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Adaptive Pattern Classification and Universal Recodine:
L. Parallel Development and Coding of Neural Feature Detectors
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Abstract. This paper analyses a model for the parallel
development and adult coding of neural feature detec-
tors. The model was introduced in Grossberg (1976).
We show how experience can retune feature detectors
torespond to a prescribed convex set of spatial patterns.
In particular, the detectors automatically respond to
average features chosen from the set even if the average
features have never been experienced. Using this
procedure. any set of arbitrary spatial patterns can
be recoded. or transformed. into any other spatial

_patterns (universal recoding), if there are sufficiently

many cells in the network’s cortex. The network is
built from short term memory (STM) and long term
memory (LTM) mechanisms, including mechanisms

of adaptation, filtering, contrast enhancement, tuning. .

and nonspecific arousal. These mechanisms capture
some experimental properties of plasticity in the kitten
visual cortex. The model also suggests a classification
of adult feature detector properties in terms of a small
number of functional principles. In particular, experi-
ments on retinal dynamics, including amacrine cell
function, are suggested.

1. Introduction

This paper analyses a model for the development of
neural feature detectors during an animal's early
experience with its environment. The model also
suggests mechanisms of adult pattern discrimination
that remain after development has been completed.
The model evolved from earlier experimental and
theoretical work. Various data showed that there is
a critical period during which experimental manipula-
tions can alter the patterns to which feature detectors
in the visual cortex are tuned {e.2. Buarlow and
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Pettigrew, 1971; Blakemore and Cooper, 1970:; Blake-
more and Mitchell, 1973; Hirsch and Spinelli. 1970,
1971; Hubel and Wiesel, 1970; Wiesel and Hubel, 1963,
1965). This work led Von der Malsburg (1973) and
Pérez et al. (1974) to construct models of the cortical
tuning process, which they analysed using computer -
methods. ‘Their models are strikingly similar. Both
use a mechanism of long term memory (LTM) to
encode changes in tuning. This mechanism learns by
classical, or Pavlovian, conditioning (Kimble. 1967)
within a neural network, Such a concept was quali-
tatively described by Hebb (1949) and was rigorously
analysed in its present form by Grossberg (e.g.. 1967,
1970a, 1971, 1974). The LTM mechanism in a given
interneuronal pathway is a plastic synaptic strength
which has two crucial properties: (a) it is computed
from a time average of the product of presynaptic
signals and postsynaptic potentials; (b) it mulupli-
catively gates, or shunts, a presynaptic signal before
it can perturb the postsynaptic cell.

Given this LTM mechanism, both models invoxe
various devices to regulate the retinocortical sigrals -
that drive the tuning process. On-center off-surround
networks undergoing additive interactions, attenuation
of small retinocortical signals at the cortex, and con-
servation of the total synaptic strength impinging on
each cortical cell are used in both models. Grossberg
(1976) realized that all of these mechanisms for
distributing signals could be replaced by a minimal

‘model for parallel processing of patterns in noise. which

is realized by an on-center off-surround recurrent
network whose interactions are of shunting type
(Grossberg, 1973). Three crucial properties of this
model are: (a) normalization, or adaptation. of total
network activity; (b) contrast enhancement of input
patterns; and (c) short term memory (STM) storags
of the contrust-enhanced pattern. Using these prop-
erties. Grossberg (1976) eliminates the conservation
of total synaptic strength~—which is incompatible with
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Fig. 1. Minimal modd of developmental tuning using STM and
LTM mechanisms

classical conditioning—and shows that the tuning
process can be derived from adult STM and LTM
principles. The model is schematized in Figure 1. It
describes the interaction via plastic synaptic pathways
of two network regions, .¥; and V;, that are separately
capable of norm- lizing patterns, but ¥; can also con-
trast enhance patterns and store them in STM. In
the original models of Von der Malsburg and Pérez
et al, ¥V, was interpreted as a “retina” or “thalamus™
and V; as “visual cortex™. In Part 1l, an analogous
anatomy for V| as “olfactory bulb™ and V; as “pre-
pyriform cortex™ will be noted. In Section 5. a more
microscopic analysis of the model leads to a discussion
of ¥, as a composite of retinal receptors, horizontal
cells, and bipolar cells, and of ¥; as a composite of
amacrine cells and ganglion cells. Such varied inter-
pretations are possible because the same functional
principles seem to operate in various anatomies.
Using this abstract structure, it was suggested in
Grossberg (1976) how hierarchies of cells capable of
discriminating arbitrary spatial patterns can be syn-
thesized. Also a striking analogy was described be-
tween the structure and properties of certain reaction-
diffusion systems that have been used to model develop-
ment (Gierer and Meinhardt, 1972; Meinhardt and
Gierer, 1974) and of reverberating shunting networks.
This paper continues this program by rigorously
analysing mathematical properties of the model. which
thereupan suggest other developmental and adult STM
and LTM mechanisms that are related to it. The follow-
ing sections will describe these connections with a
minimum of mathematical detail. Mathn.m‘mc.x} proofs

‘are cpntained in the Appendix.

i

Fig. 2. Nonrecurrent, or feedforward. on-center off-surround net-
work

2. The Tuning Process

This section reviews properties of the model that will
be needed below. Suppose that V¥, consists of n states
(or cells, or cell populations) v,;, i=1, 2,..., n, which
receive inputs I(r) whose intensity depends on the
presence of a prescribed feature, or features, in an
external pattern. Let the population response (or
activity, or average potential) of v, be x,,(t). The rela-

tive input intensity @;=1,1"", where I= ) I,, mea-

sures the relative importance of the fean:rcicodcd by.
v in any given input pattern. If the @,’s are constant
during a given time interval, the inputs are said to form
a spatial pattern. How can the laws governing the x, (1)

be determined so that x,(r) is capable of accurately

registering ©;? Grossberg (1973) showed that a
bounded, linear law for x,;, in which x,, returns to
equilibrium after inputs cease, and in which neither
input pathways nor populations v,; interact, does not
suffice; cf,, Grossberg and Levine (1975) for a review.
The problem is that as the total input [ increases,
given fixed ©; values, each x; saturates at its maximal
value. This do&s not happen if off-surround interactions
also occur. For example, let the inputs I; be distributed
via a nonrecurrent, or feedforward, on-center off-
surround anatomy undergoing shunting (or mass

action, or passive membrane) interactions, as in Fig-
ure 2. Then

Xy=—Axy+(B—x;)M;~xy; Z I, . 1
’ A TY . ]
with 0= x,(0)< B. At equilibrium (namely, x,,=0),
o RT
Xu=0,; m‘ 2

which is proportional to ©, no matter how large [
becomes. Since also BI(A + 1)~ ! £ B, the total activity

X;= ) X, never exceeds B; it is normalized. or
k=1

adapts, due to automatic gain control by the in-



hibitory inputs. The normalization property in (2)
shows that x,; codes @; rather than instantaneous
fluctuations in I.

To store patterns in STM. recurrent or feedback
pathways are needed to keep signals active after the
inputs cease. Again the problem of saturation must
be dealt with, so that some type of recurrent on-center
off-surround anatomy is suggested. The minimal solu-
tion is to let ¥, be governed by a system of the form

Xyy=— Afzj+(3— X)) (x2)+ 11— xZJKZ.f(xz;‘) .
*j

©)

where f(w) is the average feedback signal produced
by an average activity level w, and I,; is the total
excitatory input to v,; (Fig.3a). In particular, vy
excites itself via the term (B—x,))f(x,)), and vy, in-
hibits v,; via the térm —x,,f(x,.). for every k+j. The
choice of f(w) dramatically influences how recurrent
interactions within V, transform the input pattern
I®=(l,,.1,,, ..., I,5) through time. Grossberg (1973)
shows that a sigmoid. or S-shaped, f (w)can reverberate
important inputs in STM after contrast-enhancing
them, yet can also suppress noise.

Various generalizations of recurrent networks have
been studied, such as

N
’.‘zj=."_f4xzj+(3--"¢zj) sz Sx20Cy+ Iz,]

N
—(xy;+ D) .Zx f(x20Ey;, - . (4)

D20, where the excitatory coeflicients C,; (“on-
center™) decrease with the distance between popula-
tions v, and v,; more rapidly than do the inhibitory
coeflicients E,; (“off-surround™). Levine and Grossberg
(1976) show that, in such cases, thc inhibitory off-

surround signals Z J(x2)Ey; to vy can be chosen
k=

strong enough to offset the saturating eﬂ'ects of i mputs

1,; plus excitatory on-center signals z f(x2)Cap
k=
Ellias and Grossberg (1975) study generalizations -of

(4) in which inhibitory interneurons mteract with their
excitatory counterparts. v

Below we will consider networks in which the
excitatory signals /,; to V; are sums of signals from
many populations in V,. Moreover, the synaptic
strengths of these signals can be trained. This fact
suggests another reason for making V; recurrent. A
recurrent anatomy is needed within ¥; to prevent
saturation in response to trainable signals. To see this,
note in the nonrecurrent network (1) that each excita-
tory input to r; is replicated. as an inhibitory input

to all ry,. k#i The size of a trainable signal to vy
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Fig. 3. Some recurrent. or feedback, on-center off-surround networks

depends on the activity at v,, This signal therefore
cannot be replicated at populations v,,, k#j, unless
recurrent interactions within V, exist. Moreover,
whether or not signals are tramable, whenever I, is
a sum of signals from many populations, recurrent
signals within V, prevent saturation at a large saving
of extra signal pathways to the populations v,,, k+j.
A related scheme for marrying sums of (trainable)
signals with pattern normalization is illustrated in
Figure 3b. Here a sum of signals I,; from ¥, perturbs
each v,; Population v,; thereupon excites an on-
center of cells near v;;, and inhibits a broad off-
surround of populanons centered at v;; Thus. when
a pattern I'® arrives at V,, it is normalized at ¥V, before
saturation cun take place across V,. Then feedback
signals from V; to V¥, prevent saturation at V; from
setting in as follows. Each population r;; that receives a
large net excitatory signal from V, excites its on-center
of cells near v,;, and inhibits a broad off-surround of
populations centered at ¢,; This feedback inhibition
prevents the pattern I'* from saturating V5. much as
recurrent inhibition in Equation (4) works. Fxgure 3b
can also be expanded to explicitly include inhibitory
interneurons, as in Ellias and Grossberg (1975).
Normalization in ¥, by (1) occurs gradually in time.
as each x,; adjusts 1o its new equilibrium value. but
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it will be assumed below to occur instantaneously with

x,; approaching O, rather than @,BI(4+1)~'. These
simplifications yield theorems about the tuning process
that avoid unimportant details. The assumption that
normalization occurs instantaneously is tenable be-
cause the normalized pattern at ¥, drives slow changes
in the strength of connections from ¥, to ¥,. Instan-
taneous normalization means that the pattern at ¥,
normalizes itself before the connection strengths have
a chance to substantially change. o
Let the synaptic strength of the pathway from v,;
to the /* population v,; in ¥; be denoted by 2;{t) (see
Fig. 1). Let the total signal to v,; due to the normalized
pattern ©=(0,,0,,...,0,) at V; and the vector
Ye)=(z, {t), 23 {t), -.., z, A1) of synaptic strengths be

S{=0-270= ¥ Oz )
-y

that is, each z,{t) gates the signal @, from v,, on its
way to vy, and these gated signals combine additively
at vy; (cf, Grossberg, 1967, 1970a, 1971, 1974). Since
z(z) determines the size of the input to v, given any
pattern O, it is called the classifying vector of v,; at
time t. Every vy, j=1, 2,..., N, in V; receives such a
signal when @ is active at V}. In this way, © creates a
pattern of activity across V. .

Given any activity pattern across V;, it can be
transformed in several ways as time goes on. Two main
questions about this process are: (a) will the roral
activity of ¥, be suppressed, of will some of its activities
be stored in STM? and (b) which of the relative activi-
ties across ¥, will be preserved, suppressed. or en-
hanced? Several papers (Ellias and Grossberg, 1975;
Grossberg, 1973: Grossberg and Levine, 1975) analyse
how the parameters of a reverberating shunting on-
center off-surround network determine the answers
to these questions. Below some of these facts are cited
as they are needed. In particular, if all the activities
are sufficiently small. then they will not be stored in
STM. If they are sufficiently large, then they will be
contrast enhanced, normalized, and stored in STM.
Figure 4 schematizes two storage possibilities. Fig-
ure 4a depicts a pattern of activity across ¥; before it
is transformed by V,. Given suitable parameters, if
some of the initial activities exceed a quenching
threshold (QT), then V; will choose the population

~having maximal initial activity for storage in STM,

as in Figure 4b. Under other circumstuances. all initial
activitics below the QT are suppressed, whereas all
initial activities above QT are contrast enhanced,
normalized. and stored in STM (Fig. 4¢); that is. partial
contrast in STM is possible. Grossberg (1973) shows
that partial contrast can occur if the signals between

~ pppulations in a recurrent shunting on-center off-

surround network are sigmoid {S-shaped) functions of
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Fig. 4. Contrast enhancement and STM by recurrent network:
{a) initial pattern: (b) choice; (c) partial contrast

their activity levels. Ellias and Grossberg (1975) show
that partial contrast can occur if the self-excitatory
signals of populations in ¥, are stronger than their
self-inhibitory signals, and moreover if the excitatory
signals between populations in ¥, decrease with inter-
population distance faster than the inhibitory. signals.

The enhancement and STM storage processes also
occur much faster than the slow changes in connection
strengths z;;; hence, it is assumed below that these
processes occur instantaneously in order to focus on
the slow changes in z,;.

The slow changes in z;; are assumed to be deter-
mined by a time averaged product of the signal from
vy t0 vy with the cortical response at vyy; thus

2ij=—Cijzy+Dypxyy

where C;; is the decay rate (possibly variable) of zi,-;
and Dj; is the signal from v; to v,; For example, if
Ci;=1.the ¥, and V, patterns are normalized, and v,
chooses only the population v,; whose initial activity
is maximal for storage in STM (Fig. 4b), then while
vy; is active,

-.7-1','——-‘_2,']'*'9‘-, for all i=i,2,...,n.

It remains to determine how these z; and all other
Zu k*j, change'under other circumstances. To elimi-
nate conceptual and mathematical difficulties that
arise if z;/ can decay even when ¥, and ¥, are inactive,
we let all changes in each =;; be determined by which
populations in ¥, have their activities chosen for
storage in STM. In other words, all changes in Sij
are driven by the feedbuck within the excitatory re-
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current loops of V; that establish STM storage. Then

z=(— zij + ©))x2; (6)
where Z xyu{t)=1if ST‘V[ in Vz is active at time ¢,
_ k=1
whereas ) x,,(f)=0 if STM in ¥, is inactivc at

k=1

time t.

If ¥, chooses a populauon for storage in STM as
in Figure 4b, then

{1 if $;>max {g, S;:k+j}
X2

= 0if S;<max{g, S;:k+j}, o

L -1
where as in (5), S;=0 -9 with 9;,=I; (Z I,‘)
: k=
Equation (7) omits the cases where wo or more

signals S; are equal, and are larger than all other
signals and & In these cases, the x,;'s of such §;'s are
equal and add up to 1. Such a normalization rule for
equal maximal signals will be tacitly assumed in all
the cases below, but will otherwise be ignored to avoid
tedious details. Equation (6) shows that z;; can change
only if x,;>0. Equation (7) shows that V; chooses the
maximal activity for storage in STM. This activity is
normalized (x,;=0o0r ), and it corresponds to the pop-
ulation with largest initial signal (§;> max {S,:k+j}).
No changes in z;; occur if all si gnAls S; are too small
to be stored in STM (all §;Z¢).

If partial contrast in STM holds, as in Figure 4c,
then the dynamics of a reverberating shunting network
can be approximated by a rule of the form

S Z S69]7! i 8>

Su>t

0 if §;<s ®

where f(w) is an increasing nonnegative function of w
such that w=0; eg, f(w)=w2 In (8). the positive
constant erepresents the QT ; the function f(w) controls
how "suprathreshold signals §; will be contrast en-
hanced; and the ratio of f(S) to Y {/(S): S,‘>a}
expresses the normalization of STM.

3. Ritualistic Pattern Classification

- After developmental tuning has taken place, the above

mechanisms describe a model of pattern classification
in the “adult™ network. These mechanisms will be
described first as interesting in themselves, and as a
helpful prelude to understanding the tuning process.
They are capable of clussifying arbitrarily complicated
spatinl patterns into mutually nonoverlapping. or

- partially overlapping. sets depending on whether (7) -

~or (8) holds. These mechanisms realize basic pnnup!c:
-of p.mcrn discrimination using ahunlma interactions.

12
An alternative scheme of pattern discrimination using
a mixture of shunting and additive mecham‘sms ha:
already been given (Grossberg, 1970b, 1973). Togethe:
these schemes suggest numerous anatomical anc
physiological variations that embody the same smal
class of functional principles. Since particular anato-
mies imply that particular physiological rules should
be opcrative, intriguing questions about the dynamics

- of various neural structures. such as retina, neocortex,

hippocampus, and cerebellum, are suggested.

First consider what happens if ¥, chooses a pop-
ulation for storage in STM. After learning ceases (that
is, #;=0), all classifying vectors z'» are constant in
time, and Equations (6) and (7) reduce to the statement
that population v,; is stored in STM if
§;>max {g, S;:k+j} . - )
In other words, vy; codes all patterns @ such that (9)

holds; alternatively stated, v,; is ‘a feature. dete or
in the sense that all patterns

P;={0:0-:P>max (g 0 -2 :k+j)} (10)

are classified by v,;. The set P; defines a convex cone C;
in the space of nonnegitive input vectors J=
(I,, 15, ..., 1), since if two such vectors J*' and J¥
are in Cj, then so are all the vectors xJ'", gJ**, and
+J V4 (1=7)J?, where 2>0, >0, and O<y<1. The
convex cone C; defines the fearure coded by c,;

The classification rule in (10) has an informative
geometrical interpretation in a-dimensional Euclidean
space. The signal S;=@::? is the inner product of

© and zV Grecnspan and Benney, 1973). Letting

Néh= Z &2 denote the Euclidean length of any real
k=1

vector ¢=(&;, &35 ...,&) and cos(n,w) denote the

cosine between two vectors n7 and w, it is elementary

that
S;=10| 1z9 cos (©, V).

In other words, the signal S, is the length of the
projection of the normalized pattern © on the classify-
ing vector z? times the length of 2. Thus if all 27,
j=12,..., N, have equal length, then among all pat-
terns with the same length, (10) classifies all patterns &
in P; whose angle with =? is smaller than the angles
between @ and any ¥, k+}, and is small enough to
satisfly the e-condition. In parucular patterns @ that
are parallel 10 z# are classified in P;. The choice of
classifying vectors z' hereby dctcrmms how the
patterns © will be divided up. Section 8 will show that
the tuning mechanism (6)+7) makes the =*? vectors
more parallel to prescribed patterns @, and thereupon
changes the classifying sets P;. In summary:

(i) the number of populations in V, dctermines the
maximum number N of pattern classes P;:

(ii) the choice of classifying vectors z'? determines
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how dillerent these classes can be: for example. choos-
ing all vectors ='? equal will generate one class that is
redundantly represented by all r,;: and

(iii) the size of ¢ determines how similar patterns
must be to be classified by the same ¢,;.

If the choice rule (7} is replaced by the partial con-
trast rule (8). then an important new possibility occurs,
which can be described either by studying STM re-
sponses to all @ at fixed vy of to a fixed @ dtall vy,
In the former case, each v;, has a tuning curre, or
generalization grudient; namely, a maximal response
to certain patterns, and submaximal responses to
other patterns. In the latter case, each pattern @ is
filtered by V, in a way that shows how close © .lies
to each of the classifying vectors 2. The pattern will
only be classified by ,,—that is, stored in STM—if it
lies sufficiently close to = for its signal S; to exceed
the quenching threshold of V.

For example, suppose that some of the classifying
vectors 2 are chosen to create large signals at ¥,
when vertical lines perturb V,. and that other :V create
large signals at ¥, when horizontal lines perturb V.
If a pattern containing both horizontal and vertical
lines perturbs ¥, then the population activities in ¥;
corresponding to both types of lines can be stored in
STM, unless competition between their populations
drives all activity below the QT. Now let ¥; be another
“cortex™ that receives signals from V,, in the same
fashion that ¥, receives signals from V. Given an
appropriate choice of classifying vectors for V,, there
can exist cells in ¥; that fire in STM only if horizontal
and vertical lines perturb a prescribed region of ¥;;
e.g., hypercomplex cells. The existence of tuning curves
in a given cortex V; hereby increases the discriminative
capabilities of thc next cortex V., in a hxcrarchy.
cf.. Grossberg (1976).

The above mechanisms will now be discussed as
cases of a general scheme of pattern classification.
This is done with two goals in mind: firstly, to empha-
size that these mechanisms might well exist in other
than “retinocortical™ analogs;and secondly, to generate
explicit experimental directives in a variety of neural
structures. One such directive will be described in
Section S.

4. Shunts vs. Additive Interactions
as Mechanisms of Pattern Classification

The processing stages utilized in Section 3 are the
following:

A) Normalization

lnput patterns arc normalized in ¥, by an on-center
. off-surround anatomy undergoing ahunung, inter-
actions.

B) Partial Filtering by Signals

The signals S, generated at ¥, by a normallzed pattern
on V, create the data base on which later computations
are’ detcrrmned The signal generating rule (5). for
example, has the followmg 1mportant property. Sup-
pose that an input [(f)=©,/(r) is normalized to0 x|,
as in (2), rather than to the approximate value @,
.The signal from V] to vy; becomes

§;=BIA+D"'S;

and (9) is replaced by the analogous rule

SJ> max {g, S,:k+j} .

Then V, will classify a given pattern into the same
class P; no matter how large I is chosen. In other
words, the signal generating rule is invariant under
suprathreshold variations of the total activity at ¥,
If I; is the transduced receptor response to an external
input Ji—thatis, [ 1—-g(J ;J—then the signal-generating

rule is invariant, given any *‘”’s if g(w)_w’ for some
p>0. ,

C) Contrast Enhancement of Signals

The signals S; are contrast enhanced by the recurrent -
on-center off-surround anatomy within V5, and either
a choice (Fig. 4b) or a tuning curve (Fig. 4¢) results.

Two successive stages of lateral inhibition are
needed in this model. The first stage normalizes input
patterns. The second stage sharpens the filtering of
signals.

Additive mechanisms can also achieve classifica-
tion of arbitrarily complicated spatial patterns. These
mechanisms also employ three successive stages A}-C)
of pattern processing, with stage A) normalizing input
patterns, stages A) and C) using inhibitory interactions,
and stage C) completing the pattern classification
that is begun by the signal generating rules of stage B).
The additive model can differ in several respects from
the shunting model:

(i) its anatomy can be feedforward; that is, there
need not be a recurrent network in stage C);

(i1) threshold rules replace the inner product signal-
generating rule (5) to determine partial filtering of
signals: and

(iif) the responses in time of stages A}C) to a
sustained pattern at ¥, are not the same in the additive
model. For example, sustained responses in the shunt-
ing model can be replaced by responses to the onset and
offset of the pattern in the additive model (Grossberg,
1970b).

Mixtures of additive and shunting mechanisms ure
also possible. The additive mechanisms will now be
summarized to illustrate the basic stages A)}-C).
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Fig. 8. Normalization and low-band filtering by subtractive non-
specific interneuron and signal threshold rules ’

An additive nonspecific inhibitory interneuron
normalizes patterns at ¥, (Fig. 5). Many variations on
this theme exist (Grossberg, 1970b) in which such
parameters as the lateral spread of inhibition, the
number of cell layers, and the rates of excitatory and
inhibitory decay can be varied. The idea in its simplest
form is this. The excitatory input ; excites a bifurcating
pathway. One branch of the pathway is specific; and
the other branch is nonspecific. The lateral inhibitcry
interneuron o, ., lies in the nonspecific branch. It
sums the excitatory inputs I, and generates 2 non-
specific signal back to all the specific pathways if a
signal threshold I" is exceeded." Each input I, also
generates a specific signal from v,; that is a linear func-
tion of I; above a signal threshold. Each pathway from
vy in ¥} 10 vy, in V; has its own signal threshold I'y;
The net signal from v, to v,; is

- +

where the notation [u]* =max (u.' 0) defines the thresh-

_old rule. Define 8,;=T ;I ~*! and let the spatial pattern

I;=6,I perturb V. Then
Ky=[61~0,1"~[1-I}%. o (11

The net signal K;; has the following properties:
(i} K;<O0forall valuesofl I>0if8,£9;;; -
(i) K;>0for I>6,,6; ' if ©;>6;;; and
(i) K;<(0;,~6,) forall I>0.
In other words, by (i) no signal is emitted from vy,
to ry; if ©;,<@,;: by (il il @;> B, a signal is emitted
from vy, il  exceeds a threshold depending on 6, and

..@;;:and by (iti). the total activity in the cells ¢y, is nor-
1L -malized. Partial filtering of signalsis thus achieved by
A .
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Fig. 6. (a) Specific subtractive inhibitory interneurons; (b) Non-
specific inhibitory interneurons

the choice of threshold pattern @9 =(0,;, @,, ..., 9,)
rather than by the choice of classifying vector 2=
(Zyp 225 ooes Zap) .

Stage C) is needed because the total signal to Caj
can be maximized by patterns © which are very
different from the threshold pattern @Y. This problem
arises because the signals K;; continue to grow linearly
as a function of I after the threshold value @,0;!
is exceeded. Grossberg (1970b) shows that the problem
can be avoided by inhibiting each signal K, if it gets too
large. For example, let the net signal from v,; to vy
be . :

S=K,—alK;— 81", | (12)

where 2> 1 and 0< 8 < 1. This mechanism inhibits the
signal from vy; to vy, if it represents a ©; which is too
much larger than @, Equation (12) can be realized
by any of the several inhibitory mechanisms: a specific
subtractive inhibitory interneuron (Fig. 6a), a switch-
over from net excitation to net inhibition when the
spiking frequency in the pathway from r,; to vy
becomes too large (Bennett. 1971; Blackenship et al,
1971; Wachtel and Kandel. 1971), or postsynaptic
blockade of the v, cell membrane at sufficiently high
spiking frequencies. Signal S3j is positive only if &,
is sufficiently close to @; in value. Stage C) is com-
pleted by choosing the signal threshold of v,; so high
that vy; only fires if all signals S i=1,2....n are
positive: that is, only if the input pattern @ is close
to the threshold pattern @Y. The second stage of
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inhibition hereby completes the parual filtering pro-
cess by choosing a population r.; in ¥, to code ©'4,
as in Figure 4b. If the specific mhxbnory interneurons
if Figure 6a are replaced by a lateral spread of inhibi-
tion, as in Figure 6b. then a tuning curve is generated,
as in Figure 4c.

5. What Do Retinal Amacrine Cells Do?

This section illustrates how the principles A}~C)-can
generate interesting questions about particular neural
processes. Grossberg (1970b. 1972) introduces a retinal
model in which shunting and additive interactions
both occur. In this model. retinal amacrine cells are
examples of the inhibitory interaction in stage C). We
will note that amacrine cells have opposite effects on
signals if they realize a shunting rather than an additive
model. In the retinal model of Grossberg (1972), nor-
malization is accomplished by an on-center off-sur-
round anatomy undergoing shunting interactions.
Analogously, in vivo receptors excite bipolar cells
(on-center)as well as horizontal cells, and the horizontal
cells inhibit bipolar cells via their lateral interactions
(off-surround). Partial filtering of the normalized inputs
is accomplished by signal thresholds; for example,
using the normalized x,; activities in (2). the simplest
signal function from t,; to vy; is Ky=[x,;~Iy]".
Stage C) is th-n accomplished by a mechanism such
as (12), by which large signals are inhibited. Whether
a choice (Fig. 4b) or a tuning curve (Fig. 4¢) is generated
depends, in part, on how broadly these lateral inhi-
bitory signals that complete stage C) are distributed.
This second stage of inhibition is identified with the
inhibition that amacrine cells, fed by bipolar cell
activity, generate at ganglion cells. Grossberg (1972)
notes data that support the idea that stage C) is
realized by an additive mechanism 'such as (12). In
particular, amacrine cells often respond when an
input pattern is turned on, or off. or both. Two questions
about amacrine cells now suggest themselves.

(i) If this interpretation of amacrine cells is true,
then they will shut off signals [rom the bipolar cells
to the ganglion cells when these signals become too
lurge; that is. they act as high-band filters. By contrast,
inhibition in stage C) of the shunting model shuts off

“signals if they become too small. Opposite effects due

to the second inhibitory stage can hereby create a
similar functional transformation of the input pattern!
If a shunting role for amacrine cells is sought. then
the following types of anatomy would be anticipated:
inhibitory bipolar-to-amacrine-to-bipolar cell feed-
buck that contrast enhances the receptor-to-bipolar
signals, or inhibitory ganglion-to-amacrine-to-gan-

_glivn cell feedbuck that contrast enhances the bipolar-

ta- ganglion cell signals, or some functionally similar

feedback loop. To decide between these two p0551ble
roles for amacrine cells, one must test whether ama-
crine cells suppress large signals or small ' ones: in
either cuse, il the model is applicable. contrast enhance-
ment of the normalized and filtered retinal pattern
is the result,so that this property cannot be used as
a criterion.

(i) Does the spatial extent of lateral amacrine
interaction determine the amount of contrast. or
the breadth of the tuning curves, in ganglion cell re-
sponses, as in Figures 4b and 4¢? For example, there
exist narrow field diffuse amacrine cells, wide field
diffuse amacrine cells, stratified diffuse amacrine cells,
and unstratified amacrine cells (Boycott and Dowling,
1969). Do these specxahzauons guarantee particular
tuning characteristics in the corresponding ganglion
cells?

Grossberg (1972) also suggests a cerebellar analog
based on the same principles. Thus at least formal
aspects of various neural structures seem to be emerg-
ing as manifestations of common principles. These
results suggest a program of classifying seemingly
different anatomical and physiological data according
to whether they realize similar functional transforma-
tions of patterned neural activity, such as total activity
normalization, partial filtering by signals, and contrast
enhancement of the signal pattern. Below are described
certain properties of the shunting mechanism that will
be needed when development is discussed.

6. Arousal as a Tuning Mechanism

The recurrent networks in ¥; all have a quenching
threshold (QT); namely, a criterion activity level that
must be exceeded before a population’s activity can
reverberate in STM. Changing the QT or, equivalently,
changing the size of signals to V,, can retune the
responsiveness of populations in ¥, to prescribed
patterns at ¥;. For example, suppose that an un-
expected, or novel, event triggers a nonspecific arousal
input to ¥;, which magnifies all the signals from ¥,
to ¥, (see Part II). Then certain signals, which could
not otherwise be stored in STM, will exceed the QT
and be stored, For example, if ¥, is capable of partial
contrast in STM and also receives a nonspecific arousal
input, then (8) can be replaced by

f(das,)[ ) f(¢>s,)]°l il ¢S;>¢
%10 ir ¢s;<e

where ¢ is an increasing function of the arousal level.
Note that an increase in ¢ allows more V, populations
to reverberate in STM : cf,, Grossberg (1973) for mathe-
matical proofs. In a similar fashion. if an unexpected
event triggers nonspecific shunting inhibition of the

(13)
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inhibitory interneurons in the off-surrounds of Vs, then

the QT will decrease (Grossberg, 1973; Ellias and

Grossberg, 1975), yielding an equivalent effect. Equa-

tion (8) can then be changed to

f(S.j)[ Z f(Su)] if S;>¢%
. Su> o

0 if S;<¢*e

where ¢* is a decreasing function of the arousal level.

Reductions in arousal level have the opposite
effect. For example, if (13) holds, and arousal is lowered
until only one population in V; exceeds the QT, then
a choice will be made in STM, as in Figure 4b. Thus
a choice in STM can be due either to structural proper-
ties of the network, such as the rules for generating
signals between populations in V; [cf, the faster-than-
linear signal function in Grossberg (1973)], or to an
arousal level that is not high enough to create a tuning
curve. Similarly, if arousal is too small, then all func-
tions x,; in (13) will always equal zero, and no STM
storage will occur.

Changes in arousal can have a profound influence
on the time course of LTM, as in (6). because they
change the STM patterns that drive the learning
process. For example, if during development arousal
level is chosen to produce a choice in STM, then the
tuning of classifying vectors z¥! will be sharper than
if the arousal level were chosen. to generate partxal
contrast in STM.

Theinfluence of arousal on tuning of STM patterns
can also be expressed in another way, which suggests
a mechanism that will be needed in' Part It when
universal recoding is discussed.

JC21= (14)

7. Arousal as a Search Mechanism

Suppose that arousal level is fixed during learning
trials, and that a given pattern © at ¥, does not create
any STM storage at V; because all the inner products
© - z? are too small. If arousal level is then increased
in (13) until some x,;>0. STM storage will occur. In
other words, changing the arousal level can facilitate
search for a suitable classifying population in V5.

Why does arousal level increase if no STM storage
occurs at V,? This is a property of the expectation
mechanism that is dcwc!opcd in Part 1. Also in Part I1
a pattern © at ¥, that is not classificd by ¥, will use
this mechanism to release a subliminal scarch routine
that terminates when an admissible classification
occurs.

8. Development of an STM Code

System (6)-(7) will be analysed mathematically because
it illustrates propertics of the model in a particularly
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simple and lucid way. The first result describes how
this system responds to a single pattern that is iterative-
ly presented through time. v

i
Theorem ! (One Partern) |

Given a pattern @, suppose that thcre exxsts a unique j
such that .

S{0)>max {g S,(0): k=j} . (15)

Let © be practiced during a sequence of nonoverlapp-
ing intervals (U, ], k=1,2,.... Then the angle be-
tween zYYt) and @ monotomcally decreases. the signal
S{t) is monotonically attracted towards |@{* and
1291 oscillates at most once as it pursues Sft). In
pa.rncular if 720|101, then S{) is monotone
increasing. Except in the trivial case that S{0)=ioy?
the limiting relations

lim [27(0))* = lim 5{5)= ll@II2 ¢)
hold if and only if
Y (h-U=co. S

k=l

Remark. If Z9(0) is small, in the sense that | z(0)} < 1 O,
then by Theorem 1, as time goes on, the learning pro-
cess maximizes the innef product signal Sj(1}=@-='(r)
over all possible choices of 2 such that |l 2L 10].
This follows from the obvious fact that

sup {@ - p:lpi=Ol}=O]*.

Otherwise expressed, learning makes z parallel 10 0,
and normalizes the length of z9.

What happens if several different spatial patterns
eW=(0P, oF, .., OW), k=1, 2,..., M, all perturb
¥, at different times? How are changes in the =;;'s due
to one pattern prevented from contradicting changes
in the z;;'s due to a different pattern? The choice-making
propcrty of V; does this for us; it acts as a sampling
device that prevents contradictions from occurring. A
heuristic argument will now be given to suggest how
sampling works. This argument will then be refined
and made rigorous. For definiteness, suppose that M
spatial patterns ¥ are chosen, M < N, such that their
signals at time ¢ =0 satisfy

6. A0(0)> max {¢, OW: =N(0):j%k} .  (18)

forall k=1,2, ..., M. In other words, at time r=0, @'®
is coded by v,,. Let ©'" be the first pattern to perturb
V1. By (18), population t,, receives the largest signal
from V;. All other populations v, , j# 1, are thereupon
inhibited by the off-surround of v, ,, whereas r,, rever-
berates in STM. By (6). none of the synaptic strengths
M. j* 1, can learn while ©" is presented. As in
Theorem 1, presenting @' makes =*''(t) morc parallel
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Fig. 7. Practicing ' brings /') closer to ©'" and ©'? than
#3(0)

to ©'"asrincreases. Consequently, ifa different pattern,
say ©'%, perturbs ¥, on the next learning trial, then it
will excite v,, more than any other v, ;4 J%+ 2t it cannot
excite r,, because the coeflicients z/'¢) are more
parallel to @'" than before; and it cannot excite any
V25 J¥ 1. 2, because the v,; coefficients z4(r) still equal
2X0). In response to @2, v,, inhibits all other vy,
Jj*2 Consequently none of the vy, coefficients zY(z)
can learn, j+2; learning makes the coefficients z2(r)
become more parallel to @'? as ¢ increases. The same
occurs on all learning trials. By inhibiting the post-
synaptic part of the learning mechanism in all but the
chosen ¥, population, the on-center off-surround net-
work in V, samples one vector zY%¢} of trainable
coeflicients at any time. In this way, V, can learn to
distinguish as many as N patterns if it contains N
populations. ! -

This argument is almost correct. It fails, in general,
because by making (say) ='''(r) more parallel to &,
it is also possible to make ='')(¢) more parallel to &2
than =#%0) is. 7 hus when @'? is presented, it will be
coded by v;, rather than v,,. In other words. practicing
one pattern can recode other patterns. A typical ex-
ample of this property is illustrated in Figure 7. Fig-
ure 7a depicts the two dimensional patterns @' and
O as solid vectors, and the two classifying vectors
z*(0) and ='?(0) as dotted vectors. Clearly (18) holds
for j=1, 2. As a result of practicing @ during a fixed
interval, Figure 7b is produced. Note that @' . t)(1)>
©'2. 23Yy) after the practice interval terminates. Con-
sequently. r,,. rather than r,.. codes @' when 62
is practiced. This property cgn be iterated to show
how systematic trends in the' sequence of practiced
patterns can produce systematic drifts in recoding.
Consider Figure 8. Again two dimensional patterns
are denoted by solid vectors and classifying vectors
are denoted by dotted vectors. Let the patterns be
practiced in the order @'" @', ... @™ where M > N.
By successively practicing @', @, ....0"" ", the
vector ="t} is dragged along clockwise until it almost

. reaches @~ " Then O is practiced. and since O is
~ codgd by r,,, =''(t) stops moving and =¥t} begins

to move clockwise; z*2(r) continues to move clockwise
while @71, @+ | @* -V are practiced. Then
2%(t) begins.to move clockwise. and so on. The‘élock-
wise drift in the practice schedule hereby shifts each
1), j=1,2,....M —1, to a position that is close to the
one zY*0) occupied. In other words, essentially al]
vectors in V, are reclassified. If the same practice
schedule @'Y, @3, .. @™ is repeated on a second

. learning trial, then essentially all v,; are recoded by

U2+ and so on. Each learning trial recodes V5 until
all the N populations in ¥, code one of the N most

 clockwise vectors @ This asymptotic coding of ¥,

is_stable, except for a wild oscillation in the coding
of v;; on each learning trial, if the same practice
schedule is always repeated. If, however, a counter-
clockwise drift in practiced patterns is then imposed,
all of ¥; will be recoded until the N most counter-
clockwise vectors @™ are coded. In general, if there
are many patterns relative to the number of popula-
tions in ¥, and if the statistical structure of the practice
sequences continually changes, then there need not
exist a stable coding rule in V,. This is quite unsatis-
factory. '

By contrast, if there are few, or sparse, patterns
relative to the number of populations in V;, then a
stable coding rule does exist, and the STM choice
rule in ¥; does provide an effective sampling technique.
Such a situation is approximated, for example, whea
the network is exposed to a “visually deprived™ en-
vironment, in imitation of experiments on young
animals. A theorem concerning this case will now be
stated, if only to suggest what-auxiliary mechanisms
will be needed to establish a stable coding rule in the
general case. This theorem shows how populations
learn to code convex regions of features. In particular,
if v,; learns to code a certain set of features, then it
automatically codes average features derived from
this set.

The following nomenclature will be needed to state
K

the theorem. A partition @ 2, of a finite set 2 is
k=1

a subdivision of 2 into nonoverlapping and exhaustive

subsets 2;. The convex hull £ (P) of a finite set P

is the set of all convex combinations of elements in 2;

for example, if 2={0'", 0%, ..., @}, then

M ' . M
H(P)= {Z 40O":each 4,20and Y 2.,‘=1}_
k=1 k=1

Given a set 2 with subset 2, let #=2\2 denote the
set of elements in .#2 that are not in 2. If the classifying
vector =) codes the set of patterns 2it), let 2=
2 {0u{=0)}. The distance between a vector P and a
set of vectors 2, denoted by ||P— 2|, is defined by

nP—zn=inr_{:=P-Qu:Qez).
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Theorem 2 (Sparse Patterns) |

Let the network practice any set P={@": =
1,2, ..., M} of patterns for which there exists a partition
N
@ =P 2,(0) such that
k=) T

min {u-v:ue 2 (0), ve Z7(0)} >max {u- viue ?,(0),

ve PHONFTO) (19

. o ’ P
forallj=1,2,...,N.Then 2 {t)= 2{0)and thefunctions

A= 27) ~ (SO (20)

are monotone decreasing for t20 and j=1,2,...,N.
If moreover the patterns in #Y(0) are practiced in

intervals (U, V], m=1,2,..., such that

L (Vm—Uj=c0 $ @
~=] - . ..

then . _ -

lim Df)=0. - ‘ 22)
| Sad" -1 . .

Remarks. In other words, if the classifyin‘g vectors
initially code the patterns into sparse classes, in the
sense of (19), then this code persists through time, and
the classifying vectors approach a convex combination
of their coded patterns. As (20) and (22) show. learning
permits each r;; to respond as vigorously as possible
to its class of coded patterns.

The above results indicate that, given a fixed
number of patterns. it becomes easier to establish a
stable code for them as the number of -populations
in ¥; increases. Once V) is constructed. however, it is
not possible to increase its number of populations at
will. Moreover, in rivo, an enormous variety of patterns

typically barrages the visual system. How can a stable

code be guaranteed no matter how many! patterns
perturb V,? .

One way is to assume that a biochemically deter-
mined critical period exists during which the z;'s are

- 1y .. capable of learning: once the critical period tchninutﬁ.
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Fig. 8. Practicing a sequence of spatial patterns can

g (a7 recode all the populations

some chemical factor is removed and the z;;’s rémiain
fixed in the last code to be established. The existence
of a critical period has been reported (Hubel and
Wiesel, 1970), but whether it is due to a chemical
factor, or merely to a chemical factor, is as yet unknown.
From a formal point of view, such a mechanism suffers
from several significant related disadvantages. The
most obvious one is that all the coded information
that is learned throughout the critical period can be
obliterated if its last phase exhibits an unlikely statis-
tical trend. In addition, a repetitive statistical trend can
prevent many patterns from being coded at all. For
example, in Figure 8, once the classifying vectors code
the N most clockwise patterns, many of the other
M ~N patterns might be too far away from ! to
satisfy the e-condition in (7); they will then not be
coded by any population. Yet each of these M—N
patterns has been presented as frequently as the N
patterns that are coded. More generally, because
populations which are already coded can be recoded
so easily, it is hard to search for as yet uncommitted
populations to code as yet uncoded patterns. This
problem prevents a universal recoding from being
achieved (see Part II). .

These negative remarks can be supplemented by
intriguing positive observations. Stabilizing the code
seems to require the same formal machinery that is
needed in models of adult attention and discrimination
learning (Grossberg, 1975). This machinery. in turn.
is highly evokative of data concerning attentional
modulation of olfactory patterns by the prepyriform
cortex of cats (Freeman, 1974). Auxiliary mechanisms
for stabilizing the code will therefore be motivated
below. It is understood that a biochemically triggered
critical period can coexist with these mechanisms. or

indeed can preempt them in sufficiently primitive
organisms.

Various mechanisms can be contemplated which
partially stabilize the code. but which are not sufficient.
A satiation mechanism will be sketched below to
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Fig. 9. Practicing in the order 1, 2. 3, 4, 5. 6 cun recode alt the popula.
tions even if satiation exists .
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clarify what is needed. Consider (6) with .
X, )= G,y if S,(r)G,-(t)} max {g, S, ()G, (1): k% j}
4 0 if  S{NG{r)<max {& S,(1)G,(t): k+j}
(23)
where

Gft)=g ( 1- { X3 {v)K(t— v)dv) e (24)

In (24), g(w) is a monotone increasing function such
that g(0)=0 and g(1)=1. K(w) is 2 monotone decreas-
ing function such thiat K(0)=1 and K(c)=0; for
example, K(w)=¢"". Equation (23) says that persistent

. activation of r,; causes its STM response to satiate,

or adapt; if v,; is active during a sufficiently long
interval, its activity approaches zero. Correspondingly,
2%s fluctuations are damped within a time interval
of fixed length. Such a mechanism is inadequate if the
training schedule allows Ua; 0 recover its maximal
strength. Figure 9 shows, for example, an ordering of
patterns that permits recoding of essentially all popula-
tions in ¥,. ’

This problem is only made worse by replacing the
choice rule in (23) by a partial contrast rule such as

f(S,G)
Y f(SGY
SuGy>e

0 if SG;<c.

Here, if a prescribed pattern © causes a maximal STM
response at r,; then the activity x,; is suppressed by
G; more rapidly than the activities of other @-activated
populations. There can consequently be a shift in the
locus of maximal responsiveness even to .a single
pattern—that is, recoding—in addition to the difficulty
cited in Figure 9. . :

Such examples clarify what is essential:

(A) Before =U'1) learns a pattern, or class of related
patterns. it must be able 40 fluctuate freely in response
to pattemn inputs in search ofa classification.

(B) After ) learns a pattern. it must be prevented
from coding very different. patterns, no matter what

 the training schedule is. In particular, satiating =

if SJ'G]>5

x21=

ability to change through time does not suffice, since
a very different pattern can still be coded by 4 if
this pattern elicits a larger signal at vy, sdy dle to the
size'of |z%|| rather than the direction of vector Lo
than at any of the uncommited populations.

Requirements (A) and (B) constrain the interaction
of STM and LTM mechanisms. given that (6) holds.
For example, by (6), if a pattern @ creates signals
while o,; is active in STM, then zr) will change.
Suppose that a sequence @, @2 of two very different
patterns is successively presented to V;, and that ;)
codes @Y. In response to O'!, v2, is activated, but
z1(1) does not substantially change because it already
codes O\ Now let @2 perturb V,. By requirement
(B). 2")(z) must not be allowed to change. By (6). =*(z)
will change unless either no signal is emitted from
Vi when v,, is active, or a signal is emitted from "
only after v,, is inactivated. These two cases will be
separately considered in the next two paragraphs.

In the former case, some type of feedback to ¥,
must suppress the V;-to-V; signals that would other-
wise be generated by @®, This feedback somehow
tells ¥, that ©@'? is very different from the pattern
©'" that is presently coded in STM. By (A), however,
©'? can generate V,-to-V, signals at some time, either
to search for a classifying vector, or to activate its
alrcady learned STM representation. Thus after
Vi-to-V; signals ure suppressed long enough for STM
activity in v,, to also be suppressed, then ¥|-to-V,
signals are reactivated. )

In the-latter case, changing &'V to @@ somehow
suppresses the STM activity- that codes ©"; in
particular, somehow the network can tell when the
spatial patterns that perturb ¥, are changed. In both
cases, the same general issue is raised: how does the
network process a temporal succession @', @, .
e, ... of spatial patterns R =@, oV, ..., om;
that is, a space-time pattern. Space-time patterns are
the typical inputs to a receptive field in civo. The
problem of stabilizing the STM code forces us to
consider their processing in some detail. Part 1I of
this paper considers this problem.

Appendix |
Proof of Theorem {. Consider the case in which
101> > S40)> max [z, $,(0):k 4} . (Al)

The case in which § 10)2161? can be treated similarly. First it will
be shown that if the inequalities

161> S{1y> max {z. 5,(1): k+j} S | (A2)

hold at any time t=Te U [Un V.1. then they hold at all times

te{T. z)n U [U.. V.. By (A2} x3(T)=1 and x,,(T)=0, k).
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“Caonsequently, by (6),

3JT)= =2 T)+6, Ay
and Lo ’ ' _
fm=0 (A9
for kejand i=1,2,...,n. By (A2}{Ad),

${N = -S N +I6 .
‘:0#5'.(7{)7;) | . . : . A3
keJ. Thus (A2) holds for all te [T, :x:)n.Q' [V V] By (A2) and

(AS), for all te {J [U., V1. Sf1) increases monotonically towards
ma | .

. . _ , - .
[812 and (16) holds if and only if (17) holds. For. t¢ Ul (U VoI,

all (=0 k=12 ...n ' .
Letting N;=1=U% and C;=cos (=¥, 8)sS,N; 2|8]™ !, it readily

follows from (AS) that for all re U‘[u_. vl

N,=A-N,+S) Coe (A6)
and ! )
G =iBINT 131 —C}). C (A7)

Equation {A7) shows that the angle between Yt} and € closes
monotonically as © is practiced. Since S4¢) is 2 monotonic fuaction,
{A6) shows that N {r) oscillates at most once.

In particular, suppose |(0) £ ©1. Then S,(0)S 1|3 since
otherwise

e -:M0)>6-6z2M0)- N0

which impiics . | _
12C/0)> 101 10 ™' 21200 161", -

and tht;s . . ’°-
100> 161> 170N,

which is a contradiction. By (AS5), therefore J=)0)] £ 16} implies
that S{r) is monotone increasing

Proof of Thevrem 2. Inequality (19) is based on the fact that if a
fixed set of patterns GY¥, @Y, 6'A iy classified by =1¢) for all
t20, then

P)e (@YY, 89, .. U, ZN0), . ’ (A8)

for all 12 0. For example. supposc that the patterns are practiced in
the order 8, 842, . @' during the nonoverlapping intervals
.1V 2] ... (U, ¥ Except during theseintervals, #7 =0,
Thus for te [U,, ;) :

Mm@, P I
o | -

2 m Q)™ U . UK = =0,

so that

e 18, IMoNC I (Y. 8N, D).
Forte[U,. W) )
:lls(" - [:‘"(ok -y =1y + eu." {~ (’"r' - u.»)]e -t=Uy
) _‘l,eun“_c-n-u:n). . : (Ag)

and so on.
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Hence o
Moer(e, 894, A0pc (@Y, ... 9, Ay,
) . . . o ! ’: . 'j;

_Condition (19) is then applied using the fact .tl’mt. for any
UeP{0), Ve X (P3O and We X (PONPIO),

U-V>max{e U. W)
because :
U- V2 min {u-p:ue P£O), ve P7(0)}

(Al10)

and
max {u- 0:u€ PO} ve PONPTO} 2 U - W. |

Unil a pattern is reclassified, however, (A8) shows thag
Nt)e H(P7(0) and that #*t)e X (PHONPT(O) for any k=j. Bue
then, by (A10), reclassification is impossible.

_That D{¢) in (20) is monotone decreasing follows from iterations
of (A9). That (21) implics (22) follows just asin the proof of Theorem 1.
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