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mechanisms. In particular, it suggests how the probabilistic and com-
puter models that have been used, in somewhat complementary fashion,
to analyze memory data can be modified, unified, and strengthened.
Psychophysiological models provide a natural framework for this syn-
thesis because they must routinely deal with the evolution of patterned
activities within hierarchically organized networks. Such models also
synthesize serial and parallel processing properties into a unified frame-
work, and weave together phenomena about development, perception,
learning, and cognition into an interactive portrait. If nothing else, the
method of deriving complex phenomena and predictions from simple
environmental pressures confronts us with unexpected and nontrivial
consequences of our present beliefs, and provides a rigorous and
transparent conceptual superstructure with whose aid new concepts can
be more effectively fashioned.

Ancther basic property of much psychophysiological data is their
evolutionary character, whether due to the development of species, the
development of individuals, or individual learning. The theory tries to
respect the wisdom of evolution by imitating it. At each successive stage
of theory construction, prescribed environmental pressures determine a
definite class of network principles and mechanisms, and mathematical -
analysis shows what these mechanisms can and cannot do. As more
sophisticated pressures are considered, the earlier principles and mecha-
nisms provide a substrate on which newer principles and mechanisms
are superimposed. Similarly, by imposing ever-more-demanding varia-
tions on the same problem, we find a sequence of related networks
capable of ever-higher levels of behavioral sophistication. Such a
sequence illustrates the evolution of a network principle in response to
an environmental pressure. Of particular interest in the present work is
the evolution of serial order in behavior.

The paper’s structure imitates this evolutionary method, subject to
space limitations. It is self-contained and written for an audience of
nonspecialists. The remainder of this section motivates some central
themes of the paper in a heuristic fashion.

A. Does MEMORY PRESERVE ORDER?

We shall consider a maze as illustrative of the many situations in
which there exists a succession of choice points leading to a goal, such
as in walking from one room of a house to another room at the other end
of the house, or from home to school. (see Fig. 1). Suppose that one
leaves the filled-in start box and is rewarded with food in the vertically
hatched goal box. Every successful transit from the start box to the goal
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FiG. 1. Correct performance from the start box to a goal box is always order-
preserving, with the goal box occurring last.

box requires the same sequence of turns at choice points in the maze.
Correct performance is therefore order-preserving, and the goal box
always occurs last. In some sense, therefore, corre.ct pe.rformance
requires that our memory traces remember the orde.r in which eveqts
occur. The most naive possibility is that choice points are .somehow
organized in a chain, as in Fig. 2. Such an en.codmg is c}early
insufficient, however, if the sequence of choices is tnggered w1¥hl.n tl}e
start box by the desire to attain the goal. For example, if I am sxttnpg in
my office and decide to go to the cafeteria for lunch, I can then ehcx.t a
characteristic series of sensory-motor coordinations that end by eating
lunch. This could never happen using the mechanism of Fig. 2. In such a
world, if a friend stopped me while I was walking down the hall and
asked where I was going, I could only say, “I don’t know. I'll tell you
when 1 get there,”” because the goal in Fig. 2 always occurs las_t and is
unaccessible to me until I reach the last link in the chain. In Figure 2,
there is no behavioral plan. In goal-directed behavior, by contrast,.an
internal representation of the goal occurs first, and thi§ representation
somehow triggers the behavior that can lead to goal attainment.

This state of affairs can be rephrased as the Goal Paradox.: Hovy can
the goal representation occur both last and first? More preclse!y, in all
of our experiences with the goal, it is the last event to occur. This malges
it plausible that our memory-traces order our choices so that behavior
appropriate to the goal occurs last. However, if these memory traces are
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FIG. 2. A chain of associations can accurately code order, but it is insufficient to
achieve goal-oriented serial behavior.
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order-preserving, as is necessary to actually reach the goal, and if the
goal always occurs last, how can an internal goal representation also be
activated first, as is necessary for this representation of the goal to
trigger a compatible behavioral plan? _

We want an internal representation of the goal to trigger a plan that
controls a sequence of acts leading to the goal. What we are demanding
is schematically drawn in Fig. 3a, where we indicate by points and
arrows, respectively, the minimal dimensions of the problem and di-
rected influences between these dimensions. The events (for example,
choices in a maze) have internal representations that are designated by
states v, 0,, %, - . . , U,, where n is the index of the goal. The plan is a
state that somehow organizes the order in which the events will occur—
hence the arrows from plan to events. The state corresponding to the
plan must be determined by the events themselves, since during a
correct sequence of choices on a learning trial, only these events occur.
This dependence is schematized by the upward-directed arrow in Fig.
3b. Thus the events determine the state that will represent the plan, and
this state thereupon gains control of the event-representations them-
selves. Simultaneously, an internal trace of the goal gains control of the
plan. Given such a picture, albeit vague at this stage, several definite
design problems emerge:

{a) What mechanism maintains the activity of the plan throughout the

PLAN
«
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FiG. 3. (a) The goal representation organizes the individual commands i =1
2, ..., n; (b) the individual commands help to choose the plan.
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presentation of all the events so that the plan knows which events to
control?

(b) What mechanism tells the plan which of the events came first, so
that it will be able to perform them in the proper order?

Such questions apply to a host of related situations. To illustrate the
breadth of the problem, we.consider a similar problem in language
learning and performance. Suppose that I wish to say a long word, sugh
as MAGNETOHYDRODYNAMIC. There is a clear intuitive sense in
which I am ready to say the whole word at a given instant of time; that
is, the “*idea’ or “‘plan’ of saying the word is active in my mind at that
instant, yet the actual elicitation of the plan occurs serally, one
behavioral unit after another. A similar problem arises when we say the
name. of a familiar person or object that is visually perceived. qu canl
establish a command that can ‘‘see” the whole word at a given time, yet
also organizes the serial performance of its parts? Clearly, a picture such
as Fig. 3 is again called for, and the same formal problems must be
solved in synthesizing a mechanism that justifies the picture.

In the hall-walking problem, we are considering how tq cont.rol
muscles in our arms, legs, eyes, etc., using visual and propngceptnvev
feedback, etc. In the word-elicitation problem, we are considering hpw
to control muscles in our mouth, throat, larynx, diaphram, etc., using
auditory and proprioceptive feedback, etc. Both situations ad_dress
common problems about how sensory-motor loops between particular
modalities are serially organized by command structures or plans. A
related problem is playing a piece on the piano, in which the sensory-
motor loops that develop clearly depend on both visual and apdltory
medalities during various phases of reading and performing the piece.

B. FRree VERSUS FORCED PARAMETERS IN A PLAN

Suppose that I am navigating a maze (for example, a hallway) on my
way to lunch. On the way, I can stop for a drink of water or to ch.at with
a friend. Or, more simply still, I can walk quickly to the cafeteria, or I
can stroll leisurely, pausing along the way to rest. These event§ are r}ot
preprogrammed by my plan to get lunch, but they are compat.xble \Ylth
the plan. By contrast, I must not make the wrong turn at a choice point,
or I will never reach the goal. Thus, some of my behavior is under tight
control, such as how to respond to prescribed choice-point cues, but the
rest of my behavior is quite undetermined by the plan, in particular the
velocity with which the plan is executed. .

A similar temporal freedom occurs when I say a word or play a piece
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on the piano. Within rather broad limits, I can say certain syllables more
slowly than others, or play certain passages more slowly than others.
The order information in the plan is not tightly coupled to the velocity of
performance.

Uncontrolled parameters in a plan are also of a more subtle type. For
example, a common phrase in language might have a rigidly controlled
order, yet the plan might allow a wide choice of nouns or verbs to be fit
into the phrase between the rigidly controlled items—comparable to the
rigid control of choice points in a hallway versus the freedom to do other
things between the choice points. Or a certain number of equivalent
phrases can be chosen to express an idea, just as a variety of techniques
for executing the correct turns in the hallway will all lead to the goal.
Similar remarks can be made about playing a piece on the piano: Certain
passages can be played as tightly coupled units, so much so that it is
difficult to start playing them in the middle.

C. CIRCULAR REACTIONS

To execute a sequence of sensory-motor coordinations, one must first
be able to execute one member of the sequence. Even at the level of
individual sensory-motor acts, there is a decoupling of order information
(or positional information) from velocity information. For example, I can
plan to move my hand to a fixed terminal position, and can move it there
at a wide range of velocities. *‘Knowing’’ where I want to move my
hand and. *‘willing”” it to move are not the same operation. Similarly,
being *‘ready’’ to turn right in the hallway when I see a certain cue does
not determine how fast I will turn right.

What is the cue that tells my hand where to move? Suppose that my
eyes are focused on a certain object. The tilts of my neck, head, and
eyes, along with the vergence of my eyes, etc., establish proprioceptive
coordinates that determine the relative position of the object from my
body. Somehow these coordinates must get translated into commands to
the muscles in my hand and arm that correspond to the cotrect terminal
coordinates of the hand on the object. In other words, the proprioceptive
map of the head, neck, eyes, etc., excites a rerminal motor map of the
hand. **Willing" the hand to move releases the information in the motor
map, and makes the hand move. .

How does the transformation between maps get established? Because
there exists so many individual differences in body parameters between
individuals, it seems clear that much of the transformation must be
learned. Piaget (1963) has carefully observed the development of the
ability in young children. He notes that at first an infant’s hand makes a
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series of unconditional motions, which the infgr!t’s eyes unconditionally
follow. As the hand occupies a variety of positions t.hat the eye f;llxatgs
upon, a map is learned from the proprioceptive coordinates of the han :1
arm system to the motor coordinates of the eye-head-neck §ystec;n, ank
conversely, from the proprioceptive coordinates of the eéetheah—neg
system to the motor coordinates of the hand—arm system. sndn.g tt e mwle)
from eye~head-neck proprioception to hax.ld-arm motgr coor mahes,
can move our hands to a fixed object. During the learn}ng trials, the l:3'y3s
try to continuously follow the motions of the hand, or ff.they'fall be :ins,
they must try to catch up by leaping to the correct Qqsxtlon via sacciia teh.
Since the eye always tries to fixate the present position of the hand, de
two transformations between proprioceptive maps and motor maps code
only the (approximately) present motor positions. 1')ur-mg. performzl).lnce
trials, the transformation from eye~head-neck proprioception (or where
we are now looking) to hand—arm motor coordinates therefore detel;
mines only the terminal position of the hand (or Yvhere we want the h.and
to go). If the initial position of the hand is very different from thg dcs(lire
terminal position, then the directed motion of the hand can b§ viewed as
a saccade of the hand. To say that positional and Nelocnty' m,form-atlo'n
are decoupled translates into the statement that the saccadic velocity is
ogrammed in this system. ) ) )

no’i"gge:;o%e observations cgn be reformulated to emphasn.ze an impor-
tant point. Since the terminal motor map §ufﬁces .t.o gunde. the ha(rlx.d
throughout its trajectory from initial to terminal position, all mtermfh}-
ate positions of the arm-hand system mus.t be anyable from this
information. What auxiliary feedback mechanisms Wlthl-l'l the han(_l—arm
system translate the terminal motor map into a physmall.y realizable
trajectory of this system? More precisel_y, the transformation be.ttweetn
maps codes only where the hand is destined to go, but not how i ge asl
there. It ignores the properties of the arm-hand system as a m':chamcj,ell
system, and codes only the plan. In particular, on gach performance tri
aimed at extending the hand to a fixed posmon,_ any of the free
parameters—such as hand velocity—can be chosen differently, apd c?ln
thereby alter the forces on the system, even thoug!l the plan remains t g
same. Somehow these varying mechanical properties must be cont'rolle
by auxiliary mechanisms, which average them away, so that the invar-

iant plan can be realized. ‘
D. THE INTERNAL STRUCTURE OF MAPS AND THEIR TRANSFORMATIONS

If directed reaching for an object is contrplled by a transfqrrtflanon
between maps, then a tremendous reduction in the amount of informa-
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tion that must be stored has been achieved. Indeed, suppose that the
transformation has been learned up to a given level of accuracy on a
finite number of learning trials. Then, without any further learning, any
of the infinitely many reachable positions of an object can be ap-
proached by the hand, under eye-head—neck guidance, up to this level
of accuracy.

This assertion tacitly assumes that, if a set of proprioceptive coordi-
nates P, has been associated with a terminal motor map A,, and a
different set of proprioceptive coordinates %, has been associated with a

terminal motor map A, , then a new set of proprioceptive coordinates Py
will have the following effects:

(a) 1t partly excites ?, and %, both, with an intensity that depends on
how similar 2, is to P, and 2,

(6) ?, and P, will excite M, and M,, respectively, with an intensity
that depends on how excited they are by ,. .

(c) The mixture of motor excitation will form a hybrid terminal motor
map #; that is between ., and M, which moves the arm closer to the
position that excited 2, than either My or M, could have separately (see
Fig. 4). In other words, each proprioceptive representation has a
generalization gradient. Representations excite each other with an
intensity that depends on how close they lie with respect to each other
on their gradients. Each motor map also has a generalization gradient.
The fact that #, can be synthesized from 4, and 4, to yield a position
close to the one determined by #; means that the transformation from
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Fic. 4. Filtering of &; as a weighted average of ?, and 2, followed by synthesis of My
as a weighted average of 4, and My
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proprioceptive maps to terminal motor maps preserves (at least approxi-
mately) the distances between representations that are defined by the
generalization gradients.

An instructive example occurs in language learning. Again there exists
a period during which unconditional behavior is emitted (Fry, ].966).
Instead of unconditional motions of the eye-hand system, there exists a
period when the infant babbles various simple sounds. Ins}ead qf the eye
following the hand so that a transformation from propnoceptnve feed-
back to terminal motor position can be learned, the mte:mal trace of the
auditory sensory feedback elicited by a babbled sound is cond‘ltloned to
the motor coordinates that produced the sound. The babbling phase
cannot go on forever; if it did, the unconditional urge to bal?ble would
forever interfere with the desire to say something interesting. When
babbling stops, a certain number of connections exist between pre-
scribed auditory representations and the motor contrgls that produ.ced
them. Exciting one of these representations can elicit the appropriate
sound, so that simple imitation begins to be possible. How does an
infant learn more complex sounds than the ones that occurred during
babbling? One way is to suppose that more cqmplex sounds are
decomposed into weighted combinations of the smple:r sounds that
already are capable of eliciting speech sounds. If these simpler sensory
representations map into. a motor speech space that preserves their
mutual distances, then the speech sound that is synthesized in this way
will be closer to the heard sound than any of the simpler sounds. The
system can hereby try to imitate more complex souqu than are
originally in its repertoire, and to build internal representations of these.

E. CoNTEXT-DEPENDENT CHOICES

In the maze of Fig. 1, let.there be more than one goal box. For
example, let a food reward be in the vertically hatched box and a sexual
reward be in the horizontally hatched box. At choice point number 1, a
right turn leads to food and a left turn leads to sex, in response to the
same external sensory cues. The choices are controlled by different
plans, which create different contexts in vw./hich to respond .to the cues.
Figure 5 schematizes this situation. In an_. 5, plan 1 e‘xc1tes a given
pathway in response to the ith cue, whereas plan 2 excites a different
pathway in response to the ith cue. How does the convergence between
a given event and different plans excite different responses as a result of
learning trials? )

This problem also occurs in many situations. For example, how can
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FiG. 5. Plans 1 and 2 excite different pathways in response to the ith cue representation
v, '

we serially learn both lists ABCDEFGH and ABAFALAK? In the two
lists, the responses to B are different even though both lists have the
same beginning AB, and in the second list the letter A is a precursor of
four different letters. Clearly the stimulus for saying the next letter is not
merely the previous letter, or even the previous two letters. Longer
subsequences of letters somehow distinguish the two lists in our
memory. Again Fig. 5 is called to mind. '

F. CHUNKING AND FEEDBACK

The above remarks can be rephrased by saying that the units that
control behavior are not necessarily representations of individual stimuli
or responses, but can be built up from lists or other aggregates of these

“units. Such composites, or chunks (Miller, 1956), make possible a

recoding of memory that enables ever-more-complex commands to
form. For example, if an adult had to pay attention while walking to
every step taken as a complex juxtaposition of motor events in different
joints, guided by sensory feedback, then it would be difficult to pay
attention to anything else while walking. Once these events are organ-
ized by highér-order commands or chunks, by contrast, the details of
walking become simple, and attention can be devoted to other tasks.
Similarly, once a long word is organized by a higher-order command, it
can be treated as a single behavioral unit rather than as a complicated
series of mouth, tongue, larynx, diaphragm, and related motor activities,
with attendent sensory feedback, whose conscious control would inter-
fere with thinking about other things.

Lashley (1951) noted that a pianist can play successive notes so fast
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that feedback from the last note played could not possibly influence how
the next note would be played. Clearly, however, making a mistake can
influence our playing of later passages. Also there are many data on the
importance of auditory feedback on speech production (Lenneberg,
1967), even though it is clear that the commands controlling language are
not individual letters.

How can feedback be unimportant in some cases and important in
others? There is no paradox if we say that feedback is important when it
reorganizes the structure of the plan. A single command can guide the
performance of an entire word, or of a sequence of notes on the piano,
without feedback. But feedback can reorganize which commands will be
active after this sequence is played, or even before it is played in its
entirety.

G. PERFORMING THE FIRST OR THE LAST ITEM

A picture such as Fig. 3 does not tell us how events are performed in a
given order. Daily experience suggests some important constraints on
this mechanism. Suppose that the letters ABARFD are said to me one at
a time. I can be told to do any of at least four things:

(a) Repeat each letter aloud as soon as I hear it.

(b) Listen passively to the list and, after hearing it, repeat the list
items in their proper order.

(c) Repeat each letter aloud as soon as I hear it, and repeat the list
items in their-proper order after the whole list is presented.

(d) After completing task (a), I can be asked to repeat the whole list in
its proper order.

In task (a), I am being asked to repeat the last thing that I have heard.
In some sense, the last item must have the greatest ‘‘weight,” so that I
can choose it above all others. By iterating this requirement, each item
has greater  weight than the preceding items. In task (), I am being
asked to repeat the first thing that I have heard. In some sense, the first
item must also have the greatest *“*weight,”’ so that I can choose it above
all others (see Fig. 6a). Furthermore, after saying the first item, its
“weight”’ must be decreased, so that I can say the second item, whose
weight is then greater than all other weights. After saying the second
item, its ‘‘weight’’ must decrease, etc. But this means that the last item
has the least weight in task (b). How can it also have the greatest weight
in task (a)? Moreover, tasks (c) and (d) mix tasks (a) and (b), so that the
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F1G. 6. (a) The most recent item has the greatest weight in task (a); (b) the least recent
item has the greatest weight in task ().

last item must be able to have the least and the greatest weight in the
same situation! How can this be?

It is intuitively clear that the most recent item ‘‘should’’ have the
greatest weight in the sense of task (a). Surely the most recent events
are more ‘‘salient” than earlier events. It is also clear that something
like a command, or plan, develops to perform tasks (b}, (c), or (d), since
the letter A leads to B or R, depending on the context. The dilemma of
performing tasks (a) and (b) therefore can be rephrased as follows: How
does activation of the plan reverse the weights of its individual events?
(See Fig. 6b.)

In the above example, I could also be told to do the following:

(e) Repeat every pair of successive letters when it occurs. Then
repeat the whole list in its proper order.

To repeat a given pair of items, the first item in the pair must have the
greater weight. This is true for every pair, so that we can no longer talk
about weights that increase monotonically or decrease monotonically
with list position as in Fig. 6. It is tempting to instead draw a picture
such as that shown in Fig. 7. Task (a) differs from task (e) only in their
rehearsal strategies. How does rehearsal reorganize plans as in Figs. 6
and 7? Actually, familiar letter sounds, such as the sound of A, can be
composed of more than one sound component, as slow pronunciation
clearly indicates. Prior experience has organized these components into
a single letter via a suitable command. In this sense, Fig. 7 is a
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FiG. 7. Rehearsal organizes plans and their order information

refinement of Fig. 6 even in task (a); in this situation, the paired arrows
are the commands for eliciting individual sound components of the same
letter. Thus the general problem is: How does rehearsal group individual
motor acts into a hierarchy of commands?

2. Stimulus Sampling of Spatial Patterns

The neural networks of this paper are built out of network compo-
nents that have been derived elsewhere from psychological postulates
and mathematically analyzed (see, for example, Grossberg 1967,
1969a,b, 1970a, 1971a, 1972a). They are sketched herein for complete-
ness. The material in Sections 2 through § is more completely reviewed
in Grossberg (1974).

The first stage of the theory analyzes the simplest concepts of
classical conditioning: How does pairing of a conditioned stimulus (CS)
with an unconditioned stimulus (UCS) on learning tiials enable the CS to
elicit a conditioned response (CR), or UCS-like event, on performance
trials? This analysis yields a psychophysiological theory operating in real
time. Psychological inputs, or stimuli, representing particular experi-
ments perturb a neural network that elicits definite outputs or responses.
The network dynamics are described by interactions between the short-
term memory (STM) traces x(t) of cell body populations t;. and the
long-term memory (LTM) traces z;(f) of the axonal pathways e;; from v
to v, as in Fig. 8. The simplest realization of these interactions among n

Zift) 0

Yi

xi(t) Stj
Zik(t) Xk(t)
aijk L]
Sik vk
FiG. 8. STM traces x(f) and LTM traces z,(f) in cell body populations and axonal
pathways, respectively.
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populations v, %, . . . , U, is given by the system

b =—Ax + Y Buzy — Z Cu + Ii(1) 1)
k=1 k=1
and
Zy = = Dyzy + EjpXe Q)

where i, j, k = 1,2, ..., n. The terms in (1) and (2) have the following
interpretation. Function 4, in (1) is the decay rate of the STM trace x;.
Function By in (1) is a performance signal from v, to the synaptic knobs
Sii of e . Two typical choices of By are

Bi(t) = bux(t — 74) — T I* ‘ (3)
where [£]Y = max(¢, 0) for any number £, or
Bi(6) = fOa{t — 71t Dby )

where f(£) is a sigmoid (S-shaped) function of £ with f{0) = 0. In (3),
signals leave v, only if x. exceeds the signal threshold I'y; (Fig. 9a) and
reach Sy after 7 time units; in (4), the signal threshold I} is replaced
by attenuation of the signal at small x, values (Fig. 9b). Such a
population signal from v, is generated, for example, if the signal
thresholds of cells in v are Gaussianly distributed around a mean

Byt
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y Ld

Tk *dtg)

{a)
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»
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{b)

Fia. 9. (a) Signal B, (1) is positive only if x(f — 7)) exceeds the threshold Iy, ; (b)
signal By (r) is attenuated at small x.(r — 74) values.
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threshold value. Term Bz in (1) says that the signal By from v to S
interacts with the LTM trace zy at Sk . In particular, z gates signal By,
so that the signal strength that perturbs x; at v; is Bz rather than By .
Thus, even if an input to v excited equal signals By, in all the pathways
exi » only those v such that z is large will be appreciably excited by vx.
All such gated signals from populations v combine additively at v; in
term 3fa; Bz . The term 2f., Cy in (1) describes the total effect of
inhibition from cells v, upon v;. The choice

Cri() = gxe(t — o))t

with g(£€) a sigmoid signal function, is illustrative. The function L(#) in (1)
is the input corresponding to presentations of the ith event through time;
L(®) is large when the stimulus is presented, and otherwise equals zero.
In all, the STM trace x; can spontaneously decay, be excited by external
stimuli, and interact with other populations via sums of gated excitatory
signals and inhibitory signals. The net size of x; after all these processes
operate determines whether v, will generate an output.

Function Dy in (2) is the decay rate of the LTM trace z; . Function
E,. in (2) describes a learning signal from v, to Sy which drives the LTM
changes in z; at Sy . In other words, v, samples v, by turning on Ej . In
the simplest cases, Ej is proportional to By, , but this is not necessary. It
is only necessary to prevent By from being large over a sustained time
interval if Ej is small over that interval (Grossberg, 1969b, 1971a,
1972a). This occurs automatically if the LTM trace is computed at Sj.;
since the signal from v passes through Sy on its way to t, the
thresholds for By are then no smaller than the thresholds for Ej . The
term Ej.x, in (2) shows how a pairing of the jth and kth events influences
the growth of the LTM trace z, . By joining together terms — Dy, and
Eux,. , we conclude from (2) that the LTM trace is a time average of the
product of learning signals from v, to Sy, with STM traces at v,. When
z, changes in size, it thereupon alters the gating of signals from v to v,
via term B,z in (1).

Two facts are of crucial importance in these systems:

A. The unit of LTM is a spatial pattern.

B, There exists a stinudus sampling operation,

By (A) we mean the following: Consider the network in Fig. 10a. It
has the minimal anatomy capable of learning by classical conditioning.
The network represents a population v, that receives a CS-activated
input. Population v, can send signals to its axon collaterals, which abut
on the UCS-activated populations v,, v, . . ., t,. The LTM traces zy
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Fig. 10. (a) The CS-activated population v, samples populations v,, 1,,. , ,; (b)
the outstar is the minimal network capable of classical conditioning.

are computed at the synaptic knob terminals Sy of the v, axon
collaterals €. Such a network is called an outstar because it can be
redrawn as in Fig. 10b. .

An outstar can learn an arbitrary spatial pattern. A spatial pattern is a
UCS to the cells v, 1,, . . ., v, whose intensities have a fixed relative
size through time; that is, L(f) = 6,(t), for some 6, = 0 such that
32, 6. = 1. For example, suppose that the UCS is a picture playing
across the ‘‘retina’” of cells v,, v,, . . ., v,. The total intensity of white
light that illuminates the picture can be varied through time without
changing the picture itself. The relative intensities of light (or reflec-
tances) reflected from various points in the picture characterize it, and
these remain constant through time (Cornsweet, 1970). The function I(t)
is the total UCS input intensity, which can fluctuate wildly through time.
The constant relative intensities 8 = (8,, &, ..., 8,) characterize the
spatial pattern. In short, an outstar can learn an arbitrary spatial pattern
of relative figure-to-ground. Thus, the unit of LTM cannot be deter-
mined by measurements from just one population v;; parallel measure-
ments are needed to test whether the relative intensities are changing
through time. '
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The stimulus sampling probabilities of an outstar are the relative LTM
traces -

n -1
Zy =12y (E Zox-) )
k=1

As CS-UCS pairing takes place, the functions Z, approach 6. During
later performance trials, a CS input to v, creates signals in the e, axons.
These signals are gated by the LTM traces z;. Since the 2z, are
proportional to 8;, the gated signal to v, is proportional to 6. The CS
hereby elicits responses in the STM traces x; that are proportional to 6.
In short, after CS-UCS pairing, the CS can reproduce the pattern 6.

Stimulus sampling means that the functions Z, can change only when
signals from v, reach the synaptic knobs Sy . Unless the CS perturbs
these knobs, their LTM traces cannot ‘‘see’’ what UCS patterns are
received at the cells v, 1, . . ., v,. This is because the learning signals
Eq; in (2) vanish unless a CS perturbs v, . This interpretation of stimulus
sampling in an outstar can be extended to a more general neural
interpretation of stimulus sampling that modifies and generalizes Estes’
theory of amplifier elements (Grossberg, 1972b,c).

3. Sensory Codes and Motor Synergies

The outstar is a general-purpose device. It can learn a spatial pattern
of activity playing across whatever cells its knobs S, sample. For
example, suppose that the cells v,, v, . . . , v, are feature detectors in a
sensory cortex of a network. By this we mean the following. When a
picture is presented to the network’s retina, the picture is analyzed in
such a way that each v, responds most vigorously to particular features
(for example, color, orientation, disparity) in a prescribed retinal region.
Each picture hereby generates a spatial pattern of activity across the
feature detectors of v, v,, ..., v,. This pattern is a coded internal
representation of the picture. An outstar can learn and reproduce any
such representation with complete fidelity.

Alternatively, suppose that the cells v, v,, . . . , v, are motor control
cells. In this case, each v; can excite a particular group of muscles, and a
larger signal from v; causes a faster contraction of its target muscle
group. A spatial pattern across v,, 1, . . . , U, then codes fixed relative
contraction rates across many muscle groups: for example, playing a
chord on the piano with prescribed fingers; or withdrawing a hand with
fixed relative speeds of wrist, elbow, and shoulder motion; or forming a
particular configuration of lips and tongue when uttering a sound. In
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other words, the outstar can learn any motor synergy in which pre-
scribed relative rates exist across a family of muscle groups. An increase
of the CS input speeds up all the muscle contractions at their fixed
relative rates; that is, the CS can perform the synergy at an arbitrary
rate.

In summary, a single outstar can coordinate, through its parallel
pathways ey, the learning and reproduction of a distributed sensory
code or a synergistic pattern of motor commands. Not all sensory and
motor acts have fixed relative figure-to-ground, but using the results on
outstars shows how to approach the coding and performance of arbitrary
sequences of events.

4. Ritualistic Learning of Arbitrary Acts

The properties of stimulus sampling and of encoding in spatial pattern
units show how to learn an arbitrary act, such as a piano recital, a
dance, or a sequence of sensory images, in a minimal way (Grossberg,
1969¢, 1970a, 1974). The simplest example describes a ritualistic encod-
ing, wherein performance is insensitive to environmental feedback. In
this case, only one cell is needed to encode the memory of an arbitrary
act. This fact shows that the encoding of complexity per se is relatively
easy. In fact, nervous systems with few cells can activate complicated
behaviors, as is well known in invertebrates (Dethier, 1968; Kennedy,
1968; Willows, 1968). The ritualistic construction is also universal;-such
a cell can encode any act. The genetic code for such a cell need not
concern itself with which act will eventually be encoded. The ritualistic
construction focuses our attention on deeper questions concerning the
global organization of memory when environmental feedback is opera-
tive, and suggests mechanisms of encoding that are sensitive to environ-
mental feedback.

Suppose that the act to be leamcd is controlled by the cells v,
5™ ..., 0% in a field of cells V. Each v might be a feature
detector, a motor control cell, a hormonal source, an interneuron—

1)
s

-anything you like. The number n of cells being controlled can be chosen

arbitrarily large. Let each cell v;‘® receive a nonnegative and continuous

input L(f), t = 0, i =1,2,...,n. Any such input is covered by our
analysis. A particular choice ‘
J@0y = (), L@, ..., L), t=0

of inputs controls a given act. In intuitive terms, J(f) describes a moving
picture playing on the cells v, w™, ..., 0, through time. The
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movie shall be learned and performed as a sequence of still pictures that
are smoothly interpolated in time.
Because each I(f) is continuous, the functions

n —1

o0 =10 | 3 0] ©
k=1

are also continuous. As in the case of moving pictures, any continuous

function 6,(r) can be arbitrarily well approximated by a sequence of its

values

6(Q), 6:20), 6,3y), 6:(4L), . .

sampled every { time units, if { is chosen so small that the functions 6,{¢)
do not change too much in a time interval of length {. For every fixed k,
the numbers

0w = (Qky), i=1,2,...,n)

sampled across all the cells v, 'V, 1,'?, . .., v, at time ¢ = k{ form a
spatial pattern. To learn and perform the movie J(f), t = 0, it therefore’
suffices to learn and perform the spatial patterns 6, 62, 9, . . . in the
correct order. This can be done if a sequence of outstars 0, , 0, s, .

is arranged so that @, samples just spatial pattern 8%’ on successive
learning trials, and is then briefly activated in the order @,, 0y, O, . .
on performance trials. An avalanche- -type anatomy, such as that in Fig.
11, accomplishes this by using the minimum number of spatial dimen-
sions. In Fig. 11, a brief CS-activated sampling pulse travels along the
long axon of cell v,” from left to right, and down its serially arranged

,(Im“,' %
SAMPLING PULSE
{

CS-?::f:(ed Vi Z\
/Y]

mlf/ WW o oo e V‘ peite
SPACE-TIME \/ \ B

PATTERN
{UCS)

FiG. 11. An avalanche is the minimal network that can ritualistically learn any space-
time pattern.

zawiclivreiprk:
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bouquets of axon collaterals. Each bouquet (really an outstar) can learn
a spatial pattern, and successive bouquets are activated every [ time
units, No bouquet can see more than one pattern 0%, because of the
property of stimulus sampling. On performance trials, the CS-activated
pulse runs along the axon, serially exciting the bouquets and their
learned spatial patterns; the space-time pattern is hereby synthesized
from its ordered spatial components 6%. Thus one cell, albeit in
possession of many axon collaterals, can code the memory of an
arbitrary act,

5. Nonspecific Arousal as a Command

Once a pulse is emitted by v,®, there is no way to stop it in Fig. 11. If,
for example, the avalanche controlled the performance of a long dance,
and the stage on which the dance was being performed began to burn,
there would be no way to stop the dance in mid-course to escape the
flames. Sensitivity to environmental feedback is possible only if the
pulse can be abruptly terminated as it travels along the avalanche axon
(Grossberg, 1969c, 1970a, 1971b, 1974). By considering the minimal way
to do this, we find an anatomy that is isomorphic with that discovered
for command neurons in various invertebrates—for example, in the
control of the rhythmic beating of crayfish swimmerets (Stein, 1971).

The avalanche must be modified so that performance can be termi-
nated at loci all along the axon of the CS-activated cells v,®. Consider
Fig. 12a. In Fig. 12a, cell bodies v,®, 1,®, 1,®, . . . , forming a field of
F® of cells, are interpolated at every outstar source. Performance still
cannot be terminated if a signal from v, suffices to fire a signal at v/%, .
Figure 12b remedies this situation in a minimal way. The new population
v, ® can supply a signal that reaches all the populations v,®, 1,®, . . .
(approximately) simultaneously. Require that v, can fire a signal only if
it receives an input from #,® and v, ® simultaneously. Withdrawal of the
signal from ©,® can therefore abruptly terminate output from the
avalanche, since v, cannot fire even if it receives input from »®. In
this sense, v,® supplies an arousal input to the avalanche. Because this
input is delivered to all populations v»,?, »,®, . . . | it is a nonspecific
arousal input. Population v,® supplies a command 51gnal that prepares
the avalanche to fire in response to the CS input to v,®.

Such command neurons are familiar in the control of behavioral acts
by invertebrates (Dethier, 1968; Kennedy, 1968; Willows, 1968). If
changes in the LTM tracés of the avalanche in Fig. 12 are prevented [set
Dy = Ey = 0 in (2)], then this network is capable of performing
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Fig. 12. (a) Interpolating cells 1@ along the avalanche cannot terminate performance
unless (b) a nonspecific signal is also needed to fire the next cell.

arbitrary acts whose pattern weights are permanently encoded in its
synaptic knobs.

N?te that varying the size of the arousal signal through time can
continuously modulate the speed of performance. Suppose that a given
cell % starts to receive a signal from vf®, when arousal from v, ? is
large. Then the total input to ©® is large, so its STM trace grows
rapxc_lly, and quickly exceeds its signal threshold. By contrast, if v®
receives a signal from v{?, when arousal from v, @ is small, then the total
input to.v,-‘z’ is small, so its STM trace grows slowly, and takes longer to
exceed its signal threshold. If the arousal signal is too small, the signal
threshold is never reached, and the reaction time of v is infinite.

6. Self-Organization of Codes and Order Information

- Several important themes are made evident by the avalanche example.
They are introduced below to motivate our later network constructions.

A. INSTRUMENTAL CONDITIONING

Not every ?ompeting event should be able to switch off nonspecific
arousal. To cite a colorful example: It is one thing to stop dancing at
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your debut if the stage is consumed by flames, and quite another to risk
your career because a mosquito is hovering above. Only more important
events should be able to shut off the arousal that supports a given act.
Knowing what is important to an organism requires, -in particular, that
we know what events are rewarding or punishing to the organism. What
is the relationship between reinforcement and a cue’s ability to trigger
nonspecific arousal? Grossberg (1971b, 1972a,b, 1975) develops a rein-
forcement theory that suggests an answer to this question.

From the discussion of arousal as a command, we expect a process
akin to that depicted in Fig. 13. In Fig. 13, cue CS; excites arousal

source o, plus its avalanche v,*?, 9, ™®, 4,92 1o elicit sequential
performance of its encoded act. When CS, occurs, it excites arousal
source &, plus its avalanche v,%?, 1,2, v,®® . _ Arousal sources

of; and &/, mutually inhibit each other. If &, is excited more than &,,
performance of CS,’s act abruptly terminates and performance of CS;’s
act commences. How do the cues CS, and CS, gain control over their
arousal sources &, and s/, in cases where such control is not genetically
preprogrammed? :

B. SeErRIAL LEARNING OF ORDER INFORMATION

In the avalanche of Fig. 12, a chain of connections from v, to v, to
v;%®, and so on, exists in the network at all times. This chain determines
the order in which spatial patterns will be performed. Such prepro-
grammed chains of cells do not generally exist before we learn a
sequence of successive acts, such as a piano sonata. For example,

i
/*.Iév‘j:
' 5

vn;z) };r\, -’ ,/-q< "uiz'

cs, cs,

FiG. 13. Competition between arousal sources decides which avalanche will be trig-
gered.



522 CHAPTER 13

suppose that each 1,® controls a different chord in the sonata. Surely
there does not exist in every mind a chain corresponding to every
possible sequence of chords! This order information must be learned.
There exist two conceptually distinct ways in which this can happen. In
Fig. 14a, each v,? is initially connected to all cells v®, and eventually
becomes differentially connected to vf?, as a result of practicing the
sequence v?, 1,®, 1,2, . ... This is a problem in serial learning. In
Fig. 14b, somehow a higher-order cell population looks at the sequence
0,@, 0, 0,® | asitis practiced, and learns to reproduce a spatial
pattern of activity across these cells such that the earliest cells have the
largest activity. When these differential activity levels are translated into
speed of performance, v, is performed before v, v,® before v,, and
so on. This is again a problem of serial learning. Which strategy of serial
encoding is used? The theory of serial learning in Grossberg (1969d) and
Grossberg and Pepe (1971) provides a foundation for answering this
question.

(a)
° 9 & o
{2) (2) (2)
Vi Va Vs Vi

(b)

Fig. 14. (a) All populations initially interact equally, but serial learning differentially
weights a chain of LTM traces; (b) & command population elicits a graded pattern of
activity across a population field, which translates the activities into order of performance.
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C. SELF-ORGANIZATION oF CONTEXTUAL COMMANDS OR CHUNKS

If the order information from v, to 1,® to »;@, and so on, is not
genetically preprogrammed, then the command v ® in Fig. 12 that
nonspecifically arouses these cells is also not genetically prepro-
grammed. In other words, given that the particular sequence v, @ 2,
0, ... depends on the act that it controls, the command v, that
arouses this sequence must be chosen by the sequence itself. Otherwise,
there would exist innately prewired commands for every possible
sequence, which is absurd. How does a particular sequence code a
particular command? How does this coding occur so that different
orderings of the same set of cells »® do not all code the same
command?

Given that the command v,® is adaptively coded by its controlled
sequence 1,®, 0,?, »,®, ..., how does v;® learn what sequence it
codes? This question immediately calls Fig. 14b to mind. s the higher-
order cell in Fig. 14b a command population v,®? Does the learning
process that teaches v® which sequence it controls automatically
encode the order information needed to perform this sequence cor-
rectly? In more abstract terms, are adaptive coding (or chunking) and
the learning of order information dual processes in a feedback system?

Given that sequence @, v,®, »,® ... adaptively codes its com-
mand, we must also realize that there is nothing special about this
particular sequence. Every subsequence of v,?, 1,®, 5,®, . . . is also a
sequence, and must be able to code a command. Not every subsequence
will be able to code a command with equal ease. Nonetheless, at every
time, there will exist a field ® of command cells, each excited to a
different degree by its generating sequence. Each command cell in
samples the activity patterns that prevail across F® while it is active.
Simultaneously, the pattern of activity across F@ continually shifts
through time as new events are rehearsed, and thereby generates new
subsequences to be coded by F¥. At every time, the total signal from
the command field F® to ¥ helps to determine the order information
among the cells in F®. Grossberg (1976a,b,c) provides a conceptual
foundation for synthesizing the adaptive feedback relationships between
the generating sequences and the commands that organize them.

Speaking intuitively, the command cells provide the context in which
a particular pattern is performed. For example, after playing the first few
bars of a piano sonata, a pianist is ready to play the next several bars.
While the second movement of the sonata is being played, the first few
bars no longer control performance; more recently played notes provide
the command context for determining the next notes to be played.
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Similarly, if I emerge from my bedroom door, I can decide to turn left to
b!'ush my teeth, or to turn right to go directly to breakfast. The
difference is decided not by the sensory cues that confront me whenever
I am at the door, but by the context, command, or plan that modulates
these cues. ) :

The above remarks clarify an important distinction. An adaptively
coded command in ¥ provides a type of cognitive context, or arousal,
for the populations in its sequence in F®, This type of arousal is
different from the motivational arousal that determines whether per-
formance of a given act continues to be in the best interests of the
network. With this distinction, the elicitation of performance by an
avalanche would employ an anatomy such as that in Fig. 15. In Fig. 15,
the command cell is activated by a particular cue plus motivational
arousal. Once activated, the command cell determines a cognitive
context that arouses certain populations in preparation for their firing in
the correct order.

D. ADAPTIVE CODING OF SENSORY-MOTOR RELATIONSHIPS

Similar coding problems occur on a more microscopic level. In
particular, how is it determined which v.® will be chosen to learn a
particular chord? For example, while a piano piece is being learned, a
0. is presumably excited by some combination of visual cues, from
reading the piano music and seeing the keyboard, and auditory feedback
cues, from having played the chord. At this point, characterizing the
exact cue combination is unimportant. What is important is that v, ? is
adaptively coded by its cues in a manner that is strikingly similar to the
adaptive coding of a command by a sequence of v,®”s. Thus, we are
dealir!g with a problem concerning the hierarchical organization of
adaptive codes, or chunks, and the feedback signals that order these
codes, among emergent fields F©, 2, @

COGNITIVE CONTEXT

el ,I'*'fi“_'-m

L2

MOTIVATIONAL
CUE CONTEXT

. FIG.. 15. A cue can excite a cognitive command as- well as a nonspecific source of
incentive-motivation,
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E. TEMPORAL DISCRIMINATION AND FEEDBACK INHIBITION

The above remarks set the stage for analyzing how representations are
turned on at appropriate times. How are they turned off?

For example, suppose that the CS that activates v,® in Fig. 12 has a
very long duration. If, consequently, each v;® fires for a long time, then
each synaptic knob will sample many spatial patterns, and will learn a
weighted average of all the patterns (that is, ‘‘noise’’) rather than any
particular pattern in the act. How is a prolonged input translated into a
brief sampling signal? Grossberg (1970b) proves that a feedforward
inhibitory interneuron can create a brief signal that is turned on by rapid
changes in input level (Fig. 16b). A feedback inhibitory interneuron can
turn off the signal only temporarily at best (Fig. 16¢) and can allow a
steady leakage of signal if inhibition is too weak (Fig. 16d). None of
these mechanisms prevent a second input pulse from reactivating the
avalanche while it is performing a later stage of the act. Then cells such
as 1,® can sample and learn spatial patterns very much out of their
correct order. Clearly a feedback inhibition mechanism is needed which
prevents premature reactivation, or other perturbations of avalanche
performance, unless more urgent environmental demands occur. In
cases where the order information is not genetically preprogrammed,
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FiG. 16. The prolonged input /(1) in (a) can be shut off by a feedforward inhibitory
interneuron (b), but not by a feedback inhibitory interneuron, (c) or (d).
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these inhibitory mechanisms must have an anatomy that is independent
of any particular ordering that might be learned (cf. Grossberg, 1969c).

With the above heuristic remarks as motivation, we shall now
construct a class of networks capable of adaptively synthesizing codes,
maps, and plans. '

7. Instrumental Conditioning

The mechanisms of drive, reward, and motivation that are needed
herein can be derived from postulates about classical conditioning
(Grossberg, 1971a, 1972a,b, 1975). This procedure demonstrates that
classical and instrumental conditioning share certain- mechanisms in
common. In effect, these mechanisms embed, or buffer, the cells
capable of learning in a network that prevents sampling except under
appropriate circumstances. It is remarkable that explicit mechanisms for
such nontrivial phenomena as self-stimulation, partial reinforcement
acquisition effect, peak shift and behavioral contrast, and novelty as a
reinforcer can be derived from such seemingly innocuous postulates as:

A. The time interval between CS and UCS presentation on successive
learning trials can differ; and
B. The CS alone can elicit a CR on performance trials.

Postulate (A) describes the obvious fact that successive stimulus
presentations under natural conditions in real time are not always
perfectly synchronized; postulate (B) simply describes the outcome of
classical conditioning. To cope with these postulates in a world wherein
events continually buffet our senses, and wherein our long-term memo-
ries are spatially, albeit nonlocally, coded requires additional network
structure. ’

To see this, suppose that an outstar ¢, attempts to learn a prescribed
spatial pattern 6’ in a sequence 8V, 8”, 6, . . . of spatial patterns by
practicing the sequence on successive learning trials. If postulate (A)
holds, then the time lag between the CS that excites O,'s sampling
population v,® and the UCS sequence 8%, 8@, §®, . . . can be different
on successive learning trials. If v,® fires whenever the CS occurs, then
O, can sample a different pattern 6%’ on every learning trial. @, will
consequently learn an average pattern that is derived from all the
sampled patterns——that is, ‘‘noise.”” How does @, know when to sample
the “‘important™ pattern 8°? Somehow, the onset of sampling by v,®
and the arrival of the UCS at the field F® = {9V, 1,", 0,?, .. .} of
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sampled cells must be synchronized. This can happen only if the UCS
lets v,® know when it will arrive at ™ by sending a signal to v,. Also
v, ? must be prevented from eliciting a sampling signal unless a large CS
and UCS signal converge at v,®, This UCS signal must arrive at v,®
before the UCS pattern activates ¥V, since v, must be able to send a
signal to F* in time to sample 8. In other words, the UCS activates a
bifurcating pathway; one branch arouses v,'”, and the other branch
delivers the UCS pattern a little while later. The same argument holds
for every cell v,® that is capable of being activated by a CS, since it is
not known a priori which CS-UCS combination will be learned. Thus
the UCS nonspecifically arouses the field #® = {1,?, 1,®, 1,®, . . .} of
sampling cells. In summary, simultaneous convergence of the CS input
and the UCS nonspecific arousal at a sampling cell are needed to fire
this cell. This mechanism synchronizes the onset of CS-activated
sampling from % and the arrival of UCS patterns at ¥ on successive
learning trials. Convergence of a specific input and a nonspecific input is
also needed to fire sampling cells v,” in the avalanche of Fig. 12b. It is
the same mechanism derived from different considerations.

Postulate (B) shows that conditioning of the CS to the UCS arousal
pathway occurs during learning trials. This is the basis for the emerg-
ence of ‘‘conditioned reinforcers’ or “secondary reinforcement” in the
networks. Conditioned arousal is necessary, since otherwise the CS
alone could not elicit a CR on performance trials. This is because
sampling cells can be fired only by the convergence of a CS input and an
arousal input. Since the UCS is not present on performance trials to fire
the arousal pathway, the CS must gain control over the arousal pathway
by being paired with the UCS. An analysis of the minimal mechanism
capable of conditioned arousal is shown in Fig. 17, wherein each

FiG. 17. Conditioning occurs in parallel at the arousal source &/ and at the motor
command cells 4.
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discriminated cue CS; has a two-stage network representation _{v‘, R
s} i=1,2,....Consider the network response to a prescribed
CS. Let the CS fire v, . Then v, sends signals to v, and to the arogs'fll
population &f. Nothing else happens until the UCS arrives at vy, . This is
because v,, can fire only if it receives an input from v,, and from &, but
the signal from v,, to & is initially too small to fire sf. When'the ucCs
perturbs v,,, v,, sends a signal to v, and to &. The vy > o signals are
large enough to fire &, because the cue firing vy, is a UCS. When &
fires, it releases nonspecific signals to all cells v, , vy, Uy o - - Now
three things happen. First, since v,, and & are both active, the LTM
traces in the synaptic knobs of v, — o axons get stronger. When these
traces get strong enough, the CS alone will be able t.o ﬁre'v12 . Second,
the arousal signal from & combines with the UCS-derived sngqal from vy,
at 1y, , thereby firing signals from vy, to 4. These signals ellcl? the UCS
pattern in the populations of 4. Third, because the aroysal signal from
o is nonspecific, it also combines with the CS-derived signal from v, at
vy, , thereby firing signals from v,, to 4. These signals sample ;_he UCS-
elicited pattern at (. Consequently, the CS begins to acquire UCS
properties, both by learning to control the arousal pathway &, and by
learning to elicit the UCS-induced pattern at /L. _

The following psychological terms can be used to mterpre? thc? al’)'ove
interactions. The arousal pathway supplies ‘‘incentive motivation’ to
the cells v, . As a population v, gains control over the arousal pathwa}f,
it becomes a *‘conditioned reinforcer.” As v;, samples a pattern at A, it
is said to learn a “*habit.”” Thus, a cue that excites v, can learn tp
control incentive motivation via the pathway v, — o — v, as it
simultaneously learns to control a habit via v, —> v, — ./“: .

Grossberg (1971b, 1972a,b, 1975) continues this derivatlon'by impos-
ing other simple psychological postulates that act as envxronment.al
pressures on an evolving network. These postulates lead to networks in
which functional analogs of familiar neural regions appear, such as
hippocampus, reticular formation, hypothalamus, septum, anfl cerebral
cortex. Each of these regions emerges because the network tries to deal
with environmental feedback in an ever-more-sophisticated way. The
present paper cannot review these developments for lack of space.

8. STM Reverberation until Reward Influences LTM
For present purposes, our discussion of instrumental conditioning

makes two essential points: (1) A cue can generate an STM response at
certain cells v, without firing the cells vy, ; (2) the cells v, can be fired
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only if the specific signals from v, are supplemented by nonspecific
arousal,

In many situations, an STM trace of a previous event must be kept
active after the event itself terminates. For example, in an instrumental
conditioning paradigm, the STM traces of previous events must be kept
active long enough for later rewards to influence their storage in LTM.
Yet these STM traces must also be capable of rapid decay if competing
events occur. The two properties of sustained STM activity and rapid
induced decay cannot both be achieved by a slow passive decay of STM
(Grossberg, 1971b). An active reverberation from v, to excitatory
interneurons v, and then back to vy has these two properties (Fig. 18).
Excitation in the v, < v, loop can sustain itself indefinitely, even if the
passive decay rates of the v, and v, populations separately are fast. If
one of the links vy or vy in the loop is inhibited, then the potentials in v
and v, can rapidly decay. The reverberation in Uy € Uy can go on
indefinitely without influencing any LTM changes. Only when arousal
reaches v, can v, fire and induce sampling by its LTM traces of patterns
at M. )

The very virtue of this mechanism introduces a difficulty. Unless the
reverberation is inhibited, the loop will continue to reverberate even
after arousal allows vy, to fire. In short, reverberation can keep STM
traces on, but cannot turn them off. When such a mechanism is used in a
network trying to learn order information, chaos results unless there
exist sources of inhibition to shut off the STM reverberations at
appropriate times. To see how to do this, we embed the functional units

of Fig. 18 into the simplest anatomy capable of learning order—namely,
the avalanche.

//ﬁj_“‘*
\\’
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FiG. 18. Reverberation in the v, < vy loop keeps the STM trace active and permits it
to be rapidly shut off by inhibition.
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9. Rehearsal Resets STM Order Information Using Feed.back Inhibition
and Decouples Order and Velocity Information

The cells ,? in Fig. 12 are analogous to the cells v, in Fig. 13). In
effect, Sections 7 and 8 refine our understanding of how the cells v, are
influenced by arousal. To construct the simplest example of hov»f to
combine the properties of sequential performance., STM reverl?eratxon,
and modulation by arousal, we replace the populations v,® pf F}g. 12 by
the units {v;, , v,y }, along with their interaction pathways, as in Fig. 19. In
this figure, the following pathology occurs. When a .51gna1 from Vi-1,2
activates’ v, , the STM reverberation v,« v is switched on, ?.nd is
never shut off. The signal v, « v, plus arousal keeps the population vy
firing at all future times. Consequently, v;, will samgle every .pattem.thz.tt
reaches . after v, is switched on, thereby learning nothing. Th}s is
intolerable. The v, < v, loop can be allowed to reverberate. u{nt{l U
performs its LTM pattern, but the reverberation mqst then be inhibited,
or else v,’s pattern will be washed away by the tlfle of future events.
Thus, when , fires, it not only sends excitatory signals to . It 'must
also send feedback inhibitory signals to either v, or vy that. terminate
their STM reverberation (Fig. 20). As v, fires, it also excites Vit rt»
which reverberates with v,,,; and sends signals to 3. Popqlatlon
Ui1,2, in turn, fires when it is aroused. Tl}is systepi'thus provides é
simple example of how order and velocity information are decoupled;

AROUSAL

F1G. 19. Minimal synthesis of learned sequential performance, STM reverberation, and
modulation by arousal.
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Fig. 20. Feedback inhibition elicited by performance signal prevents permanent sam-
pling.

that is, the same sequence of acts can be performed with different
rhythms by varying the size of the rehearsal wave on successive trials.

10. An Emergent Neocortical Analog

The units {v,, vy, vy}, i =1, 2,..., along with their auxiliary
interneurons and pathways, form network ‘‘modules’’ or *‘chips’’ that
carry out important ‘‘data processing”’ tasks. When many of these units
are placed alongside each other, a natural laminar structure emerges,
with the same type of processing going on in all the cells of a given
layer. A column of layers is a functional unit in this laminar field.

There are many reasons to interpret this structure as an emergent
neocortical analog. The ubiquitous laminar organization of neocortical
tissue (Crosby et al., 1962) and its organization into columnar functional
units (Hubel and Wiesel, 1962, 1963) are two of the most casual
similarities. Furthermore, the cells v, are often polyvalent cells, or cells
that respond to more than one modality, such as an auditory CS (tone)
and a visual UCS (visual presentation of food). These cells fire only in
response to the sum of CS plus UCS inpnts, and are importantly

~ L2 INPULS, ang PO wuy

implicated in plastic network changes. John (1966, 1967) reports the

. existence of analogous polyvalent cells in neocortical tissue. Grossberg

(1971b) summarizes related data.

In vivo, a slab of neocortex that has been isolated by cutting through
the underlying white matter can maintain sustained reverberating activ-
ity (Burns, 1958). A similar persistence of reverberation occurs in the vy
<> vy excitatory loop if inhibitory v, — vy feedback is prohibited by
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cutting off arousal inputs to Us. This.fact c.lanﬁ'es an lmt;':s::t:l]li
paradox. Arousal in Fig. 20 has two functlons. First, it i{xc"ttesindirectly
vy, which thereupon rehearseh their patterr:s.sglc\;on , 1
inhibi op Uy ¢> Uy, and thereupon resets S1M. )
mtgl:lllt:rt?:nlcoti(fnail‘ propesrties have been cited for 1den.t1fyu'1g tcl;us stln;Leur:-
ture as a neocortical analog. In the theory of attentlonI in er::istab“g-
(1975), a conditionable excitatory feedback Qathway modu att;: SN
ity in this structure. This feedback pathway 1s ana!ogous to e oo that
contingent negative variation (CNV), a slow cortical pdote'n' alter
has been associated with an animal’s expectancy, ecnsglgn vo]itior;
1964), motivation (Irwin et al., 1966; Cant and Bickford, 1 7)6 ol
(McAdam er al., 1966), preparatory set (I.:ow et al., 1966), ‘z;n | arouse
(McAdam, 1969). Walter (1964) hypothesnzeq t.hat the CN lsdendritic
average base line of the cortex by depolanzmg' tt_xe apica P
potentials of its pyramidal cells and thergby priming the lclc: o
action. The arousal pathway of Fig. 19 is this CN_V analog, alt houg‘d ve
have not, for lack of space, reviewed why this pathwz.ly s ou“ e
conditionable. In brief, this conditionabl.e pathway estabh.sh'esdab pa ;'
chological set” without which inappropriate acts can be ehcn;e (yl 975);
motivational source (Grossberg, 1969¢, 1971b, 1975).. Gfoss erg R
also notes that more than one type of arousa}l exists; for e)l(ar:}pm;
incentive-motivational arousal and the arousal mggergd by rrx‘o:'e . : fea i
are conceptually and anatomically different mechanisms i:t, nltion or,l
often compete with each other. The former system focuse§ a ‘; on on
cues that have in the past yielded expected consequences; it oct ,u o
overshadows, irrelevant cues. The lgtter system zrsezzcl‘i':elevan c
adowing when unexpected consequenc -
fr?[‘n;: ?ol:?tructioni in later sections will further develop t.hls al?alog'.1
For the present, we draw Fig. 21 in a way that emphasizes know
neocortical structure.

11. Control of Performance Duration by STM and Arousal

In Fig. 20, once a state U receives a signal from vy plus arousal, it
fires and thereupon accomplishes three things:

i i rief
1. It inhibits v, © vy reverberation, and thus it fires only for a b
time. _ . - .
2. It excites 41, Which can reverberatfa with vy4,5 for an mde.ﬁglltle
interval of time, until arousal combines with the Uiy, v”“'zh?tl)%to ,
and thereupon inhibits the reverberation via the vi4y,2 = Visr3 1D ry
pathway.
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Fig. 21. A cortical analog of the minimal network module suggests interactions

between phasic inputs, nonspecific arousal, pyramidal cells, and cortical interneurons—for
example, Golgi type II celis.

3. It briefly excites an output pathway that leads, perhaps multisy-
naptically, to certain muscles.

Suppose that, after v, fires, arousal is terminated. Then v,’s brief
signal moves down the output pathway, and the v,,,,, © v,;,, reverbera-
tion labels the next pattern to be elicited without releasing this pattern.
How does the brief v, output signal generate a new output configuration
that can be maintained until arousal releases the next output pattern?
For example, how can one hold a tone, or a note on a keyboard, or a
phrase, until the next pattern is released? Somehow the brief output
signal imposes a new pattern on the motor controls, and this new pattern
also reverberates in STM until it is supplanted, or reset, by the next
pattern. In other words, the motor controls maintain a posture until a
new command changes the posture or terminates the reverberation.
Figure 22 schematizes this relationship in terms of descending control by
v, of pairs of agonist-antagonist muscle groups. The descending signal
inhibits the excitatory reverberation due to previous patterns, and
imposes a new pattern on all the pairs. This new pattern thereupon
reverberates until a new disturbance occurs, such as a competing
command or the removal of arousal.

The above discussions make plain the need to study two kinds of
processes in greater detail. First, how is order information embedded in
LTM when a sequence of events is presented to a network? Second,
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Fic. 22. The brief command from v, is stored in STM until it is reset by a new
disturbance.

» Aoy AGONIST-ANTAGONIST
W 4 POPULATION PAIRS

L |

how is a graded pattern of STM activity maintained across many
populations? We shall begin by summarizing some facts about the ﬁrs}
problem, and then the second, before combining these facts to reconsi-
der the first. The two problems are intertwined, and so therefore is our
discussion of them.

12. Serial Learning and STM — LTM Order Reversal

This section summarizes the simplest results on how order informa-
tion is transferred from STM to LTM. The basic references are
Grossberg (1969d) and Grossberg and Pepe (1971). Grossberg (1974,
Section VII) reviews some of these results. They show hon t_emporal
sequences of events are coded as spatial patter_ns of. LTM acpvxty. h

Two types of serial learning are included in this analysis. In bot
types, order information is not innate. In type I (Fig. 14a) man); Vig —* vy
p'a—tbways of comparable strength exist before learning occurs. bon_lenpl:v
a sufficient amount of serial learning embeds a .dnrectefi chain-like
structure vy, —> Vg, Uy —> Uy, U —> Uy, ... 10O this ar}atomy.
Actually, we shall see that spatially distributed LTM pat.tems exist evel}
in this case. Type II (Fig. 14b) exhibits another anatomlf:al subst.rate o
serial learning. Here a command state le?ms ord.er mforma}non by
sampling populations as they are sequentially activated. ThlS. lattl;ar
anatomy has the advantage that serial order in 2 cap be reorganized by
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changing which commands are active at any time. The chains in Fig.
14a, by contrast, rigidly constrain the possible performance order once
they are entered (cf. Lenneberg, 1967, Chapter 3). Many of the same
LTM patterns are learned in both types of anatomy. This fact is
important, because, when both types of phenomena are operative, they
yield self-consistent order information. The two cases are schematized
more completely in Fig. 23. Figures 23a and 23b depict variants of the
type of serial learning in Fig. 14a. In Fig. 23a, every state v; is connected
to all other states v, by conditionable pathways. In Fig. 23b, every state
v; is connected to all states v; by conditionable pathways. In both cases,
we let the states v,, v,, ..., v, be sequentially excited by a list of

(1 (1) 1
:]\ Vy Vl(.]

FiG. 23. Two anatomies in which serial learning builds.up chains of LTM associations,
(2) and (b). In (c), command states u;® learn serial order of inputs presented 1o populations
vk(l)
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inputs, with a time lag of w (intratrial interval) between successive list
items. See Grossberg (1969d, 1974) and Grossberg and Pepe (1971) for a
discussion of how w, L, and the intertrial interval between list presenta-
tions influence LTM. In Fig. 23c, the states v, ¥, ™, .. ., v, in FWY
are sequentially excited by a list of inputs. The states in F® are
command states, or chunks, that are either directly excited by the list
inputs, or indirectly excited by sets of active states in F. For the
remarks below to hold, it only matters that disjoint subsequences in ¥
are sequentially excited at a uniform rate and with a uniform intensity
through time. Generalizations of this situation will be clear once the
basic mechanism is understood.

For definiteness, we shall consider Fig. 23¢ when an input to state v
also excites 15;?. We shall discuss LTM under the following assump-
tions:

1)

1. The system starts out at equilibrium.

2. The states are serially excited every w time units.

3. The STM traces decay at an exponential rate after they are excited.

4. The LTM traces z; add up the products of signals By from v® to
. and STM traces x, V. For simplicity, we let By = [x® — I1*, but
the results also hold if By is a sigmoid function of x®. We ignore the
rate of LTM decay, which is assumed to be slow on each learning trial.

5. The stimulus sampling probabilities

Zy = ij(z Zim )}

measure how strong the (j, k)th association is relative to competing (Jj,
m)th associations, m # j.

In all,
1P = —Ax" + L), %P0 =0 )]
5P = —Ax® + 10, %P0 =0 ®)
Zy = B[x® — TT %, zx(0) =a>0 9)
and

(0

Zy = ij(z Zm )t —

Figure 24a shows how STM activity is distributed across the field Fw
through time. The last item to have received an input is always most
intensely active, and successively earlier items have progressively
weaker STM traces (STM recency effect). A similar distribution of
activity holds for the STM traces of the command states in F®; the last
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(c)
F1g. 24. Whereas STM shows a recency effect, LTM (at least as sampled by v ®)

shows a nrimacvy effact
shows a primacy effect,

item to have received an input is always the most active, etc. What
about the sizes of the LTM traces z;? By (9), z,. grows faster when
either 5 or x, is increased in size, other things being equal, but does
not grow if either 5, < T or 5,V = 0. Note, however, that the stimulus
sampling probability Z,, in (10) can decrease even when Z;, grows, if the
competing terms Z,,,; z,, grow more quickly.
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Consider the distribution of the probabilities Zy; emar‘xatl'ng f:rom v,
after a single list presentation. Three facts control this distribution:

1. Each STM trace x® is the same as the previo.usl).' excited
trace x{,, except that its growth and decay are delayed in time by w
because of (7). )

2. Trace x, ® starts to decay after the input to v, ® terminates, by (8).

3. Trace z, adds up the products [x,® — I'T*x through time, by (9).

In Fig. 24b, the STM traces x,V, 5V, x,®, . . . are superimposed on
the signal [x,® — TJ*. The products [x,® — TT*x“ are clearly made
smaller, other being things equal, as i increases: I:Ience, aft;r t_he
learning trial is over z,, > z,; > 23 > *--. This fact is illustrated in Fig.
24c by drawing largest the synaptic knobs of the largest LTM traces. In
particular, if a rehearsal input perturbs v,® after the: STM traces have
decayed, then the STM traces x5,V in %V that are activated by the LTM
traces z,; have the distribution shown in Fig. 24c. Wherf:as the largest
STM traces in Fig. 24a correspond to the most recently inputted states
(recency effect), the largest traces in Fig. 24c correspond to the least
recently inputted states (primacy effect). The LTM traces of the
command state v,® have reversed the order of STM trace strength, as
was discussed in Section 1,G! Compare the data on STM recency and
LTM primacy as reviewed in Atkinson and Shiffrin (1971). ‘

Recent studies of serial learning emphasize the interplay of ‘.struc~
tural”’ versus ‘‘transient’ factors in memory (Bjork, 1975; Craik and
Jacoby, 1975: Estes, 1972; Hogan, 1975; Hogan and Hogan, 1975;
Shiffrin, 1975). In the present context, structural factors are those that
use the LTM traces to generate an STM distribution on whl_ch perform-
ance is based. Transient factors are those STM properties that are
directly induced by the experimental manipulations, without mterventlfm
of feedback signals that are gated by LTM traces. The opposite
tendencies in LTM and STM orders shown above will be used below to
explain various bowing phenomena in performance. ]

Before doing this, two related kinds of phenomena will b.e. summa-
rized: first, the relative LTM learning rates at different list p2s1‘t1'ons; and
second, the shape of the generalization gradient§, or .b'.TM spatial
patterns, controlled by the LTM traces at different list positions.

To discuss the learning rates at different list positions, we define the
function

GG, T, 0 = Z,(tw) an

and consider G(@i, T, i). This latter function measures the ‘‘correct
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association” from u,” to 4, one time unit after sampling signals from
v reach #, and thus before *‘incorrect future associations’ such as
Zigrk, k = 1, can develop. Figure 24a shows that, as i increases, there
are more active ‘‘past’” STM traces x{2,, x{¥, . . . to compete with the
growth of Z; after the input to v occurs. The function G(i, I, i)
correspondingly has the graph in Fig. 25a, at any threshold value T for
which some learning occurs. By contrast, let f in G(i, I, ¢) be allowed to
increase to values that correspond to times long after the last list item is
presented. Then G(i, T, 1) is no longer monotone decreasing. The
nonoccurrence of any more list items after the Lth item is presented
facilitates LTM growth at positions near the end of the list. If T’ = 0 and
t is allowed to become arbitrarily large, this facilitation propagates
backward through list items until the middle of the list is reached. That
is, the minimum of G(i, 0, ) occurs at i = L/2 or (L — 1)/2, whichever
is an integer (Fig. 25b). The middle of the list is consequently hardest to
learn in this case (bowing); the proof is in Grossberg (1969d). If ¢
increases by a finite amount beyond (L — 1)w, then a curve between Fig.
25a and Fig. 25b is obtained by continuous interpolation (Fig. 25¢). That
is, skewing of the bowed curve occurs, if only because the intertrial
interval is of finite duration. Skewing can also be caused by choosing T’

Gfi,ri)

)

Gli,0,2)

r~
v

Gfi,r,1) \ . /

(c)

»

F1G. 25. (a) If no future field interference occurs, then the end of the list is hardest to
learn; (b) if maximal future field interference occurs, then the middle of the list is hardest
to learn (bowing); (c) if the signal threshold is finite, then skewing occurs.
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> 0. This happens because, as I increases, or equivalently, nogspecnﬁ,c,
arousal decreases, population v? in F® can sa_mple fewer futur_e
populations v{Y,, v{¥s, ... in F*, but can stxll’ samp(ls all active
populations 5,7, %™, . . ., v{¥, in the *‘past field”’ of v Qrossfbe;g
and Pepe (1971) prove, in addition, that, whereas the beginning of the
list is easier to learn, given ‘‘normal™ arousal or thr.esl.lold l.cvels
(primacy dominates recency), eventually the end.of the list is easier to
learn at overaroused levels (recency dominates primacy). They compare
these results to attentional problems that learning subjects have when
they are overaroused. The result that the relative LTM trace strf:ngths at
the end versus the beginning of the list reverse as arousal‘ level increases
does not include many important STM and LTM mteragnons. It
nonetheless emphasizes the importance of performance variables on
what is encoded, and suggests a convenient learning measure by which
the degree of overarousal might be quantified (cf. .Sectlor.l .27).

The LTM. generalization gradients at various list positions have the
familiar position-dependent form shown in Fig. 26. There is a forward

distribution of associations Zy,, Zyg, . . - » Zyu.» 2 ba}ckwar_cl d}strlputlot;
of associations Z;, Ziz, - - - » Zi, and a two-sided distribution o
associations Zrp 5, Zimss - - - » Zree (L €ven).

These results illustrate some important facts that w'ill reappear in a
suitable form when more complex structures are consuh?red. Fxrs.t,.no
matter what anatomy in Fig. 23 is perturbed by serial mput§, similar
distributions of STM and LTM patterns evolve through time, and
suggest mechanisms of bowing, skewing, primacy/recency balance,
response generalization, and STM — LTM order reversal. Secom(il,) there
is a delicate interplay between STM and L’_I‘M_ factors at ¥, For
example, let recall begin immediately after the lfst is prese.nt_ed. Then the
STM pattern that is produced at F'¥ by serial inputs exh.lbltsba recency
effect (Fig. 24a). By contrast, LTM produces a strqng primacy eff§ct z_lt
FV, This is due to several factors. At times ¢ nght. after .the list is
presented, G(i, T', 1) is monotone decreasing as a fu_nctlon of i. In other
words, the LTM traces Zy, Zg, . .., Zy With i = 1 code a more
differentiated pattern than do the LTM traces with i = L. Thus, a signal
to FY from a ;¥ with i = | will have a more prongunced ?ffect’ on the
relative sizes of the, STM traces x,*7, @, . . ., x,“than will a mgna}l to.
FY from a v® with i = L. But the LTM traces Z;;, Z‘? ey 2y W(lzt;h i
= 1 exhibit a strong primacy effect, by Fig. 26. Thus, sngn?ls from F to
FW_ gated by their LTM traces, will produce a strong primacy effect in

TM pattern at F*.
th:): the l:)ther hand, if recall begins after the STM pattern at #" has
decayed, then a recency effect can still be obtained, but it is due to LTM
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F1G. 26. Generalization gradients as a function of list position.

rather than STM. More precisely, if the STM traces at " are allowed
to decay without experimental interference, then the LTM traces Z,(?)
will be bowed as a function of i. In other words, LTM traces near the
end of the list can be large. Moreover, the distributions Z,,
Zy, ..., 2Zy with i = L exhibit a recency effect by Fig. 26. Signals to
FY from states v, i = L, will be gated by these LTM traces and will,
therefore, produce a recency effect at #. This recency effect will be
balanced by the primacy effect due to signals to #® from states v,®, i =
1, whose LTM traces Z,;, Zy, . . . , Zy code a primacy effect. Different
experimental manipulations can differentially activate the states v,
during recall trials. Such manipulations act as probe stimuli, in the sense
that they determine which LTM patterns in the F® — F pathways will
be activated and thereby influence STM at . The net STM pattern
elicited across ¥ in a given time frame by all stimuli will determine the
performance controlled by .

These remarks address some aspects of the complex interplay be-
tween activity at ¥ that is due to serial inputs, and activity at ¥ that
is due to feedback signals from F® that are gated by LTM traces. The
remarks also raise some questions. Do the STM ‘traces spontaneously
decay? If not, what factors- cause their ultimate termination? How are
STM traces of command states in F® activated in the first place? We

now turn to the fundamental question of how STM activities are
regulated.

13. Storing Spatial Patterns in STM

Several papers have appeared that analyze how spatial patterns of
activity are stored in STM (Grossberg, 1973; Ellias and Grossberg, 1975;
Grossberg and Levine, 1975; Levine and Grossberg, 1976). The general
conclusion is that, in a field of populations capable of this task, each
population excites nearby populations (recurrent on-center) and inhibits
a broad expanse of populations (recurrent off-surround) by mechanisms
that obey mass action laws. All these operations describe parallel
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computations that go on in a distributed fashion across the field at any
time. Such mechanisms can prevent the stored pattern from being
distorted by noise or saturation.

To see how these networks arise, suppose that a field & of populations
v,i=1,2,...,n,is given. Let each v, have a certain number B of
sites that can be in either an excited or an unexcited state. Let the STM
activity x(s) be the number of excited sites in v at time ¢. Suppose that
each v is perturbed by a continuously changing input /(z), which will
excite a certain number of v’s sites. How can such inputs J;(r) change
through time? As Section 2 notes, two very different types of changes
can be described in terms of the toral input strength I(f) = 32.., I,(1) and
the relative input intensities 8,(t) = I,(#)/1(¢) at each v;. For example, let
the v; represent cells in a retina, and expose the retina to a picture in
shades of white, gray, and black. Then I(f) describes the intensity of
background illumination of the picture. This intensity can vary wildly
through time. The picture itself is characterized by the spatial pattern ¢
=(6,, &, ..., 6,) of numbers (the reflectances), which do not change
through time (Cornsweet, 1970). Thus, it is very important for a system
to be able to tell what the pattern weights 8(r) = (6,(1), &(0), . . . , 6,(r)
are, whether or not the total input I(t) fluctuates through time. The
weights. 6(r) describe the ‘“‘relative figure-to-ground” of the inputs at
every time 1.

Another reason for distinguishing 6(¢) from () is that the unit of LTM
is a spatial pattern. When an outstar performs a spatial pattern 6 on a
field %, it can do so in response to a CS input that fluctuates wildly
through time. Somehow certain network cells must be able to “‘read’’ @
independent of the fluctuations in I(1), or else the pattern could never be
decoded. Such considerations originally motivated the construction of
network filters that can discriminate relative figure-to-ground (Gross-
berg, 1970b, 1972d, 1976b). Some of ‘the minimal filters have anatomies
that are strikingly *‘retinal,” and they are capable of formal analogs of
such perceptual constancies as hue, brightness, and lightness constancy
(Grossberg, 1972d). .

i4. Gain Controi and Adaptation in On-Center Off-Surround Networks

How can we design a system capable of distinguishing the pattern
weights 0(f) from fluctuations in the background activity I{#)? First we
consider a trial system to show what the difficulties are. If B is the total
number of excitable sites in any population v;, and x;(f) is the riumber of
excited sites, then [B — x,(f)] is the number of unexcited sites at time ¢.
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Suppose that there is an equilibrium point (say 0), such that, as excited
sites spontaneously become unexcited at rate A, x,(f) approaches 0. Also
suppose that unexcited sites [B — x(f)] are excited at a rate jointly
proportional to their number and the input intensity 4(f). This is a mass
action law. Then

% = —Ax + (B — x)L(0) (12)

with 0 < x; < B. In other words, system (12) describes the switching-on
and passive decay of excitation by mass action.

System (1) does not suffice for the following reason. Suppose that x (0
approaches a steady state as ¢ increases in response to inputs with fixed
pattern weights 6; and total activity I. A steady state, %; = 0, and (12)
implies that . :

_ BeI
TA+el 13

Now keep the &s fixed and vary I. In other words, study how (12)
processes the same pattern 0 given different background activity levels.
By (13), as I increases, all x; approach B, and all information about 8 is
lost because of saturation. By contrast, if the system also contains noise,
then as I becomes small, the weights 8 are lost in the noise. The system
processes € badly at both low and high I values. How can this be
corrected?
System (12) fails because there are no interactions among the v,. Each
6, is defined by an interaction of all the inputs I,, k = 1, 2,..., n.
Since neither the populations nor their inputs interact, they cannot
possibly compute 6. What interactions are needed? Writing 6; = (I, +
Zkxi L), it is clear that increasing ; increases 6; and that increasing any
I, k # i, decreases ;. In other words, I, ‘‘excites’’ 6;, whereas all I,
k # i, “'inhibit’’ 6;; the inputs compete in order to prevent saturation and
thereby to compute relative figure-to-ground. When this intuition is
translated into mass action dynamics, we find the simplest example of a
type of system that occurs throughout the nervous system—namely, a
feedforward on-center off-surround network undergoing shunting, or
passive membrane dynamics. Thus let each 1 excite population v and
inhibit all populations v, k # i. The inputs then form a nonrecurrent (or
feedforward) on-center off-surround interaction pattern (Fig. 27), and
(12) is replaced by
%= A+ B=-x)—x 2 L (14)

ki

The new term —X; 3, .; I, say ¢ that excited sites at v, (which number x;)
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Fi1G. 27. Feedforward (nonrecurrent) on-center off-surround anatomy

are inhibited (note the minus sign!) at a rate proportional to the total
inhibitory input (which is a sum of inputs from the off-surround of ;).
Equation (14) is again a mass action law, or passive membrane equation,
in which the off-surround automatically changes the gain of the system,
because the inhibitory inputs multiply x;.

How does inhibitory gain control change the system’s steady state? At
steady state, X; = 0, and Eq. (14) implies

BI

IAVEY )

X
In other words, no matter how large I becomes, each x; is proportional
to 6; there is no saturation. The system has an infinite dynamical range
no matter how small B is! Furthermore, the total activity x = 32., %
satisfies x = BI{A + I)™* = B; the maximal total activity B is
independent of the number n of populations and of the total input
intensity I. The off-surround hereby normalizes, or adapts, the total
network response to fluctuations in total input. I have elsewhere
suggested that this adaptation is akin to retinal light adaptation, say as
studied by Werblin (1971) in the mudpuppy retina (Grossberg, 1972d),
with the responses in (14) analogous to potential changes in retinal
bipolar cells. Indeed, bipolar cell potential [cf. x in (15)] is sensitive to
the ratio of on-center to off-surround excitation {cf. € in (15)] and obeys
a type of Weber-Fechner psychophysical law [cf. BI(A + I)™! in (15)].
Furthermore, bipolar potential is shifted to the right as a function of the
logarithm of on-center input intensity when the off-surround input is
parametrically increased. Similarly, rewrite (15) as (K, L) = Be®(A +
eX + L)™', where K = log I; and L = 3, I, . Check that, if L is changed
from L, to L,, then x(K + S, L,) = x(K, L,) for all K = 0, where the
shift S =In[(4 + L, )4 + L,)].
The above example illustrates a point that repeatedly reappears in this
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paper. The teleology, or principles, of design that lead to network
mechanisms are all based on a world in which continuous fluctuations
exist. Binary codes are singular limits of the continuous models, and
lose most of the properties, and the rationale, of the continuous models.

15. Contrast Enhancement in STM

System (14) cannot remember the pattern 6 for long after the inputs
are shut off, because each x; then decays to 0. As was suggested in
Section 8, recurrent (or feedback) signals among the populations v; are
needed to ensure STM. How should these feedback signals be distrib-
uted? In Section 8, we worried only about how to keep STM active until
it is shut off. Now we have to worry also about what spatial pattern
across F will be stored in STM. In particular, we have to prevent
saturation of this pattern, so the signals should be distributed in an on-
center off-surround anatomy, as in Fig. 28. The excitatory on-center
signals v, < vy in Figs. 18 through 21 must be supplemented by
inhibitory off-surround signals to prevent pattern saturation. Thus, given
average activity x(7), population v will generate a signal f(x(r)) to be
distributed in an on-center off-surround anatomy among all the popula-
tions v, k=1,2, ..., n. Then (14) is replaced by the nonlinear system

%= —Ax + B - x)fl)+ L] - xi[kgif(xk) +Ji] (16)

i=1,2,...,n Term (B — x)f(x;) describes how a feedback signal
f(x) from w to itself excites the unexcited sites B — x; by mass action.
The inhibitory term —x Zjx f(x) describes the switching-off of
excitation at v; by inhibitory signals f(x.) from all v, k # i. Term 1, is
the total excitatory input and term J; is the total inhibitory input at v;.
Often J; is an off-surround input such as J; = 3y I .

L0

FiG. 28. Feedback (recurrent) on-center off-surround anatomy
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Much more complex versions than (16) of recurrent on-center off-
surround networks have been studied (cf. Ellias and Grossberg, 1975;
Levine and Grossberg, 1976; Grossberg, 1977a,b,c). But system (16), by
being simple, focuses on a very important problem whose solution was a
prerequisite to further progress. How does system (16) know the
difference between behaviorally important patterns, which should be
stored in STM by the feedback signals, and behaviorally unimportant
data, such as noise, which should be suppressed? How should the
average signal f(w) be chosen as a function of the average activity w to
distinguish between important and unimportant data? Grossberg (1973)
solves this problem. The solution is summarized in Table I in terms of
the total STM trace x = 3'., % and the relative STM traces X; = xx~'.
After a brief pattern of inputs (I;, J;) is delivered to the network, does
x(f) converge to 0 (no STM) or to a positive limit that is bounded above
by a value that is independent of n and I (normalization)? How do the
relative activities X, change through time? Do they remember the
pattern 9? Do they enhance certain population activities and suppress
others? Do they become more similar through time? All these cases can
occur if f(w) is suitably chosen.

A sigmoid, or S-shaped, f(w) has all the desirable physical properties
that we need. It is proved that f(w) must grow faster-than-linearly at

TABLE I
INFLUENCE OF SIGNAL FUNCTION f(w) ON PATTERN TRANSFORMATION AND STM
STORAGE

X;i(0) l
L. |
N /\/\ AMPLIFIES NOISE
] |

AMPLIFIES NOISE

QUENCHES NOISE

/'—'\ A A QUENCHES NOISE

TR AT T LT
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small w values in order not to amplify noise; that is, the function g(w) =
w™If (w) must be strictly increasing at small w values, as when f(w) = w?.
To prevent the system from choosing the population with maximal initial
activity for STM storage and suppressing all other populations, f(w)
must be approximately linear—that is, f(w) = Cw—at intermediate w
values. At large W values, all signal functions are necessarily bounded.
Piecing the three regions together yields a sigmoid f{w). Grossberg and
Levine (1975) review in detail the reasons for using a sigmoid signal
function. Other signal functions, such as faster-than-linear signal func-
tions, can produce a network that behaves like a finite-state machine.

Given a sigmoid signal function, a quenching threshold (QT) exists. As
Figs. 29a and 29b depict, if an initial activity x;(0) is smaller than the 07,
then the activity of v will be quenched, or masked, by the STM
reverberation. A population’s activity will be stored in STM only if its
initial activity exceeds the QT. The pattern of suprathreshold activities is
contrast-enhdnced, as in Fig. 29b. Thus, a sigmoid f(w) is capable of
partially contrast-enhancing a pattern. Its QT determines the cutoff
between significant and insignificant data. If the OT is pathologically
small, then the network can bootstrap.into STM disturbances that do not
represent behaviorally meaningful inputs; that is, a ‘‘seizure’ occurs.
Grossberg (1973) computes the QT in a special case and shows what
parameters can lower it.

16. Tuning of STM and Releasing Subliminal Maps by Arousal

Given the existence of a QT, varying the arousal level can dramati-
cally change what will be stored in STM, if arousal modulates the

1234
(b)
F1G. 29. Influence of the quenching threshold (QT) on STM storage of patterns.
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excitability of cell responses to inputs. Arousal either can directly
amplify the response of excitatory cells to inputs, or can shunt the
excitability of recurrent off-surround interneurons to yield an equivalent
effect. In the former case, arousal is excitatory; in the later case, it is
inhibitory, and turning it on disinhibits excitatory cells.

One important example shows how a choice can be made in one
parallel processing step among complex data. For example, suppose that
inputs from several sensory sources stream into the network and excite
a complicated pattern of activity across billions of populations, where
each population can be thought of as a feature detector to fix ideas. How
can the dominant feature be chosen in one step of parallel processing? If
the arousal level is lowered until only one population’s activity exceeds
the OT, then the network chooses that population for STM storage and
suppresses all other activities.

By contrast, if arousal suddenly increases in response to an unex-
pected event, then all recently presented cues can be amplified and
stored in STM until the network can use all the available data to cope
with the unexpected event. Grossberg (1975) applies this property to the
analysis of various atténtional processes, such as overshadowing. This
analysis suggests that two feedback systems continually retune STM
during behavior, as noted in Section 10. One system—an incentive
motivational and CNV system—focuses attention on cues that are
expected to generate prescribed consequences of behavior. This system
can overshadow irrelevant cues. The competing system is triggered by
unexpected events (novelty) and allows the network to redefine the set
of relevant cues to avoid unexpected consequences. Overarousal of
either system can yield attentional deficits, but the exact nature of the
deficit and its proper treatment depends on the particular system that is
overaroused. For example, a schizophrenic-like syndrome of punning,
fuzzy response categories (Section 12), and blocking can be elicited by
overarousal of the incentive-motivational system, but would not neces-
sarily be cured by a depressant that acted primarily on the novelty
(reticular formation) system.

The above remarks indicate that varying the arousal level can deter-
mine which sensory chunks will reverberate in STM and thereupon
influence behavior. Similar properties hold in the motor system. For
example, let an active population send a sustained pattern of signals to a
field of motor control cells. These signals represent a subliminal motor
map. If arousal nonspecifically arouses the field, then the pattern is
bootstrapped into STM and elicits signals that determine motor output.
Section 48 will discuss how such motor maps are learned. Here we
merely note the following example to fix ideas. If I look at a given object
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that is within my reach, I can decide to touch it with either hand, either
foot, my nose, etc. Somehow the proprioceptive coordinates of my eyes,
head, and neck can be mapped into a terminal position of either hand,
either foot, my nose, etc. ““‘Willing™ to move ray right hand arouses my
right hand--arm system, which thereupon moves to its terminal position.

A more sophisticated version of the tuning process is depicted in Fig.
30, which shows that there can be several (in fact, any number) of
equilibrium points of total STM activity x{¢t). As Fig. 30 shows, every
other solution E,, E;, . . . of the equation g(w) = A(B — w)™ represents
a stable equilibrium point of total STM activity. As the total initial input
size increases, so can the asymptotic activity x(e).

In each population v;, successive pairs of roots of g(x;) = A(B — x;)™!
are produced by bumps in the graph of the signal function f(x;). Each
bump corresponds to a subpopulation of v;; for example, the signal
thresholds of cells in a population can be distributed around several
preferred mean values. Then the population can fire preferentially not
only to particular features, but also to particular energy levels to which
these features are excited. Grossberg (1977b,c) proves that a definite
STM pattern is achieved no matter how many random factors exist
within each population, no matter how many populations interact, and
no matter how the average level of interpopulation competition is
chosen. However, the decision, or enhancement, steps whereby the
asymptotic STM pattern is reached can be incredibly complicated, and
in general cannot be computed. This lack of computability does not
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prevent the asymptotic STM pattern from reliably being read into LTM.
Here is thus an example wherein individual differences can yield subtle
behavioral changes, yet the individual differences are expressions of a
robust and stable principle of behavior.

The network (16) is a simple version of more complex networks that
capture further properties of interacting neurons (cf. Ellias and Gross-
berg, 1975; Levine and Grossberg, 1976). In these networks, the
properties of contrast enhancement and normalization go through in a
modified form, say because the strength of recurrent excitatory and
inhibitory interactions both decrease as a function of distance. When
this is true, feature detectors are enhanced or suppressed only by
prescribed subsets of other feature detectors. For present purposes, we
note that the STM traces in the field #* of Fig. 24a are not normalized.
We must check how normalization of total STM activity, and tuning of it
‘by shifting the arousal level, change our discussion of serial learning.

17. Adaptive Coding and the Emergence of Command Chunks

Before reanalyzing how normalization and tuning influence serial
LTM, we shall discuss a mechanism whereby chunks are adaptively
synthesized, or coded, by their defining sequences. This must be done
first, because we can then ask what kinds of sequential operations on
STM leave the code invariant. In particular, we can discuss whether,
and how, normalization and tuning leave the code invariant.

The adaptive coding model is an outgrowth of a model that describes
how experience can retune cells in the kitten visual cortex (Grossberg,
1976a,b,c). This model uses adult STM and LTM mechanisms in a
minimal way. Formally isomorphic mechanisms can also be used to
discuss the development of nonneural structures in many species (Gross-
berg, 1978a). That similar formal mechanisms seem to arise in many
species and stages of individual development is ascribed to the fact that
all living creatures must solve certain environmental problems in order
to survive. These commonly shared problems suggest universal develop-
mental principles which impose statistical, geometrical, and dynamical
constraints on all systems capable of solving the problems. From this
perspective, the self-organization of commands is a special case of the
emergence through evolutionary processes of ever-more-complex, or
‘*higher,”’ degrees of order.

The developmental model shows how any number of arbitrarily
complex spatial patterns can be adaptively ¢oded by emergent command
populations, and indeed recorded into any other spatial patterns using
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the command populations as sampling sources. In particular, the net-
work does not have to preprogram all the codes that it will ever need;
they can be adaptively synthesized by the environmental demands that
confront each individual. Each command population responds to a
prescribed convex set of spatial patterns. This convex set is determined,
in part, by the affinities of all the other command populations in a field
of populations; the populations in a field compete to determine which
patterns will succeed in exciting them. The convex set to which a given
command population can respond defines the features associated with
the population. The command population is thus a feature detector in a
well-defined sense. Since the population responds to a convex set of
features, it automatically responds to average features chosen from the
set, even if the average features have never been experienced. Experi-
ence can retune a command population to respond to different features.
This is accomplished by changing the competitive balance of STM and
LTM activity across the field of populations in response to input
patterns. In effect, the model illustrates how experience can generate
and globally organize a field of command states, or chunks.

The feedforward version of the model describes the interaction via
trainable synaptic pathways (LTM traces) from a field of cell popula-
tions ¥ (for example, lateral geniculate nucleus) to a field of cell
populations F# (for example, visual cortex). Fields F* and F® are
separately capable of normalizing and contrast enhancing their activity,
but #® can also store the contrast enhanced pattern in STM (Fig. 31). In
the simplest case, F consists of a nonrecurrent on-center off-surround
anatomy undergoing mass action interactions, as in (14). Denote the
STM trace of v,V by ;. Then

EW = —Ax® + [B — O, - x® Y I, (17)

k#i
with 0 = x,'’ < B. As in (15), at equilibrium

w=g Bl

S ey
Normalization in F© by (17) occurs gradually in time, as each x‘V
adjusts to its new equilibrium value, but it will be assumed below to
occur instantaneously with % approaching 6, rather than 6,BI(A + I)™
to avoid unimportant details. This assumption of instantaneous normali-
zation is tenable because the normalized pattern at FV drives slow
changes in the LTM traces that gate the signals from F® to F®.
Instantaneous normalization means that the pattern at % normalizes
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FiG. 31. The input pattern is normalized at %,. The normalized signals are gated and
added on their way to each population in %,. The %, inputs compete (adaptation and
contrast enhancement) for storage in STM. The STM activities drive LTM traces via
feedback, so that there appears to be a competition for synaptic sites.

itself before the LTM traces have a chance to change substantially; that
is, it is *‘fast’’ relative to the *‘slow’’ LTM time scale.

Let the synaptic strength of the pathway from v to 1, be denoted
by z4(1). By (1), the total signal to 1, due to the normalized pattern 8 =

6, &, ..., 8)at FPand the vector z(t) = (z;(t), z5(t), . . . , zy(?)) Oof
synaptic strengths is [in the simplest case of By(w) = w]
SO=0z0=Y 82,0) (18)
k=1

"Since z(r) determines the size of the input to 1@, given any pattern 8, it
is called the classifying vector of v® at time t. Every u®, j = 1,
2, ..., N,in F® receives such a signal when @ is active in F, In this
way, 0 creates a pattern of activity across F2,

Suppose that #? is endowed with a recurrent on-center off-surround
network undergoing mass action interactions. In particular, let @
normalize and contrast-enhance its signals before they are stored in
STM. In effect, the populations in #? compete for STM activity. These
STM operations also occur much faster than the slow changes in
connection strengths z,;; hence, it is assumed below that these opera-
tions occur instantaneously in order to focus on the slow changes in z.
These slow changes in the z;’s will pick out populations in F®—the
feature detectors—to code the spatial patterns perturbing F.
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We now summarize the coding process. Suppose for simplicity that all
changes in z; are driven by the feedback within the excitatory recurrent
loops in &® that establish STM storage. In other words, the *‘fast”
competition for STM activity feeds back as a ‘‘slow’’ competition for
LTM activity, or for synaptic site efficacy. Then (2) becomes

iy = (—zy4 + 6)x® (19)

where 2., x?() =1 if STM in F? is active at time ¢, whereas
k=1 % 2() = 0if STM in ¥ is inactive at time ¢. Two important cases
can be distinguished.
If tuning is adjusted so that $%chooses a population for storage in
. > . .
if S; > max{e, S: k #j} (20)

STM, then
xj(z) = {1
0 if S; <maxle, S,: k # 5}

except if two or more populations have a maximum signal; in the latter
case, share the total STM activity (= 1) among the maximally excited
populations. The parameter € in (20) is the OT: if no signal exceeds the

QT, no STM storage occurs.
If partial contrast in STM holds at F®, then the dynamics of the

network can be approximated by a rule of the form

5 = {ﬂs,)[ T AT i S >e
0

S if S <e

(1)

In (21), e represent the QT f(w) controls how suprathreshold signals will
be contrast-enhanced [for example, f(w) = w?]; and the ratio of f(S;) to
2{f(S.): Si > €} expresses the normalization of STM.

18. Feature Detectors

To see how these rules classify patterns, first hold all z, constant.
Then Eqs. (18) and (20) reduce to the statement that population v is
stored in STM if

S; > max{e, Si; k # j} (22)

where S; = 0z and 6, = L(Z; I.)™. In other words, 4 codes all
patterns & such that (22) holds. Stated alternatively, v,® is a feature
detector in the sense that all patterns

P; = {6: 6-z) > maxle, 8-z.: k # j}} (23)

are classified by v;”. The set P; defines a convex cone C; in the space of
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nonnegative input vectors J = (I, L, ..., I,), since if two such
vectors J, and J, are in C;, then so are all the vectors aJ, , BJ;, and vJ,
+ (1 — y)J,, where « > 0, 8> 0, and 0 < y < 1. The convex cone C;
defines the features coded by v,*®,

The classification rule in (22) has an informative geometrical interpre-
tation in n-dimensional Euclidean space. The signal S; = 0z is the
inner, or dot, product of 6 and z (Thomas, 1968). Letting ||£] =
(Z2.; &9 denote the Euclidean length of any real vector ¢§ = (§,
&, ..., &), and cos (0, w) denote the cosine of the angle between two
vectors 1 and o, it is elementary that

S; = 16l 1zl cos 6, )

The signal S; is thus the length of the projection of the normalized
pattern 0 on the classifying vector z times the length of z;. In effect, @is
projected on all the cells vy by their classifying vectors z;. Thus if all z,
J=1,2,..., N, have equal length, then (22) classifies all patterns @ in
P; whose angle with z is smaller than the angles between 8 and any 2, &
# j, and is small enough to satisfy the e-condition. In particular, patterns
0 that are parallel, or proportional to z, are classified in P;. The choice
of classifying vectors z hereby determines how the patterns 6 will be
divided up. Section 19 describes how the adaptive coding mechanism
(18) through (20) makes the 2z vectors more parallel to prescribed
patterns 6, and thereupon changes the classifying sets P;. In summary,
given (20):

() The number of populations in F? determines the maximum
number N of pattern classes P;.

@) The choice of classifying vectors z; determines how different the
sets P; can be; for example, choosing all vectors z equal will generate
one class that is redundantly represented by all v,®.

(fii) The size of e determines how similar patterns must be to be
classified by the same v;® if the z.’s are not the same.

If the choice rule (20) is replaced by the partial contrast rule (21), then
an important new possibility occurs, which can be described by studying
STM responses either to all 6 at fixed 5, or to a fixed 6 at all 4,®. In
the former case, each v,'® has a tuning curve; namely, a maximal
response to certain patterns, and submaximal responses to other pat-
terns. In the latter case, each pattern 8 is filtered by %@, or generates a
generalization gradient, in a way that shows how close 8 lies to each of
the classifying vectors z. The pattern will be classified by v*—that is,
stored in STM—only if it lies sufficiently close to z for its signal to
exceed the quenching threshold of F®. It can be shown that the
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existence of tuning curves in a given cortical field F increases the
discriminative capabilities of the next cortex F“*? in a hierarchy (cf.
Grossberg, 1976a). '

19. Development of an STM Code

System (18) through (20) will be discussed below because it illustrates
important properties of the coding process in a lucid way. First, consider
how the system responds to a single pattern @ that is iteratively
presented through time. Suppose that there exists a unique j in F® such
that

5,(0) > max{e, Sx(0): k # j}

That is, 1,® is the. population that initially receives the largest signal
from #?, In particular, the signal S;(0) might be only slightly larger than
the other signals S,(0), k # j. Then, as 6 is presented to ¥, the angle
between z(f) and 6, as n-vectors, monotonically decreases to zero. In
other words, coding makes 2 parallel to 6. Simultaneously, the signal
S,(t) monotonically approaches 6| in other words, the coding process
maximizes the inner product signal S;(f) = 0-z(r) over all possible
choices of z such that ||z || =< ||6]|. Thus, whereas the initial signal S,(0) to
5 might be only slightly larger than the signals S,(0), k # j, after
coding takes place, 0 generates a maximal signal to ©®. The other
signals S,(f), k # j, remain constant.

By changing z(t), the coding process changes the class of patterns 6
that will be coded by v®. For example, patterns 6 that were originally
more parallel to z(0) than any z.(0), k # j, and which are therefore coded
by 5® at t = 0, can become more parallel to some 2(0) than z(7), and
are therefore coded by v,® at t = T. Conversely, patterns that were
originally more parallel to some 2.(0) than z(0), and which are coded by
#? at t = 0, can become more parallel to z(T) than z/(0), and are
therefore coded by vy® at t = T. In effect, presenting pattern 8 at
has shifted the convex set of patterns—the features—that will be coded
by v!u)_

In the terminology of development biology, the z define positional
gradients between F® and F®. The initial positional gradients deter-
mine what features F® will try to classify. Thus, if F* feeds signals in
parallel to several adaptive fields, each with different positional gra-
dients, then each field will try to classify different features of the data
base at F*, even though all fields use the same computational machin-
ery. A serial hierarchy F°, F®, #¥, . . . of adaptive fields can also be
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constructed, since each field ¥ possesses the requisite condition of
normalization that is used to prepare data for field #%*?, As i increases,
the data that F© feeds to #*? include increasingly abstract convex sets
of features (cf. Rocha-Miranda et al., 1975). For example, what will a
field ¥ code if it receives patterned signals from $@? A population in
%% will code convex sets of spatial patterns across ¥®. Each population
in F® codes a set of features, so a spatial pattern across ¥® is a global
construct that describes how much of each feature is in the input pattern
to . A convex set of spatial patterns across F® describes the
tolerated changes, or “‘fuzziness,”” in each feature’s activity that are
compatible with unchanged coding at . Cells in ¥ can hereby
generate stable responses as the input patterns to ¥ undergo significant
global transformations. If the positional gradients from % to %+ only
excite a localized cluster of populations, then the populations in F¢+?
will respond to features only in prescribed regions of #“—for example,
in the simplest case, prescribed retinal regions. If also the on-center and
off-surround interactions within #“** decrease with distance, so that
normalization only holds approximately and among prescribed subsets,
or channels, of populations, then features in prescribed regions will be
enhanced and/or suppressed only by particular classes of related fea-
tures in nearby regions. Changing the distribution of positional gradients
and on-center off-surround interactions can thus dramatically influence
which features are computed and which features mutually influence one
another.

What happens if .several different spatial patterns 9% = (§,®,
6", ..., 60%), k=1,2,...,M, all perturb F? at different times?
How are changes in the zy's due to one pattern prevented from
contradicting changes in the z,’s due to a different pattern? The choice-
making property of F helps to do this; it acts as a sampling device that
often prevents contradictions from occurring. The following argument
suggests how sampling works. This argument is, however, not entirely
correct. For definiteness, suppose that M spatial patterns 6%* are
chosen, M = N, such that their signals at time ¢ = 0 satisfy

0%-2,(0) > max{e, 8%-z,(0): j # k} 24)

forall k = 1,2,..., M. In other words, at time ¢ = 0, 6% is coded by
v ®. Let 8 be the first pattern to perturb $®. By (24), population v, ®
receives the largest signal from %, All other populations v®, j # 1, are
thereupon inhibited by the off-surround of v,?, whereas v;® reverber-
ates in STM. By (19), none of the synaptic strengths z(1), j # 1, can
learn while 6 is presented. Presenting 0 makes z;(f) more parallel to
¢V as 1 increases. Consequently, if a different pattern, say 6, perturbs
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'Y on the next learning trial, then it will excite v, more than any other
u®, j # 2: it cannot excite v,® because the coefficients z,(f) are more
parallel to 6 than before; and it cannot excite any v,®, j # 1, 2,
because the v coefficients z(#) still equal z(0). In response to 6®, v,®
inhibits all other v,'®, j # 2. Consequently none of the v,® coefficients
z(#) can learn, j # 2; learning makes the coefficients 2 (f) become more
parallel to 6¥ as ¢ increases. The same occurs on all learning trials. By
inhibiting the postsynaptic part of the learning mechanism in all but the
chosen #® population, the on-center off-surround network in F®@
samples one vector z(r) of LTM traces at any time. In this way $® can
learn to classify as many as N patterns if it contains N populations.
(When tuning curves or resonant feedback exist, each population can
share in the coding of several patterns.)

This argument is almost correct. It fails, in general, because by
making (say) z(f) more parallel to 6, it is also possible to make z(r)
more parallel to 6% than z,(0) is. Thus when 6 is presented, it will be
coded by ,® rather than 1,®. In other words, practicing one pattern
can recode other patterns. This property can be iterated to show how
systematic trends in the sequence of practiced patterns can produce
systematic drifts in recoding (Grossberg, 1976b). Moreover, if the
statistical structure of the practice sequences continually changes, then
there need not exist a stable coding rule in . This is quite unsatisfac-
tory.

By contrast, if there are few, or sparse, patterns relative to the
number of populations in ¥, then a stable coding rule does exist, and
the STM choice rule in ¥® does provide an effective sampling tech-
nique. In effect, given any fixed class of patterns at #® and sufficiently
many populations in $®; the ¥ patterns can induce a stable STM code
in %, By contrast, the problem of stabilizing the STM code given a
fixed number of cells in F® and arbitrarily many patterns 0 at FO
requires additional network mechanisms. This problem is studied in
Grossberg (1976b,c). In this case the cells in $® can continually be
recoded by patterns at . No stable hierarchy of codes could develop
using only this mechanism, since the coded meaning of the signals from
cone level to the next would be continually changing. Below are reviewed
relevant aspects of how a developing code can be stabilized in an
arbitrary environment. In passing, we note that rules such as (20) and
(22) define discriminant functions of a type that is familiar in pattern
classification studies, and is related to Bayesian decision rules that make
choices to minimize risk (Duda and Hart, 1973, Chapter 2). If terms such
as 6-z; are generalized to f(8)-z, where f(® = (f£(6,),
£(8), . .., £u(6,)), then the decision boundaries of the discriminant
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functions are not necessarily convex. Our method departs from the
classical development in several ways. One way is described by the
rules whereby the z(f) vectors shift, owing to learning. A more funda-
mental way is described in the next section, which shows how local
discriminants, or features, are synthesized into a global code by adaptive
resonance between two fields of cells. The local properties of the field,
by themselves, neither define feature detectors nor when adaptation of
feature detectors will occur. The functional unit of coding is a global
feedback module that I call an adaptive resonance.

20. Stabilizing the STM Code: Expectation, Resonance, Rebound, and
Search

To stabilize the code, it suffices to use attentional mechanisms. These
mechanisms were introduced in Grossberg (1975). The reverse statement
is also true: the minimal mechanisms for stabilizing the STM code can
also generate various attentional phenomena. Why is there a relationship
between code stability and attention? The next example motivates this
relationship.

Suppose that a population 4® in ¥ already codes a given class of
patterns P; at ¥V, and that a pattern 8 not in this class succeeds in
activating v;®. If this activation is not rapidly terminated, then recoding
of the LTM traces will occur, since by (19) z can learn 6 while 1, is
active. Somehow, sustained activation of v by an erroneous pattern 6
must be prevented; activity in ©® is somehow inhibited. This can
happen only if the network can determine that »,® codes a pattern class
that is incompatible with 6. Furthermore, the operation that inhibits v,
cannot inhibit all populations in #®; otherwise 6 could not. find any
population in F® to code it. Somehow the network selectively inhibits
the erroneously activated populations 1v,® before it searches for an
uncommitted population with which to code 6. Given these remarks, it is
not surprising that STM code stability is related to attention; stability
requires the network to selectively activate populations whose codes are
compatible with the sensory data of the moment. _

The mechanisms in Grossberg (1976c) describe how a test pattern 8 at
F® can tentatively activate feature detectors in %%, which thereupon
generate feedback signals either to F* or to a field € that acts in
parallel with $. These feedback signals represent an expectation, or
template, with which the afferent test pattern at FY, or its parallel
representation at €, is compared (cf. Section 44). This expectation is a
spatial pattern that can be learned by the @ — F® (or @ — &%) LTM
traces at the same time that chunks are being coded by the FV — F®
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LTM traces. If the test pattern matches the expectation, then the
patterned STM activity in F* and %® is amplified and can resonate
between F and F®. This resonant activity can activate the STM of
other fields, say of higher-order feature detectors or of motor com-
mands; it can also drive slow LTM changes in synapses that sample F
or FP,

Suppose, however, that the expected and test patterns are very
different. This mismatch means that an erroneous classification has

~occurred at %, An alarm system is thereupon triggered that generates a

nonspecific wave of input activity across #®. The alarm system acts
nonspecifically because, at the place where the mismatch is computed,
no data is available concerning which populations in F® have erro-
neously been activated. The nonspecific signal must somehow selec-
tively inhibit, or reset, the active populations of #® without preventing
inactive populations from being tentatively activated during the next
time interval. In effect, the populations whose activity set off the alarm
must have been erroneously classified, so they should be selectively
suppressed. This idea realizes a kind of probabilistic logic operating in
real time, with activity level replacing truth value.

The inhibition of active populations must be enduring as well as
selective. Otherwise, the inhibited populations could immediately be
reactivated by the pattern 6. Given such an inhibitory mechanism, the
network automatically searches for a population which is not compatibly
classified. When one is found, say v,”, STM at v;® can stay on long
enough to drive the *‘slow’’ coding process in the z; LTM traces.

How is a selective and enduring inhibition at F® effected? I suggest
that it is- due to the organization of %® into antagonistic pairs, or
dipoles, of populations. In effect, the antagonistic population to an
active population v, is turned on when the nonspecific alarm goes off,
and thereupon selectively inhibits ;®; that is, if “‘yes’’ at v, is wrong,
turn on ‘‘no’’ at y®, but in a graded fashion.

The idea of population dipoles was not originally introduced to
stabilize the STM code, although this is a fundamental reason for their
existence. Originally the idea arose in a neural theory of reinforcement,
wherein cell dipoles regulate net incentive motivation through time
(Grossberg, 1972b,c, 1975); also see Wise et al. (1973) for compatible
data. Properties of the rebound from positive (negative) incentive to
negative (positive) incentive through time are analogous to many para-
doxical phenomena about reinforcement—for example, how an ampheta-
mine can calm an agitated syndrome that is really a form of underar-
oused emotional depression, whereas overaroused depression can yield
indifference to the emotional meaning of cues.
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More generally, suppose that the on-cell of a dipole is activated
persistently by the presence of its external cue, whereas the off-cell js
activated transiently by the offset of the cue. Otherwise expressed,
offset of the cue elicits a transient antagonistic rebound. This transient
activity can be used to sample STM patterns at the synaptic knobs of the
off-cell and encode these patterns in LTM. Hereby the offset of a cue
can elicit learned behavior.

When. the antagonistic rebound is explicitly modeled, one is led to
postulate the existence of slowly varying transmitter substances that
multiplicatively gate all signals before they can reach the on-cells and
off-cells. Among these signals are a tonically active nonspecific arousal
that is distributed uniformly across all the cells. The arousal signal
regulates the size of the off-cell rebound when the cue to the on-cell
terminates. This happens as follows. When the cue is on, the total signal
in the on-cell channel exceeds the total signal in the off-cell channel.
Both signals are gated by transmitter before they reach their targets.
Because the on-cell signal is larger, transmitter is depleted more in the
on-cell channel than in off-cell channel. The on-cell nonetheless receives
the larger input because of the multiplicative effect of signal and
transmitter on the cells: the equilibrium transmitter level has the form
A[B + CSTin response to a steady signal §, and therefore decreases as
§ increases; but the equilibrium input has the form ADS[B + CS]™,
which increases as § increases. When the cue is removed, equal arousal

signals remain in both channels. Since transmitter level changes slowly,

there is more transmitter in the off-cell channel. The multiplicative
coupling of arousal signal to transmitter now gives the off-cell a larger
input, thereby causing the rebound. Gradually, in response to the equal
arousal signal in both channels, the transmitter levels also equalize, and

both channels} receive equal inputs, so that the rebound eventually _

terminates.

A property of this system is that a rapid increment in nonspecific
arousal can, by itself, reverse or rebound the relative activities in a
dipole. Thus, if an on-cell is active when arousal increases, then it can
be inhibited by its off-cell, whereas if neither cell is active when arousal
increases, then neither on-cell nor off-cell receives any relative advan-
tage. The rebound therefore selectively inhibits active populations. If the
on-cells are now hooked into a recurrent network capable of STM, and
the off-cells are similarly organized, then it follows that a transient
arousal increment can selectively, and in a graded fashion, inhibit active
populations by shifting the STM pattern across both fields. When this
mechanism acts on various fields of formal feature detectors, phenom-
ena analogous to negative afterimages and spatial frequency adaptation
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are found (Grossberg, 1976¢). The properties of antagonistic rebound in
a dipole of populations are useful for understanding many psychophy-
siological processes in which rapid shifts of specific cues and/or nonspe-

cific arousal signal important events.

21. Pattern Completion, Hysteresis, and Gestalt Switching

The concept of two fields F® and F? joined together by re.cipro'cal
trainable signal pathways is also relevant to many psychophysiological
processes, if only because it describes the mlnlfnal network module that
can stabilize its STM code in a rich input environment. The two LTM
processes—code-learning in FY — %® LTM traces fmq template-
learning in ¥ — F® LTM traces—are partners in establishing a stable
state of resonant STM activity in #* and F® when tl}e active LTM
channels are compatible. I call this module an afiaptxve resonance.
Grossberg (1976¢) summarizes some e)_(amples of this c9ncept in olfac-
tory coding, in the regulation of attention .by the matching of prescx.ltly
available cues (conditioned reinforcers) with feedbaclf from .co.mpatlble
drive sources (expressed through the contingent negatwe.\fanatlon), and
in a search and lock mechanism for stabilizing eye posmon_. The next
two sections describe several other important examples of ’thls cgncep?.
These examples illustrate how closely related *‘perceptual’’ and ‘‘cogni-

ive”’ ies can be. : )
tlv;:irslt),r %Ezgtb;ilf from F? to " can deform what *‘is’’ perceived into
what “‘is expected to be’’ perceived. Otherwise expressed, the feedback
is a. prototype, or higher-order Gestalt, that can deform, and e‘llgen
complete, activity patterns across lowe'r-order feature de.tef:tors. or
example, suppose that a sensory event is coded by an ac'tlvxty pattern
across the feature detectors of a field #V. The ¥ pattern is then coded
by certain populations in . If the sensory event has never before been
experienced, then the #® populations that are chosen are those vov_l:gs-e
codes most nearly match the sensory event, be.causc'the patter(rlx) at%F (123)
projected onto F*® by the positional grz}dxents in the %— o - F
pathways. If no approximate match is possible, thgn these‘d.' popula-
tions will be inhibited and a search procedure will be.elnc1ted. If a(;l)
approximate match is possible, however, then feedback signals fro;n F
to FL will elicit the template of the sensory events that are optimally
coded by the F® pattern. These feedback signals gradually deform thg
F" pattern until this pattern is a mixture of t:eedforward codes anm
feedback templates. Otherwise expressed, F® tries to cqmplete the?
pattern using the prototype, or template, that its active populations
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release. I suggest that many Gestalt-like pattern completion effects are
special cases of this feedback mechanism, and therefore consequences
of STM stability.

Two important manifestations of the completion property are hyster-
esis and Gestalt switching. Once an STM resonance is established, it
resists changing its codes in response to small changes in the sensory
event; this is hysteresis. Hysteresis occurs because the active & — F©
template keeps trying to deform the shifting ¥ pattern back to one that
will continue to code the F® populations that elicit this template.

If, however, the sensory event changes so much that the mismatch of
test and template patterns becomes too great, then the alarm-and-reset
mechanism is triggered and a new code in F® will be activated. This
new code feeds its template back to #* and deforms the V' pattern
toward its optimal pattern. A dramatic switch between global percepts
can hereby be effected. The global nature of the switch is due to the fact
that ¥ contains codes that synthesize data from many feature detectors
in ¥, and the templates of these codes can reorganize large segments
of the F field. I suggest that an analogous mixture of hysteresis and
switching is operative in various visual illusions, such as Necker’s cube
(Graham, 1966). In fact, one can think of such illusions in the following
light. Often when one slowly scans a visual scene, small shifts in
perspective imply small shifts in higher-order codes. These illusions are
designed so that small shifts in perspective imply large shifts in higher-
order codes after the hysteresis range is exceeded and the reset
mechanism is triggered. Also of interest are the *‘spontaneous’ switches
that can occur when ambiguous figures are persistently examined. By
Section 20, a prolonged STM reverberation at a given population can
partially deplete its transmitter, and thereby shift the relative balance of
on-cell to off-cell excitation across the field in favor of other popula-
tions. If this shift is sufficiently large, it can induce a cyclic drift in
activity across the field as populations cyclically deplete and accumulate
their transmitter stores (cf. Section 40).

Hysteresis can also occur between two reciprocally connected fields
that are not hierarchically organized. In particular, suppose that each
eye activates a field of monocularly coded feature detectors. Suppose
that each monocuiar field is endowed with a recurrent on-center off-
surround anatomy. Also let corresponding detectors be capable of
sending each other signals. It does not matter what features are coded
by these detectors to draw the following conclusion. Once a resonance is
established between the two fields, hysteresis will prevent small changes
in input pattern from changing the coded activity. Julesz (1971) intro-
duced a field of physical dipoles to model binocular hysteresis. Reso-
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nance between two recurrent on-center off-surround networks undergo-
ing mass action dynamics provides a neural model of the phenomenon.

In passing, we note that “‘reverberation’” and ‘‘resonance’ are not
interchangeable concepts. Reverberation between F¥ and #? occurs
even as ¥ is continually reset in search of an admissible population.
Resonance occurs only when the test pattern at #*’ and the active codes
at F* are compatible.

22. Context-Dependent Coding and Restricted Conditions for Recoding

Can a field of feature detectors uniquely classify a sensory event even
if no single detector is uniquely activated by that event? The answer is
*yes'' if feedback exists within the system. In particular, a resonant
state of activity need not be established between #¥ and #® unless the
pattern of activity across feature detectors in F correctly classifies the
sensory event. Otherwise expressed, the code is context-dependent;
each #¥ population shares in ‘‘multiple meanings’ by participating in
the coding of many events (Chung e al., 1970).

Not all sensory patterns need recode the network’s feature detectors.
Only patterns that generate a resonant state of activity can generate such
a change. The resonant state explicates the intuitive idea that the
network is attending to the pattern and has stored it in STM, whereupon
it can induce recoding via LTM changes. In particular, mere passive
presentation of patterns need not recode any feature detectors. Adapta-
tional differences between passive and active responses to cues have
been experimentally described (Held and Hein, 1963) and might be one
factor that explains why certain experiments seem to reliably recode
feature detectors, whereas others do- not (Stryker and Sherk, 1975).
From this perspective, terminating the critical period for developmental
plasticity seems to depend on the switching on of attentional factors in
addition to the possible switching off of a chemical agent. The paper by
Grossberg (1977a) discusses this possibility for the visual system. Some
themes are differential amplification or attenuation of lateral geniculate
nucleus (LGN) activity depending on whether afferent sensory data
match or mismatch cortical feedback to IL.GN; lateral inhibition in LGN
as a matching mechanism, and thus the growth of LGN inhibitory
pathways as a precursor of critical period termination; temporal modula-
tion of catecholaminergic cortical arousal as a rebound trigger mecha-
nism; and cortical dipole organization, possibly realized by feature
detector pairs that code complementary features, and embedded in
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recurrent on-center off-surround networks, as a mechanism to maintain
the rebounded STM pattern.

23. Reset, Reaction Time, and P300

When a mismatch between test pattern and expected pattern occurs,
STM is reset by a nonspecific mechanism that inhibits active populations
until an admissible population is found. Several properties of the reset
mechanism are of interest. First, STM does not spontaneously decay at
a rapid rate, but can endure until it is actively reset by a variety of
mechanisms: competing inputs, change of expectations, shift in arousal
level, etc. The durability of STM in a recurrent network is in marked
contrast to the rapid passive decay of activity in nonrecurrent networks.
In vivo, one expects to find recurrent networks more centrally (for
example, in neocortex) and nonrecurrent networks more peripherally
(for example, in retina).

Second, unexpected events trigger STM reset by a nonspecific mecha-
nism that inhibits ongoing activity. In average evoked potential experi-
ments, one often finds an inhibitory wave, the P300, that accompanies
unexpected events (Rohrbaugh er al., 1974; Squires et al., 1976). To
discuss the model’s relationship to P300, we consider an idealized
example in Fig. 32. The active population 1® in Fig. 32 generates a
subliminal pattern at % that acts as a sensory expectation. Suppose
that 1, also generates a subliminal pattern at the motor control cells ..
This latter pattern acts as a motor expectation, or subliminal motor map.
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FiG. 32. Sensory and motor expectations are reset or released by mismatch or match,
respectively, of sensory expectation with sensory test pattern.
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Let a test pattern perturb . If the test pattern does not match the
sensory expectation, then nonspecific arousal is triggered. How does
this happen? We assume (Grossberg, 1975) that every test pattern can
activate this arousal source. If the test pattern matches the sensory
expectation, then a signal is released by % which inhibits the arousal
on its way to ¥%. We also suppese that there is a complementary
arousal system in Fig. 32. If the test pattern matches the -sensory
expectation, then the motor map in 4 is aroused, and therefore sends
signals to motor effectors. If the test pattern does not match the sensory
expectation, then the motor arousal is inhibited. In summary, a mis-
match can excite the reset arousal system as it inhibits the goal-oriented
motor arousal system (it says ‘‘no’’), whereas a match can inhibit the
reset arousal system as it excites the goal-oriented motor arousal system
(it says ‘‘yes’). There are many variations on this theme; for example,
the sensory expectation might merely predispose F® to excite a
particular % population which thereupon excites .; or a match
between patterns ‘might activate a signal that inhibits a nonspecific
inhibition, which in turn disinhibits pacemakers in #® that drive dipole
rebounds. The main points are independent of such details.

If the reset mechanism is indeed related to P300, then P300 is
conceptually different from the model’s CNV, which subserves a
conditionable ‘‘psychological set.”” Donchin et al. (1975) report compati-
ble data. Furthermore, if P300 resets STM, it can do so without eliciting
motor activity. See Donchin et al. (1972) for compatible data.

If the test pattern matches the sensory expectation, then the system’s
reaction time is less than if the test pattern does not match the sensory
expectation. This is due to two effects working together: In the former
case, the motor pattern can be released without a prior reset of STM,
and the subliminal expectation reduces the reaction time for suprathres-
hold signals to be emitted from ¥, Moreover, the reaction time will be
a monotone increasing function of the inhibitory rebound size, since the
latter index measures how extensively STM must be reset before an
appropriate response to the test pattern can be elicited. Analogously,
reaction time is an increasing function of P300 size (Squires e7 al., 1976).
Finally, Section 36 shows that a given population can code a sequence of
events, that longer sequences can be coded by more cellular sites, at
least up to some maximal length, and that these long-sequence codes are
harder to inhibit than short-sequence codes. This leads to the prediction
that resetting the population of a long sequence can take longer than’
resetting the population of a short sequence, and that P300 should again
be a monotone increasing function of reaction time. Analogous data
have been reported by Remington (1969) and Squires et al. (1976).
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Various other properties of adaptive resonances can be cited, but go
beyond the scope of this paper. One of the deepest and least understood
concerns the periodic oscillations of STM activity that can arise in an
adaptively resonating network. These oscillations are due to response
lags of the inhibitory cells that generate off-surround sngnals relative to
the excitatory cells that generate on-center signals. These periodic
oscillations are formal analogs of brain rhythms in the model. They are
discussed in Grossberg (1977a). Section 35 discussed a possible effect of
these slow waves on interference due to delayed auditory feedback.

24. Hierarchical Critical Periods and Retrograde Amnesia

Several fundamental points should be emphasized about the role of
feedback in stabilizing the STM code. The coded data are not locally
defined; they is expressed by patterns across many cells. Hence no local
signal is sufficient to determine what is being coded, or whether the code
is a useful one behaviorally. Nonetheless, Grossberg (1974, Section VII)
shows that each network cell that is capable of LTM is a chemical
dipole. This dipole can, in principle, determine when LTM-like activity
is turned on, and can therefore turn it off a fixed time later using an
internal cellular clock. Once this happens, no reset of LTM can occur.
Switching off LTM changes would end the cell’s critical period of
developmental plasticity.

Such a clock mechanism would seem to be satisfactory only if the
coded data do not depend on individual experience. Within fields F®
that are at least partly determined by experience, I prefer the view that
LTM stabilization by a clock is supplemented, or even supplanted, by
signals from a higher-order field #“*? which has learned templates of
feedback signals. The present paper argues that this feedback mecha-
nism is useful in generating a self-consistent code whether or not a
chemical clock exists. Moreover, it explains several facts parsimon-
iously: why it takes a while for LTM in ¥ — F“*? synapses to become
stabilized (critical period); why the highest-order code remains plastic;
why lower-order codes can be reset by sufficient disconfirmation despite
their stability; why the oldest memories are the most stable, since they
are the best buffered by feedback; and thus (one reason!) why newer
memories are often easier to erase than older ones (retrograde amnesia).

Given the above results on adaptive coding, the question of how
sequences of events can be coded by prescribed populations can be
broached.
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25. Invariance of the Past Code under Future Sequential Inputs

We now make a series of crucial observations. Suppose as in Fig. 24
that a certain number of states v, ™, v,®, ..., 5 have already
received serial inputs, and therefore have positive *STM traces. At a
given time, these traces define a spatial pattern. In other words, the
temporal order of inputs is coded spatially. Imagine that F® sends
trainable signals to 2, as in the coding model of Sections 17 through
19. Then a certain population in F® will be excited by this particular
spatial pattern, and will reverberate in STM. Suppose that the same
states had been perturbed by a different serial ordering. Then the
activities of the populations 1,?, 5,®, ..., 5, would be permuted,
and a very different population in $® could be excited by the new
spatial pattern. In other words, the spatial pattern of activity across
these cells carries temporal, or order, information, whereas the adaptive
coding process whereby each v,V is excited carries item information.
The fact that different spatial patterns on the same set of cells in ¥ can
excite different cells in #® is a crucial one in our analysis. Knowing
only that the cells vV, v,™, ..., 4" are excited does not determine
the order in which they were excited, nor which cells in F® will fire.
The enormous loss of information when a graded spatial pattern is
replaced by a binary on-off code weakens algebraic theories of sequen-
tial coding by preventing activity per se from generating order informa-
tion. Our parallel code for order information must then be replaced by a
serial code that depends on an item’s position in a serially organized
buffer (cf. Atkinson and Shiffrin, 1968). As soon as item codes must
move through a buffer, one is beleaguered by problems concerning how
the code shifts along the buffer, how the code can elicit the same motor
output at different buffer positions, and how a given buffer position can
elicit the motor output of every item. None of these difficulties arises in
the present theory. More generally, the entire design of the system must
be changed when its code is changed.

Once a sequence v, 1,V, . .., 5;,? is already presented, its spatial
pattern represents ‘‘past’’ order information. Presenting a new input to
v, can reorganize the fotal pattern of coded STM activity at F®, but
we shall assume that it does not recode that part of this coded activity
which involves only past order information. In other words, new inputs
can weaken the strength of past codes, but do not deny the fact that the
past events did occur. If this were not the case, the code in $® would
become very unstable through time, since every little perturbation at
could destroy the entire past record of events. We therefore impose the
following basic constraint on STM coding.
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Invariance Principle. The spatial patterns at # are generated by
sequential inputs in such a way as to leave the codes in F® of past
sequences invariant. :

This principle implies rules for generating spatial patterns across
in response to input sequences. Suppose that at time ¢, the STM
activities at P, w®, ..., " form a pattern P;() = (x,O0),
%20, . .., 5(1). By (18), the signal to any cell 1@ in F? is S;(1) =
Py()-29(z). In order not to recode any of these populations in response to
this sequence, Pi(f) must not change its direction, as a Euclidean i-
vector, at later times . In other words,

Py(t) = P(Df(t, T) (25)

where f(t, T) is a scalar function of ¢ = T. The invariance principle thus
implies that, after x,?, @, . .., 4 are excited by sequential inputs,

they thereafter undergo proportional changes through time. Table II
describes rules for generating such changes. It displays STM activities at
discrete times which are synchronized with the input presentation rate.
In Table II, u; is the activity of the last item to be presented. Thus,
when v,V is first excited, it reaches activity p,. Then @ is excited with
activity u,, and v,""s activity is changed from u, to u,w, to satisfy the
Invariance Principle. Then v,¥ is excited with activity u;. The ‘‘past”
information is scaled down by wy to yield activity wzwy, at v, and
activity wyu, at 5. And so on, until an item’s STM trace falls below
the OT, whence it is quenched. Physical intuition suggests, at least in
cases where all the list items are equivalent in all important respects,
that p, and w, are functions of the total activity in the (k — ‘1)st time
frame, and of a parameter v that represents input strength; that is,

e = Uy, Sk-,) (26)
and
wy = Vv, Spy) @n
TABLE 1I

INVARIANCE PRINCIPLE CONSTRAINS POSSIBLE
SEQUENTIAL STM VALUES

te=1 ® 0 0 0
=2 TN TR 0 0
=3 Mooy pyw, I 0

a=1
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where the total activity of the STM field in the jth time frame is

s j
S, = Z Mo H @y (28)
m=1 r=m+1
Since these relations are merely approximate guides to construct the
networks that actually perform the computations, we content ourselves
with discussing some special cases that provide important physical
insights. '

First we note what the rules do not say. They do not say whether or
not STM activity at ¥ spontaneously decays. Spontaneous decay is
permitted, but not required. For example, if the F activities exponen-
tially decay, then (25) is satisfied, with f(z, T) = exp[—A(t — T)]. If no
decay occurs, then all changes in F are induced by the presentation of
new items. Individual cells in ® then code order information, but not
the time spacing between items. If spontaneous decay does occur, then
different time spacings of the same items in the same order can generate
different spatial patterns across #. When this occurs, individual cells
in ¥ can code a mixture of order and spacing information.

If two different input sequences at F create similar (distinct) STM
patterns at F®, then the *‘distance’” between these sequences is small
(large). The above remarks illustrate how different distance functions on
the space of input sequences at ® can be generated by different decay
rules for O,

26. Bowing of the STM Pattern

Two extreme cases of the sequence-generating rules will now be
considered. More realistic cases will often be mixtures of the two
extremes, as Section 27 illustrates. B

Case I. Let items be presented at a fixed rate such that the most
recent item has unit strength, and each item’s strength decays at a fixed
rate in time. Then all u; = p and ; = o. Set u = 1 for convenience. The
distribution in Table IIIA is found. This distribution describes the
situation in Fig. 24a, in which new items can excite their states with a
strength that is independent of the amount of prior STM activity in the

-field.

A very different result occurs if total field activity is normalized, say
due to a recurrent on-center off-surround network. Let all w, = o, and
choose the total activity equal to 1. Then Table IIIB is generated. Parts
A and B of Table III share certain similarities. In both, the last item in
any list of length at least two has the same STM activity no matter how



570 CHAPTER 13

TABLE I
(A) Passive Decay oF STM TRACES

=1 1 0 0 0
=2 @ 1 0 0
t=3 w? ® 1 0

(B) NORMALIZATION OF AN STM PATTERN THAT OBEYS THE INVARI-
ANCE PRINCIPLE

KW
t=1 1 Q 0 0 0
t=2 w 1—-ow 0 0 0
t=3 w? 1l -~ v l1-w 0 0
t=4 w? (1 - oo (1- oo l-w 0

many prior items are in the list, which makes good intuitive sense. Also,
if 0 < w < 4, the earliest items have the weakest STM strengths.

An important new phenomenon occurs if § < @ < 1, Then the STM
pattern that is produced by serial inputs can develop a bow without any
intervention of LTM. To see this, consider time step ¢ = 2. Since w > 1
— w, the earlier item has a larger STM trace. If ¢ = 3, then «? > (1 =
w)w < 1 — w, so that there is a bow in the STM pattern at the second list
item. An important parameter is the maximal k such that o* > | — @,
Denote it by K. The longest list length for which the first item has a
larger STM activity than any other item is then K + 1. Every list length

k = K + 1is said to exhibit a primacy effect. Lists of length k> K + 1

exhibit a recency effect (Fig. 33).

27. Regulation of STM Primacy, Recency, and Bowing by Latera
Inhibition :

The size of parameter » in Table IIIB measures the relative balance
between STM maintenance by recurrent intrafield interactions and STM

N R
N M e

1=K42

Fig. 33, Bowing of the STM pattern at lizt length 3, and recency effect al list lenpth &
: i
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reset due to inhibition triggered by new inputs. A small value of
represents powerful reset inhibition. Strengthening reset inhibition de-
creases w, which decreases K, which enhances recency by making it
easier for the STM traces of recent items to become stronger than the
STM traces of early items. In the absence of STM reverberation, only a
recency effect is possible, since the earliest items will always have
decayed in strength more than recent items. Because the Invariance
Principle constrains inhibition to change the past field activities by a
multiplicative factor, it argues for shunting (mass action) rather than
subtractive inhibition.

In general, an STM pattern that mixes properties of Tables IIIA and
IIIB can be expected. This can happen, for example, if normalization
holds only partially. In Eq. (16), normalization holds because each v
in F excites only itself and inhibits all other v, k # i, with equal
strength. Often the strength of recurrent excitation and inhibition from
% to other populations v, decreases with the interpopulation distance
(cf. Ellias and Grossberg, 1975; Levine and Grossberg, 1976). These
distance-dependent connections form the anatomical substrate of the
generalization gradients that join feature detectors together. If a given
1, does not inhibit all other v, 'Y, then certain v, can build excitation
without interference from v, so that the normalization property is
weakened. If partial normalization holds, then a bow in the STM pattern
can coexist with a gradual increase in total STM activity as more items
are presented. (Also recall the multiple STM equilibrium points in Fig.
30.) Furthermore, the bow does not, in general, have to occur at the
second list item. By comparison, the statistical model of Hogan and
Hogan (1975) for structural and transient components of memory de-
scribes data in which the transient memory distribution is bowed at list
positions other than the second (see their Fig. 3).

We now solve a coding process that marries the Invariance Principle
with the Partial Normalization Property to show that the bow can occur
at any list position if system parameters are properly chosen. More
precisely, consider codes for which:

1. The Invariance Principle holds.

2. The last item to be presented has an STM strength that is
independent of list length.

3. The total STM activity grows in a negatively accelerated fashion
from an initial value p to a finite asymptotic value M that is independent
of list length, but not necessarily of the stimulus materials from which a
given class of lists is constructed.
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Property 2 is a natural approximation because, no matter how many
past items have occurred, it should still be possible to attend to the most
recent item under normal stimulus conditions. Postulate 3 merely
interpolates the simplest continuous curve between the initial and
asymptotic values of total STM strength. Independent evidence that
total STM strength has such a qualitative curve is found in studies of
pupillary dilation in short-term memory tasks (Kahneman and Beatty,
1966). The properties of this code are described by the following
theorem.

Theorem 1 (STM Buffer): Let all u; = u. Let the total STM strength in
a list of length / satisfy

Invariance Principle:

i i
S; = p E [I @y 29)
m=1r=m+i

as in Table II, as well as
Partial Normalization:

&=Mﬂﬂ+Mu—ﬂﬁ (30)

for some A such that 0 < A < 1, and i <M. Then letting R = u™M, for
everyi > 1, '

_ }\i—l + R(l — Al—l) -1

= 31
I Uy T gy ) G
and the STM strength in a list of length j of the kth item, k <, is
;
Xy = M l—[ Wy (32)
m=k+1
Every STM pattern (x;, %, %y, - - . , X;) is either monotone decreas-

ing, monotone increasing, or bowed. The longest list length J for which
the STM pattern is monotone decreasing is given by the maximal j such
that

(R=D1 = MN2>1 (33)

In every list of length greater thanJ, the bow occurs at list position J.
The proof is found by equating (29) and (30) and solving for o,,
@3, . . ., etc., by iteration. The theorem shows that a bow can occur at
any list position J if R and A are properly chosen. Also, given this code
and prescribed stimulus materials that are homogeneous with respect to
one another, the bow always occurs at the same list position, independ-
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ent of list length. Moreover, since the last item always has strength g,
and the total STM strength never exceeds M, a strong recency effect
develops as the list length becomes large. This result is generalized in
Grossberg (1978b).

Do experimental operations that change the relative “strengths of
arousal and inhibition determine whether and where an STM bow occurs
in vivo? Grossberg and Pepe (1971) show that variations in arousal level
can change the list position where the bow occurs in network LTM
traces (cf. Section 12). Theorem 1 suggests that arousal can change the
list position at which the network's STM pattern bows by shunting
inhibitory interaction strengths. Indeed, if some of the weights o, exceed
1, then STM at a given population can increase through time. This is a
form of behavioral contrast due to lateral inhibition; cf. Grossberg (1975,
Section 12), where peak shift and behavioral contrast of a generalization
gradient also are explained by shunting inhibition. These network results
suggest that performance variables, such as motivational or attentional
state, can influence information processing constraints, such as primacy
and recency. '

28, Feedback Inhibition by Rehearsal in an Opaque STM Field

We now broach the question of how order information is read out of
an STM pattern. To motivate the discussion, consider the task of
repeating a telephone number that you have just heard. At no time are
all the digits simultaneously rehearsed, and there can exist times during
which no digit. is consciously in mind. Moreover, the telephone number
can be rehearsed at various rates, which can be controlled at will, within
limits. At times when no digit is consciously available, the sequence of
digits is opaque to the individual (Estes, 1972). Somehow the STM
buffer organizes order information so that, when a rehearsal act perturbs
the buffer, the correct item is elicited. Because the STM code is opaque,
rehearsal nonspecifically activates all the possible item representations.
The internal organization of activity patterns in the buffer codes the
order information, and the nonspecific activation translates this activity
into output signals. This use of arousal is analogous to its use in the
avalanche of Fig. 12. There also arousal controls the readout of ordered
signals.

Once a given item is rehearsed, the buffer must reset its activity so
that the next item can be rehearsed; otherwise, the nonspecific rehearsal
wave would cause an endless repetition of the first item. In some way,
rehearsal of an item deletes its STM trace from the buffer (cf. Section 9).
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The new STM activity pattern is then stored (or decays, etc.) until the
next rehearsal wave perturbs it.

Consider the case in which order information is stored by a spatial
pattern. Let each population v in a field ¥ code a certain command. The
relative sizes of the STM activities x; then determine in what order these
commands will be elicited. Suppose that x;, > x > x3 > -+ > Xx,.
Whenever a nonspecific rehearsal wave perturbs &, all the populations
begin to emit signals to the next processing stage. The most active
population v, reaches its firing threshold soonest, so that it begins to fire
carliest. It is likely that emergent signals can inhibit each other via
feedforward on-center off-surround interactions. This would prevent
lgakage of signals corresponding to later list items. Using this mecha-
nism, v, wins the lateral inhibitory competition, since its STM trace x, is
largest. Thus v, firest its command signal first. As v, fires, it also
activates a feedback inhibitory signal to its STM source. This feedback
inhibition continues to act until it seif-destructs by quenching su-
prathreshold STM activity at v, but not necessarily subthreshold
activity (Fig. 34). After v, is deactivated, the population v, has the
largest STM activity. It can therefore fire signals through the feedfor-
ward on-center off-surround network, and it continues to do so until it
self-destructs via feedback inhibition. The process continues until either
all items are rehearsed, or arousal is terminated.

29. Transient Memory Span and Free Recall

G.iven the above rehearsal mechanisms, items that are presented
earlier must have larger STM activities in order to be rehearsable in their

%I/'

QUTPUTS
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) Fic. 34. S:I‘M traces compete before the maximal trace elicits a signal and self-inhibits
via feedback inhibition. The process then repeats itself.
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correct order. Below we first consider how this can happen if no LTM
effects occur. That is, we consider only the primary effect of serial
inputs on the STM pattern. By Sections 26 and 27, an earlier item can
then have a larger STM activity only if inputs to the field are influenced
by lateral inhibitory signals from previously stored items; without at
least partial normalization, earlier items will always have smaller STM
traces. In order to be reliably rehearsed in its correct order, after just
one presentation, using only transient STM data, a list must be so short
that it has not yet bowed. We define the transient memory span (TMS)
to be the length of the longest list with a monotone decreasing transient
STM pattern. This length is J in Theorem 1. The TMS can depend on the
materials from which the list is constructed, since these will determine
the strength of inputs and the distribution of lateral inhibition among
items, as well as performance variables, such as the magnitude of
shunting arousal. - :

If a list is so long that STM bowing takes place, then there will be a
tendency to guess items near the beginning and the end of the list before
guessing items in the middle, as is often observed in free recall
experiments (Hogan and Hogan, 1975, Fig. 3). As ever longer lists are
chosen, a strong recency effect develops, as Theorem 1 illustrates.

30. Parallel versus Serial Search in STM

The activation of order information using a nonspecific rehearsal wave
is a parallel operation. In a normalized STM field, however, each item in
the field—except perhaps the last—has a smaller STM trace if a longer
list perturbs the field. Since an item’s reaction time depends on its STM
activity, as in the avalanche of Section 5, reaction time can vary with list
length. This fact has often been used to support the idea that recognition
memory is realized by a serial scanning process that exhaustively
searches all stored items (Sternberg, 1966). Townsend (1974) has pointed
out that the longer reaction times do not unambiguously implicate a
serial process, by describing statistical parallel processing completion
times that are indistinguishable from their serial processing counterparts.
Whereas items are read out of the field in a prescribed order, the field
operations that accomplish this are parallel rather than serial operations.
Sections 60 and 61 discuss the questions of reaction time and (appar-
ently) serial processing in greater detail.
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31. The Inﬂuence of Rehearsal on Chunking

Given that rehearsal deletes an item from STM, it follows that
rehearsal organizes which combinations of events will generate codes, or
chunks. Nal.ve experience also suggests that rehearsal should have such
an effect, since rehearsing a particular combination of events defines
that coprination as a behaviorally meaningful unit.

“I)mag)me that a series of events sequentially activates populations
Uiy Uy vi! before these items are rehearsed. These events estab-
lish a spatial pattern of STM activity in . This spatial pattern
gigerat.es F — F signals which begin to code a population v ., in
F . Simultaneously, v . can send signals to % which learn kthe
spatial pattern of activity across v, v, ..., vfP. This pattern repre-
sents a sensory expectation, as shown in Secti:)n 20. What happens
when a rehearsal wave perturbs #V? If k < TMS, thenx, > X, > >
so that the individual items can be rehearsed in tl;eir proper ordér’.
Two remarks are pertinent here. First, by grouping items into sublists of
length less than the TMS, it is possible to rehearse them in their correct
order. Second, we must ask how chunk vi3) .4 leamns to reproduce this
o.rder. Does the chunk activate order informzltion only via its learned
signals to &V (sensory expectation), or can the chunk directly sample
motor feprcsentations? The next sections will show that the latter
alternative must hold. After the chunk v{® 4 is adaptively coded and
learn§ to reproduce the order of its code'd séqucnce it acts as a new
functional unit of the network. ,

After all_the items vf”, v®, ..., v{" are rehearsed, suppose that
aﬁ?ther series of events occurs which serially activates the populations
ofh uf,f; g es vgim. Since the first k items no longer reverberate in
S;I‘mM, signals from % to #® will begin to adaptively code a chunk
Uigsrikssoiesn that depends only on the second series of events. Simulta-
ne(?usly v,‘ﬁ,ik,,...f“m begins to learn the sensory expectation that charac-
terizes the second series of events. Suppose that m < TMS, so that the
second series ot.' events can be rehearsed in its correct order. As this
happqns, eagh item’s STM representation is deleted and the chunk
learns qrder information by sampling the items’ motor representations.
. Two. xmpqrtant phenomena occur together in this scheme. Grouping
ttems into lists of length less than than the TMS allows them to be
rehe?rsed iq their correct order, and simultaneously defines a code for
th.e list that is capable of learning to perform the list in its correct order.
Time enters this mechanism in a subtle fashion. Rehearsal occurs after

the time interval in which vf%..i, is coded by its defining sequence and
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prevents future events from being chunked with this sequence. How-
ever, the rehearsal act presents vf% , with the data for sampling that
enables it to control overt behavior on future trials.

32. Immediate Memory Span, and Readout of LTM Order Information by
Feedback Signals from Commands

Section 27 shows that a bowed STM pattern can be elicited by serial
inputs across a field #* whose populations are joined by a recurrent on-
center off-surround network. Section 12 shows that an STM bow can
also be elicited by a combination of serial inputs and feedback signals.
These feedback signals are generated by a field #* and are gated on
their way to ¥ by LTM traces. Section 17 shows that the F®
populations that generate the feedback signals to ¥’ can be activated by
STM patterns at F©. The adaptive coding process that accomplishes
this also uses LTM traces. The process whereby event sequences at F
are coded at F?, and codes at F? learn order information at %, is
clearly a special type of adaptive resonance. The order information is
the expectation, or template, of the resonance. '

Before further analyzing this adaptive coding process, we can general-
ize the serial learning model of Section 12 by using the Invariance
Principle. We want to see what kinds of feedback patterns from ¥ to
FW can arise. In particular, under what circumstances does a population
5 correctly code the order with which populations in % were
excited? This code is carried by the LTM pattern (Z,, , Z;;, . - . , Zin) Of
stimulus sampling probabilities Z; from 4, to v;‘".

To discuss this problem, we introduce some convenient nomenclature.
Consider the LTM pattern (Zy(2), Zu(2), - . . , Zin(?)) at any time ¢. Let
/() be the smallestj such that Zy(r) > 0, and let J;(¢) be the largest j such
that Z,() > 0. The integers ji(¢) and J;(f) define the range of positive F
activities that »;® has sampled by time 7. Restrict attention to the LTM
pattern formed by (Zy(t): ji(t) =< j = Ji(?)). If the function M(j; i, 1) =
Zy(t), for fixed i and ¢, is monotone decreasing in j, for ji() =< Jj =< Ji(#),
we say that u,®'s LTM pattern is monotone decreasing (Fig. 35a). If
M(j; i, ) has a single maximum, neither at ji(z) or at J;(f), we say that
u®s LTM pattetn is unimodal (Fig. 35b); if M(j; i, t) has two local
maxima, we say that 5,*’s LTM pattern is bimodal (Fig. 35c). Popula-
tion 1, codes the order in which a list, or sublist, perturbs F* only if
its LTM pattern is monotone decreasing at all times after the list has

been presented.
At any given time, these LTM patterns influence FW by gating signals
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FiG. 35. (a) Monotone decreasing LTM pattern; (b) unimodal LTM pattern; (c) bimodal
LTM pattern.

from F?. Let F,(f) be the fotal feedback signal from F? to v at time .
Signal F;(¢) perturbs 5, and thereupon influences the STM trace X of
™, It is possible for the pattern (F;(f), Fz(0), . . . , Fa(#)) to code the
order in which the list was presented, even though the LTM patterns of
individual u® do not. That is, the total feedback pattern can be
monotone decreasing, with F,(f) > Fy(t) > -+ > F,(9), even though
certain LTM patterns (Zy,, Zg, . . . , Z1a) are not monotone decreasing.
Each 0, has a local view of the serial experiment at #*. The global
synthesis of all these views is expressed by the signal pattern (F. (1),
F, (1), . . ., Fa(t), which controls behavior due to #® at . Thus we
s.hall ask what types of adaptive resonances code correct order informa-
tion.

In Section 29, the concept of transient memory span (TMS) was
introduced to discuss the effect of serial inputs on the STM pattern at
F, When feedback signals from F® also perturb ¥, they can change
the list length at which the total STM pattern of ¥ becomes bowed.
We define the immediate memory span (IMS) to be the maximal list
length at which the STM pattern at F* is monotone decreasing when
feedback signals from %® are operative. '

Our first results apply to the case wherein a list is presented once to
the network, which thereupon tries to repeat it in its correct order. We

Sib b Sy g
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study the LTM patterns that develop in F® s FP synapses, but do not
yet let these patterns influence STM at FW The first result shows that
the IMS can only be longer than the TMS, under weak conditions. In
effect, feedback signals can only make it easier for lists to be repeated in
their correct order. A

Theorem 2 (Primacy). Let F* obey the Invariance Principle. Also let
the STM activities of populations in F® decrease when new inputs
perturb . Then the IMS is at least as long as the TMS, because every
active 1, codes a monotone decreasing LTM pattern after a list no
longer than the TMS is presented to & In fact, this conclusion holds if
the Invariance Principle is replaced by the weaker conditions

2O + myr) = 2L+ ke + myl, k>0, m=0 (34)

where 7 is the intratrial interval.

If the list is longer than the TMS, then not all LTM patterns can be
monotone decreasing. For example, in Fig. 35b a population v;® that is
excited after many list items have been presented will code more recent
items more strongly than early items. The next result generalizes the
statements. of Section 12 about STM — LTM order-reversal to the case
where F® obeys the Invariance Principle. After that, we shall suppose
that %® obeys the Invariance Principle to show how feedback signals
can lengthen the IMS. Theorem 3 is conveniently stated in terms of the
following definition.

Definition. The past (future) field of v, is the set of populations ¥
that are excited by inputs before (after) v, is excited.

Theorem 3 (Generalization Gradients). Let FW obey the Invariance
Principle. Let its invariant parameters s and o, P satisfy

(6 )]

y_lm = "Lz(n = Mam = ... (35)

and

0, = 0,V = - . (36)

Also let the STM activities of populations in F® decrease when new
inputs perturb F®. Let a list of length L serially perturb . If L =
TMS, then every active 5;® population has a monotone decreasing LTM
pattern. If L > TMS, then the LTM pattern of each 5, is either
monotone decreasing, unimodal, or bimodal. In all cases, each y®
codes in LTM the ordering in its past field, and a monotone decreasing
LTM pattern of its future field. In particular, the LTM pattern of @
can be monotone decreasing no matter how large L is, or how small the
TMS is, if v, is excited before 1,V is excited (primacy). A unimodal
pattern can be generated only if the past field of ™ is monotone
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increasing, either because there is no lateral inhibition within @, or
because the STM traces of the TMS items have become subthreshold.
The maximum Zy then occurs at the v, that is excited most simultane-
ously with 1,®. A bimodal pattern occurs if the past field of »,® has a
bowed STM pattern. Then one local maximum occurs at Z;,, and the
other occurs as in the unimodal case. )

The above theorem makes no assumption about F®, except that its

STM activities decrease when new inputs perturb ¥, owing either to’

competitive inhibition by newly activated ¥ populations, or to passive
decay. It is natural to assume, moreover, that #® obeys the invariance
principle, if only because ' can be a source of adaptively coded inputs
to another field in a hierarchy of codes, and a stable coding of the past
field in each level of the hierarchy must be guaranteed. Section 41 will
show, however, that F® cannot in general be constructed from a single,
homogeneous pool of populations; several distinct population types can
exist in a single field. In the simple case that only one population type
exists, ¥ possesses a single set of invariant parameters u,®, j = 1,
2,...,and o™, k =12,3,....In the next, more general case, each
population type, or subfield, of F® possesses its own set of invariant
parameters. By defining invariant parameters for %, we temporarily
sidestep the adaptive coding problem. Instead of studying how %®
populations are activated by the ith serial input to %, we demand that
thfa ith population v,® in F® is excited according to the rule of Table II.
Given this rule, we can study the total feedback pattern (F,(t),
Fy(0), . . ., Fy() as it evolves through time. In particular, we can study
how the feedback pattern tends to produce a primacy effect that
balances the recency effect that is produced directly at F® by a long list.

.\)Vl{enever %® has one population type that obeys the Invariance
Principle, it also possesses a transient memory span (TMS,). Denote the
transient memory span of ¥ by TMS, to avoid confusion. To under-
stand how F® can lengthen the IMS of ¥, suppose that TMS, =
TMS, . This makes sense intuitively, because often the populations in
F® will represent commands that stay active for a long time in order to
sample long sequences of events. Consequently the STM pattern in F®
can be monotone decreasing long after the STM pattern in ¥ has
bowed. In particular, the populations that are excited earlier in %@ will
have gr'eatcr STM activity than those excited later on. These early
populations also tend to code a monotone decreasing LTM pattern, by
Theorems 2 and 3. Thus, they sample a monotone decreasing STM
pattern at  until the list exceeds TMS, . After that time, populations
such as v, continue to sample a monotone decreasing LTM pattern.
The-later #® populations have smaller STM activities, so they sample
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the bowed STM activities at F¥ less vigorously. Since ¥ has a long
TMS,, the STM signals from the early populations in F® will be
stronger than those from %® populations that are excited later on.
Hence the total feedback signal from %*® will more heavily weight the
LTM patterns coded by the early %® populations. This tends to make
the (F(1), Fa(t), ..., Fa()) pattern monotone decreasing (primacy
effect). When these feedback signals act at F9, they tend to make the
IMS longer than the TMS.

Another point of interest can be made here before it is developed in
Section 61. The STM buffer at ¥ can, in principle, store a list much
longer than the TMS, albeit with- STM activities that code incorrect
order information. Given any search task that must be performed under
time pressure before STM is reset, many of these items can be masked
by items with larger STM activities.

33. A Minimal Model of Structural versus Transient Components of
Memory

The above analysis suggests how feedback signals from F® can
induce a primacy effect at ¥ even if presenting a long list to F tends
to produce a recency effect. The total feedback pattern (F,(s),
F,(1), . .., F.(t)) induces an STM response at ¥ that can be called the
structural component of memory. It is that part of the total input to F*
that is controlled by LTM, whether via F* — F? adaptive coding, or
via F® — FW readout of order information. By contrast, the transient
component of memory is the STM response at F* due to serial inputs.
Many papers have tried to understand the interplay of structural
memory with transient memory (for example, Atkinson and Shiffrin,
1968; Estes, 1972; Hogan and Hogan, 1975). All these theories are weak
in at least one respect. None of them gives an explicit description of how
STM and LTM patterns are generated, coded, and mutually transform
one another in real time. The present theory suggests a class of minimal
models that is capable of approaching this task. _

The simplest model discretizes and generalizes Eqs. (7) and (8) of
Section 12. This generalization assumes that both F* and % obey the
Invariance Principle. By Theorem 1, the STM activities x(k) and
x2(k) of v, and v;® at time ¢ = k satisfy

k
x0(k) = p, @ n w, W 37

m=j+1
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and
.
Xim(k) = ”i(z) H wm(z) (38)
m=i+1
where pfo; 0, P =0if >k p=1,2,.... Consequently the LTM

trace zy(k) from 5, to v,'” at time t = k satisfies

k
zyk) = 2o + 3 fOqD(m)x P (m)D(k — m) (39)

where the signal function f(w) either is a sigmoid function of w, or
describes a threshold cutoff at I'; D(k — m) describes any LTM decay
that might occur between time t = mand ¢ = k (cf. Grossberg, 1974,
?ection “k,)'; and z;4(0) = z,. The total feedback signal from % to FY at
ime t = kis

N
Fyk) = ‘21 S 2 (k))zy4(k) (40)
The pattern (Fy(k), Fok), ..., F,(k), k = 1, 2, ... , describes the

effect of structural memory on #® at any time t = k. The patterns
generated at ¥ according to Table II describe the transient memory
through time. A weighted average of the two patterns describes the total
STM pattern at #. This latter pattern determines the order in which
items will be rehearsed from F® in response to a nonspecific rehearsal
wave.

This total STM pattern replaces the probabilities of performance that
are used in statistical learning models. In Section 25, we noted that, in
the Atkinson-Shiffrin model, a computer analogy suggested a binary
code for an item to be either in the STM buffer or not. Then item
representations had to move through the buffer to remember order
information. The binary code did not, however, meet STM order data.
Som.ehow recency and primacy effects had to be generated. Recency
gradients were generated by supposing that there exists a probability for
the item to fall out of the buffer. Then the probability that an item is in
the buffer decreases as a function of how long ago it entered the buffer
(recency). Thus a hybrid mixture of binary and probabilistic concepts
was wed together to achieve order information and a recency gradient.
However, in each individual this hybrid scheme predicts that an item is
either in the buffer with unit strength, or not in the buffer. The recency
gradient is an intersubject construct. In the present theory, each item
can be in the buffer of a single individual with variable STM activity,
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and item motion is unnecessary to code order information. These two
conceptions can be differentiated by experiments that test whether an
item’s ability to influence probe stimuli depends on its position in the
buffer.

When a nonspecific rehearsal wave perturbs an STM buffer, the
buffer’s order information manifests itself. This order information is the
net effect of all STM and LTM interactions among buffer item represen-
tations and higher-order commands. We now turn to the problem of
globally synthesizing these interactions to achieve the order needed to
perform prescribed tasks. Two general classes of task impose different
requirements on the buffer. The task of predictioh looks into the future.
The task of imitation looks into the past. The task of naming stands
somewhere between. By endeavoring to harmonize these demands, a
deeper insight into the global structure of the field of command popula-
tions is achieved. The prediction task is particularly useful as a probe of
this structure.

34. Prediction

Suppose that a pianist has learned to play a long series of chords.
After having played several of the chords, how does the pianist know
what chords come next? How does playing the previous chords generate
commands capable of eliciting the future chords in their proper order?
Consider Fig. 36. Suppose that the pianist learns the piece by playing
one chord at a time. For the moment, let motor commands for playing
each chord already be coded at ¥®. As each chord is played, it
generates a sensory feedback pattern at the sensory field %, This
pattern is then adaptively coded and stored in STM: by a population in
F®, as in Sections 17 through 19. Intuitively, ¥ codes spatial patterns
of sensory data, or item information.

As a long sequence of chords is elicited by the motor commands v,
5“9, ..., 5™, their sensory feedback creates a spatial pattern across
F®. By the Invariance Principle, once this spatial pattern is established,
it does not subsequently change. It therefore activates a well-defined
command population vZ ; in F® by adaptive coding. Intuitively, F©
codes temporal sequences of sensory data, or order information. Popula-
tion v , thereupon reverberates in STM and begins to emit sampling
signals via trainable pathways. The sampling signals to F® learn a
sensory expectation that codes order information. How is motor order
information learned? Suppose for definiteness that #* can sample F%.
This will not ultimately be tenable, and the following argument shows
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F. Active populations in F9 can sample their future field of motor commands at &%),

why. Since rehearsal deletes motor representations after they are
performed, population v , can sample all the future motor commands
vy, v, . . . that are activated while it reverberates in STM. By
contrast, #¥ can also sample STM from past events in F®, since FP is
excited by sensory feedback owing to rehearsal at F@ (cf. Section 31).
How does v ; encode the order information of the motor representa-
tions vf¥,, v{¥,, . . .in its LTM traces?

As in (2), the LTM trace from v@ | to u,® time-averages the product
of the signal from vy ; to v, with the STM trace of v, This signal is a
monotone increasing function f(w) of STM activity w = x , at v ;.
{\s in Table II, the STM activity x&& , decreases monotonically through
time after it is excited. This is due, for example, to lateral inhibition
from other chunks in #® that are activated as new chords are played.
Hence the signal f(x ;) also decreases through time. Suppose, more-
over, that #“ is normalized. Then each motor command at * has unit
§TM activity during its brief activation interval. The activation interval
is brief because each motor command self-destructs jts STM activity via
feedback inhibition, as in Section 9. Consequently, the LTM trace from
vy to v¥, is larger than the trace to v{s, the LTM trace to v{®, is
larger than the trace to v{¥,, and so on. The LTM pattern from v{¥ ; to
the set {v{¢,, vf¥,, .. .} is thus monotone decreasing. On a later per-
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formance trial, after the chords v, 1,, . . ., n,* are played, v ; is
activated by sensory feedback and thereupon elicits across F° a
monotone decreasing STM pattern that codes the correct order of future
chord performance. The network is then ready to play a sequence of
future chords. Turning on the motor rehearsal wave at ¥ releases the
chords in their correct order.

35. Sensory Feedback and Interference by Its Delay

The above mechanism works if sensory feedback due to motor
performance does not excite other ¥® populations and thereby change
the total pattern of F® — F“ signals. How is order information
organized when sensory feedback continually excites new ® popula-
tions? This question will lead to the conclusion that #® samples F©
rather than %, where ® codes sequences of motor items just as F©
codes sequences of sensory items. To see what goes wrong if F®
samples “, consider Fig. 37. Suppose that a given % population
excites a monotone decreasing STM pattern at ¥, Let motor arousal at
F initiate performance of these items. The sequential motor perform-

.
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Fi1G. 37. % populations sample a monotone decreasing future field irrespective of how
long it takes auditory feedback to activate them.
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ance generates sensory feedback at F®, which is gradually coded by
populations in . These #® populations thereupon send sampling
signals to . What patterns do these sampling signals se¢? Since motor
performance at F“ deletes its motor command, they see only the
activities of commands that have not yet been performed. The %@
populations therefore start to learn the monotone decreasing pattern that
codes the correct order of the future items. If this trend continued
through time, all would be well. It does not continue because, as each
future item is rehearsed, its representation at F* is deleted. As the @
population continues to-sample, it therefore tends to learn a monotone
increasing pattern, rather than a monotone decreasing pattern, across its
future field. .

This difficulty arises only because the #“ representations are deleted
when they are rehearsed. Somehow % must be able to sample
representations that are linked to the motor commands in #“, but are
not deleted when rehearsal occurs.

Let F code order information from %, In particular, when an
individual command ; is active at #, it generates a code v, at F®,
which in turn learns to activate v, via its feedback template (cf. Section
47). As a sequence of commands 1v,, 1,®, . .., 5, is rehearsed at
F®, it elicits a monotone decreasing STM pattern across 0%,
%®, ..., 0% Then v{ , is turned on, and samples this STM pattern.
Population v{$ ; also samples the monotone decreasing pattern that is
elicited across its future field as the commands P, 0%, ... are
sequentially rehearsed. By Theorem 3, the LTM traces from P, to F®
are unimodally distributed, and the maximal LTM trace abuts v,
~_Given this background, now let a sequence 1,®, o2, . .., v@ , of
@ populations be activated by sensory feedback. The LTM pattern
across each population’s future field is monotone decreasing. In particu-
lar, all the LTM patterns that abut the populations v{3,, v{3,, . .. are
monotone decreasing. Consequently the total STM pattern due to
sensory feedback is monotone decreasing across the unrehearsed %
populations. This STM pattern elicits at $* a monotone decreasing
STM pattern across the unrehearsed populations v{?,, v{,, . . .. The
signals from #® to the rehearsed populations v,“, 5,, . . . , b, do not
generate large STM activities, because motor arousal at ® bootstraps
subliminal signals, into STM by contrast-enhancing activities that are
already large—namely, the unrehearsed activities—and quenching the
small activities. The total STM pattern at F“ is therefore menotone
decreasing across the unrehearsed items and negligible across the
rehearsed items. The correct order of performance is hereby predicted,
no matter how many ¥ populations are activated by sensory feedback.
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The above mechanism is robust because it does not depend on any
particular rate of generating sensory feedback in response to motor
performance. It requires only that the feedback delay on performance
trials be the same feedback delay that is experienced during learning
trials. If feedback is artificially delayed by electronic means, then the
motor command elicited by the sensory feedback can interfere with
proper motor performance. o

The amount of delay will influence how severe the interference is.
Suppose, for example, that when the feedback is not artificially delayed,
it excites v, as the next command to be performed. Then the feedback
enhances performance of the v, command. If feedback is slightly
delayed, then it tends to prolong performance of »®. Figure 38 shows
how this happens. Before »;* is performed, the STM pattern in F@ is
given by Fig. 38a. Suppose that performance of v, begins, and with it
feedback inhibition of activity at 4, (Fig. 38b). Once the activity at v,
is less than that at v{y; , performance at v{?, can begin. Suppose that the
delay in sensory feedback to v, is so brief that feedback re-excites v;%
just before this can happen (Fig. 38c). Then v,“’s activity stays maximal
for a longer time than usual and prolongs performance of the v, chunk.

4 4
X F} Xit1

o glo

+

la} (b)

INCREMENT DUE TO
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Fia. 38. Sensory feedback in (c) suffices to prolong performance at »,®, but in () vf¥,

continues to control performance.
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If, however, self-inhibition of v, is almost complete when sensory
feedback to v arrives (Fig. 38d), then ov{f, still has the maximal
activity after the feedback signals take effect (Fig. 38e), so that the
interference due ‘to a longer delay is smaller. This phenomenon is
analogous to the Lee effect, wherein auditory feedback causes maximal
interference with speech production—primarily a drawing out of vow-
els—if it is delayed by about 180 msec, but less interference at smaller or
later delays (Lenneberg, 1967, p. 109).

Other possible effects of delayed feedback go beyond the scope of the
present discussion, because they all involve rhythmic activity in the
network. As Section 23 notes, periodic oscillations in network activity
can occur in recurrent networks due to the Jagging behind of inhibitory
activities relative to their excitatory counterparts (Ellias and Grossberg,
1975; Grossberg, 1977a). Whenever this happens, different effects can be
elicited by a delay of sensory feedback that coincides with the waxing
rather than the waning of STM activity. If we interpret the rhythmic
STM activity as an analog of brain waves, then different effects can
occur when feedback is in or out of phase with brain activity. The
following effect is of this type. Let a sensory feedback cue reach F®
when the feedback expectation from F® to W is waxing. Then the
nonspecific alarm is not set off if the feedback is compatible with the
expectation. By contrast, if the sensory feedback cue reaches ¥ when
the expectation from % is waning, then a tendency to reset STM at F@
is at least momentarily elicited, even if the feedback is compatible with
the expectation. Thus a mismatch of activation phases can cause
interference in sensory coding whether or not the expectations and the
feedback cues are compatible. A similar remark can be made about the
reset of motor coding when proprioceptive feedback is delayed, or about
the rate with which terminal motor maps are reset by new motor
commands. This fact is compatible with data concerning the rhythmnic-
ity of language production (Lenneberg, 1967, Chapter V), in particular
with the idea that speech is broken up into *‘syllables” or ‘‘breath
pulses’ that have a rhythmnicity of 6 or 7 cycles per second. A proper
understanding of these phase versus informational phenomena requires a
study of how feedback cues can reset the endogenous STM rhythm.
Even without such a study, the above remarks show the importance of
distinguishing whether interference is due primarily to phase or to
informational mismatch in particular cases. For example, in Fig. 38e, a
long feedback delay prevents v,Y from receiving sufficient feedback to
dominate v{}, . Can this be prevented by appropriate amplification of the
feedback signal, or is the reduction in interference due primarily to a
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matching of phases? Testing this alternative unambiguously will be
difficult, if only because amplification of the feedback signal might also
reset the phase of the STM rhythm.

The above mechanisms work wéll as far as they go. They clarify some
points, but also raise new questions. On the clarification side, they begin
to show why sensory feedback is not needed to play the next chord, but
is nonetheless important. After a command such as v, is activated, it
can predict the correct performance order of a long sequence of chords
vi{y, 2, . . . . Thus, sensory feedback from v{?, is not needed to
perform v{Y,. Nonetheless, sensory feedback does determine which
commands, such as v{J ;, will be activated. A sequence from the past
hereby determines a sequence in the future.

On the question side, we note the following:

1. Population v{} ; is not the only active chunk in #®. Every active
subsequence across ¥® can, in principle, be coded at @, A spatial
pattern of activity therefore exists across #® at every time. How should
the relative activities of these chunks be determined so that the rotal
signal from F® to F“ correctly codes the order information of future
chords? .

2. What advantages are gained by using higher-order chunks like v ,
rather than v,®? The LTM traces of chunk v can also encode the
future commands v{¥,, v{¥,, ... in their proper order. Why bother
using higher-order commands at all?

36. Greater Weight and Longer Duration of Higher-Order Chunks

These questions suggest a general principle with far-reaching conse-
quences. Consider question (2) to start off. Chunk 4 can be activated
by every chord sequence in which chord »* is played. Chunk v;® might
therefore already code a different chord sequence at #“ before the new
piece is learned. By contrast, chunk v ; is better defined by the piece
that the pianist is playing, and can therefore more reliably predict the
correct sequence of future chords. For example, if I hear the word **C**
(= *‘see”), I can reply ‘‘See what?"’; but if I hear ““ABC,” it is much
more likely that I will reply **D.” Higher-order chunks should therefore
have greater STM activity than lower-order chunks in .

There is a related reason for giving higher-order chunks greater
weight. It is desirable to keep the chunks that code longer sequences
active for a longer time, so that they can predict far into the future. Such
chunks can dramatically compress the encoding of data by each predict-
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ing a long sequence of chords. In particular, once a chunk in ¥ enters
STM, it can be actively quenched only by lateral inhibition due to later
activation of other chunks in %%, assuming that arousal level and other
performance variables stay fixed. Shutting off the ® populations that
originally activated an % chunk does not inhibit this chunk. This
property is similar to the maintenance of STM activity by populations in
F@ after their defining input patterns at F® are deleted by rehearsal and
replaced by new input patterns. These constraints are summarized by
the following rule.

Self-Similar Coding Rule: Other things being equal, higher-order
chunks have greater STM activity and longer duration than lower-order
chunks.

37. Spatio-temporal Self-Similarity and the Resolution of Uncertainty

The above idea is a special case of the principle of spatio-temporal
self-similarity, or STSS (Grossberg, 1969¢). The network takes a risk by
allowing any chunk to remain active for a long time. What if the chunk
codes erroneous information? It can then cause errors until its activity
can finally be quenched. The risk is minimized by letting the highest-
order chunks remain active the longest. Since these chunks are better
characterized by the temporal sequence in which they are embedded, it
is more likely that this output will be the correct one. Thus, in the
present situation, STSS means that chunks that are coded by long
sequences can remain active for a long time to sample and control
performance of long sequences.

How is STSS physically realized? The STSS concept constrains the
global rules for building a field; what are the local rules whereby its
individual populations are constructed? A mechanism is suggested by
considering the concept of an STSS cell type. Suppose, statistically
speaking, that a given cell type has a characteristic shape, including
dendritic tree, cell body, and axons. If the cell type is STSS, than a
small cell of this type is transformed into a large cell by blowing up all its
spatial dimensions. What effects does this scale change have on a cell’s
functional capabilities? We now discuss certain neocortical cells using
the teleology of STSS. Consider a cortical Betz cell that has a large
dendritic tree (Crosby et al., 1962). Such a dendritic tree gets a good
view of input data in the vicinity of the cell. The firing of such a c.ell can
thus be precisely controlled by prescribed patterns of sensory inputs.
Because the cell fires only at (essentially) the correct times, it can be
permitted to send a long axon all the way down to spinal motor centers
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(pyramidal tract), where it directly activates motor output. By contrast,
if a cortical pyramidal cell has a small dendritic tree, then it can be fired
by a much wider variety of input data. Its axon cannot be allowed to be
a final command pathway to motor centers. By giving such cells a
shorter axon, their effects on motor outputs will be manifested only over
multisynaptic pathways (extrapyramidal tract), wherein further compu-
tations can be undertaken. In a similar fashion, if longer axons are also
wider, then they can carry their signals more quickly, and thereby
achieve the same transmission time lag as shorter and thinner axons.
STSS is thus a structural constraint on individual cells that helps the
aggregate network dynamics to resolve uncertain input data without
taking untoward risks.

38. Order-Preservation in the Future Field of Motor Commands

The principle of SSTS suggests that higher-order chunks should be
coded either by more cell sites—either more or bigger cells in a
population—and/or by stronger signal pathways than lower-order
chunks. This design will lead to fields & whose anatomy is in a dynamic
equilibrium with the average spatial distribution of inputs that perturb %
through time.

Before making this construction, we note that predicting the order of
future motor commands could be achieved under weak constraints on
F9, were it not for the fact that low-order chunks can sample many
different chord sequences.. This was demonstrated in Section 34,
wherein it was proved that every chunk in F® codes a monotone
decreasing pattern across its future field in “, independent of what
items or sequences of items are coded by the chunk. Thus %% can elicit
the correct performance order at ¥, no matter how many classes of
chunks sample #“. We wish to suppress lower-order chunks only
because they can sample and perform too many incompatible sequences.

39. Masking of STM by More Cell Sites or Amplified Signals

What STM patterns can exist in networks wherein some populations
have more cell sites, stronger signals, or broader tuning curves than
other populations? It is shown below that such networks have exactly
the properties needed to satisfy STSS. Examples of such networks have
been studied by Grossberg and Levine (1975) and Levine and Grossberg
(1976). The former paper considers recurrent on-center off-surround
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networks of the form
Y= —=Ax + By — x)[f(x) + L] - Xc[kgif(xk) + ;] (41)

where the populations v; can have different total numbers B; of cell sites.
System (41) is formally equivalent to

iy ="=Au + (C — u )L f (D) + ] - ut[z S (D) + Ji1. (42)
kAt
where both the excitatory and inhibitory signals f(Du;) from eac‘h
population v; are amplified by a scaling factor D;. System (41) is
transformed into (42) by the substitutions x; = D;u; and By = CD,. A
system :

Wy = —Aw; + (C; — w)[f(Dyw,) + L[] - Wt[g. f(Dew,) + Ji] 4 43)
kst

in which both types of asymmetry exist is thus equivalent to system (41)
with x; = D;w, and B; = C,D;. In particular, if C;, = C, < -+ = C, and
D=D,=--=D,,thenB, =B, =-=<B,. '

Such asymmetries introduce a new type of contrast enhancement into
the system. For example, in (41), populations v; with the largest _B,
values tend to quench, or mask, the STM activity in populations wx?h
smaller B; values. If higher-order chunks are given larger B; values in
(41), then they will mask lower-order chunks, as we desire by STSS.
This is the main idea.. '

More precisely, suppose that B, < B, < :-» < B, in (41). If f(w) = Ew,
then x,() = 0if B; < B,, and x() = Kx,(0) if B; = B,. In other words,
given a linear signal function, all populations with nonmaximal B; are
masked, and the STM pattern of all populations with maximal B, (that is,
B; = B,)is stored faithfully in STM. No states are masked if all B, = B,.
If f(w) is, more realistically, chosen to be a sigmoid signal function, then
an interesting phenomenon occurs. Once again there is the tendency for
populations v; with maximal B, to mask other populations. In particular,
if some populations v; with B; = B, get relatively large inputs, then_ all
states u; with B; < B, will be masked. In general, however, there is a
competition between the relative sizes of the B;’s and the relative sizes
of the initial activities x,(0), the latter in turn being determined by the
relative sizes of inputs to v, before time ¢ = 0. In all cases, only the S'I:M
traces corresponding to one B; can be stored in STM. If certain v; with
B, < B, have sufficiently large x,(0) compared with the x(0) values-of all
v, with B; = B,, then the subfield of populations with the nonmaxim§11
weight B; can mask all other populations. The STM pattern of this
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subfield is simultaneously contrast-enhanced and stored in STM. Gross-
berg and Levine (1975) interpret the competition between B; and x(0) in
terms of developmental and attenfional biases in the field. A develop-
mental bias can, for example, give certain feature detectors larger B,
values than others. An attentional shunt can amplify the signals of one
subfield more than others via larger D; values. Either operation biases
the field in favor of some subfield. In {43), the developmental biases C;
and the attentional biases D; can create a complicated tug of war that
favors the particular subfield having maximal B, = C:D; for STM
storage. Nonetheless, a population with nonmaximal B, can be stored if
its features are present in the input display with relatively large saliency,
or are coded by relatively strong pathways that amplify its inputs.

40. STM Drift toward a Norm: Primary Gradient Induces Secondary
Gradient '

The tendency of populations with maximal B, to totally mask all other
populations is due to the fact that each v, can inhibit all v, k # i, with
equal strength in (41). When the strength of recurrent excitatory and
inhibitory signals decreases as a function of interpopulation distance, as
in Section 27, then the masking effect can be partial, and can generate a
slow drift by the spatial locus of maximal STM activity toward the
populations having the largest B; values. In the case that each v; codes
particular features, then the falloff with distance of recurrent signals
defines generalization gradients between the feature detectors, and the
detectors with the largest B; act as “‘norms’’ toward which activity drifts
across these generalization gradients.

For example, Levine and Grossberg (1976) study networks of the form

L:zlf(xk)cki + It]

n

- (x + D) [E S o )Ey + Ji]
k=1

where the excitatory coefficients Cy; and inhibitory coefficients E,; both

decrease as a function of interpopulation distance [i — k|, with excitation

(“‘on-center”) decreasing faster than inhibition (“off-surround’’). Sup-

pose in addition that the B;’s are normally distributed around a given

‘population v,; that is, B; = Be™~!". Then if an input perturbs a

population v;, { # I, the locus of maximal STM activity drifts toward v,.
The drift rate depends on how steep the slope of the function B isasa
function of v, for k values between i and I. If the slope is small, the drift
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rate is slow; if the slope is large, the drift rate is fast. Levine and
Grossberg (1976) suggest that such a drift is responsible for the line
neutralization effect that is perceived when a nearly vertical or horizon-
tal line is inspected for a sufficiently long time (Gibson, 1933). In
summary, if there exist generalization gradients among feature detec-
tors, and if certain detectors are coded by more sites or broader tuning
curves than other detectors, then STM activity drifts toward the nearest
populations having the most sites or the most highly amplified signals.
The above mechanism can be described in terminology from develop-
mental biology. The B;'s define a primary gradient; the input is an
inducing stimulus; and the STM drift is a secondary gradient that is
generated by field interactions in response to the inducing stimulus,

41. Masking of Lower-Order Codes

Which chunks in #® will be masked? The answer depends on at least
three factors. First, it depends on the spatial distribution of LTM traces
across the F® — %% pathways. The LTM vectors z in these pathways
define positional gradients that determine how close together in F® are
the populations that code two different sequences of events; for exam-
ple, how close is the F® code for sequence ABC to the code for ABCD?
Second, it depends on how many sites code each population. If ABCD is
coded by more sites than ABC, then ABCD’s code will tend to mask
ABC’s code. Third, it depends on the breadth of recurrent excitatory
and inhibitory signals within @, Even if the codes for ABC and ABCD
lie next to each other in %%, they are far away from each other,
functionally speaking, if they do not fall within each other’s generaliza-
tion gradients. Section 39 shows that more sites and broader tuning
curves have the same effect on STM masking. Hence we expect the
chunks that have the most sites to have the broadest generalization
gradients. This is immediately guaranteed, given STSS, if the largest
cells are in the populations having the most sites.

It remains to determine how many sites will be given to ¥¥ popula-
tions that code sequences of prescribed length. We seek a law that can
plausibly be realized by simple rules of neuronal growth before the stage
of adaptive coding takes place. The qualitative features of this law are
already apparent. For example, given sequences A, AB, ABC,
ABCD, ..., it follows by STSS that the number of sites should
increase monotonically with list length until a maximal length is reached.
Thereafter, the number of sites should decrease with list length.to
prevent infinitely long (and infinitely unlikely) sequences from being
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coded (see Fig. 39). The simplest rule of this type is the Poisson
distribution. Suppose that a population in #® contacts a certain popula-
tion in F® with a prescribed small probability p. Let A be the mean
number of such contacts on all the cells of #*, Then the probability that
exactly k contacts perturb a given population is

Py = (\k/kl)e > (45)

(Parzen, 1960). If K is chosen so that K < A < K + 1, then P, increases
for 1 = k = K and decreases for ¥ > K. More sophisticated but related
distributions, such as the hypergeometric distribution

Pu= () (0 23)/ () s

where ( ) is the binomial coefficient, are also discussed in Parzen (1960).

Consider the Poisson distribution in (45) for definiteness. Given this
rule, sequences of length K will generate maximal STM activity at ¥,
other things being equal. For example, suppose that K = 4, and consider
network response to the sequence of events ABCD . . .. As each item
is processed, it excites a code (A); then codes (B), (AB), and (BA); then
codes (C), (ABC), (BAC), (BC), ... ; and so on. How close are the
codes (A), (B), and (AB) to each other in #®? The code (AB) differs
from the codes (A) and (B) separately only by one item. Since the items
A and B are coded by being projected onto the LTM traces z in $® —
F® pathways, (A) and (B) are closer to (AB) than, say, (F) is. This
argument can be refined by taking into account the phonetic similarities
that cause items to be similarly coded at the F® — %@ stage of filtering;
such extensions can be supplied once the main idea is clear. In
summary, (A) and (B) lie close to (AB) in $®. Since (AB) has greater
weight, it tends to mask (A) and (B) by lateral inhibition. Similarly,
(ABC) masks (AB), and (ABCD) masks (ABC). Since K = 4, (ABCD)
also masks (ABCDE), (ABCDEF) and so on. Thus, chunks of length
four tend to dominate the STM activity in F.

SITE ' \
DENSITY ) = OFTIVSAL

UNK
} LENGTH
LIST LENGTH

Fia. 39. STSS suggests that longer sequences are coded by more sites, up to some
maximal sequence length.
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42. Clustering, Compression, Spacing, and Completion

The above masking process has many interesting implications. Mgst
obviously, it dramatically reduces, or compresses, the number of active.
chunks that are needed to control motor activity by suppressing the
populations that code nondominant subsequences. It is impox.'tant to
recall here that the codes for A, AB, ABC, etc., are not wired mto. the
network. Thus if a population for ABCD masks many of the populations
that would be codes for BCD, CDB, CD, etc., before these codes can be
learned, then the masked populations remain uncommitted and can be
coded by other events; in particular, by events in which the items A, B,
and C occur separately or in other dominant subsequences.

A second interesting consequence is a spacing effect in the chunks
that get stored in F®. After the events A, B, C, and D are presented,
(ABCD) actively masks the populations (BC), (CD), (BCD), etc. Whe‘n
event E occurs, there is a tendency for (BCDE) to be dominant, but this
tendency is offset by two factors: First, all the populations relgtec} to
(BCDE), such as (CD), which could supply it with recurrent excitation,
have been suppressed; second, (ABCD) is sufficiently close to (BCDE)
to suppress it, at least partially, by recurrent inhibition. This arggment
must be made with care, because it depends on the detailed chm.ce of
network parameters. It is, for example, possible for (BCDE) to be in the
on-center of (ABCD), whence it is enhanced rather than suppressed,
whereas (CDEF) is in the off-surround of (ABCD). The main r(?bust
point is clear, however. There is a tendency for the codes .o-f dommar}t
subsequences to be spaced, owing to mutual recurrent inhibition by their
off-surrounds. For example, only the codes (ABCD), (D_EF'G).,
(GH1)), . . . might have significant STM activity after recurrent inhibi-
tion acts. This spacing effect accomplishes a further compression of data
encoding by #®. '

The spacing effect generates a tendency to cluster responses info
subsequences in order to maximize learning rate. As a sequence of
events is presented to the network, it tends to generate spaced chunks of
a dominant length. When these chunks control performance, they tend
to group responses inte the functional units coded by these' chunks.
Suppose, for example, that K = 4. Then if four consecutive items are
listened to before rehearsing them, these items will be coded by a chunk
of maximal weight. A longer sequence will tend to be broken into two or
more subsequences because of the spacing between dominant chunkf
within #®. Feedback from dominant chunks in ¥ to ¥® and ¥
thereupon tends to group items into rehearsal units of length four. -

Does the length of the TMS at % influence the number K at ¥ by
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determining the maximal length of sequences that can be rehearsed from
the STM buffer with no LTM feedback? As Section 32 notes, the TMS is
shorter than the IMS. Is the TMS = 4 and the IMS = 7 in most
individuals? '

In a similar fashion, suppose that free responding is controlled by
dominant chunks in . Suppose that item A has just been elicited by
chunk (ABCD). Since chunk (ABCD) is soon suppressed by nearby
chunks via recurrent inhibition, there is a tendency not to say A again
until after (ABCD) is released from inhibition. This creates an apparent
refractoriness for emitting the same item again while its controlling
chunk is suppressed by chunks that are activated by sensory feedback
owing to performance of later items.

Estes (1972) suggests a coding theory in which inhibition is used to
control the clustering effect. His theory does not, however, study the
dynamics of coding, or the real-time mechanisms whereby the inhibition
organizes itself across emergent codes. The above remarks also ‘use
inhibition, but provide a different and more complete theory of how
inhibition works. Estes’ paper also reviews various data that are related
to the above mechanisms.

Finally, the masking mechanism provides a deeper insight into pattern
completion. For example, let a spatial pattern at ¥ be coded by a
nondominant population in ®. The STM activity in #® can then drift
toward the nearest dominant population. The drift ‘‘completes’ the
pattern, or in the present case, the sequence, by activating a higher-
order code. Then the dominant population can send its template of
feedback signals back to ® where they reorganize STM at @ to code
the ‘*‘completed’’ pattern. ’

43. The Magic Number Seven and Self-Similar Coding

The coding of sequences by patterned activity across spaced dominant
chunks accomplishes several tasks at once. One is to suppress predictive
sampling by lower-order chunks that are excited by sensory feedback
during motor performance. The discussion in Sections 36 through 41
shows that this mechanism is a consequence of STSS.

STSS also implies that the duration of higher-order chunks exceeds
that of lower-order chunks. After recurrent inhibition causes spacing
within the field of dominant chunks, it creates a TMS among the spaced
dominant chunks. If a self-similar scaling of recurrent interaction
strengths holds within every subfield of chunks, then the TMS of the
spaced dominant chunks will be commensurate with that of the chunks
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(A), (B), (O), . . . . Then the chunk for (ABCD) can remain active much
longer than the chunk for (D), even if the recurrent interactions within
each subfield of spaced chunks have the same effect on STM activity
when a population in their subfield is excited. This is true because, as
the length of the subsequences that are coded by a subfield increases, so
does the time interval between successive activations of its spaced
chunks.

By STSS, each subfield of chunks in a prescribed sensory field has the
same TMS, other things being equal. Otherwise expressed, if sensory
data are recoded by a different subfield, then they have the same TMS in
the new code as they had in the old code. The existence of a commonly
shared *‘magic number seven, plus or minus two,”” for the immediate
memory span of various codes (Miller, 1956) thus supplies indirect
support for STSS as a principle of code synthesis.

44. Suppression of Uniform Patterns and Edge Detection

The principle of STSS provides one mechanism whereby erroncous
signals from lower-order chunks can be eliminated: Lower-order
chunks, and their signals, are inhibited by higher-order chunks. Section
36 suggested one reason for doing this: If a given event occurs in
different contexts, it should be able to elicit different responses. In
particular, if a lower-order chunk, such as v, were allowed to
vigorously sample every chord v;‘® that succeeded it, then eventually
5@ could encode a nearly uniform pattern of activity across its LTM
traces. Signals from 1, to ¥® would then be uninformative, or
irrelevant, since they would not discriminate any population in F from
any other. STSS helps to prevent this by restricting the circumstances
under which sampling can occur.

Often cues should be allowed to sample even if their signals are
uninformative. For example, before a chunk learns a pattern, its signals
to ¥ are uniformly distributed. If the chunk is not allowed to sample
F®  then it can never learn a pattern. The problem is to allow
uninformative cues to sample % under appropriate circumstances, and
yet to prevent their uniform, or ‘‘noisy,” signals from destroying the
patterns that are driving . Whether a given chunk controls a uniform
pattern or not in its LTM traces can be decided only after these traces
elicit signals at #®. Moreover, even if each active chunk codes a
nonuniform pattern, the total input pattern to ¥® can be uniform, and
therefore uninformative. Hence some mechanism within % must exist
to deal with the noise in its total input pattern.
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We now show how recurrent mass action networks suppress the
“‘uniform part,”” or noise, in their total input patterns, and generate
suprathreshold responses only to spatial differences, or *‘discrimina-
tions,”” in these patterns. This property implies that LTM sampling
occurs among chunks when the sampling paths carry useful information,
but not otherwise.

The simplest version of the uniform quenching property occurs in
system

xi=—Axi+(B—xi)Ij—(xi+C)k§iIk

with —C = x; = B. If C > 0, by contrast with (14), the equilibrium
response (x; = 0) to a pattern I, = 6l is

_(B+C)I( __C )
A+1 \* B+cC “n
If, for example, B = (n — 1)C, then C/(B + C) = 1/n. Now let the input
pattern be uniform. Then all 6, = 1/n, so that no matter how intense / is,
all x; = 0. If not all 6, = 1/n, then the network quenches the ‘‘uniform
part” of the pattern. More generally, whenever B =< (n — 1)C, the x’s
are suppressed even more vigorously by inhibition than when B = (n —
1)C. Consequently only values of 6 > C/(B + C) > 1/n can generate a
supraequilibrium response. Increasing C hereby contrast-enhances the
network’s response to input patterns. It has been suggested that this
contrast-enhancement property can influence the size of certain visual
illusions, such as tilt aftereffect and angle expansion (Levine and
Grossberg, 1976).

The quenching of uniform patterns is due to a competitive balance
between a narrow on-center [; that interacts with a relatively large
excitatory saturation point B, and a broad off-surround that interacts
with a relatively small inhibitory saturation point —C; such a relative
size scaling between B and C often occurs in passive membranes
(Hodgkin, 1964). This conclusion generalizes to systems

% =—Ax+(B-x) X LCy— 4+ D) Y Ey (48)

k=1 k=1

wherein inputs I; can excite populations v; near to v; via the coefficients
Cy (“‘on-center’’) and can inhibit populations v; over a broad expanse of
cells via the coefficients E; (‘‘off-surround’’). Since the equilibrium
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point of (48) is

I Z Hk(BCki - DEki)
k=1

Xy = " (49)
A+IY 0.(Cii + Ey;)

k=1

a uniform pattern (all 6, = 1/n) is quenched (all x; < 0) for any I = 0

whenever

n n
BY Cu=D Y Ey, i=12,...,n (50)
k=1 k=1

The breadth of excitatory and inhibitory interactions across the
network determines the input patterns to which a population will
respond. For example, let a vertical bar of light perturb the network.
Suppose that the breadth of on-center and off-surround interactions is
less than that of the bar. Then cells near the center of the bar will
perceive a uniform field. Also, cells far away from the bar will perceive
a uniform field. Both types of cells will be incapable of generating
suprathreshold responses. Only cells near the transition regions of light
and dark will respond. Such a network detects the edges of the bar.

The above mechanism can also be used as a matching mechanism, as
in Section 20. To see this, consider the following question: Given a
spatial pattern 6, how can a maximally mismatched pattern ? be
generated? Clearly 8 should be large where 6 is small, and conversely. If
both 6 and 8 are input patterns to the network, then their mismaiched
peaks and troughs will add to create an almost uniform net pattern,
Network activity is consequently suppressed. By contrast, if 8 is
prqportional (parallel) to 6, then the patterns add to amplify network
activity.

45. The Growth of On-Center Off-Surround Connections

How can a balance between the ratio of excitatory and inhibitory
saturation points, and between the distribution of on-center and off-
surround coefficients, be effected? If it is not, and (say) the off-surround
is too strong, then by (49) essentially all patterns will be suppressed. For
example, suppose that lateral inhibition in the LGN not only contrast-
enhances afferent sensory patterns, but also differentially amplifies LGN
activity depending on how well the sensory patterns match cortical
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feedback. How is the excitatory-inhibitory balance that is needed for
matching generated? Before considering structural substrates of this
mechanism, we note that differential shunting of on-center or off-
surround interactions can retune the network by shifting its criterion of
how uniform a pattern must be to be suppressed (cf. Ellias and
Grossberg, 1975, Section 3).

Sifmple growth rules are sufficient to formally explain some qualitative
features of this balance. These are stated to illustrate how local data at
each cell, such as the ratio BD™*, can determine intercellular connec-
tions. Two related properties are desired: (1) the quenching of uniform
patterns; (2) a narrow on-center and broad off-surround. By (50), the
quenching of uniform patterns occurs if the ratio BD™! equals all the
ratios B C,?, where C; (E,) is the total strength of excitatory (inhibitory)
connections to v, i=1,2, -+ -, n. This can be achieved if ‘‘opposites
attract.”” That is, suppose excitatory sites at v; (whose number is
proportional to B) support a process which attracts growing inhibitory
connections, and inhibitory sites at v; (whose number is proportional to
D) support a process which attracts growing excitatory connections.
Otherwise expressed, let the excitatory sites and inhibitory sites support
processes which generate attractive gradients for inhibitory and excita-
tory connections, respectively. Then all the ratios EC;~! will approach
BD™! if there exist enough intercellular connections to match the
attracting sources. The hypothesis that cell growth follows some type of
spatial gradient is a familiar one in developmental biology (cf. Gustafson
and Wolpert, 1967; Grossberg, 1978a). Moreover, because B>D, the
gradient attracting inhibitory connections will, other things being equal,
be more uniform across space than the gradient attracting excitatory
connections. A narrow on-center and broad off-surround will hereby
tend to be produced. If this mechanism exists, then a change in BD™}
during the growth period, whether natural or experimentally controlled,

should alter the relative spread of excitatory and inhibitory connections.

46. Goal Gradient and Plans

Using STSS and the quenching of uniform patterns, we can now study
how associations develop among the chunks in a hierarchically coded
field of populations. The need for such associations is clear from a
variety of examples. In fact, we have already been using a simple
version of this mechanism. In Section 21, the reciprocal trainable
pathways between two fields F* and F® can be reinterpreted as a
special case of reciprocal trainable pathways between two subfields of
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chunks in a recurrent network. The code-learning in ¥ — % LTM
traces is distinguished from template-learning in #® — ¥ LTM traces
only by the fact that tuning in F® might contrast-enhance its patterns
more than tuning in $ does, but even this distinction need not hold in
general.

Sections 1,A and 6,C provide other examples of this concept. For
example, how does the internal representation of a goal object, such as
an apple, trigger a plan to get an apple from the refrigerator? Somehow
the code for the apple, which is not as *‘abstract’ as the code for the
plan, can activate the code for the plan based on prior experience. This
occurs, we assume, because the apple representation can sample the
representation of the plan during learning, and can activate this repre-
sentation during preformance.

Several remarks are important here. First, conditioning from represen-
tations of a goal to a plan should be possible given essentially any goal
and any realizable plan. Thus, the possible sampling pathways should be
distributed broadly throughout the network. This would create a devas-
tating noise problem were it not for STSS and the quenching of uniform
patterns. The quenching of uniform patterns eliminates all effects of
sampling across irrelevant cues, and STSS amplifies the codes that are
most informative in a given context of events. Second, if the goal
representation is a lower-order chunk, its signals among other lower-
order chunks can be suppressed by the quenching of uniform patterns,
but its sampling of higher-order representations, such as plans, will not
be quenched because of the built-in distinctiveness, or informativeness,
of the activity patterns across higher-order chunks. Third, even if the
plan is coded by a spatial pattern across higher-order populations, rather
than by undifferentiated activity within a population, it can be accurately
sampled by the goal representation. Fourth, when the goal occurs, it
generates incentive-motivation that can amplify sampling by its repre-
sentation of the plan (cf. Grossberg, 1975). At the time this occurs, the
goal is the last event to have occurred. By Section 27, even if the goal is
preceded by many prior events, it still has enough activity to elicit
sampling when this activity is supplemented by incentive motivation.
Fifth, because the incentive motivation is nonspecific, all active lower-
order chunks can sample .the plan, but with a strength that depends on
their STM activities. For example, suppose that the STM pattern is
monotone increasing across the most recent event representations,
owing to the occurrence of many prior events. Then a classical goal
gradient will be learned such that the most recent items will elicit the
plan with the greatest efficacy. Sixth, this mechanism shows how partial
avalanche structures can be embedded in the network, as in Fig. 40. The
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partial avalanches blend together, in a self-consistent fashion, descend-
ing order information from commands with ritualistic sequence informa-
tion due to reliable, and therefore unquenched, occurrence of the same
sequence through time. These partial avalanches are a type of primitive
syntactic structure in the network. Figure 40 illustrates the importance
of adaptation, or competition, of STM activity throughout the hierarchy
of chunks. This competition prevents any population from receiving too
large an input from any one source, and thereby preserves decision rules
for signal generation that require convergence of specific and nonspe-
cific inputs (Section 7). Finally, the hierarchy tunes itself. For example,
suppose that chunks (A), (B), (C), . . . are activated during a particular
stage of learning. Then plans and partial avalanches can be gradually
built on these chunks during this learning stage. If, however, chunks
(ABC), (DEF), . . . are activated during a later learning stage, then the
earlier plans and partial avalanches will be masked by STSS. This
observation can be expanded to explain various properties of transfer
from serial learning to paired-associate learning, and vice versa. In
effect, the rehearsal strategy helps to choose the base code on which
higher codes and feedback relations will develop. :

The above properties all depend on a rapid normalization, or adapta-
tion, of STM activity throughout the hierarchy of chunks, followed by
LTM sampling of informative STM patterns throughout the hierarchy.
Competition within the STM hierarchy has been used to explain differ-
ences between simultaneous versus successive contrast, respectively, in
the visual illusions of angle expansion and tilt aftereffect (Levine and
Grossberg, 1976). These qualitative properties must eventually be sup-
plemented by a mathematical classification of how parametric differ-
ences in the intrafield and interfield interactions of particular classes of
feature detectors generate different STM and LTM patterns. This
analysis must include systems of the form

X =—Ax + (B; - Cix;) [kE SO )Dyiz; + Il]
=1
- B+ F) | 3 805G + 1 6D
k=1
and (2), which generalize (1) and (2).

47. STM Order Reversal: Item Learning versus Order Learning

Having discussed aspects of the self-organization of codes, we must
now focus more closely on what is coded. This problem can be
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FiG. 40. Partial avalanches combine self-consistent order information from descending
(contextual) commands with associational chains.

motivated by using the discussion in Section 31. Suppose that items are
rehearsed one at a time as they occur. Let the F® populations
o, o2, ..., v, . . . be sequentially activated by these items, and let
rehearsal delete suprathreshold STM activity at %@ before the next item
is presented. As this occurs, the populations o, v, ..., v?, ... in
F® are also sequentially activated (cf. Section 35). Although rehearsal
deletes STM at #®, it does not delete STM at . If k < TMS, then
order information is accurately coded at #® after rehearsal terminates.
A nonspecific rehearsal wave to # can then trigger a readout from F©
of the items with their proper relative activities. This example illustrates
how each item can be rehearsed during list presentation (repeat the last
item), followed by a repetition of the whole list in its correct order
(repeat the first item), even if no population codes order information in
its LTM traces. This capability is important. Otherwise a telephone
number could not be repeated unless it had already been encoded in
LTM. This example again suggests the usefulness of studying how

performance variables alter the arousal level and thus the form (decreas-

ing, increasing, or unimodal) of the transient STM pattern.

Contrast the above experiment with one in which the items are
presented in the same order, but they are rehearsed two at a time. Then
a population v;¥, in F® will gradually code the first two items, and will
learn order information as these items are rehearsed. As vf?) is coded, it
gradually masks of” and v{® if STSS holds. Eventually the chunks
v, v, - . . will control readout from F® of order information after
rehearsal takes place. This argument shows how a combination of prior
coding and the present rehearsal strategy determine which chunks will
be active at F°; for example, how the network automatically groups
items in a given rehearsal unit into familiar chunks. Thus, if the familiar
letters Q and L are rehearsed together, then each letter can excite a
previously coded #* chunk even if the present rehearsal strategy starts
to code a higher-order chunk. The dominant codes at a given time learn
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order information, but what codes are dominant can change as item
learning continues.

The following sections consider the spatial analog of this temporal
chunking process—namely, the self-organization of maps.

48. Circular Reaction and Map Formation

This section explicates the heuristic themes in Sections 1,C and 1,D.
To fix ideas, imagine that an infant’s hand-arm system is endogenously
active and that its eye-head system tends to follow the motions of its
hands. How does this unconditional process generate learned maps that
can guide the hand-arm system to a terminal position, never before
experienced, that is focused by the infant’s eye-head system? Similarly,
after an infant unconditionally babbles simple sounds, how does it
imitate sounds that are more complicated than those it babbled? A
complete answer to these questions would require a thorough analysis of
the neural controls of motor behavior. Herein we note a minimal
synthesis of resonance, sampling, and nonspecific’ arousal mechanisms
acting on proprioceptive and terminal motor data that suffices to learn
and perform sensory-motor maps and to maintain descending postural
commands. Then we note that this model is really a variation of the
adaptive coding model.

The following construction holds independently of what data are
coded by a particular motor map. It focuses on the minimal operations
that are needed to learn maps effectively. For example, we shall ignore
the fact that different combinations of eye and head position can focus
the eyes on the same physical position relative to the body. The
construction will, however, be motivated by a familiar example: pursuit
of the endogenously active hand by unconditional eye motions.

Let the image of the hand move across the retina. Suppose that its
position on the retina (after compensatory computations of head posi-
tion) determines a terminal eye position that will move the eye until the
hand is viewed by the fovea. Clearly, no learned correlation between
eye and hand position should be initiated until the eye foveally fixates
the hand. Otherwise, an arbitrary eye position could continuously be
correlated with all possible hand positions. How does the eye-head
system know that it is fixating something? This happens when its
terminal motor coordinates match its proprioceptive motor coordinates.
The terminal coordinates code where the system wants to go; the
proprioceptive coordinates code where the system is. When the eye
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actiyf:ly fixates an object, these two sets of coordinates code the same
position,

The following mechanisms explicate the idea that the eye is fixating
something. First, the cells that code terminal coordinates send signals to
the eye muscles that hold the eyes in position. As in Section 16, we
assume that specific inputs to these cells determine their relative
?cuvxties, and that a nonspecific arousal source shunts these activities
into the suprathreshold range. In particular, let these cells be joined by
on-center off-surround interactions so that the shunt can work. Second,
the system must somehow know that the proprioceptive and terminal
coordinates agree. Somehow data from the two coordinate sets must be
brought together, and a characteristic dynamic state must be generated
or.lly when the two sets match. In the present theory, such a match
triggers a resonant state. In all, sampling signals are emitted only if a
resonant state exists between proprioceptive and. terminal coordinates,
and this resonant state is maintained as long as the nonspecific shunt is
kept on. '

The same conditions exist when a previously learned map is per-
formed. Suppose that an eye fixates on an object that is to be touched.
The (?ye—hand terminal coordinates then match their proprioceptive
coordinates. If arousal is turned on, then the eye~hand system can send
learned signals to the hand-arm system. These signals code the terminal
?g:ld position that was correlated with the eye position during learning
rials.

Another constraint is needed before the minimal mechanism can be
desg:lfibed. Often a motor system is directed to fixate on a different
position from its present one. Then its terminal coordinates (where it
wants to go) do not match its proprioceptive coordinates (where it is).
Indeed, this is the typical situation when the hand is directed to touch an
9bject. Obviously the motor system can do this, and it does it without
interference from its present position. Thus, during performance trials,
the terminal coordinates can release motor signals even if they do not
match the proprioceptive coordinates. Arousal suffices to releasc signals
from the terminal coordinates in this case.

In summary, sampling signals can be released only when terminal and
proppoceptive coordinates match and are sustained by arousal; yet if
terminal coordinates are activated by signals from another system, they
can generate performancé signals when they are activated by arousal,
even 1f they do not match their proprioceptive coordinates. These
constraints are summarized in Fig. 41. Figure 41 depicts two systems, (I)
and (II), of proprioceptive and terminal motor coordinates; for examp]e;
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Fic. 41. Sampling signals are elicited only if proprioceptive and terminal maps agree.
Motor signals are elicited if a subliminal terminal map is aroused.

let (1) be an idealization of the eye-head system, and let (1) idealize the
hand-arm system. Consider (I) for definiteness. Proprioceptive coordi-
nates are coded by the populations in field (Ia), and thereupon send
signals to field (Ib). Terminal coordinates are coded in field (Ic), and can
send signals in two directions if they are aroused. Signals can descend as
motor commands to appropriate muscles. Signals can also go to (Ib). At
(Ib), the proprioceptive and terminal maps are compared, as in Section
44, by an on-center off-surround network. If the maps match, then (Ib)
amplifies their commonly shared pattern. If the maps do not match, then
activity in (Ib) is suppressed. When the maps match, two things happen.
Feedback signals go to (Ic), whereupon a resonance is established
between (Ib) and (Ic). This resonance sustains sampling signals from (Ib)
to the terminal coordinates at (IIc). In all, when proprioceptive coordi-
nates at (Ia) match suprathreshold terminal coordinates at (Ic), then
sampling signals are emitted from (Ib).

What happens to these sampling signals? Suppose that (Ilc) receives
signals from (Ib), which are thereupon amplified by arousal. Then (IIc)
can emit motor commands to its muscles. Field (Ilc) alse sends signals
to (IIb), but if the hand is not yet at the desired terminal position, the
mismatch between proprioceptive and terminal signals at (1Ib) quenches



608 CHAPTER 13

any possible fee'dback signals from (IIb) to (Iic). Thus the terminal map
at (Ilc) can emit motor commands to its muscles without interference
due to proprioceptive feedback.

49. Quenching of Irrelevant Cues

An important property is now evident. Suppose that irrelevant signals
r.each (IIc); that is, suppose that several populations in (Ib) send uniform
signal patterns to (IIc). The on-center off-surround network at (IIc) will
quench these patterns, as in Section 44. Thus, any number of irrelevent
cues can sample (IIc) and learn a map imposed by a relevant cue without
distorting the performance of this map.

The property of irrelevant cue quenching is crucial wherever many
cues are capable of sampling learned data. Without it, the omnipresent
existence of such cues would rapidly erode the LTM pattern. This
property .also shows how relevant cues can be included in a plan,
wl}ereas irrelevant cues, such as slowing down, speeding up, taking a
drink, etc., need not control behavior if they vary across trials.’

50. Feedforward Reset of Sequential Terminal Maps

What happens if a sequence of motor commands iteratively perturbs
(IIc)? How is the terminal map at (IIc) reset by the next command?
Moreover, if no new commands occur, how can the terminal map at (Ilc)
be. stored while its command is being executed? Sections 9 and 29
pom.ted out that a command is deleted after it is released to prevent
coqtmual iteration of the same command. Somehow the command data,
which are now explicated as a terminal map, are then stored while
performance proceeds.

Both'the reset and STM storage properties follow from the uniform
quenching property if the network at (IIc) is made recurrent (see Fig.
42). 'Suppose that no signals are being emitted by (IIb), because the
terminal map at (IIc) has not yet been executed. Let a given terminal
map be received at (Ilci) via external signals. This map is then
rgproduced at (Ilcii) via the (Ilci) — (IIcii) pathways. If the external
signals ar.e shut off, then the terminal map can resonate at (IIc) as long
as shunting arousal is maintained. Suppose, however, that a new

terminal map is imposed at (Ilci) by external signals. Feedback signals.

from (Ilcii) to (Ilci) still carry the old terminal map. If the two maps do
not match, then activity across (Ilc) will be momentarily quenched. All
traces of the old terminal map signals are hereby eliminated, and the
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FiG. 42. Delayed feedback from (Ilcii) to (Ilci) briefly inhibits STM at (IIci) if the new
terminal map does not match the old terminal map. The new terminal map then resonates
in STM, and reset is completed.

new terminal map is instated. In short, delayed interneuronal feedback
within a network that possesses the uniform quenching property implies
the existence of an STM reset mechanism. Several variations on the
theme of Fig. 42 exist. For example, in vivo do inhibitory interneurons
also descend from (Ilci) to (Ilcii)? All these variations work better if the
time needed to self-inhibit a descending command exceeds the time
needed to reset a terminal map.

51. Posture, Isometrics, Saccades, and Feedforward Motor Control

The above construction suggests many insights and questions about
motor coatrol.

It suggests a mechanism of posture. There exist two main types of
systems that must be distingnished by experiment in particular cases.
The first type was described in Section 50. Stage (IIc) can maintain a
terminal map using recurrent signals even if the descending motor
command is silent. In this system, posture is the terminal position of a
persistently aroused terminal map.

The second type cannot store a terminal map at stage (Ilc). It requires
a persistent source of terminal map signals during map performance. Is
eye-head to hand-arm control of this type? For example, let a limb be
controlled by system (II). Suppose that the limb moves to a desired
position under the direction of sustained eye fixation at that position.
How can this position be maintained after the source of its terminal
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signals is shut off? When the limb reaches the desired position, a
resonance is established between (IIb) and (Ilc). After resonance sets in,
shut off the source of terminal signals to (IIc)—that is, the motor
command. Field (IIb) continues to supply the correct terminal coordi-
nates to (Ilc), and arousal at (IIc) keeps the map suprathreshold. In
other words, proprioceptive feedback plus arousal can sustain the
resonance, and thus the signals to muscles that maintain the posture.
Whgf\ arousal is shut off, the resonating loop is broken, and the postural
position is terminated.

The minimal mechanism also has isometric properties when a limb is
passively dragged into a sequence of terminal positions. If arousal is off,
the proprioceptive data flows from (IIa) to (IIb) to (IIc). There is no
feedback to (IIb). When arousal is turned on, however, then the
resonance between (IIb) and (IIc) resists further change due to hyster-
esis. Simultaneously, signals from (IIc) to the muscles tend to hold the
present terminal position. Thus the size of the arousal signal determines
the amount of isometric tension in this system.

Some light is also shed on the controversy about whether the motor
comn}ands of terminal position are feedforward, or are determined by
proprioceptive feedback (Bizzi et al., 1975). In fact, the answer even in
the minimal network is subtle. After a signal is received at (Ic) from
(-Ib), then the motor command leaves (Ilc) for the muscles. Propriocep-
tive feedback at (I1a) is blocked at (IIb) to prevent it from distorting the
termgnal map at (IIc). This system is therefore capable of reaching its
terminal position by using feedforward control. However, as the limb
approaches the desired terminal position, resonance is established
betwe‘en proprioceptive feedback and the terminal map. Then propri-
oceptive cues support the terminal map even though they are not needed
to reach .the terminal position. The subtlety arises because the existence
of proprioceptive input at the terminal map cells does not imply the
necessity of this input for computing terminal position. Rather it sets the
stage for map learning and postural maintenance. )

Tl}e systems also suggest interesting questions about saccadic versus
continous map control. While a map is being learned, the arm and hand
move together or are at rest. Only in this way can resonances be
establis'hed between proprioceptive and terminal coordinates. Yét, while
a map is beipg performed, its proprioceptive map almost never agrees
.Wlth its terminal map. Indeed, when you fixate an object that your hand
is already on, there is no.need to turn on a map to move your hand onto
the object. The situation during learning can be described as a continu-
ous motion wherein proprioceptive and terminal coordinates are always
very close. The situation during performance can be described as a
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saccadic motion wherein proprioceptive coordinates do not influence
the motor act. This distinction is often made in the literature on motor
control (Robinson, 1964; Yarbus, 1967). In the minimal network, the
continuous and saccadic systems share some cells in common—for
example, the (Ic) cells that code terminal maps. The present construc-
tion therefore suggests some interesting questions about the interpreta-
tion of oculomotor data. ’

The cells in (Ib) will fire only when the system moves in its continuous
mode—that is, when proprioceptive and terminal coordinates are close
to one another. Are these among the cells that are usually included in
the continuous system? If they are, then cells such as those in (Ic)
should exist that are active in both the continuous and the saccadic
modes. A likely place to search for such cells in appropriate species is
the superior colliculus (Goldberg and Wurtz, 1972a,b; Stryker and
Schiller, 1975; Wurtz and Goldberg, 1972a,b), where maps of visual
sensory data into motor eye-movement data have been experimentally
described.

In the system as it stands, it is possible to learn spurious correlations
between eye and hand positions. In principle, the eye can fixate one
point and the hand can be held at another point while map learning takes
place. However, since an infant’s eye is drawn strongly toward moving
objects (Piaget, 1963), it is very unlikely that this will ever happen under
normal developmental conditions. Also, the tendency is not eliminated
by building up maps using cells that are activated by dynamic limb
motions rather than by spatial patterns. For example, the eye is often
fixated on an object that it wants to touch; the sampling cells thus
cannot be activated only by eye motion. Also the arm is often called
upon to move to a prescribed terminal point from an arbitrary initial
point; thus, the terminal map cannot be determined by directionally
sensitive cells. Although the above system can in principle be fooled, it
can also delete correlations that lead to erroneous, and therefore
unexpected, consequences using attentional mechanisms, as in Section
20 and in Grossberg (1975).

The system can also be fooled, as it stands, because (Ib) can sample a
suprathreshold pattern at (IIc) even if system (II) has not yet reached its
terminal position. This property creates no difficulty if sampling usually
occurs in the continuous mode.

The above shortcomings suggest possible limitations on the accuracy
of map learning in infants, and emphasize the importance of an infant’s
sensitivity to moving objects. The last shortcoming can easily be
formally overcome. Insert an interneuron in the path from (1Ib) to (Ilc),
and let (Ib) sample the interneuron. Since the interneuron is inactive
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unless resonance holds between (I11b) and (IIc), map learning between (I)
anq (.II) can then occur only if both systems are resonating. Such
varations are not very useful in the absence of data that can discrimi-
nate between them.

There is a variation that is useful to consider, however. In principle,
the proprioceptive and terminal coordinates of a given position need not
generate the same pattern of neural activity. Where this occlirs, stage
(Ib) can be used to learn the match between proprioceptive and terminal
maps that code the same position. In fact, stages (Ia), (Ib), and (Ic) then
emerge as an adaptive coding scheme for bridging the gap between the
proprioceptive and terminal coordinates within a. given motor system.
By way of illustration, suppose that the (Ia) — (Ib) pathways contain
LTM traces as in Section 17. Then (Ib) can learn a code for the

proprioceptive coordinates at (Ia). Feedback pathways from (Ib) to (Ia)

would then exist to stabilize this code using learned templates. The
codefi proprioceptive map at (Ib) could then learn the corresponding
terminal map at (Ic) using LTM traces in the (Ib) — (Ic) pathways, while
the terminal map at (Ic) can leamn the proprioceptive code at (Ib) using
LTM traces in the (Ic) — (Ib) pathways.

Gchn any such adaptive rules within the systems (I) and (II), map
leamgng between these systems then becomes a continuation of map
learning within each system separately. The between-system stage
cannot .begin until resonances can be generated within each system. As
in S.ccnor} 24, each stage .in this formal developmental s¢quence obeys
stml.lar principles, even though different stages code different behaviors.

Finally, we note that, if the networks learn only terminal positions,
thel.'l auxiliary systems must exist that enable limbs to reach these
positions. The a~y system is a classical example of such an auxiliary
system (Granit, 1966; Grillner, 1969; Thompson, 1967, Chapter 12) but it
goes beyond the scope of this paper.

52. Feedforward versus Feedback Control of Sequential Map Performance

What is remembered when we learn a series of motor acts, such as a
dance? Below we suggest that serially ordered terminal maps generate
and are sampled by adaptive sensory-motor codes (cf. Sections 11, 50,
aqd 51) under the guidance of internal and external feedback. A model of
this process will now be described using mechanisms that have already
been introduced. 4

First we suppose that a serial STM buffer for motor activity exists. In
Fig. 36, fields ', #®, and ¥® model some stages of a sensory, in
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particular an auditory, STM buffer. Henceforth these fields are denoted
by Fs'?, Fs®, and Fs®. Now expand Fig. 36 as follows. Denote F*in
Fig. 36 by ¥4, since it is functionally analogous to %P, which also
codes data from a given time frame. Let %y denote the field of
terminal motor maps, and denote F® by F,®, since it codes order
information among these maps. Trainable pathways from Fs® to Fy®
are introduced, as in Section 35, to enable sensory order information to
activate corresponding motor order information. These sensory-motor
signals will automatically be tuned at F,® by the properties of self-
similarity and uniform quenching within the motor STM buffer (see Fig.
43). Indeed, all coding operations in the sensory buffer are assumed to
have analogs in the motor buffer.

How are learned data read out of the motor buffer? To see this,
suppose that a monotone decreasing pattern exists across the popula-
tions v,®, 1,?, 1,®, . .. of F®. When %,® is aroused by a nonspe-
cific rehearsal wave, v,® fires until its activity self-destructs via inhibi-
tory feedback. The spatial pattern of v,”’s signals generates a terminal
map at %, V. As in Section 50, this pattern becomes suprathreshold and
is stored in STM if %,¥ receives motor arousal. The terminal map
thereupon elicits descending signals to the muscles that will execute it.

The above mechanism highlights a difficulty of traditional probabilistic
models of behavior. How would a probability theorist interpret the
control of motor commands? Suppose that STM activity at v, is
interpreted as the probability of executing a terminal map. After v, @

e N ¥

I

CODINGI lEXPECTATION T l

| v

SENSOR;
FEEDBACK

Fig. 43. Code learning and template leamning in and between sensory and motor
modalities.
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selt}mhibits, where does the probability go? The terminal map is still
active, so the probabilistic modeler might say that v, stays active. This
is, hovyever, false and yields incorrect intuitions about the process by
obs'Cl'mng the distinction between coding of order and coding of terminal
position.

How (does field F,® know when the v, act is nearing completion?
Otherwise expressed, how does Fu® know when to turn .on the next
motor map? There are two answers in the model.

T:l1e first answer describe_s a feedforward control that is analogous to
rapid arpeggio playing on a piano (cf. Lashley, 1951). If rehearsal
aml.xsal is !cept on at ¥, ®, then each population v,®, 5?0, s
excited In 1ts proper order as the previous population self-inhibit;. E:;ch
successwg spatial pattern of signals descends to F1'?Y, where it controls
motor action until it is reset by the next pattern. Feedback influences the
system.only indirectly via sensory feedback that is chunked before
generating signals to %,,,

The .second answer describes a feedback control that is analogous to
executing slow dance motions. Let %, be briefly aroused. Then »,®
fires and self:inhibits. Motor arousal is maintained at %,°, which storles
the first terminal map and activates its muscles accordingly,. As the act is
executed, the proprioceptive coordinates approach the terminal coordi-
nates. As the match between proprioceptive and terminal coordinates
'mproves, a nonspecific rehearsal wave perturbs %,®. This rehearsal
wave was mentioned in Section 23, where the existence of a competition
between two.antagonistic motor arousal systems was postulated. The
first system is allowed to fire when a mismatch of test pattern and
expected pattern occurs. The second system is triggered by output from
the match befween test pattern and expected pattern. The first arousal
system energizes orientation toward an unexpected event. The second
arousal system energizes goal-directed consummation of an expected
even_t. In the present motor example, the expected pattern is the
terminal map, and the test pattern is the proprioceptive map.

Thus,.as the proprioceptive map approaches the terminal map, a
nonspecific rehearsal wave is released and reaches Fy®. Population 1; @
the.reupop fires and sends its spatial paitern of terminal signals to %, o
as it self-inhibits. When this terminal map reaches Fu®, it resets F ‘zyas
in Section 50. The proprioceptive map of the first command doeA; not
match the terminal map of the second command. Hence the rehearsal
wave terminates so that no further output emerges from %,,?. The
second terminal map can therefore control performance until its goal is
reached. Then the cycle of matching; resonance and rehearsal wave;

NP .
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sampling and self-inhibition; and reset and mismatch begins again. After
there are no further STM data in %, '®, the posture of the last gesture is
held until motor arousal is withdrawn from %, ®,

- The above mechanism can now ‘be joined with previous results (for
example, Section 35) concerning the reorganization of the future field
due to sensory feedback. All the results go through because they hold
for arbitrary spatial patterns, irrespective of what these patterns code.

53. Sequential Switching between Sensory and Motor Maps

The same general mechanisms seem to hold in many examples of goal-
oriented behavior. Another example is briefly sketched below to illus-
trate how switching between sensory and motor map systems can occur
when a plan is executed.

Suppose that the command ‘“‘Touch the yellow ball” is given. 1
suggest that the verbal command is encoded and does (at least) two
things. The verbally decoded message elicits signals that are gated by
LTM traces. The gated signals subliminally activate sensory feature
detectors (for example, in Fs®) which code a yellow, ball-like object
because of prior learning. Since there is no match with this field, the
message can also trigger a series of orienting reactions by activating the
eye-head motor buffer. This series is perhaps subject to the spacing
effect of Section 42, which tends to inhibit perseverative search in the
same position. The search continues until the yellow ball is seen. The
ball is then visually decoded and (approximately) matches the subliminal
sensory pattern. The match induces a resonance that inhibits orienting
motor arousal and, in a complementary fashion, triggers goal-oriented
motor arousal.

What motor system is hereby aroused? When orienting arousal is
inhibited, the eye-head system is fixated on the yellow ball. It can
thereby generate a terminal map in the hand-arm systems. One of these
is activated by motor arousal. The chosen hand then moves toward the
ball until it touches it. In all, the plan has been executed by a sensory
match, a motor match, and a switchover from orienting motor arousal to
goal-oriented motor arousal.

54. Map Reversal by Antagonistic Rebound

Many details have been overlooked in the above description in order
to emphasize its essential simplicity. Also, many new questions are
raised. For example, after the hand surrounds the ball, how does it
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retrieve th.e pall? There exists an elementary answer that is probably
{)nosi\t;tue in infants, but it also highlights how different adult control can

e. er thg hand surrounds the ball, suppose that an antagonistic
rebou'nd is triggered throughout the arm-hand system. For example, if
touching the ball e!icits nonspecific arousal to the arm-hand termi;lal
g\:m;:, t;her} thc_t agomst—afltagonistic cells throughout the map will trans-
o aﬁ::::: g:;;:t;;ilms’ a;nd con_versely, in a graded fashion across
the alected muscle & ps. In particular, the hand will close and the
ce;Il‘hsym;;lr; ponllqt l115 that retrieV'fll need_not, in principle, recode the act
dimensional,i::; ic wo.uld require a high-dimensional. control. A one-

rement in nonspecific arousal can be used instead.

55. Imprinting, Imitation, and Sensory-Motor Algebra

fofz)hns?leir thfe babbling be.havior of an infant (Fry, 1966) as motivation
e following gonstructxon. Suppose that terminal maps at F‘" are
endogqnously activated, analogous to the babbling of sounds. The
execution of these maps elicits sensory feedback, such as sounds 'which
feed.back to Fg¥ :.md -are coded at F® on successive trial,s. The
;ng)ma.l motor map is adaptively coded at F,®, and the motor code at
w? simultaneously learns the terminal motor map at %, as a
feedback template. As this happens, %, ® is sampled by it: senso
feedbac!( code at %;®. If more than one motor code is active at ¥ "’—rz
say dqung predictive performance—then Fs® samples its motor ‘éom-
:::::r;d 1;1 31 context of temporally contiguous motor commands. Perform-
comp;)re j ;esa;l;: command can thus be different in different contexts;
comp Withinp p cz:)mance of (az)glven speech sound in different words. As
codes within 1: ;md. Fu® develop, repeated sequences of motor
cor n be a aptively coded as sequential motor chunks at ¥,
as sequential sensory feedback chunks at %;®. Thereupon LTM
traces from F;® to %,® can encode associations from th
motor sequential chunks. ¢ sensory fo
th Pin(;k_)genously active arousal sources supply the motivational support
al nves.these LTM processes. The combined effect of all these LTM
g:otcesses is to complete,. or close, the sensory-motor feedback loops
at are endogenously activated during the babbling phase. Hereby the
network can imitate a sound that is supplied by an external source, if
that sound lies on the generalization gradient of some sound that “’/as
endogenously babbled. It does this by activating the sequence of fields

a
p,rs —> gsm__) g,;M(z)_> 9—”(1)
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'if the sound is coded by a spatial pattern, or the sequence of fields

F W F P F P F V> Fy? - Fu®

if the sound is coded by a sequence of spatial patterns.

The endogenously active arousal sources imprint developing maps by
using the same mechanisms that are driven by reactively activated
motivational sources in the “adult’” network. Imprinting in the young
network and learning in the adult network are similar processes using
different motivational triggers.

How does the network learn to imitate more complex sounds than
those that are endogenously produced? This process follows automati-
cally from properties of the adaptive coding model. A new sensory
pattern at Fs is filtered, or decomposed, by Fs — Fs? signals into a
set of simpler patterns whose sensory-motor loops have been endogen-
ously closed. Each simpler sensory pattern activates its corresponding
motor pattern at %, . The total pattern that is hereby synthesized at
%, can produce a sound that is close to the new sensory pattern.

More precisely, suppose that m motor patterns O; have been endogen-
ously activated at F,® and thereby elicit the sensory feedback patterns
Lat %@, i=12...,m Let I, be adaptively coded by population
v in F®, and let O, be adaptively coded by population v} in
F,®. Also let each population learn its template of feedback signals,
and its %@ — Fy® associations. Given this learned substrate, how
does the network learn to imitate a sensory pattern / which has never
been endogenously elicited at Fy™ Tt is shown below how input I at
FW is filtered by the v and then resynthesized by the v} to produce
at %, a motor pattern O which elicits the sound /. In summary, during
imprinting, endogenous motor commands at F,® elicit their sensory
commands at Fs® as external feedback; during imitation, sensory
commands at Fs® elicit their motor commands at Fy® via network
filtering.

The filtering mechanism uses elementary vector space properties
(Thomas, 1968). As adaptive coding proceeds in response to 2 sensory
pattern I;, the classifying vector z; becomes proportional to I, and the
signal from %5 to v, namely S; = I;°z;, becomes proportional to |I, 12
Suppose thatthe set of I,,i=1,2,...,n, spans the vector space of
input patterns I at F¢V; then any I can be written a linear combination
[ =3, ol of the I's given suitable coefficients oy . If, moreover, the
I, are mutually orthogonal (thatis, Iy, =0, i # i), then the signal to v
in response to I, namely S; =1Iz,is proportional to a;. Thus each v§” is
excited by a signal that is proportional to how close I; is to I. If the
signals from Fs® to %,® are linear, then the signal to vjf is also
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proportional to «;. Since v};,’ encodes pattern O; in its LTM traces, v
generates a pattern at %,V that is proportional to ;0,. The total pat,terrlx
at %, that is generated by %,,? is therefore close to O = 2, 0.0,
Does O elicit a sound close to I? This is true if the mapping from
rr:lrztsc;rrv ;:;tt::;ns at fM“’ to sensory feedback patterns (approximately)
e weights ;. This i
R perimentally. ghts a;. This important property should be tested
Several. aspects of this mechanism deserve comment. Most remarka-
:llr};l,p ltixeciegfn.ala;aw Eé:" 1 Byzy; in (1), which was originally derived from
sic ; . . .
bronecty, conditioning postulates, also 1mphes a map formation
The crux of the argument is that, no matter what motor pattern is
endogenpusly active at %, and no matter what its sensory feedback
pattern is at F5'V, the sensory feedback pattern gets associated via F;?
and F,® with the motor pattern. In vector space terms, an arbitrary :et
of vectors in the vector space at %, can be associated with an
arbitrary set of vectors in the vector space at F;'". This property lets
each network adapt to individual differences in the structure of its
sensory gnd motor modalities. Given these associations, imitation is
achle\:;d if t'he network can map the weights a; as signal sizes from %@
tc:. f;, . g‘hls is relatively easy to do, since it reduces a global mappisng
gg«; ale;rrlan«:g‘;::ir; r?vo multidimensional vector spaces to a local rule for
What kinds of coding difficulties can occur? First, the patterns /; need
not span the space of input patterns. Inputs I, which cannot be
repfesented as a linear combination 3., a,I,, will then be filtered. or
projected, bY Fs — Fs? signals as the closest pattern /* that can’ be
represented in this way. Second, if the patterns I; are not mutually
orthogonal, then each signal S; = Iz; will include interference terms of
the fon{x I;-1;. These terms will distort the relative activities of the %.®
populatlops. How can these and other distortions be corrected? Tbi]e
next section suggests an answer. .

56. Self-Tuning and Multidimensional Inference in a Parallel Processor

The size of the QT in F;® and %,® will determine which of the
populapons v§ and v;7 will be supraliminally excited. In order to map
the. weights a; accurately, the QT must be small. This can occur in two
main ways: structurally or dynamically. Either lateral inhibition is weak
owing tq a sparcity of inhibitory interneurons during the filtering stagc:
or shunting arousal is large. The latter mechanism is a special case of the

[rxw
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self-tuning process in Section 20. It embodies a search procedure, or
attentional mechanism, whereby the correct level of map tuning is
stabilized. To illustrate the main -idea, let input I = 2., oy l, be pre-
sented to %V, and suppose that @, > a; > *** > a,,. If arousal starts
out low, then only »¥® might initially be stored in STM. Consequently
v{? releases a template to %W that is proportional to /; . The mismatch
between /, and I increases arousal at F5®. The activity of v’ starts to
decrease owing to antagonistic rebound, and v{? starts to become active.
Then v and v} both release templates to F¢W, and this hybrid
template is approximately proportional to «,/; + eyl , which matches I
better. Thus, if arousal increases again, the increment is smaller, and a
hybrid template close to oI} + apl, + ayl; is elicited. A few cycles of
this reverberation can quickly retune %3 until the STM pattern across
F¢® generates a feedback template to % that almost matches I. The
resonant STM pattern at F3® then automatically generates a motor
pattern at %, ® that approximately equals O. With O active at
while 7 is active at s, coding and associative learning can gradually
close the I — O —> 1loop as codes for I and O are synthesized.

Many interesting developmental questions are posed by the concept of
a self-tuning filtered map. For example, what keeps the reset mechanism
from totally inhibiting v§? before v§? is excited? Is this due to the fact
that the partial match of I, to I creates a small arousal increment, and of
oyl + aol, to I an even smaller arousal increment, etc.? Or is v quickly
excited by arousal because of its prior subliminal excitation? Or is the
rebound mechanism weak at this developmental stage?

The self-tuning process describes a type of multidimensional inference
in a real-time parallel processor (Anderson, 1958). The successive
switching-in, or reset, of channels v§? is analogous to principal compo-
nent analysis, or discriminant analysis, of a space~time pattern (Donchin
and Herning, 1975). It is of particular interest that multidimensional
techniques have successfully been used to analyze the P300, which is
interpreted herein as an index of the amount of reset.

57. No Sensory Feedback Implies No Map Formation

Hein and Held (1967) and Held and Bauer (1967) have shown that,
when young kittens and monkeys reach for objects without being able to
see their hands, then no positional map develops. By contrast, if the eye
can see where the hand goes, then a map does develop. This occurs in

the model for a basic reason.
Let %, be the field of terminal maps for the hand-arm system, and
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let F5¥ be stage (Ib) of the eye~head system (Section 48). If no sensory
fet?dback reaches Fs'V, then there is no way to build the associative
b.ndges to Fy® across which the coefficients a; can be mapped by
signals. \!Vfthout these associative bridges, when the monkey looks at a
new position, the position is not filtered into combinations of old

positions that have the correct relative si i i
1 ignal sizes. Hence n
map exists. 0 spatial

58. Does the Psychophysical Power Law Influence Imitation Errors?

. Section 17 describe§ 'the simplest case of the adaptive coding model
or purposes of exposition. Where a power law transformation (Mount-
;?)s:;le, .1937; Stevenﬁ, 1961) controls the filtering signals, the size of the
er influences whether spatially localized or diffuse pat i
preferentially weighted. paterns will be
To illustrate this., suppose as in Section 17 that ' normalizes its
pa::emsé —Let the input pattern I be transformed into a normalized
t;‘)a er;}m— 4, ,(2)02, .« 6,). Then 3., 6. = 1. In Section 17, the signal
;or_xj g to u;™ was defined by S; = 32_, 6,2,;. More generally, S; =
s = 38, f(6 )z, and correspondingly (19) is replaced by

Zy =[—zy + f(6,)I5® (52)
Introduce the notation f(8) = (£(6,), f ), ..., f(6,)). Then
8; = 1f Oz ] cos L£(6), 2] (53)

t())ften f (w? is a sigmoid function of w, as in Section 15. The sigmoid can
we; ag‘;ﬁrox'lmat;d b.y a power law at small values of w, say f(w) = £, (w) =
fou‘owse_ size of p influences what patterns will be coded by each v'® as
. U;?lasegn coding occurs if p = L In this case, the normalization
ondition 2¢-, 6; = 1 implies ||f;,(6)|| = 1. Furthermore (52) implies that

Iz |l approaches 1, owin .
, g to developm \
takes place, pmental tuning. Thus, after tuning

o

S; =cos [fin(9), 7]

so that §; is maximized by the pattern £(6) = 7. If p > 4, there exists a
tepdency to code spatially localized patterns, because ||f;(6)]| is maxi-
mized by any point pattern: 6, = 1 and 6, =0,j# i.If p < 4, there exists
a }endency to code spatially diffuse patterns, because |f,(6)] is maxi-
mized by the uniform pattern 6, = 1/n,i=1,2,. .. , n. Thus if p # §,

A THEORY OF HUMAN MEMORY 621

the signal law (53) mixes two maximizing tendencies: maximize cos
[£,(8), z;]1 by choosing f,(6) parallel to z; and maximize £ (O]

Given m normalized patterns ¢;, j = 1, 2, ..., m, suppose that z
adapts to f,(¢,), and that pattern 6 can be written as 8 = Sy o foldy).
If the vectors f,(¢;) are mutually orthogonal, then the signal

Sy =02z =q "f;r(d’J)" = 2 o
k=1

where ¢; = (¢y, b, ..., ). If p = 4, then S; = o;; hence the
coefficients a; are mapped without bias. However, if p > 4, then
populations v, are favored whose patterns ¢; are spatially localized; if
p < 4, then populations are favored whose patterns ¢; are spatially
diffuse.

To test these effects experimentally will require a correlative analysis
of coding at s, of the (approximate) power laws of Fs’ — Fs® and
F® 5 %, P signals, and of trends in imitation errors.

59. Rhythm and Phrasing

When a musician plays a piece, how are the relative velocities of each
note controlled? More generally, many sequential sensory-motor skills
are performed with a fixed order and a characteristic rhythm. Yet the
rhythm can be modified without destroying the correct order. How is
this flexible relationship between order and rhythm established?

Section 9 notes an example of this phenomenon wherein varying the
size of rehearsal arousal through time can alter performance velocity in
an avalanche. This mechanism is instructive, but is insufficient in
general. Consider a sensory chunk whose template encodes a sequence
of motor commands. Then the chunk must also encode performance
velocity. How is this accomplished? The avalanche example, along with
the discussion of instrumental conditioning in Section 7, suggests that
the chunk sends a conditionable pathway to the arousal source. Then the
amount of arousal, and hence performance velocity of the entire
sequence, can be changed by conditioning. This mechanism allows order
and velocity information to be decoupled; any other input to the arousal
source can change the rhythm without changing the order. However, the
mechanism only alters the overall performance- velocity within a se-
quence. How is arousal calibrated so that fixed changes in arousal
determine prescribed velocity changes in different sequences? In partic-
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ular, how is the amount of arousal calibrated to compensate for
differences in sequence length?

This problem can be restated as follows. To heighten intuition, call the
items controlled by the given command a phrase. Is there a tendency.to
quantize time so that each phrase fills a unit time interval of perform-
ance? If this were so, then items coded in longer phrases would be
performed faster, other things being equal, and variations in (condi-
tioned) arousal level could shrink or expand this quantized time unit,
and thereby increase or decrease performance velocity by fixed
amounts. In the special case that phrases are words, time quantization is
compatible with the existence of a breath pulse, or syllable (Lenneberg,
1967, p. 115).

The time quantization problem can be restated as a technical question.
Given an STM buffer that contains k active items in a monotone
decreasing pattern x, > x, > --- > x,, how fast are the items performed
as a function of k, other things being equal? Opposite answers can be
derived if the design of the buffer is changed. Suppose for definiteness
that total STM activity in the buffer is normalized. Then as k increases,
each item has smaller activity, other things being equal. Smaller activi-
ties can imply slower or faster performance velocities, depending on
other factors. For example, in the avalanche of Section 5, smaller
activities imply slower velocities. This is because the time needed for
activity to achieve 'suprathreshold values at ,?, given a fixed arousal
base line, is a monotone decreasing function of signal size from v{?; . In
this situation, the rate at which excitation grows is the dominant effect.
Whenever the rate of feedforward excitation growth is rate-limiting,
longer phrases imply slower performance velocities.

Suppose by contrast that all STM activities are already actively
reverberating at asymptotic levels before arousal is turned on. Suppose
that these STM activities perturb the network’s output cells, but that the
output cells cannot fire until they are aroused. Let arousal act quickly
when it is turned on, and when an output cell begins to fire, let it
immediately begin to inhibit its STM source. In this situation, the rate at
which feedback inhibition acts is rate-limiting, since as soon as one STM
source is inhibited, the next fires, and so on. If feedback inhibition is
rate-limiting, then smaller STM activities are more rapidly quenched.
Smaller activities then imply faster velocities, and longer phrases imply
faster performance. In summary, feedforward excitation and feedback
inhibition have opposite effects on performance velocity.

A simple case of the feedback inhibition phenomenon is illustrated

below. Let feedback inhibition grow at a rate proportional to suprathres-
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hold STM activity, and let it inhibit STM activity at a rate proportional
to its size. Denote by x(f) the STM activity at time ¢, by y(t) the amount
of feedback inhibition, and by T the QT. Then * = —Ay and y = Blx —
I')* where [w]* = max (w, 0). Given initial STM activity / at time ¢ = 0,
it follows that STM reaches the QT at time T(I) = arc cos [(/ — )],
which is a monotone increasing function of I.* '

Many questions are raised by the above observations. If phrasing is an
important factor in velocity control, then the number of phrases allowed
in the performance buffer at any time must be carefully regulated. How
is switching on of the next phrase accomplished in a way that prevents
discontinuities in performance? Two different types of sensory feedback
are probably important: sensory feedback that turns on new spaced
sensory chunks which thereupon reset the motor buffer (Section 34), and
reset of terminal maps when proprioceptive-terminal matching occurs
(Section 52). A careful analysis of special cases is clearly needed,
however.

For example, suppose that the buffer starts to renormalize its total
activity after a population is quenched by feedback inhibition. If
renormalization acts slowly relative to feedback inhibition, then items
near the end of each phrase will have the smallest activities when they
are performed, and performance rate will speed up as the phase is
executed. If renormalization is fast relative to feedback inhibition, then
items near the end of the phrase will have the largest activities when
they are performed, and performance rate will slow down as the phrase
is performed. If the two effects are balanced, then a uniform perform-
ance rate occurs. Is there a mechanism that automatically balances the
two inhibitory effects to guarantee uniform performance rates in all
cases? Such a mechanism would reduce the QT, or amplify STM, if the
total buffer activity decreases. This will happen, for example, if nonspe-
cific excitatory interneurons that are driven by total STM activity
recurrently excite the off-surrounds of the STM buffer.

An entirely different kind of performance will occur if arousal is
turned on only when matching between proprioceptive and terminal
maps occurs. In this case, if the buffers can renormalize themselves
faster than a terminal map is executed, then a uniform rate of performing
“‘syllables™ can be achieved (cf. Lenneberg, 1967, p. 115). By changing
the relative balance be&ween buffer reset by sensory feedback, arousal
onset by feedback due to map matching, arousal onset by descending
commands, feedforward excitation, feedback inhibition, and field nor-
malization, one can change performance from item perseveration, to
uniform rates, to rhythmical speeding up or slowing down, or to a wide

*Erratum: T (J) = n | 24/AB is independent of J, which makes uniform phrase performance
velocity easier to achicve.



624 CHAPTER 13

range of phrase velocities. Are certain pathologies in speech production
due to such changes of balance?

60. Reciprocal Intermodality Feedback, Internal Hearing, and Naming

.Thns section lists some important implications of network mecha-
nisms. One of them will be used to provide a unified explanation of
recent data on serial versus paralle! visual information processing in
Section 61. :

If two or more modalities are associatively related, then their effects
on each other can be reciprocal. Figure 44 schematizes two examples. In
Fig. 44a, F5 denotes an auditory field, and %,V denotes a field of
motor. commands for speech-related musculature. The other fields
estagbllsh codes for their base fields in the usual way. Field %, can be
exc!ted via at least two routes. Activating %, can elicit sounds that
ex<(::)te F'" via sensory feedback. Learned template signals from %@ to
Fs' can also activate %, This activation serves as a subliminal
sensory expectation if F5 is not aroused. If ;@ is aroused, then the
subliminal pattern becomes supraliminal and creates the impression of
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hearing an internally generated sound. Thus, motor activity at %, is
not needed to excite internal sounds at %;. As noted in Section 52,
signals from %5 to %, ® can generate anticipatory motor expectations,
which ultimately elicit motor acts. Reciprocal signals from %, ® to %5®
can, in principle, generate anticipatory sensory expectations. In gen-
eral, the several levels of associationally joined sensory and motor
systems can mutually support each other’s performance.

Figure 44b schematizes an important special case of reciprocal associ-
ations between the visual, auditory, and motor systems. ¢’ represents
an auditory field, F§ represents a visual field, and )" represents a
motor field for speech-related musculature. Suppose that an object is
visually presented to the network as its name is spoken aloud. The
sequence of sounds at F¢ can be imitated by using filtering properties
from system S; to M. The sounds can hereby gradually generate a
sequential motor code at ¥, on successive trials. Simultaneously, the
visual image of the object is coded at F§'. The visual code can then
sample the sequential motor code. Later, the visual image can elicit
motor performance of the namé. Furthermore, as the name is practiced,
it can generate a sequential auditory code at &' . This code can sample
the object’s visual code, which in turn has learned a visual template at
F. Later, hearing the name can create a visual expectation of seeing
the object. Similarly, seeing the object can create at F{’ an auditory
expectation of hearing its name. This expectation can be fulfilled either
indirectly by arousing the motor commands of the name, or directly by
arousing the auditory field.

The network constructions also admit hierarchical variations, as
Section 24 implies. Figure 45 illustrates a hypothetical case in which a
sensory field F3'¥ excites several parallel hierarchies of adaptive codes
and feedback templates. Each hierarchy discriminates ever-more-refined
features of its base code. Field Fs*? interacts with all the hierarchies
via adaptive codes and feedback templates. In such a system, a
dominant feature in a sensory pattern at ¥ can bias the entire
hierarchy to expect a global ensemble of features that has often
contained the dominant feature. This happens as follows. When a
sensory event perturbs %5, it is coded by a pattern across Fs®. The
features in this pattern are processed in two ways. They are projected
directly onto Fs**. Here they excite the code that is closest to their
pattern. This code, in turn, reciprocally excites the entire hierarchy via
its template. Since the features computed at Fs® are ‘‘simple,” the
feedback template can bias the field to ignore higher-order features that
occur in an unfamiliar configuration. Signals between the hierarchy and
F+D continue to reset each other until a consensus is reached.
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n
]

(F)l(‘}. 45. The field F"*" biases the entire hierarchy of fields to interpret patterns at
Fs in terms of the **simple”* features that are coded at F2,

Th;s; examples are set forth to emphasis a central problem for future
theonzmg:'the classification of which features are computed by particu-
lar anatomical and physiological parameters.

61. Automatic versus Controlled Information Processing

Schneider and Shiffrin (1976) have described two complementary
types of visual information processing in a series of interesting experi-
ment.s. Automatic processing is said to be *‘a simultaneous, parallel,
relatively independent detection process.” Controlled processing is said
to be a ‘‘serial terminating search’’ process. The authors argue that the
two types of processing are associated with characteristic experimental
paradigms, and that many earlier STM experiments about the serial or
parallel nature of memory search can be classified into one or another of
these paradigms. Below it is argued that both types of processing utilize
common parallel operations, and that their apparent differences are due
to shlfts in the relative balance of these operations that are caused by
experimental conditions. In particular, serial properties do not necessar-
ily imply serial operations. .

Both types of processing are studied by using a multiple frame search
task. Four elements are presented simultaneously on a CRT screen.
They are arranged in a square around a central fixation dot, and their
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joint presentation over a brief time interval is called a frame. A trial
consists of 20 frames presented in immediate succession at a prescribed
rate. The subject’s task is to detect one of several items in a memory set
that is presented before each trial. Items that are not in the memory set
are called distractors. Items that are neither distractors nor in the
memory set are called masks.

Automatic processing occurs when the subject has practiced at giving
a consistent detection response to memory set items that are never
distractors—for example, detecting digits among letter distractors. This
is also called a consistent mapping (CM) condition. Controlled process-
ing occurs when memory set items and distractors are mixed from trial
to trial—for example, detecting digits among digit distractors. This is
also called a varied mapping (VM) condition. CM performance is much
better than VM performance. During CM performance, there is almost
no effect of varying the number of distractors in a frame, or of the
memory set size; VM performance is monotonically related to each of
these variables. Also, during CM performance, false alarms (detections
when no target was present) increase substantially at fast frame speeds,
but this does not occur during VM performance.

These data are used to conclude that during VM search serial
comparisons are made by comparing all display items with a given
memory item before a switch to the next memory item occurs. Also each
switch to a new memory item takes some time. Data are reported to
suggest that VM attentional deficits and search time are intimately
related.

During CM search, it is assumed that ‘‘a mapping of stimuli to an
internal detection or attention response can be learned in long-term
memory. . .. Thus in long-term memory an automatic attention re-
sponse to each target will be learned: the subject can simply wait for the
occurrence of one of the learned attention responses . . . the target is
always matched or compared first, before any distractors. . . .”” Schnei-
der and Shiffrin support this view by showing that automatic search can
be learned, and that substantial negative transfer is produced if the
memory set and distractor set are then interchanged. This negative
transfer is attributed to the learning of an automatic attention response
that continues to operate even after the memory set items are used as
distractors. They also suggest that CM subjects carry out a controlled
search after reversal, and that categorization may facilitate controlled
search by reducing the effective memory set size. Results of LaBerge
(1973) are also cited to indicate that the automatic resonse is analogous
to the process whereby unknown and unexpected characters that are
originally matched feature by feature are eventually matched as unitary
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ent%ties, or chunks, after they are repeatedly presented. More generally,
their results support the dictum that ‘‘what is learned is what is
attend.ed," and that after automatic processing takes over at one level of
behawox:al organization, controlled processing can begin to organize the
automat.lcally processed behavioral units. This latter view s, in fact, the
foundation on which the present theory of STM and LTM was originally
copstructed. In Grossberg (1969a), STM at previously coded behavioral
units, vyhich are represented by network vertices or nodes, drives
associative LTM changes among these units until new units are thereby

formed, whence the process repeats itself. Schneider and Shiffrin (1976)

flave a similar, albeit heuristic, model in mind when they write:

‘Suppo§e long-term store to consist of a collection of nodes that are

associatively interrelated in a compleéx fashion. Each node may itself

consist (_)f a complex set of informational elements, including associative
connectlops, programs for responses or actions, and directions for other
types of A_mformation processing. The node is a- distinguishable entity
because it is unitized—when any of- its elements are activated, all of

them are activated.” T

Th? main effects found in the Shiffrin and Schneider data can be
explained by_ the present theory. Consider VM search. Suppose that the
memory set items are familiar. Then as they are read, they are recoded
by their sequential auditory codes. This is an ‘‘automatic” process. If
the memory set items are not familiar, they are filtered by those lower-
order codes that are available. The explicit process of adaptive coding
replaces the heuristic rubric of “unitization’ in describing how these
processes differ. Returning to the case of familiar items, an unfamiliar
sequence of these items generates a spatial pattern of activity across the
§TM bu'ﬁ'er of sequential auditory codes. This pattern stores order
information in STM. As yet, there is no order information coded in
LTM. A nonspecific rehearsal wave can read the items out of the STM
buffer one at a time. This happens in a serial fashion (Section 28), and
reset of _the STM buffer takes some time, but the readout operation of
nonspecific arousal is a parallel operation.

.Suppose that a given item is read out of the auditory buffer into its
.vnsual'code, where it forms a subliminal visual expectation. Then the
ltems in a frame can be visually sampled until a match occurs, When this
happ_ens, a burst of activity from the visual code terminates search, as in
Section 53. If no match occurs, a rehearsal wave can read the next item
out of the auditory buffer, and so on.

Consider CM search. Repeated use of the same memory set gradually
generates a higher-order auditory code that can sample the visual codes
for all the items over successive trials. When the higher-order code is
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activated, the visual codes of all memory set items can be subliminally
activated. Matching with any one of these codes generates a resonant
burst. The process therefore seems to be more parallel than VM search.
I claim, however, that this is primarily because the higher-order code
must be established before the visual codes of all memory set items can
be sampled by a single internal representation. In other words, the
auditory-to-visual codes and templates that are activated in VM and CM
conditions are different, but the two conditions otherwise share common
mechanisms,

Attention enters the search process in several ways. The simplest
attentional reaction is amplification of network response to expected
items. When a memory set item matches a subliminal visual expectation, a
resonant visual response is generated. This type of attentional reaction
occurs even under tachistoscopic conditions (cf. Berlyne, 1970). The
amplification process can also move the eyes toward prescribed regions
of the visual field by generating amplified feedback to the appropriate
terminal eye coordinates if there is enough time to execute these
motions. The attention theory in Grossberg (1975) suggests how other
processes, such as incentive-motivational, CNV, and novelty-triggered
feedback, can regulate the amount and pattern of STM amplification.
The present theory supports, indeed refines, the dictum that ‘‘what is
learned is what is attended.”’ As Section 20 notes, the very stability of
the STM code requires feedback processes that explicate attentional
mechanisms.

Several other aspects of the Schneider and Shiffrin data are interest-
ing. The *‘time for automatic search is at least as long as that for a very
easy controlled search.’’ This is paradoxical if CM search is a more
efficient processing scheme. Is partial normalization of the visual
template one reason for this? If more cues are subliminally active during
CM than during VM search, then each cue will then have less subliminal
activity. The reaction time for supraliminal signals to be generated
during a match will then be greater during CM than during VM.

Also of interest are the data concerning performance accuracy when a
memory set item occurs 0, 1, 2, or 3 frames away from an identical, or
different, memory set item. During CM search, no performance decre-
ment occurs if two distinct memory items are separated by any frame
interval. This follows if the memory set visual templates are all sublimi-
nally active at orce. Matching one item does not require reset to match a
different item. However, if two identical items occur simultaneously,
then the first match can interfere with registration of the second match
by either of two mechanisms: if the match elicits performance and
feedback inhibition of the item’s STM activity, then the higher-order
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code must be reactivated before the second match can occur; if the
resonance due to the first match does not terminate before the second
instance of the same item occurs, the resonant state cannot generate a
distinguishable resonant burst. In summary, during CM search, two
simultaneous distinct memory set items are recognized better than two
simultaneous identical items.

The reverse is true during VM search. Here each display item is

compared to the visual template of one memory set item at a time.
Suppose that a display item matches the visual template. Then the item’s
visual code is amplified by resonance. This activates the automatic
process of recoding the item auditorily. The visual resonance can excite
the item’s auditory code more strongly than would occur during casual
r?ading of the item in a list of other items. Thus, a tendency exists to
give the item maximal activity in the sequential auditory buffer. When
the auditory buffer is then aroused, the item's visual template is
reactiyated. This reset effect makes it easier to detect two identical than
fwo distinct memory set items in successive frames. Whether the items
in successive frames are identical or distinct, the visual code is reset to
detqct the second item after a correct detection, and this takes time.
] -Similar reset effects can take place when an unexpected display item
1s processed. For example, suppose that an unexpected memory set item
is visually scanned. Suppose that it is automatically recoded auditorily,
and that its afferent auditory activity can summate with its activity in the
sequential auditory buffer. Until this happens, the network has no way
to tell that the display item is a memory set item. If summation does
occur, then items with the largest prior STM activity should have the
largest tendency to reset the visual code with their own template. This
hypothesis should be tested experimentally. Analogously, during a VM
search wherein CM items are used as distractors, a scanned CM item
can activate its higher-order code, which then resets the visual template
to expect CM items.

The above explanation of CM versus VM properties in terms of buffer
reset can be tested by running the experiments again while also
measuring P300. Also of interest is whether an expected memory set
item can reset the auditory STM order more vigorously via visual
resonance than an unexpected memory set item. This comparison might
depend on subject strategies, since unexpected items can elicit a strong
reset via the alarm system unless the alarm is already tuned by the
search procedure to prevent this.

B'y explaining the Schneider and Shiffrin data in a unified way, we
avoid several serious problems of their theory. They claim, and I agree,
that automatic processing is used to rapidly code familiar behavioral
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units so that controlled processing can then build these units into new
unitized elements. I disagree that the ‘‘automatic attention response’’ in
the CM condition is a mechanism that is qualitatively different from
mechanisms operating in the VM condition. If the two types of condi-
tions used serial versus parallel operations, as Shiffrin and Schneider
claim, then how does the brain tirelessly alternate between serial and
parallel mechanisms as it practices any new list of unitized elements?
How do the serial and parallel processes compete when a visual scene
contains both unitized and unfamiliar but relevant objects? How does
the switchover from serial to parallel processing take place as an item is
unitized? These problems evaporate in the present theoretical frame-
work.

62. Visual versus Auditory Processing and Cerebral Dominance

A pattern of activity across a field of populations at a given time is
inherently ambiguous. Does the pattern code a single event in time, such
as the features in a visual picture, or does it code the order information
in a series of events? Because of this fundamental ambiguity, two
distinct types of STM reset mechanisms have been posited in the present
theory: (1) deletion of population activity by feedback inhibition; (2)
deletion of patterned activity across populations by mismatch with a
comparison pattern. Type 1 has been used to explain various facts about
order information. To use type 1, the cells in each population are
allowed to be broadly distributed across the network, but their activities
must be distributed close to a single average value. If the average
activities of localized cell clusters in a given population are not approxi-
mately the same, there does not exist a simple index of order informa-
tion between populations. Mechanisms of type 2 are then needed to
delete intrapopulation activity.

Given a mechanism of type' 1 in a field #®, the cells in the next field
F¢+? automatically code order information in a manner that is sensitive
to rehearsal strategies, as in Section 31. Thus, merely changing the
inhibitory mechanism within % causes the adaptive coding mechanism
from F* to F4* to code data about time rather than space. To make
this temporal code usable, individual populations in F® must code the
controlling features of entire behavioral events.

This latter constraint suggests a reason why visual data are often
recoded auditorily to achieve an IMS of significant length. The data that
are derived from a typical visual scene are of very high dimension,
including colors, myriad shapes, distance information, etc. Coding all
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the relevant dimensions of a typical visual object in a single population
would require many stages of adaptive coding. Much simpler demands
are placed on auditory coding, wherein many fewer dimensions covary
in the sound spectrograms of simple sounds. Having coded such sounds
in individual, albeit perhaps diffusely distributed, populations, order
information among these codes is then readily learned by using STM
reset by feedback inhibition. Thus the amount of data in a single
perceptual frame (visual versus auditory) is traded off against the
number of successive frames whose order can be coded. .

A second distinction between visual and auditory coding emerges in
the study of their circular reactions. The auditory-speech loop uses two
modalities, each of which has low-dimensional codes—namely, sounds
and speech motor acts. The visual system closes its loop with the motor
systems of bodily position, but loop closure involves ‘the motor system
for moving the eyes as in Section 48, rather than scene analysis. The
eye-neck-head system also has relatively simple codes. Order informa-
tion among visual scenes can, however, be learned either if the codes for
sequential eye movements sample visual representations, or if there
does exist feedback inhibition of higher-order visual codes (‘‘grand-
mother cells™), say in the inferotemporal cortex (Rocha-Miranda et al.,
1975).

The above remarks note that an activity pattern per se across a field of
populations has an inherently ambiguous interpretation. Does it code
data about time or data about space? In order to unambiguously decode
temporal versus spatial data, somehow the populations that code the
different types of data must be spatially segregated. The patterns
themselves do not suffice to make this distinction; rather, the nature of
their reset mechanisms accomplishes this. Thé ambiguity problem there-
fore suggests the need to spatially segregate the processing of sequential,
including language-like, codes from codes that concern themselves
primarily with spatial integration. Perhaps this dichotomy is one reason
for the emergence of cerebral dominance (Gazzaniga, 1970, Chapter 8).
Since visual and auditory representations are bilateral, the trend toward
segregation of temporal versus spatial processing in separate hemi-
spheres would be superimposed on relatively localized spatial and
temporal processors in each hemisphere; that is, there might exist a
subtle symmetry-breaking due to a drift of visual-like processing into the
nondominant hemisphere and auditory-like processing into the dominant
hemisphere.

The theory thus contains a tantalizing question as it stands. Does the
ambiguity problem necessarily lead to distinct type 1 and type 2
mechanisms? If so, can anatomical traces of a type 1 mechanism (for
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example, negative feedback loops triggered by the output stage and
feeding into the STM reverberation) be found in sequentia! STM buffers
but not in spatial representations? If not, does there exist in vivo a
unified mechanism—say a modified type 2 mechanism—that possesses
both types of properties?

63. Concluding Remarks: Universal Adaptive Measurement

This section sketches a broader perspective within which to view the
above results. Its central tenet is that the brain is a universal measure-
ment device operating on the quantum level. By this is meant that data
from all perceivable physical fields are translated into a common neural
language, and that events on the quantum level, such as several photons,

_can be perceived. The universality of the neural language clarifies why

results concerning the neural measurement process can have broad
interdisciplinary implications.

A central result of the present theory is a description of an alternative
to the probabilistic and computer memory models that have been used to
explain cognitive data. In particular, probabilistic models are replaced
by systems that undergo parallel interactions in real time. Why the
formalism of probability theory works at all in describing physical
processes is a nontrivial problem that is often overlooked because of the
practical successes of probability models. In the present scheme, many
probabilistic-like computations are described by competitive interactions
among network codes. The universal problem of processing patterned
data in noisy systems with finitely many sites requires the existence of
such competitive interactions. Furthermore, the general problem of
stabilizing adaptive codes in a fluctuating input environment requires
that certain feedback relationships exist between the codes of individual
events and the codes of various event combinations. Are such universal
problems and their solutions by competitive systems one reason for the
success of probability models? How generally can a more powerful
alternative to probability theory be built up by using hierarchically
organized competitive systems operating in real time? Especially in
cases in which a system continually re-evaluates hypotheses based on
disconfirming feedback does the present framework seem to be intrinsi-
cally richer than probability theory.

A related set of problems arises in the serial processing of lists. The
spatial geometry of a list of events, represented as symbols on a serial
tape, is not the same as the space-time geometry of the same list of
events occurring in real time (Grossberg, 1969d). Indeed, suppose that a
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list r,, r;, ..., r, of events is presented to a subject with one item
occurring every w time units. It is not until at least w time units after 7,
occurs that the subject can know that r, is the last list item. Only then
can this past event be reclassified, via a *‘backward effect in tin?e,” as
being the list's end. This fact implies that the types of properties and
paradoxes that can occur in formal systems, such as classical }ognc or
model theory, and in real-time parallel systems can be quite dlffel‘?t'lt.
The results on serial learning in Section 12, and the real-time probabilis-
tic logic across a field of populations in Section 20, provide two
examples of how the approaches differ. Problems concerning the field
representations of mathematical versus empirical data, of infinite opera-
tions in networks with finite numbers of coded populations, and of plans
for which no digital algorithm exists are among the many that are worth
investigating.

The evolutionary properties of the brain’s measurement process
suggest another class of problems. One of the triumphs of modc_m
physics was to geometrize the dynamics of physical laws, as in Ein-
stein’s general relativity theory. One of the important tasks of brain
theory is to reverse this procedure; namely, to explain the four-
dimensional geometry of the world in terms of a dynamical system
operating in a non-Euclidean network of very high dimension. As noted
.in Section 1,F, the high dimension of unfamiliar behavioral data seems
to be successively reduced as new codes and commands for organizing
this data evolve. The sections on hierarchical coding and map formation
begin to show how these lower-dimensional representations emerge.

For almost a century, the measurement problems that concerned
physics and biology diverged. Before that time, distinguished physicists,
such as Helmholtz, Mach, and Maxwell, were also distinguished psy-
chologists or physiologists. This then ceased to be true if only because
profound insights concerning the measurement processes of pAhysics
could still be expressed by using the available linear mathematics,
whereas it became clear that psychophysiological measurement pro-
cesses involved nonlinear systems whose laws, and underlying princi-
ples, were at best dimly understood. Recently, both physics and biology
have been driven toward processes in which nonlinear collective effects
have been implicated. Indeed, analogs of such currently interesting
physical phenomena as phase transitions (Grossberg, 1969f, 1974),
globally irreversible but locally reversible interactions (Grossberg,
19691), and backward effects in time (Grossberg, 1969d, 1974) are found
even in simple neural networks. As both physical and biological theory
incorporate measurement concepts that are explicated by ‘parallel,
nonlinear, self-organizing, hierarchical, and feedback interactions, we
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can anticipate a renewed flourishing of interdisciplinary studies and a
deepening understanding of our interactions with the external world.

Appendix
Proof of Theorem 1. The proof is by induction. For i = 2, (29) and
(30) imply

w(l+ @) =pd + (1 - )M
or
w,=A+(1-MNR—-1
as in (31). For i > 2, (29) and (30) imply .

Al + 01 + oy (1 + wg ()] = pA=1 + (1 = A=)y
or

o1 + @iy (1 + 05 () ="'+ (1 - A=HR - 1 (AD)

By the induction hypothesis, (31) can be used for all indices less than i,
whence

1+ o (1 + @) = A2+ (1 — AR (A2)

which along with (A1) proves (31) for all ;.
Equation (32) shows that, for 2 = k =< j, x,_,; > x; if and only if &, >
1. By (31), wx > 1if and only if

(R = 1)(1 = MA*~2 > |

Since 0 < A <1, X5 > x5 > X > +++ > x;; unless j > J, as (33) notes.
Proof of Theorem 2. By the Invariance Principle, the STM activities
across F* at successive times can be described by the rows

n
W, b &
W3y f Wt ©

and so on. Let the sampling signals from a given population in #® to the
successive rows be s;, 5;, 5, . . . . By hypothesis, s, = 5, = 55 = ---.
The product of sampling signal and STM trace determines LTM growth
in each time frame, as in (2). These products are

S
Sy W (L Sp (A3)
53 Wy Wy 4 Sa Wy L S3 b

Within each row, the entry in the ith column is at least as large as the
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entry in the (i + Dst column, by the TMS hypoth.esis. Hence the @
population samples a monotone decreasing pattern in every time frarfle,
and then sums all the patterns to learn a net monotone decreasing
pattern.
Inequalities (34) are discussed in the next proof. . ) )
Proof of Theorem 3. Deleting the superscripts (1) in the invariant
parameters for simplicity, we find the chart

Sk
Sp Wy fhy So Mg (A4)
§3 W3 Ws Uy S3 W3 Ky S3 M3

By (35), each row is either monotone decreasing (if all w; in the row
exceed 1), monotone increasing (if all )w; in the row are less ?han. 1), ozr,
upimodal (f some w; fall above and below 1). If a populz}tlon in %‘
starts sampling # when a given STM pattern is active, this pattern 1s
encoded in its LTM traces. Because the STM pattern in the past ﬁe!d
does not change, the same past STM pattern is encoded into LTM in
every time frame. The total past field LTM pattern is the sum qf these
STM patterns, and hence has the same form as it had during its first
sampling interval.

The future field LTM pattern is monotone decreasing because, by (35)
and (36), Siiy > Sz > Sspg v, Sp@aply > SyWaply > SyWypg > o, efc.
That is, the inequalities (34) hold. The sum of STM values in the ith
column of (A4) thus exceeds the sum of STM values in the (i + 1)st
column. Since the future field LTM pattern sums up column values for
all columns that are first excited after it begins to sample, this LTM
pattern is monotone decreasing.
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