process the rélative sizes of a prescribed input pattern.

The problem of saturation at high background in-
put intensities can be overcome without violating the
linearity, equilibrium, or boundedness properties of the
equations. Interactions between populations must,
however, be introduced, if only because each O, is
defined in terms of all the inputs I, k=1,2....,n An
on-center off-surround anatomy suffices, in which the
off-surround acts as an automatic gain control of
population response, Figure 5 illustrates this anatomy.

In Fig. 5, if an input excites t;, then it also inhibits all’

U ki (The effects of spatially nonuniform inhibitory
fields will be ignored for simplicity.) Equation (1) is
changed to

Ni= —Axi+ (B~ x)[—x; Y 401 1, (2)

The new term —x; Y., I, says that excited sites be-
come inhibited at a rate jointly proportional to the
total number of excited sites and the total inhibitory
input size. This is again a mass action law. The equti-
librium valL\le X;=00fl(2)is

BI
X, =

=OTET B

e & e i e s oo,



No matter how large I becomes, the activity x; is pro-
portional to @;; no saturation occurs. The off-surround
“adapts™ the network to fluctuations in total input
activity by automatically changing the gain at each
population. Note also in (3) that the total equilibrium
activity x=3"_, X, is BI(A+1)"", since Yie1 O=1.
The maximum total activity is B, and is thus independ-

ent of the number n of populations and the total input
intensity I.

The interpretation of (3) as an adaptational effect is
supported by various evidence. In the mudpuppy
retina, for example, Werblin (1971) has shown that
adaptation occurs at the bipolar cell level due to
signals from the lateral inhibitory horizontal layer (off-
surround), which is of broad spatial extent. Both cell
types receive inputs from peripheral light sources {on-
center). Moreover, Werblin and Dowling (1969) showed
that the ratio of center-to-surround illumination
essentially determines the bipolar cell response — cf,,
(3) — and that this response-can be sustained given a
sustained input, which also argues for a shunting
rather than a subtractive mechanism {Grossberg,
1970b, p. 321). When such a network mechanism is
appropriately attached to color-sensitive cone recep-
tors, various familiar psychophysical properties formal-
ly emerge (Grossberg, 1972¢; Koenderink et al., 1972).

4. Adaptation Instead of Synaptic Conservation

The synaptic conservation law can be replaced by
a retinal (or other sensory field's) adaptational mecha-
nism as follows. The conservation law says that if one
retinocortical connection strength z;; is strengthened,
then other connection strengths z;; are weakened.
Strength z;; will grow, other things equal, if the signal
from r; to the cortex increases. This signal can only
increase if the potential at r; increases. Since the total
potential of the retina is bounded, independent of
which pattern impinges on it, the potentials of other Iy
must decrease, thereby decreasing their retinocortical
signals, and their connection strengths Zyje

The synaptic conservation law has deficiencies
which are not shared by the adaptational mechanism.
In (3), adaptation does not distort the relative im-
portance of signals from different retinal loci to the
cortex. Since the synaptic strengths z;; grow at a rate
proportional to these signals, no distortion in relative
learning rates necessarily follows from an adaptational
mechanism. This is not true of the synaptic con-
servation law. For example, consider a classical con-
ditioning experiment in which a sensory cue S, elicits a
response patiern R, and cue §, is paired with S, to
learn the pattern R (see Fig. 6).
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Fig. 6. Conservating of synaptic strength prevents two stimuli from
learning the same pattern

Suppose that the pattern R consists of high activation
of v, and (approximately) zero activation of r,. This
can be caused by a signal from S, if z,, is much larger
than z;,. But then, by synaptic conservation, 2y, 1S
much larger than z,,, so that before learning occurs,
S, controls the complementary pattern to R at v, and
vy. As S, and S, are paired, any learning of R by S,
forces forgetting of R by S,. Thus, if synaptic con-
servation were to exist in the mature network as well as
the developing network, it would make classical con-
ditioning impossible. It therefore seems that synaptic
conservation, in addition to being unnecessary, is also
sometimes undesirable. In any case, von der Malsburg
(p- 88) introduced the concept primarily to keep the
synaptic strengths bounded, but boundedness can be
readily achieved without this property (Grossberg,
1970a).

A physical process in which synaptic conservation
holds is one wherein a fixed quantity in each cell is
continually redistributed among the cell’s synapses
until saturation occurs. A process in which retinal
adaptation occurs allows new synaptic specialization
and growth to occur without directly depleting old
synapses. A weakening of old synapses can indirectly
be caused by the adaptation of total retinal output, but
this is not a constraint on the learning mechanism
per se.

5. Contrast Enhancement and Short-Term Memory
in Recurrent Networks

In many situations, the anatomy cannot be feed-
forward, or nonrecurrent, as in Eq. (2). For example,
in instrumental conditioning experiments, a mecha-
nism is needed to store internal representations of cucs
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Fig. 7. Recurrent on-center off-surround interactions

in short-term memory (STM) thousands of times
longer than passively decaying cells potentials can,
umtil later rewards transfer appropriate indices of the
stored representations into long-term memory (LTM).
See Grossberg (1971a; 1972a. b: 1975a) for the develop-
ment of a relevant reinforcement theory. We now sum-
marize results which show that STM storage can occur
if signals feed back into the networks, For the reasons
cited in Section 3, the network is again chosen to have
an on-center off-surround anatomy, but its signals
feed back as in Fig. 7. The nonrecurrent system (2)
is replaced by the recurrent System

Xj=—~Ax;+(B =L+ 1] “-\'i[Zkﬁ.ﬂ-\'kH’ J.(4)

. The function f(w) is the average feedback signal pro-

duced by an average activity level w, and functions I
and J; are excitatory and inhibitory inputs, respec-
tively, Thus term (B—x;)f(x;) in (4) describes the rate
of self-activation in t; due to an average activity level
X; in vy, whereas term = X;f(x,) describes inhibition of
active v; sites by a feedback signal from r,. A funda-
mental diffliculty must be overcome by this system. It
must be capable of storing behaviorally important
patterns in STM using its feedback signals, but it must
be prevented from amplifying noise via these signals.
The functions f(w) can be chosen to accomplish this.

" Grossberg (1973) proves that a linear signal function

(Fig. 8a) ora slower-than-linear signal function (Fig, 8b)
both amplify noise. A faster-than-linear signal function
(Fig. 8¢) can suppress noise, thereby approaching the
problem of losing pattern weights ©; in noise if the in-
put is small. Unfortunately, this signal function sup-
presses all but the maximal population activity level(s).
Figure 9a illustrates this “choice making” property of
the network. Such dramatic contrast enhancement is
not desirable if graded patterns of activity are desired
in STM. A faster-than-linear signal function at small
activity levels that becomes linear at high levels (Fig. 8d)
overcomes this problem. It suppresses all activity, in-
cluding noise, that falls below a prescribed threshold
level; it contrast enhances and stores in STM all

f(w)’ : fw)
w w
{a)

{b)

f(w)} i f(w) )
w w
(c)

(d)

w
(e)

Fig. 8a—e. A classification of some possible signal functions
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Fig. 9a and b. Contrast enhancing properties of two signal functions

activity levels that fall above the threshold {(Fig. 9b). A
sigmoid signal function (Fig. 8e) also has this property,
given a robust choice of network parameters. Such a
signal function has been reported in various experi-
ments {Creutzfeldt er ql., 1964; Kernell, 19654, b; Rall,
1955). o

Does the recurrent network adapt the total activity
X= 0o x if (say) f(w) is sigmoid? Define g(w)=
w7 (w), and let all inputs J, and J; in (4) be shut off
to study STM per se (consider Fig. 10). If the initial
total activity x(0)<E,, then all population activities
are suppressed; that is, x(oc)=0, If X(0)> E |, then x(1)
approaches E,, which is defined by the equation
(B—E})g(E,)=A; the total activity always approaches
E, if the network reverberates a pattern in STM,

"Thus, the recurrent network normalizes total activity

in STM. If the inputs in (4) are delivered by an on-center

8 bt ittt e A i Sttt o



I

[+ J S U

!
@E,::>52<:::

Fig. 10. Normalization of total field activity due to a sigmoid signal
function

off-surround anatomy (that is, Ji=Y vs:l), then again
the total activity is bounded by B even if an arbitrarily
large input is kept on.

6. Recurrent Feedback in Learning

The recurrent on-center off-surround network can
enhance significant inputs and store them in STM until
learning mechanisms, such as cross-correlational syn-
apses, can encode them in LTM. Variants of such a
mechanism are used by both Pérez er al. and Von der
Malsburg in their developmental models. Both authors
state that the cortical influence on Z;; growth is due to
a feedback signal driven by the total input to cf, after
the signal is attenuated at small activity levels by a
sigmoid or threshold cut-off. Section 5 shows that such
a signal function is needed to prevent amplification of
noise in a recurrent on-center off-surround shunting
network. Once again a proposed developmental
mechanism is subsumed by a basic constraint on the
adult learning process.

The two models for development of specificity can
therefore be replaced by a model in which:

1. the retina has an on-center off-surround anatomy
that is capable of adaptation;

2. the cortex has a recurrent on-center off-surround
anatomy undergoing shunting interactions with a
sigmoid-like signal function; and

3. excitatory cross-correlational synapses join the
retina to the cortex, perhaps indirectly.

It cannot be too strongly emphasized that proper-
ties (1) and (2) are consequences of basic constraints on
the parallel processing of patterns in the presence of
noise, and are therefore very robust. Moreover, as re-
marked in Section 3, these constraints are themselves
motivated by the fact that the unit of LTM is a spatial
pattern. Property (3) follows {rom an analysis of the
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simplest properties of classical conditioning (Gross-
berg, 1967, 1974). Thus all the properties of this develop-
mental model are derivable from postulates about the
adult learning process.

7. Developmental Hierarchy and Critical Periods

Another important property of the model is that it
can be used to generate a hierarchy of selectively tuned
networks; compare the visual cortices 17, 18, and 19 in
which there exist cells exhibiting ever more selective
response criteria (Hubel and Wiesel, 1962). This
hierarchical- property follows from the fact that the
“cortex™ in our model also adapts its total activity, as
Section 5 describes. Hence the cortex can be used as
the “retina” for a second stage in the hierarchy; its
outputs will be the inputs to the next “cortical” struc-
ture, and its axons will also possess cross-correlational
synapses. A central problem for such a model is: how
are the critical periods of developmental plasticity in
successive anatomical levels regulated so that the coded
meaning of outputs from one stage to the next does not
change from moment to moment? If the critical period
at a given level did not terminate, then massive shifts
in the coded meaning of cell activity patterns at this
level would destroy the coded meaning of all later
stages of population response.

Rudimentary analogs of successive critical periods
are already present in the model as it stands. This fact
does not deny the possible existence of other critical
period mechanisms, but rather illustrates that several
mechanisms can operate together to achieve the same
end. Understanding why successive critical periods can
arise in the model, given a hierarchical anatomy,
amounts to understanding the stability of the develop-
mental mechanisms at each level in the hierarchy.
Imagine that every level in the hierarchy initially has
randomly distributed synaptic strengths. If all syn-
aptic strengths were equal, then no learning could
occur, because all cells in a given level of the hierarchy,
not including the retina, would always receive the same
inputs. The developmental mechanism detects small
initial differences in the responses of cortical popu-
lations to a .given retinal input pattern. If the total
retinal input to a particular cortical population is suf-
[iciently large, it can generate positive feedback to its
on-center and negative feedback to its off-surround.
The recurrent network hereby converts small differ-
ences into large differences via its contrast enhance-
ment property. The positive feedback strengthens the
retinocortical synapses to this population and the
negative feedback weakens the synapses to suppressed



populations. On a later learning trial, the same retina]
pattern will generate a larger input to the preferred
population because its synaptic strengths are greater
than before, and a weaker input to other populations
because their synapticstrengths are weaker than before.
The recurrent on-center off-surround thereupon en-
hances this difference once again, thereby strengthening
even further the retinocortical Synapses that feed the
preferred population. Thus the short-term memory
reverberation acts to enhance and stabilize the activity
pattern that is coded in long-term memory by the
synaptic strengths.

Before this process of developmental tuning oc-
curs, there exist at least three reasons why the cortical
response to an input pattern can be sluggish despite
the existence of viable connections; cf, Hubel and
Wiesel (1962). The inputs might be too small to trigger
contrast enhancement via the field's recurrent inter-
actions; this can occur either because the initial i
connections are too small or because the inputs are not
supplemented by a source of nonspecific arousal; cf,
Grossberg (1973). Third, a given input pattern at the
retina will create activity patterns that are distributed
rather uniformly across the populations in each cortical
region of the hierarchy, Consequently, the off-sur-
rounds of these cortices will not enhance a particular
- population, but will rather tend to suppress all popu-

lation responses. A given cortical stage will send large
signals to the next cortical stage only after the synapses
that feed it have been enhanced and stabilized by its
fecurrent on-center off-surround interactions, Only
after the next stage begins to receive these large signals
can it enhance and stabilize the synapses that feed it.
Successive stages of critical periods are hereby gener-
ated as a dynamic equilibrium is set up between short-
term memory and long-term memory at successive
stages of the hierarchy.

The requirement that synaptic strengths be initialty
distributed in a random fashion can be weakened.
Figure 1 can be interpreted to depict a small retinal
region initially projecting to a small cortical region.
Given this interpretation, different retinal regions
initially project to their own cortical regions. After
learning trials, the cortex will then contain cells that
respond to lines of given orientation in prescribed
retinal areas. In other words, the cortical map “covers™
the retina with “vector fields” We will say that the
initial retinocortical map is coarse when a given
retinal area initially connects rather randomly to a
given cortical area. Development then tunes the map
to yield a covering by vector fields, Il the initial retino-
cortical map was defined in a precise point-to-point
fashion, then no such covering could evolve by the

mechanism of this paper. Coarsening the initia) map
and then tuning it, in two stages, is not equivalent to
establishing a point-to-point map in one stage. If the
initial maps between aj| stages of the hierarchy are
coarse, then ever more complex discriminations can be
made by cortical cells as one ascends the hierarchy.
For example, a given population in the second cortjca]
stage might fire maximally when it recejves converging
signals from the first stage that are elicited by a line of
fixed orientation moving in a certain direction across
the retina. If each of the maps were initially point-to-
point, this property of ever more complex coding as
the hierarchy is ascended would be lost.

8. Development of Spatial Pattern Discrimination
and Pattern Classification

The developmental mechanism can be used to
synthesize fields of cortical cells that respond selectively
to graded two-dimensional patterns, or pictures, on
the retina. In fact, a cortical field with M cells can learn
to classify all retinal inputs into M distinguishable
classes. The same mechanism can be applied when a
given cortical field sends signals to the next cortical
field in a hierarchy. A graded two-dimensional pattern
on the first cortical field will selectively fire a cell, or
cells, in the second cortical field. In this way, cells
capable of firing selectively to complex classes, or
“gestalts”, of retinal patterns can be generated. Below
we sketch the main ideas needed to understand how
this happens. -

Let the initial values of the synaptic strengths from
a retina with cells r, to a cortex with cells ¢ be denoted
by z;0). Let a spatial pattern received by the retina be
characterized by inputs I{)=©,I(t) to each cell r,,
where @, is the fixed relative intensity of the spatial
pattern and I{r) is the total pattern intensity at time r;
thus ;20 and 240, =1. Because the retina adapts its
total activity, we can suppose that the response of r;
after adaptation is ©;. (This assumption ignores scaling
constants or contrast enhancement effects without loss
of the main idea.) Then the total retinocortical signal to
¢j at time =0 js Z40,2,/0). First we study how
cortical tuning occurs in response to a single pattern
0=(0,,0,,..., ©,) presented several times. Then we
study what happens when several different patterns are
presented to the retina.

Let ¢, be the cortical cell that receives the largest
total input Z,0,z, (0) when pattern ® first excites the
retina. Positive feedback from Cm toitself will therefore
be generated, and negative feedback will inhibit other
cortical populations via the off-surround of ¢*. Since

m:*

s

|




the total cortical activity in STM is normalized, the
activity of ¢, in STM can be approximated by a con-
stant value whenever ¢, receives the largest total
retinocortical input on a given learnmg trial. This fact
leads to the main question: if ¢} initially receives the
largest retinocortical signal in response to pattern @,
will ¢, also receive the largest retinocortical signal on
later retinal exposures 10 ©7

The answer is “yes™ because of the followmg facts
that will 1mmed1cuely be ‘justified. If the total signal
2.0, zplt) to ¢ at time +=0 exceeds the total input to
any other cortical cell at this time, then X,0,z,,(1)
grows on successive learning trials as other total
signals decrease. In fact. learning trials tend to maxi-
mize X, 0,z,,(1) over all possible choices of =, (1).

Why do learning trials cause £,0,z,,(1) to increase?
Suppose for definiteness that

Zim= —aZp,+R,C,,  a>0, _ (5)
where R; is the signal from r; to ¢;} and C,, is the feed-
back signal from ¢, to itself. Signal R, is proportional
to @;.and C,, is approximately the same on all learning
trials where ¢, receives the largest retinocortical
signal. Equation (5) therefore implies that each z Zim
monotonically approaches a value proportional to 0,
on each such learning trial. Let =, approach O; to
avoid tedious details about scaling. Indeed, the scalmg
and adaptation assumptions allow us to approximate
(5} on learning trials (i.e, when the retina is adapted
and cortical STM is active) by

:':im =—ZIipt Oi .

Consequently, on learning trials the vector z'™=
.o+ Zum) ODeys the differential equation

(" Tes =2pps oo

(@ M= — @M e)?, (6)
where |0°=2,07 and @ :"=5,0,z,,. Further-
more, letting |="|=(Z,z7 )'/* denote the Euclidean
length of =™, and g, =(@ -z 0|~ !|z™|"! denote
the cosine of the angle between the vectors @ and =™,
it is readily proved that

{ 2
ﬁ; !:(m’l - I:.(m)l -1 [@ . :(m) —_ |:(m)|-] (7)
‘and
Zr e =101 L= 0n). (8)

Consequently, if inilially @122 @ - z"™(0), then by pre-
senting pattern @ to the retina sufficiently often, the
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angle between @ and =(t) monotonically decreases
to zero, by (8) while @ - ~""’( t) monotonically increases
to {@|%, by (6 ), and |z
one osc1llat10n by (7). In effect, as time goes on, the
learning process maximizes the inner product @ - z™
over all possible choices of z such that |7"’”l<|@|
Simultaneously, other cortical responses C( ), j=m,
will be suppressed by the off-surround of ¢} ; thelr co-
efficients z;{t) will therefore tend to decrease along
with their retinocortical signals 2,0z, {1).

What happens if several different spatial patterns
O™ =@, O, ..., @) can all perturb the retina at
various times? How do we prevent changes in the - ;8
due to one pattern from contradicting changes in the
z;;s due to a different pattern? The recurrent on-center
off-surround cortical network does this for us; its
contrast enhancement, or choice making, property acts
as a sampling device that prevents contradictions from
occurring. To see how this works, let M patterns
O™, m=1,2, ..., M, be chosen such that @"™ - z"\0) is
larger than any other retinocortical input @™ - zUYQ),
Jj#m, before learning occurs. Let @'V be the first pat-
tern to perturb the retina, for definiteness. Cell ¢f
thereupon receives the largest retinocortical input. Its
off-surround then inhibits all ¢}, m=1, so that none
of the synaptic strengths z,,(t), m=* 1, can learn when
@) is presented. Learning on this trial makes z!)(r)
more parallel to @' as 1 increases. Consequently, if a
different pattern, say @'?), perturbs the retina on the
next learning trial, then it will excite ¢ more than any
other cortical cell: it cannot excite ¢} because the co-
efficients z!¥¢) are more parallel to @'Y than before
and it cannot excite any c;, m=*1,2, because the ¢
coefficients z'™(1) have at worst decayed a little w1thout
changing their relative sizes. In response to &, ¢}
inhibits all other cortical cells ¢}, m=2. Consequently
none of the ¢ coefficients z 4,,,,(t), m=2, can learn; learn-
ing makes the coefficients z'*)(t) become more parallel
to @ as r increases. The same occurs on all learning
trials. By inhibiting the postsynaptic part of the learn-
ing mechanism in all but the preferred cortical popu-
lation, the on-center off-surround network samples
one vector z'"Xr) of trainable coefficients at any time.
In this way, the cortex can learn to classify M patterns
if it contains M-cells.

Further mathematical details concerning the pro-
cess will be described elsewhere (Grossberg, 1975b).
Here it suffices to note that the choice of initial vectors
z"N0), m=1,2,..., M, influences what spatial patterns
can be classified by the cortex. For example, given any
M mutually nonparallel vectors z™(0), any set of M
spatial patterns @, m=1,2,..., M, can be classified
by the cortex if @™ z2'"(0)> @™ z%0) for all j=*m.
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In fact, essentially any set of spatial patterns can be
classified by the cortex in the sense that al] spatial pat-
terns in the set will ultimately fire a definite cm- More-
over, most of the spatial patterns which are more
parallel initially to :‘""(O)_ than to any other vector
29(0) will all ultimately fire ¢, and many will do so
more vigorously than they did early in the model's
development; in other words, ¢ asymptotically codes
this class of patterns. For example, suppose that the
Initial vectors =™(0) are few in number. This can hap-
pen either because the cortex has few cells, or because
many initial vectors are parallel. Using these initial
vectors, the cortex can classify a large number of
retinal patterns into a small number of easily dis-
tinguishable classes. No learning occurs if all 2;{0) are
equal because then all initial vectors are identical. If
the number of initial nonparallel vectors are many in
number and point in many different directions, then
the cortex can classify a large number of retinal pat-
terns into a large number of closely related classes. In
short, the choice of initial vectors greatly influences the
ultimate classification of spatial patterns, and an es-
sentially arbitrary classification is made possible by a
proper choice of initial vectors.

Given the importance of initial vector choice to the
ultimate discriminations made by a cortex, this choice

"is presumably not left to chance. Developmental

mechanisms operating before the cortical tuning stage.
presumably determine the statistical rules whereby the
values z;(0) are generated. These rules will then govern
which patterns a given cortex will try to classify.
Perhaps gradients that establish positional information
(Wolpert, 1969) across a retinal or cortical field in-
fluence these rules; cf, Sections 11 and 12. This idea
extrapolates from data and hypotheses which suggest
that positional gradients guide the development of
connections between certain pairs of neural fields; for
example, the development of point-to-point retino-
tectal connections in Xenopus (Gaze, 1970; Hunt and
Jacobson, 1972, 1973a, b; Wolpert, 1969). If this extra-
polation is correct, then the developmental control
mechanisms that distinguish point-to-point maps from
tunable coarse maps would differ only in the precision
of their positional codes. An interesting classification
problem is suggested by this distinction: to what extent
can all developmental maps be classified into point-to-
point or tunable coarse maps? Given that a map is
tunable, at what stage of development does tuning take
place? It is, for example, conceivable that tuning can be
driven by endogeneously active patterns rather than
external inputs in certain cases.

~ Other insights about tuning mechanisms now
readily suggest themselves. For example, if a given

cortical cell ¢;f does.not inhibit all cells ¢f, j%m, but
rather excites some nearby cells (“distributed on-
center”), then a given retinal pattern @™ can excite a
generalization gradient of activity across a collection
of cells ¢j that code similar patterns; cf, Ellias and
Grossberg (1975, Sections 14 and 15). Interactions
from cortex to cortex can then organize these general-
ization gradients into remarkably complex pattern
classes (“grandmother cells™?). Grossberg (1975b)
analyses this situation in greater detail.

9. Population Size or Tuning Influences Feature Choice:
A Two-Stage Model

Various data show that there is a critical period,
beginning at about 23 days of age and extending up to
four months,during which experimental manipulations
can alter the functional properties of the cat’s visual
system. Pérez et al. (1974) review some of this data. For
example, if patterned stimulation is excluded from one
eye during this period, the animal is functionally blind
in that eye. Physiologically, most of the cells in area 17
respond only to the eye that did receive patterned in-
puts, and the binocular connections present at birth
are apparently lost (Hubel and Wiesel, 1970: Wiesel
and Hubel, 1963, 1965). If the cyes are alternately oc-
cluded during maturation, the response properties of
the cortical cells are normal, but binocularity is lost
(Hubel and Wiesel, 1965). If kittens are raised viewing
elongated patterns of one orientation, then the distri-
bution of orientations of receptive fields in cortical cells
Is strongly biased towards that orientation, and dis-
crimination of patterns at right angles to this orien-
tation suffers (Blakemore and Cooper, 1970; Hirsch
and Spinelli, 1970; Mansfield, 1974). After the critical
period is over, it seems that even extreme manipulations
of the visual environment have no permanent effect
(Hubel and Wiesel, 1970; Wiesel and Hubel, 1963,
1965). This lability of early cortical structure permits a
fine-tuning of cortical response profiles in a way that is
compatible with the organism’s early experience. As
noted in Section 7, however, if the critical period did not
terminate, then massive shifts in the coding properties
of the cortex could occur throughout the cat's life, This

‘would destroy all spatially, albeit statistically, coded

hierarchical properties of learned organization that use
the cortex as a source of inputs, since the coded
meaning of these inputs would be continually changing,

A main effect of the critical period is to produce a
network of interacting populations, in which some
populations — such as the one’s that recejve afferent in-
put in a deprivation experiment performed during the
critical period ~ have greater weight, or different tuning
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Fig. 11. Suppression in STM of populations with larger numbers B; of sites by a subfield with large initial activity

curves. than others. A system that captures some of
these effects is

Nj= = AN B LS )+ 1] = X[ e (x) + T 148)

where B, is largest in populations that have the largest
number of sites coded to respond to the i feature, or
equivalently

Ni= = AN+ (B =x)[ J(Cix)+ 1]
=D SO+ J]. %)

where the parameters C, represent a simple form of
nonuniform tuning across populations. Grossberg and
Levine (1975) have analysed how these networks work.
Below we summarize the main result of this work to
show how the on-center off-surround mechanism,
which enhances population coding in the model during
development, also enhances STM storage in pre-
ferentially coded populations during adult perform-
ance. For example, if the signal function is chosen as in
Fig. 8d, then the features in a given input pattérn can
trigger a complicated tug-of-war in the network in
which three feature properties struggle to determine
which features will be stored in STM. Developmentally
selected features compete with features that are at-
tended to, or salient. The physical parameters of each
feature, such as input energy or density, compete also.
The results show how these different parameters strug-
gle until a consensus is established leading to STM
storage of those features which have the strongest
balance of energetic, attentional, and developmental
factors in a given time frame. Speaking mathematical-
- ly, this tug-of-war occurs between the activities x; of
populations having the largest number of excitable
sites B; and the activities of populations having the
largest initial activities x {0) due to widespread occur-
rence of their feature(s) in a given input display. Other
things equal, the features with maximal B, win in STM,

and all others are suppressed; but a feature with a
larger B; can be overcome in STM by a feature that has
a larger x(0) in the display. See Fig. 11, where popu-
lations are labelled so that B, <B,< ... <B,.

These results show that certain features can have
their activities torally masked by more salient features
during many experiments, but can be activated by an
appropriate display. This mechanism surmounts the
following problem: how can infrequently occurring
features be represented within the network without in-
creasing the noise in the system due to the mere
existence of many infrequently used populations? The
on-center off-surround interaction, together with the
nonuniformly distributed population weights B,, or
tuning parameters C;, can totally suppress the activity
of these unused populations when a frequently occur-

. ring population is excited. Nonetheless, when the in-

frequent features do occur, they can be stored in STM
because of the tug-of-war. Ellias and Grossberg (1975)
and Levine and Grossberg (1975) extend these ob-
servations to various cases in which the on-center off-
surround interaction strengths decrease with distance.

10. Spatial Frequency Adaptation |

Synaptic conservation has been used to formally
explain other data as well. Here we summarize a related
example and indicate how naturally adaptation car
replace synaptie conservation. .

Wilson (1975) has proposed a neural model to ex-
plain various data about spatial frequency adaptation
to sine wave gratings, square wave gratings, tilted
gratings, and single bars. In his model, signals are
feedforward from retina to cortex, and are distributed
in an on-center off-surround interaction pattern whose
connection strengths decrease monotonically with
distance. Wilson uses modifiable synaptic weights as
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his mechanism of adaptation. Only the inhibitory
synapses of the model are modifiable: their changes are
determined by a product of presynaptic signal size and
(net excitatory) postsynaptic potential. Thus if the net
postsynaptic potential of a given cell is large, then the
inhibitory synaptic strengths of active synapses im-
pinging on the cell get stronger, and tend to inhibit the
potential more vigorously. This negative feedback
mechanism produces good fits to various experiments
on adaptation, and is compatible with the idea that ex-
citatory retinocortical synapses, which establish what
feature detectors will be coded by 'the cortex, become
stable after the critical period. Wilson is also led to con-
sider a synaptic conservation law: the total inhibitory
synaptic strength impinging on each excitatory neuron
is constant through time. This mechanism correctly
predicts that elevation of perceptual threshold should
be greater at higher spatial frequencies of the adapting
grating, and it overcomes the otherwise unduly great
depression of the modulation transfer function at all
frequencies below 3 cycle/degree, given an adapting
spatial frequency of 3 cycles/degree. A retinal adapta-
tion mechanism can replace the synaptic conservation
law as a formal basis for these cortical adaptational
effects.

11. Comparison with Reaction-Diffusion Systems

The remaining sections describe a remarkable
similarity in structure and properties between re-
verberating shunting networks and certain reaction-
diffusion systems that have succeeded in modelling
developmental phenomena not only in such neural
structures as Xenopus retina, but also in Hydra, slime
molds, etc. (Gierer and Meinhardt, 1972; Meinhardt
and Gierer, 1974). The success of a unified class of
models at describing development in such diverse
_organisms suggests that there exist cytoplasmic mecha-
nisms of genetic expression that are commonly shared
by many species. Such a universality of developmental
control mechanisms is also suggested by the uni-
versality of the genetic code (Watson, 1970), and is
being actively studied on an intracellular level (Dick-
son er al, 1975; Holliday and Pugh, 1975). Wolpert
(1969) argued for developmental universality by ex-
hibiting formal control principles that seem to be
shared by many embryonic structures. The fact that
reverberating shunting networks also embody such
principles is striking in at least three respects. First, it
sharpens the appealing idea that an adult organism is
a later stage, or stages, in a continuous process of
development that uses the same organizational prin-
ciples at all stages. Second, it broaches the possibility

Fig. 12. Unlumped recurrent on-center off-surround network

that shunting networks are used, in one or another
form, as a developmental mechanism in the immature
organism. And third, the rigorous mathematical results
about shunting networks illuminate computer results
about reaction-diffusion systems, and suggest particu-
lar reactions that have desirable formal properties.

To make this comparison, we note that system (4)
is special in several respects. For example, it is lumped.;
that is, the potentials of its inhibitory cells can be ex-
pressed in terms of the potentials of its excitatory cells,
because the inhibitory cell response to excitatory in-
puts is rapid. This is not always true. An example of an
unlumped system is given by

Xyj=— Ax;+(B,— Cix) D% WS x)Dy+ 1]

—X:[ﬂ;n 9VIE;+J] (10)

and
Vi= —Aiyi+(gi—éi}’i)[ ﬁ=1.f(xk)13ki+ii]

—¥i D GOWEG+J]. (11
Here x; is the average potential of the itP excitatory
population v}, and y, is the average potential of the /'t
inhibitory population v; (see Fig 12). In (10) [in
(11)] x, can excite X;(y) if Dy(D,) is positive, and y,
can inhibit x,(y) if Eq(E,) is positive. The coef-
ficients D, determine the on-center of v}, and the
coefficients, E,; determine the off-surround of 1. In
addition, the coefficients D,; describe the spread of ex-
citatory-to-inhibitory cell signals, and the coefficients
Ek,- describe the spread of disinhibitory signals. These
coefficients are often chosen to be decreasing functions
of the distance between the k' and populations, say
at a Gaussian rate, as in Fig 13. The papers by Ellias
and Grossberg (1975) and Levine and Grossberg (1975)
study various such systems.
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Fig. 13. Gaussian reduction of connection strength as a function of
’ distance

Gierer and Meinhardt (1972) introduce a class of
reaction-diffusion systems in which the concentrations
of activators a(x, t) and of inhibitors h(x, t) at various
positions x control development through time . Two
examples of such systems are defined (in their notation,
pp. 33, 34) by
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These authors are concerned with conditions under
which a slight peak of activator concentration will lead
to further increases of a(x,t) at that position. They
want these small initial concentration differences to
yield large final concentration differences which are
thereupon self-maintaining. At a region of peak ac-
tivator concentration, a new developmental stage is
triggered, for example head formation in the Hydra.
This proposal is strikingly similar to the network
developmental mechanism described in Section 7.
There small differences in the pattern of retinocortical
signals are converted-into large differences by the con-
trast enhancement mechanism. These large differences
are then maintained in STM, and trigger slow develop-
mental changes in retinocortical connection strengths.

A term by term comparison of (12) with (10) and of
(13) with (11) is revealing; cf,, Table 1. Just as Gierer and
Meinhardt (1972) make a distinction between
morphogen source density [e.g., ¢(x)] and morphogen
concentration, we distinguish input intensity (e.g., /,)
and population activity. They introduce activators
a(x, tyand inhibitors i(x, r), whereas we need excitatory
activities x,(r) and inhibitory activities y(t). They call
the mechanism whereby small differences become large
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Table |

Reaction-diffusion Shunting reverberating net

activator a(x, 1)

inhibitor h(x, 1)

morphagen source density
firing of morphagen gradient

maintenance of morphagen
gradient

power or sigmoid signal
lunctions

excitatory activity x,(r)
inhibitory activity y(r)
inputs

contrast enhancement
short-term memory

power or sigmoid signal functions

on-center off-surround inter-
actions via diffusion

on-center off-surround inter-
actions via electronic propa-
gation or signals

short-term memory pattern if
inhibitors equilibrate rapidly

self-stabilizing distributions of
morphogens if inhibitors
equilibrate rapidly

periodic pulses if inhibitors
equilibrate slowly

regulation

periodic puises if inhibitors
equilibrate slowly
adaptation

differences “firing” of a gradient. For systems (12) and
(13), they show that firing occurs only if stu+ 1) >r—
1>0; in particular r> 1. A signal function of the form
fw)=w", r>1, will create contrast enhancement in a
shunting network. In both kinds of systems, ex-
ponential decay of concentrations or activities occur;
e.g. the first terms of the right hand sides of (12) and
(13). In both systems, activators (excitatory cells) can
excite both themselves and inhibitors, whereas in-
hibitors can inhibit activators and possibly, but not
necessarily [e.g, u=0 in (13)] themselves. In both
systems, mutual interactions between activators and
inhibitors at different locations can occur; in {12)+13)
2 &2h

. . o a
this occurs via the diffusional terms D, % and D, —,
X &x

whereas in the networks it occurs via electrotonic or
wave-like signals. The diffusional coefficients are
chosen to make inhibitor concentration spread within
a wider area than activator concentration. This con-
straint simulates an on-center off-surround field in the
reaction-diffusion systems. The diffused inhibitor
thereupon inhibits activators at other positions, much
as the coefficients D,; and E,; in (10) spread inhibitory
signals across an expanse of excitatory cells. If in-
hibitor concentration equilibrates rapidly, say because
vis large, then one finds self-stabilizing distributions of
morphogens (Meinhardt and Gierer, 1974). A nalogous-
ly, a limiting pattern in STM is typically found in
lumped shunting networks (Grossberg, 1973; Gross-
berg and Levine, 1975; Levine and Grossberg, 1975).
If inhibitor equilibrates slowly, then periodic pulses of



activation can be obtained, and have been used to
discuss aggregating celiular slime moulds and related
phenomena (Meinhardt and Gierer, 1974). Analogous-
ly. in unlumped networks, periodic pulses of activity
~can be obtained (Ellias and Grossberg, 1975). The
analogy becomes even more suggestive when we
realize that the partial derivatives in the diffusional
terms of a cellular reaction-diffusion system can be
replaced by partial differences of concentrations in
contiguous cells, and this system is formally a network.

¢

12. The Analogy between Regulation and Adéptation

An important property in reaction-diffusion Sys-
tems is regulation. This property supplies “positional
information™ to cells in the field so that they can create
the same developmental pattern independent of total
lield size. thereby solving the so-called “French Flag”
or “Football Field" problem (Gaze, 1970: Wolpert,
1969): for example, keep the region of activation pro-
portional in size to the total size of the developing
field (Gierer and Meinhardt, 1972, pp. 32, 34, 335).
Gierer and Meinhardt (1972, p. 34) remark that this
amounts to a “normalization™ of the pattern in sub-
sections of the cellular array. System (14}15) has
approximately this property. Note in (14) that a
sigmoid signal function f(u)=a*(1 +ra?)~" replaces
the power law a" of (12).-

In shunting networks, regulation is replaced by
adaptation. as illustrated by (3). Adaptation also
describes a normalization property that makes maxi-
mal network response independent of the total number
of cells or the input intensity. In STM, the normal-
izatlon property is stronger because total activity can
converge to a unique limit point as r— s, The adapta-
tional mechanism preserves a record of the relative
magnitude of activation at each position, just as
positional information provides individual cells with
indices of their relative position in a cellular array. In-
deed, the adaptational property can be used to con-
struct a “position code™ for guiding the motion of
motor systems (e.g., eyes or arms) to fixed target
positions even if the target luminance varies widely at
these positions (Grossberg, 1973, 1975a).

The analogy between regulation and adaptation
becomes particularly suggestive when we consider
neural structures in which both kinds of mechanisms
might simultaneously be operative. For example,
ingenious experiments (e.g.. Gaze, 1970; Hunt and
Jacobson, 1972, 1973 a.b) have been done on amphibia
to study how the retina and optic tectum establish
positional information that guides the growth of a

continuous mapping of the retinal surface onto the
tectal surface by means of optic nerve fibers. Suppose
as in Section 3 that the adaptational mechanism of
such a retina is due to a shunting on-center off-sur-
round network. Then ablation of some retinal cells can
renormalize excitatory neuronal activity through
adaptation, even as a reaction-diffusion among net-
work cells — supposing with Meinhardt and Gierer
(1974) that it exists — could renormalize its activator
concentrations through regulation. Such examples
naturally lead one to ask whether adaptation plays an
organizing role in the adult organism like the one
regulation plays in the developing organism, or
whether, moreover, the two mechanisms ever act to-
gether? The various uses of adaptation cited in Section
3 support this conjecture for the adult organism; the
use of adaptation in the model of development of
cortical tuning bridges the gap between the adult and
the developing organism; and the possible simul-
taneity of both mechanisms in the infant raises the
possibility that network properties regulate as well as
adapt. _
The above remarks indicate that a dictionary of
parallels between shunting network and reaction-dif-
fusion systems can not only suggest and illuminate
formal properties of each, but can also ultimately shed
more light on how both types of systems contribute
separately and together to the developmental process.
Networks such as (10) and (11} in which mass action
laws hold among the excited and unexcited sites of
excitatory and inhibitory processes can, in principle,
exist in nonneural structures. As we noted in Section 11.
the partial derivatives in the diffusional terms of cellular
reaction-diffusion system can be represented by partial
differences of concentrations in contiguous cells, and
this system is fermally a network. How widespread
are such network systems in developing organisms?
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