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two patterns can be minimized and the minimal dis-
parity images locked into position. Stabilizing the code
uses attentional mechanisms, in particular nonspecific
arousal as a tuning and search device. We suggest that
arousal is gated by a chemical transmitter system -for
example, norepinephrine -whose relative states of ac-
cumulation at antagonistic pairs of on-cells and ofT-
cells through time can shift the spatial pattern of STM
activity across a field of feature detectors. For example,
a sudden arousal increment in response to an un-
expected pattern can reverse, or rebound, these relative
activities, thereby suppressing incorrectly classified
populations. The rebound mechanism has formal
properties analogous to negative afterimages and
spatial frequency adaptation.

Abstract. Part I of this paper describes a model for the
parallel development and adult coding of neural
feature detectors. It shows how any set of arbitrary
spatial patterns can be recoded, or transformed, into
any other spatial patterns (universal recoding), if there
are sufficiently many cells in the network's cortex. This
code is, however, unstable through time if arbitrarily
many patterns can perturb a fixed number of cortical
cells. This paper shows how to stabilize the code in the
general case using feedback between cellular sites. A
biochemically defined critical period is not necessary
to stabilize the code, nor is it sufficient to ensure useful
coding properties.

We ask how short term memory can be reset in
response to temporal sequences of spatial patterns.
This leads to a context-dependent code in which no
feature detector need uniquely characterize an input
pattern; yet unique classification by the pattern of
activity across feature detectors is possible. This
property uses learned expectation mechanisms where-
by unexpected patterns are temporarily suppressed
and/or activate nonspecific arousal. The simplest case
describes reciprocal interactions via trainable synaptic
pathways (long term memory traces) between two re-
current on-center ofT-surround networks undergoing
mass action (shunting) interactions. This unit can
establish an adaptive resonance, or reverberation, be-
tween two regions if their coded patterns match, and
can suppress the reverberation if their patterns do not
match. This concept yields a model of olfactory coding
within the olfactory bulb and pre pyriform cortex. The
resonance idea also includes the establishment of
reverberation between conditioned reinforcers and
generators of contingent negative variation if presently
available sensory cues are compatible with the net-
work's drive requirements at that time; and a search
and lock mechanism whereby the disparity between
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t. Introduction

In Part I of this paper (Grossberg, 1976a) a model for
the parallel development and adult coding of neural
feature detectors was analysed. In this model, a net-
work region VI sends signals to region V2 via trainable
pathways. Region VI is capable of normalizing its total
activity. Region V2 can normalize its total activity,
contrast enhance the VI-to- V2 signals, and store the
contrast-enhanced pattern in short term memory
(STM). The STM pattern thereupon causes slow
changes in the long term memory (L TM) traces of the
VI-to-V2 pathways. These LTM changes are the basis
for reclassification by V2 of spatial patterns at VI.

Part I shows that the code that develops in this way
is unstable if arbirrarily many patterns at VI perturb a
fixed number of cells in V2. This paper attacks the
problem of stabilizing network responses to arbitrarily
chosen space-time patterns at VI; in particular, to
classes of spatial patterns of arbitrary size. We continue
where Part I left off. The jib equation from Part I will
be denoted by the notation (Ii) below. A similar
notation will be used to denote the jib Section in Part I.
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2. Adaptive Resonance: Stable Coding
and Reset of STM

When a temporal succession ell), eI2), ..., e(k)... of
spatial patterns elk) = (e\k), e~), ..., e~k) perturbs VI,
how does each pattern e(k) inhibit the STM pattern on
V2 that was elicited by the previous pattern elk-I), and
reset V2 to store data derived from e(k) without bias?
This question can be reversed in an information way:
can V2 be protected from continual inhibition of its
STM throughout the time interval during which a

-.-'. fixed e(k- I) is presented to VI? In other words, how

does the network know the spatial pattern e(k-l) is
changed to a different pattern elk)? The assumption
that STM must be actively inhibited in order to shut
it off is a mathematical property of reverberating
shunting networks (Grossberg, 1973; Ellias and Gross-
berg, 1975; Grossberg and Levine, 1975). Otherwise
there would be an averaging in STM of the codes for all
the patterns ell), e(2), ..., elk), ...,and no useful coding
of anyone pattern.

Section (18) shows that there are two possible ways
to stabilize STM in response to a space-time pattern.
Both possible ways will be considered below.; namely,
inhibition of VI-to-V2 signals by feedback from V2 to
VI, followed by a shift in the spatial locus of STM
activity at V2; and a direct shift in STM locus at V2
when the input pattern at VI changes. Both mechanisms
seem to have important practical applications.

The former mechanism has a minimal realization
in which VI and V2 send each other conditionable ex-
citatory signals, and recurrent on-center off-surrounds
exist in both VI and V2, as in Figure 1. To derive this
mechanism, let two distinct patterns e( I) and e12)

successively perturb VI, and let e(i) be coded by
V2i, i= 1, 2, in V2. The mechanism will have the follow-
ing pro~rties. When ell) perturbs VI, V..-to-V2 signals
activate STM at V21. Population V21 remains active

when e(2) perturbs VI, but VI-to-V2 signals are sup-
pressed. Then V21'S activity is also suppressed, where-
upon e(2) can generate VI-to-V2 signals that activate
STM at V22' We already know how ell) activates V21'
and how V21 remains active in STM. How are VI-tO-V2
signals suppressed when e(2) perturbs VI? If V21 were
not active in STM when e(21 perturbs VI, then sup-
pression would not occur, since e(2) would activate
STM just as e(1) did. Moreover, if V22 were active in
STM, rather than V21' then VI-tO-V2 signals would not
be suppressed, just as signals are not suppressed after
ell) excites V21' Thus, VI-tO-V2 signals are suppressed
because feedback signals from V21 to VI somehow
reproduce ell) at VI, and these signals compete with
the e(21 input to suppress VI-tO-V21 signals.

How can V21-tO-VI signals reproduce ell) at VI?
There is only one way in the present setup. While
VI-tO-V21 signals are learning to code e(I), feedback
signals from V21-tO-VI also learn to reproduce ell) at
VI; that is, the pathways from VI to V2 and from V2 to
VI are both trainable.

Given this much, how does mixing two different
patterns, such as e(1) and e(21, at VI suppress VI-tO-V2
signals, whereas either of these patterns separately
does not? More generally, what class of patterns at VI,
whether due to pattern mixture or to external per-
turbation, suppresses VI-to- V2 signals? The following
constraints motivate the construction:

(A) VI is a shunting network;
(B) signals typically add up in such a network; and
(C) feedback signals from V2i to VI do not shut off

VI-tO-V2i signals when input e(i) also perturbs VI,;=
1,2.

Given these constraints, the class of unifonn patterns
across VI (ei= 1/n,;= 1, 2, ..., n) will suppress output
from VI; in other words, only spatial differences in
pattern intensity will generate outputs from VI, This
property emerges naturally in shunting networks, and
is familiar, for example, in visual physiology.

How does this property accomplish our goal?
When ell) is preseRted at VI, signals from VI to V2
excite V21' Feedback from V21 to VI adds learned
signals that are proportional to e(1) to the external
e(l) input. By additivity, the mixture of signals is again
the pattern ell), albeit with a different total activity.
Hence VI-tO-V2 signals continue to excite V21' -A
resonance between VI and V 2 develops that sustains
STM activity at V21'

When e(2) appears at VI, the V21-to-VI signals still
are proportional to e( I). If the sum of e(2) inputs and
ell) signals at VI is (approximately) uniform, then
VI-tO-V2 signals are inhibited, or at least damped. [All
that is needed is a VI-tO-V2 signal that is too small to
exceed the quenching threshold (QT).] This event in-
hibits STM activity ~lt V21' so that V21-tO- VI signals

INPUTS

Fig. I. Minimal anatomy of an adaptive resonance
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since then, in (2), C(B + C) -1 ~ IIi/and signals are even

harder to generate. Generalizations to situations in
which the on-center and off-surround connection

strengths depend on distance can also be made, as in

terminate. Then only the 8(2) input is active at VI, so
that VI-to- V2 signals are elicited, but now activate V22.

How does inhibition of V1-tO-V21 signals inhibit
STM activity at V21? This will not happen if recurrent
excitatory signals within V2 can sustain activity in
STM. Hence we assume that the QT is chosen suf-
ficiently high to prevent STM reverberation at V21 un-
less V1-tO-V21 signals are sufficiently large. Reverbera-
tion in STM is now accomplished by an excitatory
resonance of signals between VI and V2, The inhibitory,
off-surrounds in VI and V2 continue to normalize and
contrast enhance activity within these regions, but the
STM itself is now carried by reverberation between
them.

It remains to develop the above ideas mathematical-
ly. First we show how a uniform pattern is suppressed.
This will be done by developing Equation (11), for
simplicity; namely,

Xli=-Ax1i+(B-XIJli-Xli L Ik. (11)
k*i

;(11= -AXII+(B-XIJ L IkCkl-(XII+D)L IkEkl' (6)
k k

Levine and Grossberg (1975) show how the behavior
of these nonrecurrent networks, and analogous re-
current networks, such as (14), can formally model
certain visual illusions, such as line neutralization, tilt
aftereffect, and angle expansion, The size of D in (6)
influences how pronounced the angle expansion will
be, for example; this is again a contrast enhancement
effect.

Equation (1) describes how VI processes external
patterns (II,I2,...,ln), Now add on the influence of
feedback signals from V2, again in an on-center off-
surround anatomy. Denote the total feedback signal
from V2 to VII by JI. Then (1) becomes

;(11= -AXII+(B-~IJ(/i+JJ-(XII+C) L (Ik+JJ.
k*1 (7)

We will check that, both before and after learning
occurs, feedback does not interfere with coding by V2
ofa pattern (I 1,12, ..., In) at VI. Before learning occurs,
feedback is uniformly distributed; that is, Ji =

! J. By (7), in response to a spatial pattern I 1= eJ, the
n

equilibrium value of 1."11 is then

nCI ( 1)A + 1+ J ei -;; , (8)

which differs from (4) only by a reduction in total
activity due to J. At time t=O, therefore, feedback
signals begin to learn the pattern e. Will this be true
at all times t ~ O? That is, if feedback is proportional
to e, will the pattern at VI be e? Additivity of inputs
to VI guarantees this: if Ii = eJ and J i = eiJ, then the
equilibrium value of I:li is

nC(I + J)(e. -! ) (9)A+I+J I 11'

In(Il), an assumption is made that does not hold in all
membranes; namely, that the passive equilibrium
potential (namely 0 in Xli= -AxIJ equals the in-
hibitory equilibrium potential (namely 0 in Xli=
-Xli r lk)' More generally,

k*i

Xli=-Axli+(B-XlJli-(Xli+C) L Ik,
k*i

(1)

Xli=

Then,

Xli=nCI (e,.- ! )A+I I nX1i=- (4)
which differs from (4) only by an amplification in total
activity due to J. Adding feedback signals to a shunting
on-center off-surround anatomy does not change the
coding by V 2 of signals from VI! A similar analysis
holds for the system in which recurrent on-center off-
surround signals replace the nonrecurrent on-center
off-surround inputs of (7). The recurrent system will be
needed herein, because the feedback signals Ji will
contain summands whose trainable synaptic strengths
are determined by the postsynaptic activities .~ Ii. See
Section (12) for an explanation. Thus we let VI be

Also suppose that signals h(xIJ from V1i to V2 are
generated only if Xli>O; e.g., set h(X1J=[xfj]+ for
some p>O, where [u]+=max(u,O). Now let Ii be a
uniform pattern (all 8i= lin). By (4), all .~ 1i=0 so that
no signals are generated. In effect, setting C>O
contrast-enhances the signals from VI to V2 by chop-
ping off the "uniform part" of inputs to VI- Condition
(3) can be weakened to

B~(n-l)C (5)
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governed by system and V2o In particular, V, must be a higher-order
network processing station than a retina. Generali-
zations of Equations (10HI3) are readily accomplished,
by explicitly including the finite reaction rates of in-
hibitory interneurons, or by using more complicated
signal functions. The papers by Ellias and Grossberg
(1975), Grossberg and Levine (1975), and Levine and
Grossberg (1976) indicate how these changes will in-
fluence network dynamics. The following two com-
ments might also be useful. First, when 8(') is changed
to 8<21, suppression of V,-to-V2 signals occurs before
the trainable coefficients can substantially change. In
other words, the stability of STM coding in an adaptive
resonance depends heavily on the existence of different
reaction rates for STM and L TM traces. Second, even
if there is no biochemically triggered critical period, a
critical period exists in an adaptively resonating net-
work while the STM code is being established. The
critical period terminates when learned feedback from
V2 to Vi prevents recoding from occurring at any
population in V2.

n

-(xII+D) L f(XIJEki' (10)
k=1

The feedback signals J I are defined as foJlows. The
signals from each V2j to V1 are trainable. Denote the
synaptic strength of the path PjI from V2j to Vii by Yji.
The total signal from ~ to Vii is then (simplest case!)

N
J -(2) ,.Ii) -"i-X 'Y-L,.X2jYji.

k=1

In case V2 chooses a population for STM storage, say
V2j, then Ji=X2jYji, and the feedback pattern across
V1 is determined by the vector y(i) = (Yjl' Yj2, ..., Yjn) of
synaptic strengths.

What rule governs the training of each y(i)? As
usual, Yji will learn by computing a time average of
multiplied presynaptic signals and postsynaptic activi-
ties. Two comments are in order:

i) As in (16), let training terminate if no STM
activation occurs at V2;

ii) Since X Ii can be driven to negative values, which
do not generate V1-to-V2 signals, and since we want
feedback to reproduce the VI pattern that is coded by
V 2. restrict learning by the feedback synaptic strengths
to supraequilibrium x Ii values. By (i) and (ii),

Yj/={-Yji+[Xli]+}X2j. (11)

These equations obviously code the pattern li= 8il at
VI if the y(i)(O) patterns are uniform and V2 makes a
choice.

Finally, we choose the QT of V2 sufficiently large
so that termination of VI-tO-V2j signals suppresses V2j'S
STM reverberation. Then excitatory signals from VI
generate recurrent signals within V2 that contrast
enhance, or even choose, V2 populations for STM
storage. A,S: in (16), let Sj=12j be the total VI-tO-V2j
signal; thus

N

Sj=X(IJ.ZU')= L XlkZkj, (12)
k=l

3. Adaptive Resonance in Reinforcement, Motivation,
and Attention

A case can be made for adaptive resonance as a general
organizational principle in vivo. One important
example will be noted in this section, and related
examples in the next two sections. The first example
describes an adaptive resonance whose trainable
synaptic strengths can change during adulthood.

Grossberg (1975a) describes a neuropsychological
theory of attention that builds on earlier work con-
cerning reinforcement (Grossberg, 1971, 1972a, 1972b).
Without redeveloping this theory herein, we sketch a
part of it in which an adaptive resonance occurs.
Consider Figure 2. This figure idealizes an adaptive
resonance in which VI and V2 both possess recurrent
on-center ofT-surround interactions, and both VI-to-V2
and V 2-tO- VI synaptic strengths are conditionable.
Region VI receives (precoded) external sensory cues,
and region V2 receives inputs generated by internal
drives. Signals from VI-tO-V2 are trained when rewards
act at V2; their patterns code the balance of drives and
rewards across V2 populations when their VI sampling
cells are active. Signals from V 2-tO- VI learn "psycho-
logical sets", or the classes of cues that have regularly
occurred contiguously in time with a given active
drive center.

The VI-to- V 2 signals embody the conditioned rein-
forcer properties of a cue that activates VI, The
V 2-to- VI signals are interpreted as idealizations of the
contingent negatire rariation, or CNV (Cohen, 1969).
Such a wave has been associated with an animars
expectancy, decision (Walter. 1964), motivation (Irwin

N

-(x2j+D) }:::!(x2JEkjo (13)
k=1

In summary. recurrent on-center off-surround
interactions exist within both VI and V2. and excitatory
trainable signals exist in both directions between VI

and let V2 obey a system of the same form as (14);
namely
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movements can cease and a fixated position can be
maintained?

A resonance mechanism much like the one in
Section 3 can achieve this. Let recurrent on-center off-
surround signals exist within VI and V2 separately-
Replace the trainable interfield signals of Section 3
either by untrainable on-center off-surround signals,
or just on-center signals if the recurrent intrafield off-
surround interactions are sufficiently strong. Thus each
Vii (V2d is the center of signals from V21 (Vld. As in Sec-
tion 3, Suppose that signals and inputs must match to
initiate reverberation between VI and V2- In Section 3,
this meant that the coded signals released by one input
pattern have to match the other input pattern. Here it
means that the two input patterns themselves must
match. Thus, only if the two eyes are correctly verged,
thereby receiving matched patterns, will VI and V2
reverberate. Now assume that output from VI and V2
inhibits the arousal source that drives the eye move-
ments. Fixation is hereby achieved. See Julesz (1971)
for a qiscussion of interacting fields of dipoles that
have a search and lock capability.

I'
."'--'"
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Fig. 2. An adaptive resonance that helps to regulate attention to
external cues that are compatible with internal needs

et aI., 1966; Cant and Bickford, 1967), volition (Mc-
Adam et al., 1966), preparatory set (Low et aI., 1966),
and arousal (McAdam, 1969). When this network is
embedded into a more complete system of interactions,
an interpretation of Vl as neocortex and of V2 as
hippocampus is suggested.

Since both Vl and V2 receive external inputs in this
example, both regions have inhibitory equilibrium
potentials that can suppress (close to) uniform patterns.
Adaptive resonance here means that the conditioned
reinforcer properties of presently available sensory
cues are compatible with the network's drive require-
ments at that time. When resonance is established,
motor activity that consummates this consensus can
be triggered further downstream in the network (Gross-
berg, 1975a). Note that no feature detector in Vl need
uniquely determine an input pattern; yet resonance
will not be established unless the pattern of activity in
Vl accurately codes the input. The code is context-
dependent.

5. Olfactory Coding and Learned Expectation

In this example, three regions VI, V2, and V3 interact in
a way that suggests comparison with data on the
neural processing of olfactory stimuli. The main points
will be made using the simplest network realizations
of relevant mechanisms.

Let VI be endowed with recurrent shunting on-
center ofT-surround interactions. Thus

[ HI );Ii= -A(I'Xli+(B(I'-.;.X",J k~If.(XIJC~}'+I

HI

-(Xli+.DI!I) L h(-~!J£<kt); (14)
k=!

VI can normalize and contrast-enhance input patterns
if the signal function h(w) and/or interaction co-
efficients c~tl and £<k11 are properly chosen.

Region V2 is also endowed with recurrent shunting
on-center ofT-surround interactions, as in

);.2}= -A(2IX2}+(BI21_X2) [ I f2(X2Jq~'+Sj
]k=!

4. Search and! Lock Mechanism

Each of our eyes looks out on visual space from a
different position. To focus an object at a finite depth;
the eyes verge together until a good match of their
separate images is achieved. Then fixation on the ob-
ject can be maintained. How do our eyes know when
this match has been achieved, so that searching eye

Nl

-(x2j+D(2) L f2('\"2JEk~) (15)
k=l

where D(21 > O. The total signal S j is the sum of two
parts, ~ll and S)31, Signal S)ll is the total signal from
Vi to V2j; it codes patterns at Vi using an inner-product

signal-generating rule, such as

Nt

S)ll= L h1(.\"lk)Zkj, (16)
k=l
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Y2

Fig. 3. Expectation signals from V3-to-V2 inhibit V;s response to
signals from V,-to-V2 unless ell) is approximately parallel to elJ)

oscillation of activity, or limit cycle, in response to
afferent signals (Ellias and Grossberg, 1975). The ex-
pected pattern can then quench the limit cycle if the
afferent pattern is unexpected, or can amplify an
expected afferent pattern, as in (9), until it triggers limit
cycle activity. For the unlumped system to code a
spatial pattern. the same ordering of STM activities
should (approximately) hold through time. except
possibly for phase leads due to the shunt. By Ellias and
Grossberg (1975, Section 18), such a limit cycle can
exist if the expected pattern serves as an input source
and the test pattern (approximately) matches it. In
particular, order-preserving limit cycles can exist in an
unlumped adaptive resonance. I conjecture also that
in unlumped systems whose inhibitory gain is suffi-
ciently large (fast 'oscillations), a limit cycle can be ap-
proximately order-preserving in a finite time interva~
since the lumped system (infinitely fast oscillations) is
asymptotically order-preserving. Indeed by "perturb-
ing off the fast manifold"-that is decreasing inhibitory
gain-an infinite range of oscillation frequencies can
be achieved.

Is there a physical advantage to letting the ex-
pectation operate from V3 to V2 rather than from V2
to VI, as in Section 2? There is. In the former case, the
expectation is compared to coded patterns; for
example, to the generalization gradient of a pattern at
VI; cf., Section (13). If a set of patterns at VI has a
similar generalization gradient at V2, then a single
expectation from V3 can quench, or amplify, them asa
class. In other words, if an expectation is learned in
response to one pattern at VI, then it will act similarly
on any equivalent pattern at VI, In this sense, the
generalization gradient, or code, of a pattern defines
the pattern features th.lt are behaviorally important
to the network.

where hl(w) is the excitatory VI-to-V2 signal function-
for example, hl(w)= [wP]+, p>O -and Zkj is the synap-
tic strength from Vlk to V2i" Signal S~3) is the total signal
from a third region V3 to V2j; these signals will be
trainable. In effect, V3 will have a similar relationship
to V2 here as V2 had to VI in Section 2 The signal ~3)
also has an inner-product form, namely

N3

~3)= L h3(X3JYkj, (7)
k=1

where h3(w) is the excitatory V3-tO-V2 signal function,
and Ykj is the trainable synaptic strength from V3k to V2i"

As in Section 2, if the pattern 8=(81,82, ..., 8N,)( N2 )-1 is approximately uniform, where 8j=Sj L Sk ,

k=1

then V2's output will be suppressed. The signal pattern
8(3)=(8\3), 8~3), ..., 8~:) from V3 to V2 such that( N2 )-1 8~3) = S~3) L Sj,3) constitutes an expectation, or

k=1

expected pattern, that is learned when activity in
certain V3 populatIons coincides with the elicitation of
8(3) at V2. If the afferent signal pattern 8(1)=(8(;),
8~1), ..., 8~:) from VI to V2, defined by 8~1) =( N2 )-1 ~1) k~1 Sj,1) , is parallel to 8(31, then V2 is allowed

to transfer this pattern to higher network centers, with
perhaps some contrast control due to fluctuations in
total signal strength at V2, as between (4) and (9). How-
ever, if8(1) is complementary to 8<3), then V2's output
is quenched, and higher centers do not receive the

pattern.
Some further comment about the pathways from

V3 to V2 is in order. One provocative connection
scheme is the following: let V3-tO-V2 signals terminate
on the excitatory on-center interneurons of V2, as in
Figure 3. Signals from V.\ toV2 sample the pattern, say
8<31, at these interneurons during learning trials. Later
activation of V3 can then reproduce 8<3) at the inter-
neurons on performance trials. The input pattern 8( 1)

to V2, after being averaged by the populations V2j, is
then added to 8("3) at the interneurons. If the net
pattern 8 is parallel to 8( I), then interneuronal feed-
back to V 2 gradually normalizes and contrast enhances
8( 1) until it achieves a stable asymptotic configuration.

If 8 is approximately uniform, however, then inter-
neuronal feedback tends to suppress the reverberation.
If the amplification of interneuronal feedback signals
is large compared to the size of VI-tO-V2 signals, then
this feedback will determine whether or not 8<1) is
quenched at V2.

There exist numerous variations on the above
theme. For example, let V2 be an unlumped recurrent
on-center off-surround network. in which the inhibitory
interneurons average their excitatory inputs at a finite
rate. Then V2 is capable of an approximately periodic
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Fig. 4. Anatomy of olfactory bulb, lateral olfactory tract, and pre-
pyriform cortex (from Freeman, 1972)

where limit cycle activity is possible, the coded spatial
pattern becomes a space-time pattern of 'activity. In
the special case that all populations in V2 are inhibited
by each population in V2, this limit cycle~ight merely
describe cyclic changes in contrast enhancement which
do not invert the relative ordering of activities of the
populations in V2 (Ellias and Grossberg, 1975). More
commonly, a given population in V2 can only inhibit
a subset of populations in V2. Then the limit cycle
behavior can be more complex. Because spatially
localized feedback signals can change the net gain of
each population's activity to different values at different
positions, the frequency, the phase, and the peak
amplitude of oscillation at a given population can be
correlated; cf., the Hughes-Hendrix frequency theory
of coding (Hughes and Hendrix, 1967; Somjen, 1972).

The inner-product signal-generating rule (16) re-
quires that signals from each Vii be dispersed broadly
across V2. We therefore expect each mitral cell to send
divergent signals across large pre pyriform regions via
its axons in the lateral olfactory tract. See Freeman
(1972, p. 133) for a review of confirming evidence.

With these conventions in mind, an interesting
possibility emerges. If the olfactory system were found
to have a critical period in which its code can be re-
tuned by experience, then one place to look for
trainable synapses in a sensory cortex is at lateral
olfactory synaptic knobs in the prepyriform cortex
during the critical period.

Emery and Freeman (1969) show that the pre-
pyriform cortex can filter its olfactory messages by a
mechanism of selective attention, which is based on
the formation of a spatial pattern of excitability in the
excitatory feedback gains of the cortical superficial
pyramidal cells; see Freeman (1974, p. 3) for a summary.
This spatial pattern acts like an expectation, since if
the olfactory pattern to the cortex matches the; ex-
pected pattern, then the cortex can sustain the pattern.
Otherwise, the pattern is quenched. We suggest that
the expectation mechanism works as described above,
where also the expectation modifies the excitatory
feedback gain of the c~lls in V2.

Several interesting questions about olfactory pro-
cessing are now suggested. What brain region acts like
V3? Given that such a region exists, then the V3-tO-V2
synaptic knobs should provide trainable preparations
in an adult mammalian sensory cortex. If V 3 exists,
does it sustain an adaptive resonance with V2, as V2
and VI do in Section 2? If so, then a critical period
could exist at V2-to- V3 synaptic knobs, rather than
VI-to-V2 synaptic knobs. Indeed, is V3 a formal pre-
pyriform cortex, V 2 its olfactory bulb, and VI the source
of olfactory messages'? Or is V3 simply a source of
extramodality signals that can preset the system to
expect a given cI.1SS of patterns?

The above network suggests an analog with olfac-
tory coding such that VI idealizes the olfactory bulb
and V2 idealizes the prepyriform, or primary olfactory,
cortex (Freeman, 1972). In this analogy, granule cells
in both the olfactory bulb and prepyrifonn cortex
subserve recurrent inhibitory interactions, the mitral
and tufted cells in the olfactory bulb act as excitatory
populations, and superficial pyramidal cells in the
prepyriform cortex act as excitatory populations.
Signals from VI to Vi idealize the lateral olfactory
tract; see Figure 4.

Given this interpretation, the model generates
several implications. In the lumped model, wherein
inhibitory cells equilibrate rapidly, the generalization
gradient at V2 of a smell-induced pattern at VI de-
termines the olfactory code. In other words, a "place
theory" (Somjen, 1972, p. 304) or "activity density
function" (Freeman, 1972, p. 112) at V2 determines the
code. This suggestion is similar to the idea that the
afferent taste message is coded by the relative amount
(or spatial pattern!) of neural activity across many
neurons (Pfaffman, 1955), in particular across chorda
tympani fibers (Erickson, 1963). In the un lumped model,
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6. ModulatioJII of Nonspecific Arousal by a Learned
Expectation l\.1echanism
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Fig. 5. An additive model for gallng nonspecific arousal using ex-
pectation signals

population. This signal will control nonspecific arousal
of the network populations that subserve STM.

To show how an expectation develops, suppose
that 8 is followed by 8* on several learning trials.
Consider the time interval on each trial when 8 is
coded in STM and 8* is active at V1. Then 8* will be
replicated at E1, and the coded STM representation of
8 will elicit signals to E1 that learn 8* using trainable
synaptic strengths, as in Figure 5. Thereafter, when 8
is coded in STM, pattern 8* will be elicited at E1 by
8's STM representation. The pattern at E 1 is then
transferred to E2 as proportional inhibitory signals,
which take the place of the threshold pattern .of
Section (14). Thus, the pattern of inhibitory signals re-
presents the pattern 8* that is expected by the net-
work.

These inhibitory signals w'ill be compared with th~
pattern weights of the test pattern e. To accomplish
this, when a pattern is presented to V1, it is also
replicated at E2 as proportional excitatory signals.

The inhibitory V1-+ E 1-+ E2 signals that the pattern
creates are chosen weaker than the direct excitatory
V1-+E2 signals to achieve net excitatory signals at E2
from V l' Given this structure, let 8 be active in STM
when 8 is presented to V1. Only if each excitatory
pattern weight at E2 (of e) exceeds the corresponding
inhibitory pattern weight (of 8*) by a suitable pro-
portionality constant will the output signal from that
pathway be positive. as in (111). A high-band filter
adjoined to each such pathway ensures that the net
signal in each pathway from E2 toE3 is positive only if
the excitatory pattern weight is sufficiently close to its
inhibitory pattern weight, as in (112). The firing
threshold of the population E3 in the final common
path of these signals is chosen so high that all§igI:!.als
must be positive to fire E3' Thus £3 fires only if 8 is

The mechanisms in Section 2 cannot be the only ones
that reset STM. An adaptive resonance, for example,
can code only one class of patterns at a time in STM.
By contrast, sequential STM butTer effects are familiar
in vivo; for example, repeating a telephone number, or
other sequence of events, that has temporarily been
stored in STM. An adaptive resonance is incapable of
building a hierarchy of command states that are
simultaneously active in STM; such a hierarchy is
needed to control a behavioral plan, or goal-oriented
series of sensory-motor coordinations (Grossberg,
1976c). If wc~ imagine that V3 in Section 5, or higher
network regions, participate in such sequential and/or
hierarchical STM structures, then we must find a way
to regulate the pattern of STM activities across these
structures in response to new sensory data.

A basic property of such a mechanism is illustrated
by the following example. A telephone number can be
stored in STM without rehearsing all of its digits at the
same time, or indeed any of its digits at certain times.

:\'Such unrehearsed but stored items are "opaque" to
the learning subject. Yet presentation of a new digit
can reset the storage of all of these items to make room
for the new digit. The mechanism that does this there-
fore nonspecifically influences all the items coded in
the neural field; cf., Grossberg (1976b).

The expectation mechanisms of Sections 2 and 5
delete present coding of all patterns in a field to code a
new pattern'. To synthesize mechanisms that can in-
fluence all coded patterns without necessarily deleting
them, the input patterns in some examples below will
be replicated in two parallel representations. The pat-
tern in one representation will be coded as before. The
pattern in the other representation will provide data
to the nonspecific mechanism that reorganizes the
opaque field of STM activities. This latter mechanism
will act as a correlation filter, or decision function,
that releases nonspecific activity at prescribed times;
it does not: pass the patterns themselves to higher
centers.

There exist both additive and shunting versions of
the mechanism. Both are included to develop the
themes of Section (14). The minimal additive version
was derived in Grossberg (1972c, 1975a). The basic
idea is as follows. The STM pattern generated by an
input pattern e is typically not e, but is rather a
coded version of e. This coded activity will preset the
network to expect a pattern 8*. The expected pattern
8* will then be compared with the test pattern e that
concurrently perturbs _VI. If e* is close to e, then a
signal will be elicited from a prescribed network
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Fig. 7. A presynaptic shunt for gating nonspecific arousal using

expectatio~ signals

close to 8*. If no expected pattern 8* is active, then
any test pattern e can elicit a signal unless further
structure is added; for example, add tonically active
cells that inhibit E2 until a prescribed pattern is coded
in STM, and thereupon inhibits the tonically active
cells via a recurrent off-surround. Grossberg (1972c,
1975a) discusses this mechanism in greater detail.

Two shunting analogs of the expectation mecha-
nism are possible. The -simpler shunting mechanism
works as in Section 5, A region V3 presets a region V2
with an expectation pattern. Signals from V2 bifurcate:
one pathway carries coded patterns, as in Sections 2
and 5; the other path EI, which acts like E3 in Figure 5,
sums up the signals from V2, Thus if the test pattern at
VI is unexpected, the output from E3 will be quenched,
whereas if the test pattern is expected, the output from
E3 will be large. This mechanism does not require a
replication of pattern representations. See Figure 6.

Anoth~r shunting version is more complicated, but
is included for completeness. Consider learning trials

on which 8* follows 8. Let 8 be coded in STM while
8* is replicated at E I' The signals to E I generated by
8's STM representation will shunt the 8*-generated
output signals from EI on their way to E2 (Fig. 7). For
example, Suppose that only population Vi is active in
STM, that the jh population in E1 is ej, and that the
synaptic strength from Vi to the pathway from ej to E2
is Zijo Then the total output signal from EI to E2 is

t ' It 8 *--'i) h Ii) ( )proporlona 0 .Z', were Z = Zil,Zi2",.,Zi".
While this signal is on, the plastic synaptic strengths
zli) will learn the pattern 8*. In other words, the plastic
synaptic strengths shunt signals as they compute a
time average of presynaptic signals and postsynaptic
activity. After learning takes place, present pattern e

~
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there exist other pathways that release arousal in
response to unexpected events. What are these path-
ways in the olfactory system? We suggest that they are
among the multisynaptic pathways that project from
the olfactory bulb into the reticular formation (No-
back, 1967, pp. 131-133,221-230).

equal O. Then;. ~n response to 8(i) at VI, only V2i in V2
can sample 8(1) at V3. Universal recoding is hereby
accomplished in this case.

This method fails if K is fixed and k is chosen too
large. The following difficulty must be overcome. Sup-
pose that two patterns 8(1) and 812) would ordinarily
be coded by the same population V21 in V2; that is

8(i).z(I)(O»max{e,8(il'z(k)(O):k=l=l}, i=1,2. (21)

If 8(1) is presented sufficiently often before 8(2. is
presented, how can 8(2) be prevented from being
coded by V21, and yet be allowed to search for and find
an as yet unpracticed population in V2? An adaptive
resonance between VI and V2 does not suffice. Then
activity in V21 generates V2-to-VI feedback that
quenches V1-to-V2 signals when 812) is first presented
to VI; but when V21 is hereby inactivated and V1-tO-V2
signals resume in response to 8(2) alone, they again
activate V21' by (21). Somehow presentation of 812)
must inhibit V21 -including the large excitatory V1-to-
V21 signal generated by 8(2) -until 8(2) can find an un-
committed population among the uninhibited, or re-
normalized, populations of V 2. In particular, there
must be at least two sources of input to V2: the ex-
citatory signals that code the patterns at VI, and the
signals that are elicited by a mismatch of patterns. The
latter signals differentially inhibit populations which
are currently active in STM. These inputs are non-
specific because the STM code is opaque. How does
nonspecific arousal interact with current STM activity
to differentially inhibit active populations?

Some additional prerequisites are now also evident.
Differential inhibition must last long enough for a new
population 1:22 to start reverberating in STM. After
1:21 is initially inhibited in this way, it no longer triggers
the expectation mechanism. Nonspecific arousal con-
sequently ceases. What prevents the large VI-tO-1:21
signals due to 8(2) from reactivating 1,'2 I? Only the STM
activity of other cells is available to do this. Thus in-
hibition of [21 is maintained by recurrent inhibitory
signals from active populations in V2, such as L22'

Before synthesizing this mechanism, several com-
ments will be made to put it in a broader perspective.
Firstly, Grossberg (1975a) shows the need for a similar
mechanism to achieve attentional shifts and dis-
crimination learning. In a clear intuitive sense, search-
ing for an uncommitted population is a type of at-
tentional shift. Secondly, a universal recoding mecha-
nism is capable of making arbitrarily fine discrimina-
tions; even if two patterns 8(1) and 8(2) are very
similar, they can be recoded into two patterns ell)
and e(2) that are very dissimilar. It is this latter proper-
ty that requires the full power of the mechanism de-
scribed in Grossberg (1975a). Thirdly, universal re-
coding represents a limiting case of situations that

m
where Sj= L ,XI,Z,j is the VI-tO-V2j signal. By (2), the

1=1
equilibrium point of (19) is

X2j= ~ S (cf>j-1) (20)
A+

K

whereS= L Sand </Jj=SjS-I. By (20), at most one.x2i
1=1

is positive, and this occurs only if Si>max{Sk:k=l=i};
that is, only if V21 is chosen by V2. Let K be chosen so
large that, in response to any elil at VI, inequality
cPi >! holds. Also let the threshold of V 2-to- V 3 signals

7. Universal Recoding

By universal recoding is meant a process whereby any
k spatial patterns in Rm can be recoded into any k
spatial patterns in R", for any fixed k~ 1, m~2, and
n ~ 2. Computer studies aimed at this objective have
been reported by Kilmer and Glinski (1974) in their
model of hippocampal dynamics.

To accomplish universal recoding, three regions
VI, V2, and V3 will be needed. Let VI have m popu-
lations and let V3 have n populations. The patterns
$(1), $(2),..., elk! in Rm will be serially presented to
VI as the corresponding patterns ell), e(2), ..., elk) in
R" are presented to V3. Each pattern $(i) at VI will be
coded at V2 by a unique population V2i. Thus V2 con-
tains at le~st k populations. Then V2i can sample the
pattern e(i) at V3 until its trainable V2i-to- V3 synapses
learn this pattern. Consequently, on performance
trials, presenting $(i) at VI excites V2i' which thereupon
reproduces 8(i) at V3.

To realize these properties, VI and V3 will be
endowed with recurrent shunting on-center off-sur-
rounds in order to normalize their patterns. Both the
VI-to-V2 and the V2-to-V3 synaptic strengths will be
trainable; the former to code patterns $(i), the latter to
learn patterns e(i). It remains to show how V2 chooses
a unique V2i in response to each $(i). A simple, but
inefficient, way to do this is to use the Sparse Pattern
Theorem (Theorem 2) of Part I; namely, let the number
K of populations in V2 be so much larger than k that at
most one pattern $(i) is in each set Pi defined by (110).
In fact, if this is done, then the VI-to-V2 coefficients
need not be trainable. For example, let
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often occur in vivo. In this limiting case, any change of
input pattern is treated like an unexpected event, be-
cause no matter how similar e< 1) and e<2) are, they can,

by universality, be conditioned to arbitrarily different
patterns e<l) and e<2). A weaker condition often holds
in vivo, where unexpected consequences (e.g., no re-
ward) of treating two patterns the same provides a
basis for discriminating between them. Nonetheless,
similar patterns can be differentially reinforced in vivo,
and the mechanism described below has this capability.
In effect, different reinforcement contingencies will
generate different cognitive structures by triggering
nonspecific arousal at different times. A more thorough
analysis of a reinforcement theory in which the con-
ditioning and activation of nonspecific arousal is
central is given in Grossberg (1971, 1972a, 1972b).

specific arousal-' is again elicited, V22 is inhibited, and
the process repeats itself until a population V2.i+ I is
found which does not already code a discordant pat-
tern e*(i+ II. Then STM activity at V2.i+ I can be main-
tained while the classifying vector vi + I' learns fj( I'.

The need for reducing the QT, or equivalently in-

creasing nonspecific arousal, is clarified by this de-
scription, since the signal Sl~ 1(0) might otherwise be

""too small to elicit sustained STM activity at V2.i+ I'
especially if i is large.

The maximal length of the search routine depends
on how long inhibition of previously active populations
lasts. An uncommitted population V2.i+ I can be found
only if all the populations V21' V22' ..., V2i are inhibited
when nonspecific arousal is triggered by e*(il. If in-
hibition wears off gradually as i increases, eventually
S\J) will be large enough to re-excite V21 in STM, say
after population V2k fails to code e(JI. Then a cyclic
reactivation of V21' V22' ..., V2k will ensue. Since some
residual inhibition remains, as the cycle repeats itself,
the amount of residual accumulation will accumulate.
On successive search cycles, k can therefore increase
until an asymptotic search cycle length k* 'is reached,
whose size depends on how fast inhibition decays.

There exists an inverse relationship between k*
and the number of cortical populations needed to
achieve a prescribed level of discrimination between
two patterns. This is because it becomes easier to dis-
criminate two similar patterns as the number of cortical
populations with distinct classifying vectors increases.
Consequently, the expected search duration will be
smaller if the number of cortical populations is larger,
and then the decay rate of inhibition can be faster.

8. Search

It is now easy to supply formal rules capable of universal
recoding. However the physical substrates of these
rule.s will require a much deeper understanding. Firstly,
sufficient formal rules will be noted, and then an
analysis of their physical substrates will be begun. This
analysis will open a path to many related subjects, such
as cholinergic vs. noradrenergic interactions in neo-

cortex, spatial frequency adaptation, and negative
afterimages.

Speaking formally, the following properties suffice:
(i) inhibition of active states V21,V22,...,V2i in V2

if a mismatch occurs in the expectation mechanism
between their coded patterns and externally presented
pattern 8(1) at VI;

(ii) reduction of the QT, or amplification of non-
specific arousal, until the activity of some uninhibited
and unclassified population V2.i+ I exceeds the QT;

(iii) maintenance of V2.i+I'S STM activity, and of
inhibition of V21' V22' ..., V2i' until V2.i+ I'S classifying
vector fi+ I) can be trained. On later trials. presentation
of 8( I) at VI will therefore elicit a maximal signal at

V2.i+ I' whence V2.i+ I will classify 8(1).
These rules imply that a search routine will continue

until an uncommitted population is found. In particu-
lar, suppose that at time t=O, the signals Slkl)(O) from
VI to V2k s~ltisfy S!.I)(O»S!.~I(O), k=1,2,...,N2-1.
Thus, in response to 8(1) at VI, V21 will be activated.
Suppose, however, that V21 codes 8*(1)=+:8(11. Then a
mismatch occurs in the expectation mechanism, and
nonspecific arousal is elicited. Consequently, L'21 is
inhibited as the QT decreases, or equivalently, as the
amplification of VI-to- V2 signals increases. Among the
uninhibited populations V22' V2J' ..., L'2N~' L'22 now
receives the largest net signal, and is therefore activated.
Suppose, however, that V22 codes 8*(2) =1= 81 I); ag.1in
a mism.\tch occurs in the expectation mech.\nism. Non-

9. Slow Noradrenergic Transmitter Accumulation-
Depletion as a Search Mechanism

We will suggest that the search mechanism is part of a
broader scheme of pattern processing that exhibits
remarkable structural symmetries. In previous work
on reinforcement, Grossberg (1972b) synthesizes net-
works in which pairs of populations code drive states
of oppo~ite sign; e.g., fear vs. relief, hunger vs. frustra-
tion. These population pairs, or "dipoles", compete
with each other to generate a net incentive motivational
signal that regulates compatible motor output, among
other things. If a persistent input to one dipole popu-
lation is suddenly turned off, then a transient rebound,
or reversal, occurs in the relative activities of the two
dipole populations; e.g., offset of shock elicits relief.
This rebound is also generated if an unexpected event
causes a sudden increment of arousal equally to both
populations in a dipole.

Grossberg (1972a) discusses the existence of ana-
logous dipoles in sensory cortex. wherein one popu-
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Table

XI=-CX'~I+/+J
X2= -CXX2+/

il=fJ(Y-ZI)-6/('~I(I-f))ZI
i2= P(,-z2)-6/(X2(I-f))Z2
X3= -&'~3+C!(XI(I-f))ZI
X4 = -&'~4 +C!(X2(I-f))ZZ
Xs = -I/.~S + K['~3(t-U)-X4(I-U)]

X6'" "'I/X6+K[X4(t-U)-X3(I-U)]

tween the pattern (say 8*(11) coded by a population
(say V2J and a test pattern at V1 (say 8(11) suppresses
the V1-tO-V21 signal, and causes X21 to decay, before
nonspecific arousal arrives. Clearly a more slowly de-
caying trace must remain to indicate that V21 has just
been active. This trace must also be slowly decaying to
maintain inhibition of incorrect populations during a
search routine. More precisely, STM activity at V21
depletes the slow trace in V21'S arousal pathway, while
the trace accumulates at inactive populations. Then
equal arousal signals to all populations are gated, or
shunted, by their slow traces, so that previously in-
active populations receive larger arousal signals.
Figure 9 schematizes one such arrangement.

Figure 9 depicts two dipoles V1 and V2 of on-cells
and" olT-cells. Nonspecific arousal perturbs all-"of:,the
excitatory interneurons V3i, i = 1, 2, 3, 4. Slowly vary-
ing transmitter exists in the pathways V3i-+V2i' Thus,
arousal signals on their way to the populations 172i are
gated at the 173i-to-V2i synapses by the pattern of ac-
cumulated transmitter at that time. The on-cell popu-
lations V21 and 1723 also receive signals S I and S 3'
respectively, that are driven by patterns at V1. If (say)
Sl is large enough to activate V21 in STM, then excita-

lation ("on-cells") is excited when its stimulus is on,
and its antagonistic population ("ofT-cells") is transient-
ly excited when the stimulus is turned ofT. The ofT-celis
are then capable of sampling sensory or motor patterns
elsewhere in the network, and hereby the ofTset of a
cue can be used as a basis for learned action.

Grossberg (1972a, 1972b, 1975a) suggests that both
types of dipole are examples of a general network de-
sign, and synthesizes both with similar formal rules.
This synthesis uses a slowly varying transmitter ac-
cumulation-depletion mechanism to drive the dipole
rebound. Grossberg (1972b) notes data suggesting
norepinephrine as a possible candidate for this trans-
mitter. Experiments by Wise et al. (1973) compatibly
report that norepinephrine and serotonin act as paral-
leJ transmitters in reward and punishment centers of
the rat. Grossberg (1972b) also suggests that the
reticular formation is a likely source of nonspecific
arousal in response to unexpected events, and there
"r~ "t Ip,,~t thrpP-mfttul asceiJd~;J, Ao~epine~ine~fiber-~~i~ 

the rat brainstem (Fuxe et al.: 19~
Ungerstedt, 1971; Jacobowitz, 1973; Lindvall and

I Bjorklund, L974; Stein, 1974) that reach neocor ex:
I m am us, Imbic system, an ypotha mus, among

other regions.
We now suggest. tb,atthis t.r~nsmitter system is also

used to help search for uncommitted cortical popu-
lations. This proposal requires only an explication of
previous mechanisms for new purposes, rather than an
additional construction. The reader is referred to
Grossberg (1972b, 1975a) for a detailed analysis of the
rebound mechanism. The siIi1plest version is described
in Figure 8 and Table 1. Below some properti~s that
suggest the mechanism in the present context will be

sketched.
It is clear how nonspecific arousal reduces the QT

or, equivalently, amplifies input signals, as in (113) or
(114). But how does nonspecific arousal, which is
distributed uniformly across all populations in V2,
alter the balance of excitation in favor of previously
inactive populations? This problem is particularly
evident in adaptive resonances. Here a mismatch be-

i

NONSPECifiC
AROUSAL

Fig. 9. Nonspecific arousal is gated by slow transmittcr uccumulation-
depIction in an on-\.'enter off-surround nctwork or dipol\.'S
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possible; cf., Grossberg (1972b, Sections 7 and 8) for
generalizations in the case of drive dipoles, including
variations wherein the accumulation-depletion trans-
mitter is inhibitory.

tory activity reverberates through the loop V21-+V31-+
V21 and partially depletes its transmitter. Such re-
verberation is possible because the net V21-+V31-+V21
signal is a monotone increasing function of signal size
S l' even though transmitter accumulation is a mono-
tone decreasing function of signal size (Grossberg,
1972b). This is a consequence of the gating effect of
transmitter on the signal. The second effect of gating
occurs when the reverberation terminates and a uni-
form arousal signal perturbs all V3i. Since previously
active channels have less transmitter than inactive ones,
the inactive populations, including off-cells like V22,
receive larger gated signals than the active ones. After
V22 is activated, it inhibits V21 via the inhibitory inter-
neuron V42' The inhibitory interneurons V4i also scat-
ter inhibition across the field of populations, with on-
cells inhibiting on-cells, and off-cells inhibiting off-
cells, to normalize their respective total activities.

If such an anatomy exists in vivo, it would not be
surprising iJ: the transmitter at on-cells differs from
that at off-cells; cf., norepinephrine a~d serotonin.
Such a difference might provide a chemical substrate
whereby the off-surrounds of on-cells and of off-cells
could be segregated to include"only cells of their own
type, much as horizontal cells are segregated in certain
retinas (Stell, 1967; Kaneko, 1970). Such an arrange-
ment will also be used \0- discuss afterimages in
Section 11.

The synaptic strengths of Si-tO-V2i pathways, i = 1, 3,
are trainable during the critical period. As in previous
papers, these synaptic strengths will be assumed to
reflect transmitter production rates in the correspond-
ing synaptic knobs; see Grossberg (1974) for a review.
Arguing by analogy with Grossberg (1972b), we suggest
that this transmitter system is cholinergic, rather than
adrenergic. The present model is therefore compatible
with the idea that adrenergic changes merely set the
stage for learning by cholinergic synapses, rather than
causing memory fixation themselves. The latter
stronger view is compatible with indirect evidenCe re-
viewed by Stein (1974). The present model is not in-
compatible with the stronger view; but given the
parallel course of formal cholinergic and adren~rgic
changes in rebound-encoding transitions, it seems that
deciding between the two alternatives will require
delicate experimentation.

The mechanism in Figure 9 is appealing because of
its simplicity. Relatively localized excitatory signals
emerge from the cells V2i ("on-center"), and more
broadly distributed inhibitory signals emerge from the
cells V4i ("off-surround"). These are standard adapta-
tional mechanisms plus slow transmitter accumu-
lation-depletion. See Ellias and Grossberg (1975) for a
study of STM in a related class of networks. Variations
on this theme containing more processing stages are

10. Spatial Frequency Adaptation

The rebound mechanism has other formal properties
that are analogous to sensory phenomena. To the
extent that the rebound mechanism really explains
these phenomena, they become manifestations of basic
constraints on neural coding, rather than merely
curious accidents of nature.

Wilson (1975) proposes a neural model to explain
various data about spatial frequency adaptation to
sine wave gratings, square wave gratings, tilted
gratings, and single bars. In his model, signals are
feedforward from retina to cortex, and are distributed
in an on-center off-surround interaction pattern whose
connection strengths decrease monotonically with
distance. Wilson uses trainable synaptic strengths as
his mechanism of adaptation. Only the inhibitory syn-
apses of the model are modifiable: their changes are
determined by a product of presynaptic signal size and
postsynaptic potential. If the net postsynaptic potential
of a given cell is large, then the inhibitory synaptic
strengths of active synapses impinging on the cell get
stronger, and tend to inhibit the potential more
vigorously. This negative feedback mechanism pro-
duces good fits to various data on adaptation. Wilson
also assumes that a synaptic conservation law holds;
namely, the total inhibitory synaptic strength imping-
ing on each excitatory neuron is constant through time.
This mechanism correctly predicts that elevation of
perceptual threshold should be greater at higher
spatial frequencies of the adapting grating, and it over-
comes the otherwise unduly great depression of the
modulation transfer function at all frequencies below
3 cycles/degree, given an adapting spatial frequency of
3 cycles/degree. Grossberg (1975b) notes that synaptic
conservation rules are incompatible with classical
conditioning; and suggests that normalization of the
total retinal output due to its on-center off-surround
interactions can be used instead. In effect, good fits to
spatial frequency adaptation can be achieved given two
regions VI and V2, each endowed with shunting on-
center off-surround interactions, excitatory signals
from VI to V2 that code the patterns at Vi, and a
mechanism of signal gating whereby the most active
populations are slowly suppressed.

We now note that adaptational effects can formally
be generated by slow accumulation-depletion, rather
than by learned cross-correlation, of transmitter. When
a pattern at Vi maximally excites a certain population
V2i for a long time, the transmitters associated with all
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of the populations in V2i'S generalization gradient will
gradually become depleted, thereby causing a shift in
excitability in response to similar patterns. In other
words, imbalances in accumulation-depletion due to
persistent activity can change the spatial distribution
of inhibition across populations. If this mechanism is
valid, then the rate of spatial frequency adaptation
might depend on the level ef nonspecific arousal. In
particular, after the inspection pattern is viewed, do
parametric increases in arousal level when a test
pattern is imposed influence the amount of adaptation
by influencing the size of the rebound?

11. Afterimages

An excellent review of this venerable subject is giv~n
by Brown (1965). Here we show how the rebound
mechanism can generate negative afterimages, and
summarize compatible experimental. evidence con-
cerning the effect of background illumination on the
course- of afterimages. The general ideas that after-
images depend on effects of "fatigue" (Fechner, 1840)
or antagonistic activity (Plateau, 1834) are very old,
but the concept of a tonically driven accumulation-
depletion mechanism operating in linked shunting re-
current on-center off-surround fields of dipoles con-
siderably sharpens these ideas. Consider Figure 10.
Suppose that the pattern in Figure lOa perturbs a net-
work whose populations code the orientation of lines
in prescribed retinal regions (Hubel and Wiesel, 1963;
Szentagothai and Arbib, 1974, p. 419). Suppose that
the orientationally tuned populations corresponding
to a given retinal region interact via a recurrent
shunting on-center off-surround network, such that

populations that code nearby orientations excite each
other, but populations that code very different orienta-
tions inhibit each other, as is compatible with the
developmental model of this paper. See also Levine
and Grossberg (1976) for a discussion of relevant ex-
perimental data and an explanation of certain visual
illusions in such a network. Given this interaction
scheme between populations, when the pattern of
Figure lOa is active, the maximally inhibited orienta-
tions are the ones perpendicular to the orientations of
line fragments in the pattern (Fig. lOb). When the
pattern is shut off, these perpendicular orientations
will be the ones that experience the greatest rebounds.
These rebounding populations code a series of con-
centric circles, or rather the flickering fragments of
concentric circles, as in Figure lOc; cf., MacKay (1957).

Negative afterimages in color are also known to
occur (Brown, 1965), and will arise using..a rebound
mechanism if each dipole codes a pair of com-
plementary colors, and the off-surround of each color-
coded cell perturbs only similarly color-coded cells, as
in Figure 9, thereby generating a lightness scale; cr.

Gr4)ssberg (1972c).
The effects of changing background illumination,

or the secondary field, on afterimages are remarkably
similar to the effects of changing arousal level on the
rebound. If a secondary field is turned on during the
observation of a positive afterimage in darkness, a
rapid transition to a negative afterimage can be

generated (Helmholtz, 1866, 1924; Brown, 1965, p.
483). If the secondary field is then turned off, the after-
image can revert in appearance to that of the stage
when the secondary field was first turned on. In the
rebound mechanism, an increase in uniform input to
the dipole tends to reverse the relative dipole activities.
If the uniform input is shut off, the slowly varying

lransmitter levels can still be close to their original
values, so that the original relative dipole activities are
rapidly restored. The higher the luminance of the
secondary field, the shorter is the afterimage latency,
and the more rapidly is the afterimage extinguished
(Juhasz, 1920). In a dipole, a higher uniform input
more rapidly equalizes the amounts of transmitter in
the two dipole channels by depleting them both at a
faster, more uniform, rate. When approximately equal
levels of transmitter are achieved, the inhibitory inter-
neurons between the dipole's' populations kill any
relative advantage of one population over the other.
The duration of an afterimage increases with an in-
crease in primary stimulus luminance (Brown, 1965.
p. 493). In a dipole. increasing the intensity of an input
to one population increases the rebound at the other
population when the input terminates. much as
termination of.\ more intense shock causes greater

relief (Grossberg. 1971b).
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The brightness of the positive afterimage has been
found to be greater and the latency shorter if the
primary stimulus is relatively brief. A longer stimulus
results in a decrease of both the duration and the bright-
ness of the positive afterimage. In the accumulation-
depletion mechanism, there is a transient overshoot in
transmitter release when an input is first turned on,
followed by a decrease in transmitter release to an
asymptotic level that depends on input intensity
[Grossberg, 1974, Section IX (0), (P)].

Helmholtz (1866, 1924) observed that if the primary
stimulus is 4 to 8 seconds in duration, then the duration
of negative afterimage may be increased to as long as
8 minutes. Such long effects unambiguously implicate
a slowly varying process, and indeed a process slow
enough to facilitate search for uncommitted popu-
lations during the interim interval.

12. Conclusion

The above results hope to show that a small class of
network mechanisms can be used to unify the dis-
cussion of a variety of seemingly disparate phenomena
that a~re related to sensory processing. For example,
the results on negative afterimages and spatial frequen-
cy adaptation can be appended to those of Levine and
Grossberg (1976), which show that recurrent shunting
on,.center off-surround networks also enjoy formal
properties analogous to other visual illusions, such as
hysteresis, line neutralization, tilt aftereffect, and angle
expansion. All these results suggest that seeming ideo-
syncracies in sensory processing are unavoidable
epiphenomena of useful design constraints on the
development and maintenance of our wonderful
sensory endowment.
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