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Abstract. This paper analyses a model for the parallel
developmcnt and adult coding of ne'Jral feature detec-
tors. The modcl was introducl.'d in Grossberg (1976).
We show how experience c~n retune feature detectors
to respond to a prescribed convex set of spatial patterns.
In particular. the detectors automatically respond to
average features chosen from the set even if the average
features have never been ~xperienced. Using this
procedure. any set of arbitrolf"j spatial patterns can
be recoded, 01: transformed, into any other spatial.patterns 

(unive:rsal recoding), if there are sufficiently
many cells in the network's cortex. Tp-~ network is
built from short term memory (STM) and long term
memory (L TM) mechanisms, includil'g mechanisms
of adnptntion, filtering, contrast enhancement. tuning,
and nonspecific arousal. These mechanisms capture
some experime"!tal properties of plasticity in the kitten
visual cortex. The model also suggests 'it classification
of adult feature~ detector properties in terms of a small
number of func:tional principles. In particular, experi-
ments on retinal dynamics, including amacrine cell
function, are S1.J.ggested.

Pettigrew, 1971; Blakemore and Cooper. 1970: Blake-
more and MItchell. 1973; Hirsch and Spinelli. 19iO.
1971; Rubel and Wiesel. 1970; Wiesel and Hubel. 1963,
196.5). This work led Von der Malsburg (19i3) and
Perez et al. (1974) to construct models of the cortical
tuning process, which they analysed using computer.
methods. -Their models are strikingly similar. Both
use a mechanism of long term memory (L TM) to
encode changes in tuning. This mechanism learns by
classical, or Pavlovian, conditioning (Kimble. 1967)
within a neural network. Such a concept was quali-
tatively described by Hebb (1949) and was rigo,)rously
analysed in its present form by Grossberg (e.g.. 1967,
1970a, 1971. 1974). The LTM mechanism in a given
interneuronal pathway is a plastic synaptic strength
which has two crucial properties: (a) it is computed
from a time average of the product- of prt:synaptic
signals and postsynaptic potentials; (b) it multipli-
catively gates, or shunts. a presynaptic signal befvre
it can perturb the postsynaptic cell.

Given this L TM mechanis~ both models invo~e
various devices to regulate the retinocortical sigr:als
that drive the tuning process. On-center Qff-sJ.1rround
networks undergoing additive interactions. attenuation
of small retinocortical signals at the cortex, and con-
servation of the total synaptic strength impinging on
each cortical cell are used in both models. Gro$sberg
(1976) realized that all of these mechanisms for
distributing signals could be replaced by a minimal
'model for parallel processing of patterns in noise. which
is re;1lized by an on-center off-surround recurrent
network whose interactions are of shunting type
(Grossberg, 1973): Three crucial properties of this
model are: (a) normalization. or adaptation. of total
network activity; (b) contrast enhancement of input
patterns; and (c) short term memory (ST~l) stoc;1g:
of the contrast-enhanced pattern. Using thc:)~ prop-
ertics. Grossberg (1976) ~liminat~ the con:;ervation
of total synaptic strength-which is incompatible with

.,

!~.

1. Introduction

This paper analyses a mod~l for the development of
neural feature detectors during an animars early
experience wil.h its enviro~ment The model also
suggests mcch.lhisms of adult pattern discrimination
that rem:.lin after development hus been completed.
The mod~1 evolved from eurlier expc:rimental and
theoretic4l1 work. VariollS dat4l £howed that there is
a critic4ll period during wbi<:h expt:rim~nlal m:lnipula-
tions C:ln :lltcr the patterns to which feature detectors
in the ,'isual cortex are tuned {e.g~ Barlow and
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classical conditioning-and shows that the tuning
process can be derived rrom adult STM and L TM
principles. The model is schematized in Figure 1. It
describes the int.~raction via plastic synaptic pathways
of two network regions.. Vi and V~. that are separately
C3pablc or norI11I.'lizing patterns. but V2 can also con-
trast enhance patterns and store them in STM. In
the original models or Yon der Malsburg and .Perez
et .al.. Vi was interpreted as a "retina" or "thalamus"
and V1 as "visual cortex". In Pan II. an analogous
anatomy for Vi as "olfactory bulb" and v~ as "pre-
pyrifonn cortex" will be noted.. In .Section 5. a more
microscopic analysis of the model leads to a discussion
of Vi as a composite of retinal receptors. horizontal
celIs.. and bipolar cells. and of V1 as a composite of
amacrine cells and g:tnglion cells. Such varied inter-
pretations are possible because the same functional
pnnciples seem to operate in various anatomies.

Using:. this abstract structure.. it was suggested in
Grossberg (1976) how hi~rarchies or cells capable of
discrimin:tting arbitrary spatial patterns ~an be syn-
thesized. Also a striking analogy was described be-
tween the structllre and properties of certain re:lction-
diffusion systems that have been used to model develop-
ment (Gierer and Meinhardt. 1972: Meinhardt and
Gierer. 1974) and or re\'crberating shunting networks.
This pnpcr continues this program by rigorously
analysing mathematical properties of the mode!- which
thcrcuPQn suggest othcr d~\",-,lopmcntal and adult STM
and L T~1 mcchilnisms th:1t :tre related to it. The follow-
ing scctions will dc.'Scribe these connections with a
minimum or mathcmiltic;ll dctajl. M.tthcmatic:1! proofs
are cpntaincd in the ..\ppcndix.

2. The Tuning Process

This s~tion reviews properties of the model that will
be needed below. Suppose that Vl consists of n states
(or cells, or cell populations) Vli' i= 1, 2, ..., n. which
receive inputs l.{t) whose intensity depends on the
presence of a prescribed feature. or features. in an
external pattern. Let the population response (or
activity, or average potential) of V,l be '"(ll(t). The rela-

ft -

tive input intensity e i = I i1- 1, where 1= L I l.. me:!.-
t-1

sures the relative importance of the feature coded by.
V, in any given input pattern. If the Bj's are constant
during a given time interval, :he inputS arc said to fonn
a spatial pattern. How can the laws governing the .~ Ij(t)
.be determined so that Xl.(t) is capable or accurately
registering Bj? Grossberg (1973) showed that a
bounded, linear law for Xli' in which XII returns to
equilibrium after inputs cease, and in which neither
input pathways nor populations V1i interact, does not
suffice: cr., Grossberg and Levine (1975) for a review.
The problem is that as the total input I increases,
given fixed ej values. each Xli saturates at itS maximal
value.. This does not happen if off-surround interactions
also occur. For example, let the inputs Ii be distributed
via a qonr~urrent, or feedforward. on-center 0[-
surround anatomy undergoing shunting (or mass
:!.ction. or passive membra.ne) interactions, as in Fig-
ure 2. Then

Xli= -Ax,II+(S-X11)Ii-x,11 L It.. (1)
..t.1 with O~'~li(O)~B. At equilibrIum (namely, Xli=O),

Sf (2)

o'\"I/=8/"A"+7'
.!.

I

!(

which is proportional to ej no matter how large I
becomes. Since also BI(A + 1)-1 ~ B, the total activity

ft

.~ I = r. .'t'li never e~ceeds B; it is normalized. or
i-I

adapts. due to automatic gain control by the in-
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hibitory inputs. The normalization property in (2)
shows that .~Ii codes 8j rather th~n instant~neous
nuctuations in I.

To store patterns in STM. recurrent or feedback
pathways are needed to keep signals active after the
inputs ce.'1se. Again the problem of saturation must
be dealt with. so that some type of rccurrent on-center
off-surround anatomy is suggested. The minimal solu-
tion is to let V2 be governed' by a system of (he form

X2j= -A'~2j+(B-'~2j)U('~2j)+12J-.~2j r. f('~2J.
k.*j

(3)

where f(I~') is the average feedback signal produced
by an average activity level IV. and 12j is the total
excitatory input to V2j (Fig. 3a). In particular, V2j
excites itself via the tex:m (B -x2j}f('~2j), and V2k. in-
hibits t'2j via the term -.\" ~jf(.~ 2£;)' for every k:j= j. The
choice of f(w) dramatically influences how recurrent
interactions within V2 transform the input pattern
]<2)=(121.122' 12.,,) through time. Grossberg (1973)
sho\vs that a sigmoid. or S-shaped. f (1\') can reverberate
important inputs in STM after contrast-enhancing
them. yet.can also suppress noise.

Various generalizations of recurrent networks have
been studied. such as

"\
-..\ .

--Y.I I
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Fii- 3. Some recurrent. or feedback, on-center off-surround networks

depends on the activity at v2r This signal therefore
cannot be replicated at popula!ions V2b k* j, unless
recurrent interactiqns within Vz exist. Moreover,
whether or not signals are trainable, whenever 12J is
a sum of signals from many populations, recurrent
signals within V2 prevent saturation at a large saving
of extra signal pathways to the populations L'2k. k*j.

A related scheme for marrying sums of (trainable)
signals with pattern normalization is illustrated in
Figure 3b. Here a sum of signals 12j from Vt perturbs
each V2j' Population V2j thereupon excites an on-
center of cells near V3r and inhibits a broad off-
surround of populations centered at vJj- Thus. when
a pattern ]/2) arrives at V2, it is normalized at VJ before
satu~tion can take placc across v2. Then feedback
signals from VJ to V2 prevent saturation at V2 from
settingm as follows. Each population l"Jj that recei\'es a
large net excitatory signal from V2 excites its on-ct:nter
of cells ne:lr "2r and inhibits a broad off-surround of
populations center~ at 1;2r This feedback inhibition
prevents the pattern /(21 from saturating Vl. m~ch as
recurrent inhibition in Equation (4) works. Figure 3b
can also be expanded to explicitly include inhibitory
interneurons. us in ElIi~ls and Grossberg (1975).

Normalization in VI by (I) occurs gradually in time.
as each .'tli adjusts to its new equilibrium value. but

!
;

I

.-!

N -

-(x2J+D) r. f("\:2JEtj. -, (4)
t-t

D~O. where the excitatory coefficients Ctj ("on-
center] decrease with the distance between popula-
tions V2i and V2j more rapidly than do the inhibitory
coefficients Etj ("off-surround""). Levine and Grossberg
(1976) show that. in such cases. the inhibitory off-

N -

surround signals I f(.'\:~JEtj to V2j can be chosen
t-t

strong enough to offset the saturating effects of inputs
N

12J plus excitatory o.n-center signals I .f(.'\:2JCir
t-t

EJIias and Gros!.berg (1975) study generalizations 'of
(4) in which inhibitory interneurons interact with their...
excItatory counterparts.. .

Below we will consider networks in which the
excitatory sign:1ls I:} to V2 are: sums of signals from
m~ny popul:1tions in VI, Moreover. the syn~ptic
strengths of th~e si,gnals can be tr~ined. This fact
suggests anotht:r reason for making V~ ret:urrent. A
ret:urrcnt 3n:1tomy is needcd within V2 to prevent
satur:1tion in respon~e to trainable signals. To see this.
note in the nonrc.."Currcnt network (1) that e:lch excita-
tory input to {'\i is replic ted as an inhibitory input

-to a~ r \1' k * i. Thl: size of a tr~in:1blc signal to t' 2j
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Fig. 4. Contrast enhancement and STM by recun-ent networ-k:
(a) initial pattern; (b) choice; (c) partial contrast

it wi]) be assumed below to occur instantaneously with.
Xli approaching E>j rather th:ln $iB1(A + 1) -1. These
simplifications yield theorems about the tuning process
that avoi~ unimportant dctuils. The assumption that
normalization occurs instant:tneously is tenable be-
cause the normalized pattern at Vl drives slow changes
in the strength or connections from VI to V 2' Instan-
taneous normalization means that the p:tttern at VI
normalizes itself before the connection strengths have
a chance to sub~tantia])y change. ..

Let the synaptic strength of the pathway from VIi
to the )'\h population 1J2j in V 2 be denoted by :jj{t) (see
Fig. 1). Let the total signal to V2j due to the normalized
pattern e={el. e2. eJ at VI and the vector
zil'{t) = (Zlj{t). ;~2j{t). ..., =")t» of synaptic strengths be

A

S j{t) = e .ZU1(t) = L ek.Zkj{t); (5)
1-1 '

that is. each Z.kj{t) gates the signa! ek. from Vlk on its
way to V2i' arui these gated sigpals combine additively
at V2j (cf., Grossberg. 1967, 1970a, 1971, 1974). Since
zUl(t) determines the size of the input to V2i' given any
pattern e. it is called the classifying vector of VZj at
time t. Every V2i' j= 1,2, N. in V2 receives such a
signal when e is active at VI, In this way, e creates a
pattern of activity across V2.

Given any activity pattern across V2, it can be
transformed in several ways as time goes on. Two main
question.~ about this process are: (a) will the tocal
activity of V2 be suppressed. or will some. of its activities
be stored in STM? and (b) which of the relative activi-
ties across V;t will be preserved. suppressed. or en-
hanced? Several papers (Ellias and Grossberg, 1975;
Grossberg. 1973: Grossberg and Levine. 1975) analyse
how the parnmeters or a reverberating shunting on-
center off-surround network determine the answers
to these questions. Below some of these facts are cited
as they are needed. In particular, if all the activities
are sufficiently small. then they will not be stored in
STM. If they are sufficiently large, then they will be
contrast enhnnced. normalized. and stored in s.TM.
Figure 4 schematizes two storage possibilities. Fig-
ure 4a dcpiCl!; a pattern of activity across V2 before it
is transformed by Vol. Given suitable parameters. if
some of the initial activit1'es exceed a quenching
threshold (Q'r), thc:n V2 will choose the population
having mu:timal initj:tl activity for storage in STM.
as in Figure 4b. Undcr othcr circumstances. all initial
uctivitil=s bclow the QT arc: suppr~sed. where:ls all
injtiul :1ctivitit:s :tbove. QT nre contrast enhunced.
normalizcd. and stored in STM (Fig. -k); t.hat is. partial
contrast in ST:-Vf is possiblc.' Grossberg (1973) show.s
that p:1rtial contra~t C:1n occur iCthe ~ign:ll~ betwecn

,~ .Wpul:1til)n~ in ;1 recurrl:nt ~hunting un-ccntc:r off.

surround nctwork :Ire ~igmoid (S-shapcc.J) functions of

!
I

i
I
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!
"1

their activity levels. Eliias and Grossberg (1975) show
that partial contrast can occur if the self-excitatory
signals of populations in Vl are stronger than their
self.inhibitory signals. and moreover if the excitatory
signals between populations in Vl decrease with inter-
population distance faster than the inhibitory. signals.

The enhancement and STM storage processes also
occur much faster than the slow changes in connection
strengths Zjj; hence, it is assumed below that these
processes occur instantaneously in order to focus on
the slow changes in Zjj-

The slow changes in Zjj are assumed to be deter.
mined by a time averaged product of the signal from
VI i to v%j with the cortical response at Vlj; thus

Zjj= -CijZij+DijX2Jt

where Cij is the decay rate (possibly variable) of Zij.
and Dij is the signal from Vii to v%j- For example, if
Cjj= 1. the Vi and ~ patterns are normalized, and V%
chooses only the population V2j whose initial activity
is maximal for storage in STM (Fig. 4b), then while
v%j is active,

t
c

Zij=-Zjj+ej, roralli=i,2,...,n.

It remains to determine how these Zij and all other
Zit. k*j, change'under other circumstances. To elimi-
nate conceptual and mathematical difficulties that
arise if ':ijC"dn decay even when VI and V2, are inactive.
we Jet a[[ changes in each =ij be determined by which
populations in V2 have their activities chosen for
storage in ST~t. In other words. all changes in =ij
are driven by the feedbuck within the excitatory re-

:J

.I

!

!(
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current loops of V2 that establish STM storage. Then

ZiJ=(-:ij+.eJ-~ZJ (6)
N

where L '~2}.(t)= 1 if STM in V2 is active at time t,
t-t

N

whereas L "Clk(t)=O if STM in Vl is inactive at
k-l

time t. .
If V2 chooses a population for storage in STM, as

in Figure 4b, thc;n -

= { l ifSj>ma.'({e,Sk:k:+:j} '(7)
X2j 0 if Sj<max'{e. Sk:k:+:j} , .

I

.I
I

X%J='

8 )-1 where as in (5). Sj=e.:u") with ej=Ij LIt.

t-l
Equation (7) omits the cases where two or more
sign:lls S) are equal, and are larger than all other
signals and r.. In these cases, the .'tl)'S of such S;s are
equal and add up to 1. Such a normalization rule for
equal maximal signals will be tacitly assumed in all
the cases below. but will othenvise be ignored to avoid
tedious details. Equation (6) shows that Zij can change
only if"Clj> 0.. Equation (7) shows that V1 chooses the
maximal activity for storage in STM. This activity is
norn1alized ("C,2j=O or I).and it corresponds to the pop-
ulation with largest initial signal (Sj>max {St:k*j}).
No changes in Zi) occur if all s~gnals S j are too .small
to bes~ored in STM (all Sj~r.). :

If. partial contrast in STM holds. as in Figure ~,
then the dynamics of a reverberating shunting network
can be approximated by a rule of the form

f(Sfl
[ L f(SJ I-.1 if Sj>r. .

s.,>c
( 8 )10 if SJ<&

where f(w) is an incre:lSing nonnegative function of w
such that \v = 0: e.g... f( \v) = \v2. In (8). the positive
constant r. represents the QT; the function f( \v) controls
how. suprathreshold signals S) will be contrast en-
hanced; and the ratio of f(SJ) to L. {J(SJ:St>r.}
expresses the norm;llization of STM.

.
!

.
I
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3. Ritualistic Pattern Classification
t..

.After developmentill tuning has taken pluce. the above
mcchanisms dc:scribc a model of p,lttern classi[jC'.ltion
in the -adult- nc:twork. These n1cch:lnisms will be
describl.-d first ilS interesting in thcmsc:lves. and us a
helpful pr~ludc to undC:T$tanding tht: tuning process.
Thc:y ilre C:lpubll: or clas£irying ilrbitrilrily compliC'olted
spatiill .patterns into mutu:1lly nonoverlapping. or
parti;uly ovcrl.lpping. £c:ts dcpcnding on wht:thcr (7)
or (8) holds. Thc£t: ml.'l.:h:1nis",!s rt::1li...c b:1£ic principll.os

.~ of p;1ttern discrimination using shunting interolctions...

....

!(.

An alternative scheme of pattern discrimination usinl
a mixture of shunting and additive-'mechanlsms ha~

" I

already becn given (Grossberg. 1970b, 1971), Togethe;
these schemes suggest numerous anatomical anc
physiological variations thut embody the same smal
class of functwnal principles, Since particular anato,
mies imply that particular physiological rules should
be operative, intriguing questions about the dynamics

.of various neural structurcs. such as retina, neocortex.
hippocampus, and cerebe!lum. are suggested.

.First consider what happens if V2 chooses .a pop-
u!ation for storage in STM. After learning ceases lthat
is, Zjj = 0), all classifying vectors z'1I arc. constant in
time. and Equations (6) and (7) reduce to the statement
that population V2j is stored in STM if

SJ>max {e,Sk:k*j}.. (9)
In other words, V2j codes all patterns e such that (9)
holds; alternativc!y stated,' "2j is a feature, dete or
in the sense that all pattcrns

Pj= {e:e. z(J»max (~e. r11:k*;)} (10)

are c!assified by "2}- The set P j defines a COI1L"e.'t cone C j
in the space of nonnegative input vectors J =

(11,11, IJ, since if two such vectors jll and J(:!I
are in Cjo then so are all the vectors :xjCII, 111(21, and
7]<11+(1-7)]<%1, where ~>O, P>O, and O<i'< 1. The
convex cone C j defines the feature coded by L"2j-

The c!assification rule in (10) has an infotmative
geometrical interpreta tion in n-dimensional Euclidean
space. The signa! S j= e ~ =Ij) is the inner product of

e and~ "(~ Greenspan and Benney, 1973). Letting

II!.!I = I ~r denote the Euclidean length of any real
t=1

vector ~=(~1'~2""'~J, and COS(11,CJJ) denote the
cosine between two vectors 'l and CJJ' it is clementary
that
Sj= lIeli UzuIIi cos (e, zu').

In other words, the signal Sj is the length of the
projection of the normalized pattern e on the c!assify-
ing vector ;fJI times the length of ;lJ/. Thus if all ill,
j= I, 2, ..., N. have equal length. thcn among all pat-
terns with thc same length, (10) classifies all patterns e
in PJ whose angle with rJ/ is smaller than the angles
between e and any zitI. k* j. and is small enough to
satisfy the £-condition. In particular, patterns e that
are parallel to ;fJI are classified in P j' The choicc of
classifying vectors ziJ/ herl:by determines how the
patterns e will be divided up. Section 8 will show that
the tuning mechanism (6)-{7) makes the =,JI v~tors
more p~rallel ta prescribed p~tte.ns 8. and thereupon
changes the classifying: sets P 1" In summary I

(i) the number of populations in V2 dctermipes the
m~:timum number N of pattern classes P j:

(ii) the choice of classifying vectors =UI determines
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B) Partial Filtering b}' Signals.
"

The signals S J generated at Vz by a normaliztd pqttern
on Vi create the-data base on which later computations
are determined. The signal generating rule (5), for
example, has the following important property. Sup-
pose that an input / j(t) = e j/(r) is .normalized to ."'( Ii'
as in (2). rather than to the approximate value $j.

.The signal from Vi to l'Zj becomes

Sj=Bl(A+J)-ISJ

an~ (9) is replaced by the analogous rule

SJ> max {e, St:k=!= j} .

Then V1 will classify a given pattern into the same
class PJ no matter how large I is chosen. In other
words, the signal generating rule is invariant unde..
suprathreshold variations of the total activity at J-,
If 4 is the transduced receptor response to an external
input J/-that is. I/=g(Jj)-then the signal-generating
rule is invariant, given any .:(j)'s, if g( ~v) = ~vP for some

p>O.

how different these classes C:ln be: for ex:lmple. choos-
ing all vectors :(J") equal \\'ill generate one class that is
redun'dantly represented by all r2j: and

(iii) the size or e determines how similar patterns
must be to' be classified by the S:lme C2r

If the choice rule (7) is replaccd by the partial con-
trast rule (8). then an imp,ortant new possibility o\."curs,
which can be described either by studying STM re-.-
sponses to all e at fixed l'2r or to a fixed e it all v2r
In the former case, each '-':Ii has a tll1!illg curre, or
gf!l1erali=utio!! gr(IJient; namely, a maximal response
to certain patterns, and submaximal responses to
other patterns. In the latter case. each pattern e is
filtered by V2 in a way that shows hQw close e .lies
to each of the- classifying vectors ;;In. The pattern will
only be classified by l'2j'tbat is, stored in STM~if it
lies sufficiently close to zlJ"} for its signal Si to exceed
the quenching threshold of V:.

For examplc. suppose that some of the classifying
vectors zIJ1 are chosen to tTeatt: large signals at V2
when vertical lines perturb Vi, and that other;UJ create
large signals at V2 when horizontal lines perturb Vi.
If a pattern containing both horizontal and vertical
lines perturbs VI, then the population activities in V2
corresponding to both types of lines can be stored in
STM. unless competition between their populations
drives all activity below the QT. Now let ~ be another
"cortex" that receives signals from V2, in the same
fashion that V2 receives signals from VI. Giv.en an
appropriate choice of classifying vectors for V3,. there
can exist cells in V3 tJ:lat fire in STM only if horizontal
and vertical lines perturb a prescribed region of Vi;
e.g.. hypercomplex cells. The existence of tuning curves
in a given cortex VI hereby incrcases the discriminative
capabilities of the next cortex VI.i in a hierarchy:
~f.. Grossberg (1976).

The above mechanisms will now be discussed as
cases of a general scheme of pattern classification.
This is done with two goals in mind: firstly, to empha-
size thtlt these mechtlnisms might well exist in other
than "retinocortical- an:llogs: and secondly, to gener.lte
explicit experimental directives in :l variety of neurul
structures. One such directive will be described in
Section S.

I

4. Shunts vs. Additive Interactions
a... .\1~hanism... or Pattern Classification .

The processing stages utilized in Sc:ction 3 are the

rol1owi~g: -
A) Nonnali:ation

Input p~ttcrns arc normalizt.-d in ~'l by nn on<entcr
:~ Qrr-~urround anatomy undergoillg shunting intcr-

actiuns.

C) Contrast Enhancemenc of Signals

The signals Sj are contrast enhanced by the recurrent.
on-center ofT-surround anatomy within Vz. and either
a choice (Fig. 4b) or a tuning curve (Fig. 4c) results.

Two successive stages of lateral inhibition are
needed in this model. The first stage normalizes input
patterns. The second stage sharpens the filtering of
signals.

Additive mechanisms can also achieve classifica-
tion of arbitrarily complicated spatial patterns. These
mechanisms also employ three successive stages A}-C)
of pattern processing. with stage A) normalizing input
patterns. stages A) and C) using inhibitory interactions,
and stage C) completing the pattern classification,
that is begun by the signal generating rules of stage B).
The additive model can differ in several respects from
thc shunting model:

(i) its anatomy can be feedforward; that is, there
need not bc a: recurrent" network in stage C);

(ii) threshold rules replace the inner product signal-
generating rule (5) to detcrmine partial filtering of
signals; and

(iii) the responses in time of stages A}-C) to a
sustained pattern at Vi are not the same in the additive
model. For example, sustained responses in the shunt-
ing model can be replaced by responses to the onset and
offset of the pattern in the additive model (Grossberg.
1970b).

Mixtures of additive and shunting mechanisms '.lrc
also possiblc. Thc additive mechanisms will now be
summarized to illustrate the b~sic stages A}-C).

!(
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Fie..5. NonnaliZ:ltion and low-band filtering by subtractive non-
S(1Ccir1C interneuron and signal threshold rules .-
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F~. 6. (a) Specific subtractive inhibitory intcrneurons; (b) Non-
specific inhibitory inEerncurons

j
i

the choice of threshold pattern eUJ =«9lj7 82ft. .., e,,)
rather than by the choice of classifying vector :;1;1 =
(Zli' Z2i' ..., Z.1>.

Stage q is needed because the total signal to 1:2j
can be maximized by patterns <9 which are very
different from the threshold pattern eUJ. This problem
arises because the signals Kij continue to grow linearly
as a function of I after the threshold value eijei-l
is exceeded. Grossberg (1970b) shows that the problem
can be avoided by inhibiting each signal Kij irit gets too
large. For example, let ~e net signal from Vli to V2j
be

su=K'J-~[KiJ- PJ+ , (12)

where ~> 1 and 0 < p ~ 1. This mechanism inhibits the
signal from VIi to V2J if it represents a e, which is too
much larger than <9ir Equation (12) can be realized
by any of the several inhibitory mechanisms: a specific
subtractive inhibitory interneuron (Fig.6a). a switch-
over from net excitation to net inhibition when the
spiking frequency in the pathway from L.li to V2J
becomes too large (Bennett 1971; Blackenship et al..
1971; Wachtel and Kandel 1971), or postsynaptic
blockade of the V2j cell membrane at sufficiently high
spiking frequencies. Signal Sij is positive only if ei
is sufficiently close to eiJ in value. Stage C) is com-
pleted by choosing the signal threshold of V2j so high
thut t'21 only fires if tIll signuls S;j. i = 1. 2. II.. are
positive: that is. only if the input pattern e is close
to the threshold pattern eUI. The second stage of

.1
I

I
'1

An additive nonspecific inhibitory interneuron
normalizes patterns at VI (Fig. 5). Many variations on
this theme exist (Grossberg. 1970b) in whjch such
parnmeters as the lateral spread of inhibition. the
number of cell layers. and the rates of excitatory and
inhibitory dec:ty can be varied. The idea in its simplest
form is this. The excitatory input Ii excites a bifurcating
pathway. One branch of the pathwAY is specific.- and
the other branch is nonspecific. The lateral inhibitory
interneuron "1.1t+ I tics in the nonspecific. bran~h. It
sums the excitatory inputs Ij. and generates a non-
specific signal back to all the 'specific pathways if a
signal threshold r is exceeded.' Each input Ii also
generates a specific signal from 171i that is a ljn~r func-
tion of Ij above a signal thrcshold. Each pathway from
OIL in VI to L'lJ in V2 has its own signal threshold Fir
The net signal from Uti to °lj is

K'J=[/,-FiJ+ -ltt/k.-F}+.

whcrethe notation [u]+ = m:l.~ (u. 0) defines the thresh-
old rule-Define eij=ri;-t and let the spatial pattern
Ii=eil perturb VI. Then

Ki)=[B)-eijr]+-[/-r]+:-. -(11)

The net signal KiJ hus the following properties:
(i) Kjj~ 0 for Olll values or / >0 if ei ~ eij; .

(ii) K. >0 for I> ejje,- I if ei> eij; and

(iii) K'j~(ej- eipr for all />0.
In other ~'ord~ by (i). no signal is emitted from °11
to Cl} if 9i<8,j: by (ii). if 8i> eii' Ol signal is emitted
from t.ti if I exC\.'I.-ds a thrcshold depending on ej and

.B1j: and by (iii). thc toral acti\;i.ty in the cclls rli is nor-
muliz,ed. P:1rti.tl fiIlcring of signu~'is thus achieved by

i

"

!i
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inhibition hereby completes the p~rti~1 filtcring pro-
cess by' choosing n populution r~j in v~ to code aUl,
as in Figure 4b. If the specific inhibitory interneurons
if Figure 6a ure rcplaccd by :1 luteral spread of inhibi-
tion,' as in Figure 6tr, then a tuning curve is gener~ted,
as in Figure 4c.

S. What Do Retinal Amacrine Cells Do?..
This section illustrates how the principles A)-C).can
generate interesting questions about purticular neural
processes. Grossberg (1970b. 1972) introduces a retinal
model in which shunting and additive interactions
both occur. In this model. retinal amacrine cells ~re
exampl~ of th~ inhibitory interaction in stage C). We
will note that amacrine cells have opposite effects on
signals if they realize a shunting rather than an additive
model. In the retinul model of Grossberg (1972), nor-
malization is uccomplished by un on-center off-sur-
round ~natomy undergoing shunting interactions.
Analogously, in vivo receptors excite bipolar cells
(on-center) as well as horizontal cells. and the horizontal
cells inhibit bipolar cells via their lateral interactions
(ofT-surround). Partial filtering or the normalized inputs
is accomplished by signal thresholds; for example.
using the. norm~lized .~ Ii activities in (2). the simplest
signal function from Cli to 1i2j is Kij=[Xli-rij]+.
Stage C) is th'"n accomplished by a mechanism such
as (t2), by which large signals are inhibited. Whether
a choice (Fig. 4b) or a tuning curve (Fig. 4c) is generated
depends. in part. on how broadly these lateral inhi-
bitory signals that complete stage q are distributed.
This second st~ge of inhibition is identified with the
inhibition that amacrine cells. fed by bipolur cell
activity, generdte at ganglion cells. Grossberg (1972)
notes data that support the idca thnt stage C) is
realized by an additive .mechunism 'such as (12). In
particulnr, amucrine celts orten respond when an
input puttern is turnt.'d on. or off. or both. Two questions
about amncrinc cells now suggest themselves.

(i) If this interpretation or amncrine cells is true,
then they will shut off signals rrom the bipolar cells
to the ganglion cells when these signnls become too
lurge; that is. they act as high-b.lnd filters. By contrast.
inhibition in stagc C) or the ~hunting model s~uts off
signals if thcy become too sm(zll. Opp'osite cffccts due
to the second inhibitory stage C".!n hereby cre'J.ie n
simil:1r functionnl transrorma tion of thc: input pattern!
If a shunting role for amucrinc cclls is soughL then
tht: following typc:$ of anutomy would be nnticipated:
inhibitory bipolur-to-am:1crinc-to-bipolar cell feed-
back thut contrJst enhanccs thl: receptor-to-bipolar
sign.al or inhibitory ganglion-to:am~lcrinl:-to-g:ln-

~ -glion ccll fl:\.-ub~l\:k that contra~t I:nh:lnc~. the bipl"llar-
to" gunglion cl:ll signals. or $l)ml: functionall)' similnr

feedb:1ck loop. To decide between these two possible
roles for amacrine cells, one must test. \y,he,~Fr :1m:l-
crine cells suppress large sign:1ls or small" ones: in
either case. if the model is :1pplicable. contr:lst enhance-
ment of the norm:llized :lnd filtered retinul pattern
is the result, 'so that this property cannot be used as
a criterion.

(ii) Does the spatial extent of l:1teral amacrine
interaction .determine the amount of contrast. or
the breadth of the tuning curves. in ganglion cell re-
sponses, as in Figures 4b and 4c? For example. there
exist narrow field diffuse amacrine cells. wide field
diffuse amacrine cells, stratified diffuse amacrine cells.
and unstratified amacrine cells (Boycott and Dowling.
1969). Do these specializations guarant~ particular
tuning characteristics in the corresponding ganglion
cells?

Grossberg (1972) also suggests a cerebellar an:llog
based on the same principles. Thus at least formal
aspects of various neural structures seem to be emerg-
ing as manifestations of common principles. These
results suggest a program of classifying seemingly
different anatomical and physiological data according
to whether they realize similar functional transfom'.a-
tions of patterned neural activity, such as total activity
normalization, partial filtering by signals, and contrast
enhancement of the signal pattern. Below are described
certain properties of th~ ~hunting mechanism.that will
be needed when development is discussed.

.

6. Arousal as a Tuning Mechanism

The recurrent networks in Vz all have a quenching
threshold (QT); namely, a criterion activity level that
must be exceeded before a population's activity can
reverberate in STM. Changing the QT or. equivalently.
changing the size of signals to Vz, can retune the
responsiveness of populations in Vz to prescribed
patterns at VI. For example, suppose that an un-
expected, or novel. event triggers a nonspecific arousal
input to Vz. which magnifies all the signals from VI
to Vz (see Part II). Then certain signals. which could
not otherwise be stored in STM, will exceed the QT
and 'be stored. For example, if Vz is capable or partial
contrast in STM and also receives a nonspecific arousal
input. then (8) can be replaced by

'- r !(~Sfl [~~>I !«!>St)}-l if ~Sj>t 3

"CZj-l° if ~Sj<t (1 )

where <!> is an incre-clsing runction or the arousal level.
Note thut an increase in cI> allows more V,z populations
to reverber:J.te in STM: cr.. Grossberg (1973) ror mathe-
mati~~11 proors. In a similar rashion. if:ln unexpe\:ted
event triggers nonspecific shunting inhibition of the

f .--""..
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simple and'lucid way. The first result describes how
this system responds to a single pattern that is iterative-
ly p!esented through time. "

"

.,
I
I
I

I
I
i
I
I

inhibitory intemeurqns in the off-surrounds of V2. then
the QT will decrease (Grossberg. 1973; Ellias and
Grossberg. L975). yielding an equivalent effect Equa-
tion (8) C:ln then be changed to

{ !(SP[ L !(SJ }-1 if Sj><I>*e

s.>."&
(14)X2J= 0 if SJ«I>*e

where cjI* is a decre'lsing function of the arousal level.
.Reductions in arousal level have the .opposite

effect. For example. if( 13) holds. and arousal is lowered
until only one population in V2 exceeds the QT. then
a choice will be made in STM. as in Figure 4b. Thus
a choice in STM can be due either to structural proper-
ties of the network. such as the rules for generating
signals bctween populations in V2 [cf.. the faster-than-
linear signal function in Grossberg (L 973)]. or to an
arousal level that is not high enough to create a tuning
curve. Similarly, if arousal is too small, then all func-
tions '~2j in (13) will always equal zero, and no STM
storage will occur;

Changes in arousal can have a profound influence
on the time course of L TM. as in (6), because they
change the STM patterns that drive the learning
process. For example. if during development arousal
level is chosen to produc.e :l choice in STM. thcn the
tuning Qf classifying vectors iJ' will be sharper than
if the arousal level were chosen. to generate partial
contrast in STM.

The influence of arousal on tuning ofSTM patterns
can also be expressed in another way. which suggests
a mechanism that will be needed in' Part II when
univerSal recoding is discussed.

7. Arousal as a Search Mechanism

Suppose that arousal level is fixed during learning
trials. and that a given pattern e at Vi does not create
any STM storage at V1 because all the inner products
e .:;iJ') arc too small If arousal level is then increased
in (13) until some .'t ~j.> 0. STM storage win occur. In
other words. changing the arouSOlI 1C'w'ei t.'an facilitate
search for a suitable classifying- population in V%.

Why docs arouSOlllevcl incr~se if no STM storage
oCcurs at V:? This is a property or the expeCtation
mechanism that is devcloped In Part 11. Also in P~rt II
a 'pOlttcrn e at V. that is not cl~ssificd by V% will use
this mcchanism to rcll:;.lSe ~ subliminal sc:1rch routine
that tcrmin&1tcs when an admissible classification
occurs.

'1
I
I
t
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Theorem J (One Parr ern)

Given a pattern e, suppose that there exists a uniquej
such that. ..

Sj(O»max {e. Sk(O):k=t=j}. (15)

Let e be practiced during a sequence of nonoverlapp-
ing intervals [Uk, VJ, k=I,2, Then the angle be-
tween ;;Ijl(t) and e monotonically decreases. the signal
S J{t) is monotonically attracted towards ile 112 and
IIzU'U% oscillates at most once as it pursues Sj(C). In
particular, if II z'j)(0) II ~ lIeli. then SJ{C) is monotone
increasing. Except in the trivial case that S J{O) = iI e :12,
the limiting relations
lim II zij)(c) II % = lim S J{r) = lie 112 r )
t-~ t-=
hold if and only if

~

L (Vt-UJ=oo. .(17)
t-1

Remark. Ifz'll(O) is small, in the sense that nzij)(O)1I ~ :; ell.
then by Theorem 1, as time goes on. the learning pro-
cess maximizes the inner product signal S j(c)= e. ;ijl(C)
over all possible choices of zU> such that ilrj)ii ~ ile~.
This follows from the obvious fact that

sup{e.tp:lltpll~lIell}=lIeIl2.

Otherwise expressed. learning makes zUI parallel to $.
and normalizes the length of zU1.

What happens if several different spatial patterns
elt)=(8\t!. e~kl e~t~. k=l, 2 M. all perturb
Vi at different times? How are changes in the =ijS due
to one pattern prevented from contradicting changes
in the %';is due to a different pattern? The choice-making
property of V2 does this for us; it acts as a sampling
device that prevents contradictions from occurring. A
heuristic argument will now be given to suggest how
sampling works. This argument will then be refined
and made rigorous. For definiteness, suppose that ~"[
spatial patterns elt! are chosen. 1\1 ~ N, such that their
signals at ~ime t =0 satisfy

elt).ziil(O»max {e.elk.I;=(j)(O):j*k} (18)

for ~1I k= 1.2, J\1. In other words. at time c =0. e'tl
is coded by V:k.' Let el 1) be the first pattern to perturb

VI, By (18). population 1:21 receives the largest signal
from VI, All othcr populations V2rj* I. are thereupon
inhibited by the off-surround of I; 2l. whereas t:21 rever-
berates in STM. By (6). none of the synaptic strengths
;iil(c). j* l. can 1C'.lrn while ell) is presented.. As in
Theorem l. presenting el I' makes ;;f lIlt) more parall~1

.
, .;.-..
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1
8. Dc,-eiopment of an sni Code

Systcm (6)-- (7) will bc :In:Jlysl.-d mathcmatiCllly bCClUse
i.t illustr.1t~ propl:rti~ t)r the mol.fl:l in u purticularly
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! . !(



130

" z(Z!(,)
"'"-

r1)\o)

(a) (bl .
Fig. 7. Pr:ll:lidng e(11 brings :,11(t) closer to etll :lnc.! e(1) than
:JI(O)

to e( II as t increases. Consequently, if a different pattern.

say e121. perturbs V! on the next learning trial. then it
1will excite t'22 more than any other V2p j * 2: it cannot
c:xcite "'21 because the coefficients rll(t) are more
parallel to ac II than before; and it cannot excite any

!72.t j=+= 1.2. because the V2i coefficientS ZU1(t) still equal
.:u (0). In response to e( I, &122 inhibits all other V2p
j' =+= '- Consequently none of the 1.'2} coefficients ;U1(1)
(:an learn. j:+: 2; learning makes the coefficients r2)(I)
become more parallel to a12) as t increases. The same
()CCurs on all learning trials. By inhibiting the post-
!;ynaptic part of the learning mechanism in all but the
(:hosen V2 population. the on-center off-surround net-
'~ork in V2 samples .one vector zUl(t) of trainable
(:oefficients at any time. In this way. V: can learn to
distinguish as many as N patterns if it contains N
populations. / -

This argument is almost correct It fails, in general,
because by making (say) =' II(t) more parallel to alii,
it is also possible to make zill(t} more parallel to a12)
than .:'2)(0) is. : nus when al21 is presented. it will be
(:oded by V21 rather than v22.In other words. practicing
one pattern can recode other patterns. A typical ex-
~lmple of this property is illustrated in Figure 7. Fig-
'Ire 7a depicts the two dimensional patterns al 11 and
/9121 as solid vectors. and the two classifying vectors
,~!I{O) and ;121(0) as dotted vectors. Cle:lrly (18) holds
Jor j = 1. 2 As a result of pr:lcticing ~ I) during a fixed

interval. Figure7b is produced. Note th:lt $121. :11(t»
$121. ;f21(t) after the practice interval terminates. CoQ-
~iequently. L'21' r:lther th:ln t'2~' codes $1:1 when el21
is pr:lcticed. This property cqn be iteratcd to show
how systemlltic trends in the' sequence of practiced
I~atterns C'.in produce systematic drifts in recoding.
Consider Figure 8. Again two dimensional patterns
are denotcd by solid vectors and clas£ifying vectors
:lre denoted by dotted vl..'Ctors. Let the patterns be
]~rncticl:d ill tpl: order $( fI._81~1. 81.\11. whcrc 1\1 ~ N.
1By succcssi\'cly practicing ell!. e121. $11'- II. the
vector :llllt) is dra~ged :llong clockwi~e until it almost
reuchc£ 841'- II. Th~~ e(I" is pr:lcticcd. and since 8tl" is

'~(od}-'d by t'2~' :III{t) $tops moving and ::(~I(l) begins

.

.

to move clockwise: =C21(t) continues to move clockwise
while 811'.11, 811'.21, ..., (9121'-11 are practiced. Then
zi.JI(I) begins, to move clockwise. and so on."Th~clock-
wise drift in the practice schedule hereby shifts each
z(j)(t},j = I. 2. J\1- 1. to a position that is clQse to the

one z'j+ 11(0) occupied. In other ~ords. essentially I.lll
vectors in v~ are reclassified. If the same practice
schedule 8111, 81~', 81.\(1 is repeated on a second

.learning trial. then essentially all V2i are recoded by
V2.i+2, and so on. Each learning trial recodes V~ until
all the N populations in V2 code one of the N most

, clockwise vectors (9lkl. This asymptotic coding of V 2-
is, stable, except for a wild oscill,ation in the coding
of V~1 on each learning trial. if the same practice
schedule is always repeated. If, however, a coun.ter-
clockwise, drift in practiced patterns is then imposed,
all of V% will be recoded until the N most counter-
clockwise vectors 81kl are coded. In general. if there
are many patterns relative to the number of popula-
tions in V 2' and if the statistical structure of the practice
sequences continually changes. then there need not
exist a stable coding rule in V~. This is quite unsatis-
factory.

By contrast. if there are few. or sparse, patterns
relative to the number of populations in V2, then a
stable coding rule does exist, and the STM choice
rule in V% does provide an effective sampling technique.
Such a situation is approximated, for example, when
the network is exposed to a "visually deprived" en-
vironmen~ in imitation, of experiments on young
animals. A theorem concerning this case will now be
stated. if oniy to suggest what .auxiliary mechanisms
will be needed to establish a stable coding rule in the
general case. This theorem shows how populations
learn to code convex regions of features. In particular.
if v%j learns to code a certain set of features. then it
automatically codes average features derived from
this set.

The following nomenclature will be needed to state
K

the theorem: A partition EbJ f/k of a finite set .?J is
k-1

a subdivision of.?J into nonoverlapping and ~xhaustive
subsets :?j' The conre.'t hull .f('(~) of a finite set .?
is the set of all convex combinations of elements in .::J;
for example. if.?= {ell I, el%l. r;;IM)}. then,

{ M' , M

}..t('(.9)= 2: )'k8Ikl: each ;'k~O and 2: It= 1 .
k-1 k-1

Given a set ;!,4 with subset .?J.. let ~ = f/\.2 denote the
set of elements in .~ that are not in .:J.. If the classifying
vector :,j}(t) codes the set of pattcrns ,.pjCt}. let ..iJj*(C)=
:!I' )C)u{~J'I(C)}. The distance between a vector P :lnd a
s~t of vectors d. dcnoted by IIP-.::},II, is defined by

UP-.:.!II =inf{iIP-QII:Qe.:l.}.
~ 11

.-..
!
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Fig. 8. Pr:lcticing a sequence of spatial patterns C:ln
recode all the populations
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Theorem.2 (Sparse Patterns) I .

Let the network practice any" set fP= {ell): i=
1,2, ..., M} of patterns for which there exists a partition

N

.9 = EPJ:? k(O) such that I
1-1--

miD {u. v: uE:1' J{O), liE i1Jj(O)} > max {u. U:UEf J°), .'

vE.9*(O)\:?jlO)} i (19)

forallj= 1.2. ...,N. Th~!?);)~.9J{O}andthe~nctions

D )t) = IIz'JI(t) -Jt'(9<J)(t»II I (20)

are monotone decreasing for t~O and j= ~.2, N.
If moreover the patterns in ;?<JI(O) are- practiced in
intervals [U i- ~..J. 171= 1, 2, ..., such that

~ ~,

r. (~M-Ui.J=(X) -::: (21)
.-1 :
then ..

Ii~ DJ{t)~O. .(.22),-=
Rem~rks. In other words. if the classifYin~ vectors
initially code the patterns into sparse classes, in the
sense of (19). then this code persistS through time, and
the classifying vectors approach a convex combination
of their codcd patterns. As (20) and (22) show, learning
permits e:lch rlJ to respond as vigorously ~ possible
to its class of coded patterns.

The above results indir.'ate that. giv~ a fixed
number of patterns, it becomes easier to. establish a
stable code for them us the 'number of popul:ltions
in Vl incr~.lses. Once Jri is constructed. ho\vever, it is
not possible to incrc:lse its number of populations at
will Moreover. ilr rico. an enormous vuriety of pOltterns
typiQllly barr-.lg~ the visuul system. How C".ln a stable
code b.: guur.lnteed no matter how many I patterns
perturb V(! -

One W:lY is to :lssumc that a biochemic:1lly deter-
mined crit;Cill pt'r;cxl e.'\isls during which th.: =ij'£ are:~ 
.COlpable oflC'.1rning: once thc:critiCOlI perioo te[minutes., .

some chemical factor is removed and the Ziis remain
fiXed in the last code to be established. The'existence
of a critical period has been reported (Hubel and
Wiesel. 1970), but whether it is due to a chemical
factor, or merely to a chemical factor, is as yet unknown.
From a formal point of view, such a mechanism suffers
from several significant related disadvantages. The
most obvious one is that all the coded information
that is learned throughout the critical period can be
obliterated if its last pha:se exhibits an unlikely statis-
tiCal trend-In addition. a repetitive statistical trend can
prevent many patterns from being coded at all. For
example. in Figure 8, once toe classifying vectors code
the. N most clockwise pattern~ many of the other
M -N patterns might be too far away from zl 1) to

satisfy the t-condition in (7); they will then not be
coded by any population. Yet ~ch of these 1\1 -lV
patterns has been presented as frequently as the N
patterns that are coded. More generally, because
populations which are already coded can be recoded
so easily, it is hard to search for as yet uncommitted
populations to code as yet un coded patterns. This
problem prevents a universal recoding from being
achieved (see Part II).

Th~e negative remarks can be supplcmented by
intriguing positive observations. Stabilizing the code
seems to require the same formal machinery that is
needed in models of adult attention and discrimination
learning (Grossberg, 1975). This machinery. in turn.
is highly evokative of data concerning at~entional
modulation of olfactory patterns by the prepyriform
corte.'t of cats (Freeman. 1974). Auxiliary mechanisms
for stabilizing the code will therefore be motivated
bc:low. It. is understood that a biochemically triggered
critical period can coe.'tist with these mechanisms. or
indeed can preempt them in sufficiently primitive
organisms.

Various mechanisms can be contemplated which
partially stnbilizc the code. but \vhich ~re not suffici.:nt.
A satiation mechanism will be sketched below to
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fig. 9. PrOIcti\.;ng in the order 1.2. 3. 4. 5. 6 can recode :III the popula-
tions even if satiation exists -

clarify what is needed. Consider (6) with

~)= { Gj(t) if Sj(c)Gj(t»max{t,Sk(t)Gk(t):k=l=j}
Xl)l 0 if Sjl)G){l)<max{t,Sk(t)Gk(t):k=l=j}

(23)
where-i

.
I
i

ability to change through time does not suffice. since
a very different pattern can still be coded by ;In if
this pattern elicits a larger signal a[ V1.1,-say a1tie [0 the
size' of IIzU111 rather than the direction of vector :£;),
than at any of the uncommited populations.

Requirements (A) and (8) constrain the interaction
of STM and L TM mechanisms. given that i6) holds.
For example, by (6), if a pattern e creates signals
while 171.1 is active in STM, then ;U1(t) will change.
Suppose that a sequence e( II, e<21 of two very different
patterns is successively presented to VI, and that ;;(I)(t)
codes e(ll. In response to elll, Vz.l is activated. but
z<.ll(t) does not substantially change because it already

codes e( II. Now let e~:Z1 perturb VI. By requirement
(B). zlll(t) must not be allowed to change. By (6). =~II(C)
will change unless either no signal is emitted from
VI when V21 is active. or a signal is emitted from VI
only after: V2 t is inactivated. These two cases will be
separately considered in the next two paragraphs.

In the former case. some type of feedback to VI
must suppress the V1-to-V2 signals that would other-
wise be generated by e<21. This feedback somehow
tells VI that e~21 is very different from the pattern
e<l) that is presently coded in STM. By (A). however,
e<21 can generate V1-to-V2 signals at some time, either
to search for a classifying vector, or to activate its
already learned STM representation. Thus after
V1-tO-V2 signals are suppressed long enough for STM
activity in V21 to also be suppressed, then VI-to- V:z
signals are reactivated. .

In the-latter case. changing 81l) to e(2) somehow
suppresses the STM activity- that codes eltl; in
particular, somehow the network can te.1l when the
spatial patterns that perturb VI are changed. In both
cases, the same general issue is raised: how does the
network process a temporal succession eOI, e<2), ...,
elk), ...of spatial patterns elk) = (e\kl, e~kl, ..., e~kl);
that is, a space-time pattern. Space-time patterns are
the typical inputs to a receptive field in riL.o. The
problem of stabilizing the STM code forces us to
consider: their processing in some detail Part II of
this paper considers this problem.
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Appendix

Proof of Theorem 1. Consider the case in which

lelJ.>S)O»max {t,S.(O):k+J1. (Al)

The case in which SJ{OI~lel~ can be treated similar~. First it will
be sho~'n that if the inequalities

lel~ > S j.tt> max (~St(t): k oF j} I (A2)

hold at any time t = Te 0 [U -V.J. then they hot(f at all times
.-,

."D

le[i:l:;)nU [U_J.'..]. By (A2). x~jlT)=l and %l.(T)=O. k+'j.
.-1

...

In (24), g(\v) is a monotone increasing function such
that g{O) =0 and g(1)= 1. K(\v) is a monotone decreas-
ing function such that K{O) = 1 and K{Oj)=O; for

example, K(\~')=e-w. Equation (23) says that persistent
.activation of V2j causes its STM response to satiate,

or adapt; if V2j is. active during a sufficiently long
interval. its activity approaches zero. Correspondingly,
z<Jrs fluctuations are damped within a time interval
of fixed length. Such a mechanism is inadequate if the
training schedule allows V2j to recover its maximal
strength. Figure 9 shows. for example. an ordering of
patterns that permits recoding of essentially all popula-
tions in V2-

This problem is only made worse by replacing the
choice rule in (23) by a partial contrast rule such as

f f(SjGfl .fI j(SlGJ J SjGj>S

X -S..G..>~
2)- . f0 J SjGj<t.

Her~ if a prescribed pattcrn a causes a maximal STM
response at rzr then the activity .'C2j is suppressed by
G) morc rapidly than the ac~ivi tics or other a-activated
populations. There can consequently be a shift in the
locus of mn.ximal responsiveness even to a single

pattern-th:tt is, recoding-in addition to the difficulty
cited in Figure 9. .

Such examples clarify what is essential:
(A) Bifvre :11'(£) le:1rns it pattern. or cl:1sS of reJated

pattcrns. it must be ablc -tC'l nuctu~te freely in response
to puttc:m inputs in sc:lrch ma classification.

(B) AJc,'r :1J'1(£) lC:.l!jns:1 p.lttern. it must be prevented
from coding very diffc:rcllt p.ttterns. no matter what-~ 

training schedule is. In particular, satiating :lJrS
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'~onsequently. by (6).

:rfJT}- -=,j.'71 + 9, (AJ)

and. .

i,&('71-0. (A4).' ..

Iror k", j and i-I. 2. n.. By (A2HA4).

.Sj.'71- -S).7l+leI1 .
.(AS)>O-S"'71. .. .., .

k.*J~ Thus (A2) holds for all re[7: :X:)r\ U (U.. V.J. By (A2) a,nd
» .-, .

(A5). for aU re U [li.. V.]. S Jr) incr~ monotonically towards
.-1 ..

lef and (16) holds if and only if {17} holds. For r, U [U.. V.]..-,
all 5.(1)-0. k= 1.2. no

letting N j=I.:UIll and C,=cos{.:I1'. 9)sSftjII1191-1. it readily

Irollows from (AS) th:tt for all re 0 (U.. V.].
.-\ .

N,-2(-Nj+S,) .(A6),
:and

tJ-19INjlll(I-Ch. (A7)

'..,. :.'.'.
i
~

,
i

Hence
,

:UI(t)e .K(eIJI'. eUzl, :UI(o»c (eUI'. eU"" r.fI(O»).i
.!.' .-1 jand so on. -.

Condition (19) is then applied using thc faCt that. rOt any
UeP)O), Ve~(Pj(O)). and ~Ye.Jt'(P.(O)\Pj(O»).

U.Y>ai:u-{t,U,W} (Ala)

because

.U. Y~min (u.l1:uePJ{O), oePj(Q)}

and

max {u' u:ue'p )0), lie P*(O)\Pj(O)} ~ U' W,

Uncil a pattern is reclassified, however. (AS) shows that
zUl(r)ef(Pj(O» and that rt.l(t)eX(P*lO)\Pj(O» for any k*j, But
then. by (AIO), reclassification is impossible.

That D j.t) in (20) is monotone decreasing follows from itcr:ttions
of(A9). That (21) implies (22) follows just as in the proof ofTheorcm I,

Equntion (A7) shows [hat [he- angle bctWc=1 :UI(t) and 9 closd
mono[oniC41lly as 9 is pr:lcticed. Since S it) is a monotonic funCtion,
(A6) shows [hut N )t) oscilla[~ a[ most once.

In t':lnicul:1r, suppose D:,J)(I)U ~ C90, Then SJ(O)~ U9n%, since
otherwise-

8. :1.11(0»9. 9~:,J)(O). :UI(O)
..-

which impii~ -~

I ~CjO» Den DrJ\(O)O -I ~RrJ)(O)a 091-1, ~

and thus " :-

I~O)I>B9D>BrJ)(O)U. ..

which is a contradiction. By (AS). therefore B:Ii'(O)U ~ 0 9n impli~
that Sj.t) is monotone- increasing

hoc! If 77,eo"em 2. IncqU:llity (19) is bolscd on the ract that. u a
r~cd set of pOltterns 8U". 8U:', elhl is clas.sificd by :ij'(t) ror all
t~o. then

ztJ!(t)E .1"(811.,. 8th', 8u.'. ="'(0)). (A8)

for all t~o. For example. supposc that the patterns are practiced in
the order 8'h'. 8'h'. 8'jo' during the nonovcrl:1pping inteT\"U1s
[Vlo VI], [l':. V~J, [V,. VJ- E.'tCt:pt during thesc intcT\'ais.:ul =0.
Thus ror tE [V to V,].
.:tJt---U) +8 u,' to '. .
..~ 0 , .

.., .
'1...
1
i

or

:'J'(r)- ;u~0~-Cl-ull+8Cj'~I-L"-II-u,,).

so that ,

:-"'(rle x (BcJII. .:'/"(OIlC X (8IJ,'.~... ecAI. ::UI(O)).

Forre[U.z. ~:].

.c :iI(lI-[:I'(O\&,-I'.1 -v"+8VI'(I-L"-,t'I-u"I]i'-u-uJI
!(,...~ -~ .t.B'J"ll-e-«-u,,).
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