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INTRODUCTION

The following problem, in one form or another, has intrigued philosophers
and scientists for hundreds of years: How do arbitrarily many individuals,
populations, or states, each obeving unique and personal laws, ever succeed in
harmoniously interacting with each other to form some sort of stable society, or
collective mode of behavior? Otherwise expressed, if each individual obeys
complex laws, and is ignorant of other individuals except via locally received
signals, how is social chaos averted ? How can local ignorance and global order,
or consensus, be reconciled ? This paper considers a class of systems in which
this dilemma is overcome. '

We begin by asking what design constraints must be imposed on a system of
competing populations in order that it be able to generate a global limiting
pattern, or decision, in response to arbitrary initial data ? This paper proves that
global pattern formation occurs in systems of the form

& = a(x) [bi(x;)  e(x)] ¢))

where x = (%, , X; ,..., ¥,) and § = 1, 2,..., n. Such éystems can have any number
“of comp'eting populations (# > 2), any interpopulation signal functions by(x;),
any mean competition function, or adaptation level, c(x), and any state-dependent
amplifications ,(x) of the competitive balance. Systems of type (1), which can be
highly nonlinear, arise in many biological applications, such as pattern formation
in development [1, 2], the transformation and short-term storage of sensory data
in psvchophysiology [3-6], competitive interactions among groups or com-
munities is ecology and sociology [1, 7], decision-making in a parallel processor
[1, 3, 4], and related areas. Recently considerable interest has been focused on
the question: How simple can a system be and still generate “chaotic” behavior?
This question is motivated both by a desire to understand turbulence in fluids
and by a desire to understand how organized biological interactions can break
down under parametric changes [8, 9]. This paper considers the converse
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question: How complicated can a system be and still generate order ? The results
herein hold because, despite essentially arbitrary irregularities and nonlincarities
in local system design, there exists a powerful symmetry in the global rules that
bind together the interacting populations. This symmetry is expressed by the
existence of a state-dependent mean competition function, or adaptation level,
¢(x). It can be caused by the existence of long-range interpopulation interactions
that have comparable effects on all populations, but otherwise represgnt an
essentially arbitrary competition. The results herein therefore suggest that a
breakdown of symmetry in competitive systems, say due to the existence of
asymmetric biases in short-range interpopulation interactions, is a basic cause of
oscillations and chaos in these systems; cf. [10, 11], where this fact is illustrated
by the voting paradox in Volterra-Lotka systems. There appéars to cxist a
complementary, or trade-off, between how global the adaptation level (‘‘com-
munal understanding”) is and how freely local signals (‘‘individual differences’)
can be chosen without destroyving global consensus.

The main result is proved by explicating as a mathematical method a main
theme about competitive svstems; namely, who is winning the competition ?
The method keeps track of which population is being maximally enhanced as
time goes on. When a different population starts to be maximally enhanced, the
svstem “‘decides” to enhance the new population, or “jumps’” between popula-
tions. Thesc jumps are a source of system oscillations. Were the jumps never to
cease, approximately periodic or even chaotic behavior could ensue. The theorem
guarantees, however, that after a time interval of perhaps very complicated, and
even seemingly random oscillations, the decision process is essentially completed,
and the system approaches the final pattern in an orderly fashion, even if the
jumps do not cease. Reference [12] applies this method to a less general problemn
and reviews earlier work in this direction.

By studying system “jumps” or ‘“‘decisions”, three themes of general interest
emerge. First, one analyses the continuous nonlinear system by studying the
discrete series of jumps that it induces. Second, although the continuous system
describes parallel interactions, it can be analysed in terms of its serial jumps.
Third, the analysis of jumps shows that there exists a sequence of nested
“dynamic boundaries” that appear as the system evolves. By this is meant the
following. Suppose that x(t) € [0, B] for all ¢t > 0. There exists a sequence of
nested partitions EfY @ Ey @ -+ ® Eln of [0, B] into half-open intervals
EQ. j=12,.., such that afler time T, x;(t) remains in some interval E,k ,
after time T, , x,(t) remains in some interval E"’ C F{“’1 , and so on. The end-
points of each interval define a “dynamic boundary beyond which x(t) cannot
migrate. As the jumps continue, the system ‘‘decides’ to restrict x(t) to ever
finite intervals, until as f — oo a definite limiting value for x,(c0) is established.
The existence of these dynamic boundaries is a purely nonlinear effect that
arises from the interaction of a nonlinear signal function and a nonlinear mass
action law within a competitive geometry.
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2. COMPETITIVE SYSTEMS

The simplest competitive feedback interaction among n pnpulnmns r; with
activities x(t) that obey mass action dynamics is

S —dxb (B = %) [f(x) + Ifl—.v.-[z flx) + J.], (2)

ki

= § 2,.=, n. Systemn (1) has the following interpretation. Let cach population
7, have B excitable sites, of which x,(r) are excited and B — x,(t) are unexcited
at time 1. Let a signal f(x;(?)) be generated by the excited sites of ;. Then term
— Ax; describes the spontaneous switching-off of excitation at tate .4; term
(B - ;) f(x;) describes the switching on of unexcited sites by a positive feed-
back signal from o; to itself; term —ux, f(x;) describes the switching off of
excited sites at z; by a competitive (or negative) feedback signal from 7 to 7,
k +£1; and terms (B — x,) I, and —u, J; describe the effects of excitatory input
I; and inhibitory input J; to z; . This system was first analysed in [3] in a psycho-
physiological content. In neural terminology, (2) describes the simplest recurrent
{feedback) on-center (excite ;) off-surround (inhibit all vy, & -4 1) interaction
of shunting, or passive membrane (or mass action) dyvnamics and was used
understand aspects of how input patterns to ficlds of neocortical feature detectors
are transformed before they are stored in short-term memory. The results
classify ways the choice of the signal function f(w) intluences this transforma-
tion. ‘T'he problem studied was as follows: Suppose that the inputs (1, | [, ... 1))
and (J,. J3 .-, Ja) act before time ¢ :- 0 to establish an initial pattern of
activity x == (%, , Xy ,..., X,) at ¢ = 0. If these inputs are switched off at time
t - 0, how does the network '

S Ay (B s ) = x T S

kei

determine the behavior of x(¢) as ¢ — oo ? In particular, do there exist choices of

f(w) such that system (3) stores biologically important patterns, yet prevents

noise amplification via its positive feedback loops?

This latter problem arose because systems such as (2) solve an ubiquitous
biological problem: the noise-saturation dilemma. This dilemma asks how a
svstem of noisy populations with finitely many excitable sites can process
continuously fluctuating input patterns? When the input patterns are small,
they can get lost in the noise. When the inputs are large, they can saturate the
system by exciting all of its excitable sites. Competitive systems such as (2)
elegantly solve this problem, by balancing between the two extremes of noise
and saturation. The choice of f(w) helps to establish this balance; in particular,
sigmoid or S-shaped signal functions f(w) balance between too little vs too
much noise suppression. When the competitive balance breaks down, cither



too much or too little noise suppression can occur, thereby leading to various
pathologies, such as “‘seizures” [3, 4, 11].

Not all competitive systems are as simple as (2). A problem of classification is
hereby suggested: How do competitive systems that differ in terms of their
mass action dynamics, competitive geometry, and statistics of interpopulation
signaling generate different transformations of their initial data while trying
to-overcome the noise-saturation dilemma in their own way ? Papers [1] and [12]
discuss this classification problem and review some of the transformations
that have already been studied.

Systems (1) are a significant generalization of (3) 4nd of the systems studied
in [12]. For example, (1) includes systems of the form

R it 11 R WA RS D
. s kei
in which each population v, can have different decay rates 4, , different numbers
of excitable sites B;, different signal functions fi(x;), and different constant (or
tonic) inputs /; and J; . System (4) becomes (1) given

a() = x, ()
bi(-’"i) == .t,Tl[Biﬁ(.ti) -+ Ii] — 4, I; ]a‘ ’ (6)
and
(x) = 3 fil) )
k=l’

Svstent (1) also includes generalized Volterra~Lotka systems
s D1 Y Ao Bulo)] ®
k=1

given state-depex{c{ent competition coefficients of the form E;,(x) = Fi(x,) Gi{(x))
{7, 10]. Such competition coefficients describe statistically independent couplings
between populations ¢, and t; via the statistically independent factors Fy(x;) and
G(x;). An alternative description of this system is that the vector function

G(x) = (Gy(vy), Go(xp),--., Gal¥a))

describes a state-dependent preference order among the populatlons Svstem (8)
reduces to (1) given the identifications

- ayx) = Dyx) Gi{x:), )
bi(xi) = G7Hxa), (10)

and

o®) = 3 fule) Fules). (1)

k=1

The theorem also holds for such complex nonlinear examples as

a;(x) = % cxp(i :“) (12)

k=1
bi(xy sin(Cix?*  E), (13)
“and
5 ex) =Y exp(kaf*), \ (14)
% " k=1 ’

where all thé coefficients Ay ..., H; are positive. Indeed, the theorem holds for
essentially any physically meaningful choice of the functions a(x), by(x,), and
¢(x), and thereby describes a robust design that guarantees global pattern_forma-
tion bv competitive systems.

3. GLoBAL CONSENSUS THEOREM

Below are. considered systems of the form
%; = ay(x) [b(x:) — c(x)), d)
where x = (¥y, &y oy &), £ == 1, 2,..., n, and 7 is any integer greater than 1.
To state the main theorem, the following hypotheses will be needed:

(I) Smoothness:

(8). a(x) is continuous for x = 0;
(b) by(x;) is either continuous with piccewise derivatives for x; = 0,
or is continuous with piecewise derivatives for x; > 0 and 5,{0) = =;

(¢) ¢(x) is continuous with piecewise derivatives for x > 0.
(II) Nonnegativity:

afx) >0 if x>0 and %20, j+#1, (152)
afx) =0 if x=0 and x>0, j+#1i (15b)

M(;}eover, there exists a function @,(x;) such that, for sufficiently small A > 0,
ax;) = ayx) if x € [0, A]” and

fAE—:’(’-"J . (16)

e e — - e Y 2. Vo
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(I11) Boundedness

.

lil"l:_.sxl‘lp by(w) < (0, 0,..., 00,...,0,0) (17

where ‘00" occurs in the fth entry, i = [, 2,..., n.
(IV) Competition:

5%20, k=1,2,.,n (18)
Given essentially any functions that satisfy (15)--(18), we prove that any initial
data x(0) > 0 generates an asymptotic pattern, or decision, x(00) such that
0 < x(e0) < 0. In general, there can exist nondenumerably many limit values
that x(oc) might assume, but the anaivsis of jumps provides considerable
information about the dependence of x{cc) on a{0). There exists a highly
degenerate and unlikely situation, however, in which the possibility of oscilla-
tions as 7 — co has bot been ruled out. Even in this rare case, however, all the
signals b,(x;(t)) have limits as { — 00. These signals are the only observable
data that the states about one another, so that global consensus of observables
is always reached. Moreover, even if oscillations in certain x,(t) persist, they
become arbitrarily slow as t— co, so that for all practical purposes (e.g..
measurements taken over one “‘generation” at large values of t), limits are always
achieved. Whether these slow oscillations ever do occur remains an open pro-
blem. To state the theorem in its present form, three further concepts will be
introduced. : :

DeriniTion 1. System (1) is said to obey the oscillation condition if there
exists a constant b* and three signal functions, labelled b,(w), by(w), and by(w)
for definiteness, such that

(V) b,(w) = b*forall w e W, where 1, is an interval of positive length
within the range of xy; '

(VI) there exist increasing infinite sequences {p,;} and {v,;} converging
at &y, and all in the range of x,, such that each p,; is a local maximum of b,,
each ©,; is a local minimum of b,, each by(p,;) > b*; and limy., by(Por) =
lim; L, bo(ay) = b*; and

"(VII) there exists a decreasing infinite sequence {g,,} converging at wy,

and all in the range of x,, such that by(g,) < b* for every 1 =1,2,... and
limy ., bs(gs:) = b*.

DEFINITION 2. System ( 1) achieves weak global consensus (or weak global
pattern formation) if, given any x(0) > 0, all the limits b,(x;(00)) = lim_ b;(x(2))
exist, 1 = |, 2,..., n.

SLFESN LRUMNMBLERG

DeriNiTION 3. System (1) achieves strong global consensus (or strong global
pattern formation) if, given any x(0) = 0, all the limits x,(c0) = lim;_, x{r)
exist, { == 1, 2,..., n. ‘

T'ueorem 1 (Global Conscnsus). Any system of form (1) whose functions
satisfy properties (1)-(1V) achieves weak global consensus. Moreover, since each
by(x;(00) = c(x(00)), any oscillations that might occur become arbitrarily slow as
t — oo. Any system of form (1) whose functions satisfy properties (I)(IV), and do
not satisfy the oscillation conditions (VY{VII), achieves strong global consensus.

Remarks. Since the oscillation condition requires at least three signals,
any 2-dimensional system of type (1) achieves strong global consensus. Moreover,
since the oscillation condition requires b, to oscillate infinitely often in a compact
interval, and b to identically equal b,(w) for all e W, , essentially any bio-
logically interesting system of type (1) achieves strong global consensus. For
example, any system whosc signals are built up from arbitrary finite numbers of
random factors within each population achieves strong global consensus; cf. {12,
Section 2]. Strong global consensus is a generic property. The main facts are
summarized by the following corollary.

CoroLLARY 1. dny svstem of type (1) which satisfies properties (I){{I\V). and
whose stgnal functions b; possess finitely many local maxima, or intervals of local
maxima, within the range of x; , achieves strong global consensus. In particular, if
the signals are real-analvtic functions, then strong global consensus is achieved.

The following corollaries are found when Theorem 1 is applied to com-
petitive mass-action networks and to Volterra-Lotka systems,

CoRrOLLARY 2. Let system (4) possess signal functions f,(x;) that are continuous,
monotone nondecreasing, and have piecewise derivatives for x;€[0. B,
i =1, 2,...,n. Then sveak global consensus is achieved. If moreover, x7'f,(x,) has
finitely many local maxima, or intervals of local maxima for x;€(0.B,).
{ =1, 2,..., n, then strong global consensus is achieved. :

Remark. Corollary 2 generalizes the limit theorems in [4].

CoroLLARY 3. Let system (8) with E,(x) = F\(x,) Gi(x;) have a continuous
Dy(x) which is positive unless x; = Q; continuous functions G{x;) that are positive
except possibly at x; = 0, and which possess piecewise derivatives; continuous
Sfunctions fi(x,) and Fy(x,) such that fi(x,) Fi(x,) is monotone nonincreasing
with piecewise derivatives; and let (15)~(17) hold with the identifications (9)—(11).
Then weak global consensus is achieved. If, moreover G(x;) has finitely many local
minima, or intervals of local minima, within the range of x(t), then strong global
consensus is achieved.



TOMPETITION, DECISION, AND CONCENSUS 477

Proof of Theoreni? The theorem will first be proved for the case that all
b; = b. This proof can then be adapted to the case of arbitrary b, . First one notes
by (15) and (16) that if x(0) > 0 then x,(t) >0 for £ >> 0 [7]. If x(0) =0,
population ¢; can be. deleted from the network without los= of generality. Hence
we restrict attention below to the case of positive initial data. T'he proof consists
of three stages: I. Ignition, II. Jump Sequence (or Iterated Local Decisions),
and IT1. Coda (or Global Consensus).

I. JDieﬁine the functions

M) = b(x(8)) — c(x(t)) 19
and
M(t) = max{M(t): k=1, 2,..., n). {20)
““Ignition” means that cither M(t) <O for all # > 0, or that there exists a
t = T such that ]
M(T)>0 implies M@H)>0 fort>T. . (2

To prove (21) it suffices to show that if at any time t = .S, ;1‘1(S)“_=~ 0, then
M(S) = 0. By (19), if M(S) = M(S), then '

)

M(S) = b'(x(S)) #(S) — 2, ——(\(b)) (S)

Since #,(S) = 0 = £(S), ¥ = 1, 2,..., n, (1) and (18) imply that AI(S) >: 0

By the ignition property, either all &; < 0 for # > 0, or there exists a time
t = T after which some x;, perhaps a different one at different times, is always
increasing. Tn the former case, all x,(c0) exist, since all x; are monotone decreas-
ing and. by (16), all x; are bounded below by 0. It remains only to consider the
latter case. Below we therefore assume that M(0) = 0 without loss of generality.

II. By (16) and (17), there exists a B > 0 such that x,(t) € [0, B] for all
i=1,2,.,n and t > 0. Consider the graph of A(w) in the interval [0, B].
Decompose the graph into ascending slopes A; and descending slopes Dy as follows.
Consider successively larger & values, w > 0, until for some w = W, b'(W) # 0.
Suppose for definiteness that & (}¥) > 0. Then the ascending slope .4, is the
maximal connected set of w values, including w = 0, wherein #'(w) > 0. The
descending slope D, is the maximal connected set in [0, B]\— 4, that is contiguous
to A, wherein ¥(w) < 0. The ascending slope 4, is the maximal connected set
in [0, B] — (4, U D,) that is contiguous to D, wherein b'(w) > 0. And so on. Also
define H; = 4,U Dy, to be the jth hill in the graph of b(w). Let p, =
max{w: w € 4} be the peak of H; , and v; = max{w: w € D;} be the valley of H; .
Also let P, = b(p,) be the height and V; = b(v,) be the depth of H; . Speaking
intuitively, b(x,{t)) is the height of x; at time ¢, and P, is the height of the jth hill
peak.
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A jump is said to occur from i to j at time ¢ = T if there exist times S and U
such that M(t) = M(t) for S <t < T and M(t) = M(t)for T < t < U.The
set of jump variables | = {i: M(t) = Mt) for some ¢t 2> 0}. The set of persistent
jump variables J© = {i: M(t) = Mt) for some t =1, , k=1,2,.., where
limy . t; = o0}, The set of j-persistent jump variables J= = {i: M(t) = M(t)
and x{t) € I, for some t =t , k =1, 2,..., where lim;._,, t;; = co}. When we
say that a jump occurs from an { € J;* at time t == T, we imply that x(T)e H,
at time 7. Otherwise expressed, let I(t) be the index 7 such that M (t) = M(t);
that is, M(t) = M,(t) for t = 0. Also define y(t) = x)(t) for t = 0. To say
that a jump occurs from an f€ J;® at time ¢ = T means that y(t)e H; just
before I(t) changes value at time ¢t = T

To test when a jump will occur from ¢ to j at time ¢ = T, suppose that
M{T) : M{T) = M(T). A jump will occur from i to j if M(T)> M(T).
Since

M{T) = b'(x(T)) afx(T)) M(T) — (T, (22)

and
M{T) = b'(x{T)) a(=(T)) M(T) — «(T), (23)

where M(T) 0, a jump occurs from 7 to f if
b'(x(T)) a(x(T)) > b'(x{T)) afx(T)) (24)

Since a,(x(T)) and a,(x(T)) are nonnegative, a jump can never occur from an
ascending slope to a descending slope.

Case 1; Finitely Many Jumps. If only finitely many jumps occur, then
after a finite amount of time goes by, there exists some 7, say 7 = 1, such that
thereafter M, = M > 0. By (1), (15), and (16), %, = 0, so that x, is monotone
increasing. By (17), x, is also bounded above. Hence the limit x,(c0) exists.
This limit lies on some ascending or descending slope. Suppose that it lies on an
ascending slope, say Ay for definiteness. We will now prove that lim,_. ¢{x())
exists and gquals 6* = b(x,(0)).

Suppose not. Whenever %, = 0, b(x,) = c(x) Thus if ¢(x(¢)) does not converge
to b*, there exists a sequence of increasing times ¢, with lim, ., #;, = o0 such that

b* — c(x(ty) > 26, k=12, (25)

Now note that ¢(x(t)) is uniformly continuous for ¢ >> 0. This is true because x(#)
remains in a compact set R; ¢(x) is continuous, and hence uniformly continuous
for x€ R; and, by (1), there exists a constant M, 0 < M < 0, such that
[ (0] < ]il for all t > 0 and i = 1, 2,..;, n. By the uniform continuity of ¢(x),
for every € > 0 there exists a 8 > 0 such that x, y € Rand | # — ¥ | < 8 implies
| e(x) — e(y)] < e. By the mean-value theorem, |x(t) —x(s)| < M|t —s].
Consequently for |1 — s| << 8M2, | ¢(x(t)) — e(x(s))| <'¢, which proves the
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assertion. Thus by (25) there exists a 8 > 0 and a sequence of nonoverlapping
intervals (Y, Z,] such that Z, — Y, > B for k= 1,2,..., and

b*—c(x(t) = te O (Vi) Z. (26)

k=l

Furthermore, since x, is monotone increasing, (15) along with the continuity of
a,(x) for x € [0, B]*, shows that there exists a ¥ > 0 such that

a(x) =7y (27)

when x, is close to x;(e0). By (1), (26), and (27)

i‘l([) = €y forte o [)"g , Zk]. (28)

k=1

Since x, is monotone increasing, (28) implies that x,(c0) = o, which is impos-
sible. This contradiction proves that

lim o(x(1)) = b 29)

Lemma 1 below completes the proof.

Case 2. Infinitely Many Jumps. If jumps do not cease after a finite amount
of time, delete from consideration all hills H; whose J,® sets are empty; that is,
let the process continue until no jumps ever again occur from hills with empty
J;= scts: Relabel the time scale so that ¢t = 0 after all such jumps have occurred.
Relabel the hills H; with nonempty J;© sets so thatj < kiff P; > P, .

The idea of the argument below is to show that given any hill, after a sufficient
amount of time goes by, all variables get trapped either to the right or to the left
of its peak. Since this is true for any hill, eventually each variable gets trapped in
the “bowl” between a contiguous descending slope and ascending slope; in
particular, eventually no jump variable can cross over a peak from an ascending
slope to a descending slope. In general, the x; do not get trapped in their bowls

all at once. First they get trapped in some interval E{j} = {ufi , v{}) whose
boundary values have the largest peak heights P, = b(u{‘k’ = b(v“’) later they
get trapped in some interval Ef) = [u&’ , ‘v;}c’ ) whose boundary values have the

largest or the next-to-largest peak helghts b(u"’) and b(vg‘k’) and so on. These
intervals are the nested dynamic boundaries that were discussed in Section 1.
The “bowls” are the final set of dynamic boundaries that are established. After
the variables get trapped in their bowls, the decision process is essentially
complete. Thereafter, (d/dt)b(y(t)) changes sign at most once, so that at all large
times &(y(t)) is monotonic. This Lyapunov-like behavior is then used to com-
plete the proof.
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The above heuristic description tacitly assumes that there exists a finite series
of peak heights in the graph of (w). In any “physical’ example, this will be true.
In general, however, certain peak heights can be limit points of other peak
heights. The proof is extended to such cases by using the fact that these “‘infini-
tely wiggly hills are arbitrarily small.”

First we will consider the physically important case. Suppose that the suc-
cessive peak heights P, > P, > P, > .- > P, form a discrete series such that
only finitely many hills attain any given height. Below we will assume for defini-
teness that one hill H; has height P, , but the argument immediately generalizes
to the case in which finitely many hills share the same height.

Consider hill 1, . To start, suppose that there exists a f = S; when

x{S)elp,, B] forallie J,=. . (30)

x(e(p,, B) foralli =1,2,.,n and t23S,. (31)

This is truc because, if some x,(t) = P; at a time ¢ > S, then b(x{1)) = P, >
b(x,()) for all j5:i. Thus My(t) = M(t) > 0 and %(t) >0, which keeps
x,(t) €[, , B). Given that (31) holds, we now show that either jumps occur only
among i € J,*, while x; € D, , or there exists a ¢t = T, such that

b(x(t) < P, foralli=1,2,.. and t>=T,. o (32)

This alternative is true because no jump can occur from an i € J;= to any hill H;,

J # 1, while b(x;) = P, . Since the /€ J,;= are persistent jump variables, either

jumps continue to occur among the i € J;* on D, , or eventually y{7) enters the
set (J;5¢ H; . In the former case, the heights b(x,) at successive jump times are
monotone decreasing, since b'(w) <0 for we D;, and whenever M,(t) =
M(t) > 0, %(t) > 0. Thus there exists a limiting height b} to which the jump
heights converge. In the latter case, there exists some time ¢ = T, at which
¥Ty) e Ujse H; . Consequently

bx(Ty)) < P, foralli=1,2,..,n (33)

It follows from (33) that (32) holds. To see this, suppose that time t = L] is
the first time that some b(x,(¢)) = P,. Then M(U,) = M(U,) > 0, so that
#(U,) = 0. Moreover, by (30), either x(U,) = p, or x(U,)€ D,, so that
b'(x(U,)) < 0. In both cases, (d/dt) b(x,(Uy)) = b'(x(U,)) £(L,) <0, which
proves (33).

To summarize the above argument: If (30) holds at some ¢t = Sl , then either
bY exists, or there exists at = T, > .S, such that (32) holds. It will be seen below
how to complete the proof if bF exists. Hence suppose that (31) and (32) hold.

Now consider H, at times t > T, . Suppose that there exists a t = S, > T
such that’

x(S,) €[pa, B) forallie J,=. (34)
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Then
x{t)e[p,, B) foralli=1,2,..,n and 13 S,. 35)

Property (35) follows from (34), since if some x{t) = p, at a time ¢ > S,
then by (32) b(x,(1)) == P, = b(xy(t)) for all 72 1. Thus M(t) - = M(t) = 0 and

£(1) = 0, which keeps \,(t) €[p,, B]. From properties (31) and (35), we will
conclude that either a limiting helght b¥ analogous to b} exists, or there exists a
time ¢t == T, such that

b(x{t)) <P, foralli=1,2..n and

t=T,. 7 (36)

This alternative is true, because by (31) and (35), so long as jumps occur at
heights that excced Py, they can only occur in D, U D, . The heights at suc-
cessive jump times are then monotone decreasing, whence b} exists. If a jump
occurs at a height <P, at some time t == T, then (36) holds. This is scen by
considering the first time ¢t = U/, at which some b(x,(U,)) == P;. Then M (U) =
M(L,) >0, and by (32) and (35), either x(L7) = p, or x(L)e D, U D,.
In both cases, (d/dt) b(x,(U,)) < 0, thereby proving (36).

This argument can now be continued on hills of successively shorter heights
to derive the following alternative after considering hill H,,: Either a limiting
height & exists, or there exists a t = T, such that

Wxi() < Ppsy foralli=1,2,..,m and t>7T,. 37

The argument is continued until we reach the first hill H, (possibly r == 1) on
which there is no time at which all x,(¢) € [p, , B] for all & J,=. In this case, we
will conclude that there exists a time t = S, such that, for each i = 1, 2,..., n

x()e[0,p,] fort>=S, (38a)
or A '
x(t)el[p,,B] fort>=S,. (38b)

This follows from the fact that if.x,(S,) e{p,, B], thén x{tyel[p,, B] fort > S,.
This conclusion is due to (37), since lf x{(S,) =p, with S, = T,_,, then
M(S)=3(S,) =0 and’ thus 2(S,) >

Given that (38) is true; it follows that elther a limiting hught b} exists, or
there exists a f = T, such that

oxi(1) < P, fori=12,..n and t>=T,. 39)

This can be shown as follows. Consider any jump sequence that starts with
M1 e .d, and b(¥(1)) > P,,, at some time ¢t >-S,. By (37) and (38), if such a
jump sequence does not terminate, then y(t) € 4, at all future times. This is
because, by (38), the jump variables on .4, cannot cross to D, , and the onlv
jump variables with b(x,(t)) > P,,, that are not on 4, are on )], Dy, and no
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jump can go from an ascending slope to a descending slope, by (24). If the jump
sequence doés not terminate, then a limiting height exists since the successive
jump heights are monotone increasing on 4,. If the jump sequence does
terminate, then there is no persistent jump-variable x,(t) € 4, such that b(x,)) >
P, after some time clapses. In this latter case, continue the argument on the
set ;.1 Dj to show that either a limiting height exists, or (39) holds.

Now consider hill f1,,, . It is clear that the above argument can be repeated
to conclude that cither a limiting height exists, or there exists a t = T, such
that : '

b(x(1)) < P,y  foralli=1,2,.,n and ¢>T,;: (40)

If there are only finitely many hills on the interval [0, B]. then the above

‘argument can be applied to each successively shorter hill until all hills are

exhausted. Thus, after a finite amount of time goes by, cither a limiting height
exists, or no jump variable can cross a peak. In the latter case, each variable
cventually gets trapped in a “bowl]” between a contiguous descending slope and
ascending slope.

Consider the case in which all variables eventually get trapped in their bowls.
After this happens, what kinds of jumps can occur? Jumps can occur among
descending slopes. - ‘T'he successive jumps then occur at successively lower
heights. If this goes on indefinitely, then a limiting height exists. Jumps could
instead occur among ascending slopes. The jumps then occur at successively
higher heights. If this goes on indefinitely, then a limiting height again exists.
Finallv jumps can occur first among descending slopes until a jump occurs to
some ascending slope. Thereafter only jumps among ascending slopes can occur,
because no jump variable can continuously cross over a peak from an ascending
slope to a descending slope, and no jump from an ascending slope can ever occur
to a descending slope. In all cases, after a finite amount of time goes by, the
successive jump heights converge monotonically to a limiting height. Indeed
b(¥(#)) is monotonic at all large times.

Hl. To complete the proof, given that only finite many hills exist, we
must consider the case in which a limiting height is approached either on
ascending slopes only, or on descending slopes only. Suppose for definiteness
that, there is a jump series among ascending slopes as f — oo; then b(y(?)) is
monotone nondecreasing, and the successive heights at which jumps occur
monotonically increase to 6*. We will now use this fact to prove that lim,_. ¢(x(f))
exists and equals b*. Then the proof can be completed by using Lemma 1 below.

‘The argument proceeds bv eontradiction. Suppose that c(\(t)) does not
converpe o 5*, Jince M(t) > 0, it follows that - :

b* = b(y(t)) > e(x(t))- (41)
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?‘hus there exists an ¢ >0 and a sequence of increasing times {t,} with
lim,_.. t, = oo such that

b* — 3e = c(x(1y)), k=1, 2,... (42)

Since c(x(?)) is uniformly continuous for ¢ > 0, thére exists a 8 >0 and a
sequence of nonoverlapping intervals [Y,, Z,] such that Zy— Y, =B for
k=1,2,. and

B —2zdxn), teUV,Z) T (43)
Jem1 : .

Givc.n any !z, choose a j such that ¥(17) = x,(Y}). Denote this Fbys= Jk);

that is, ¥(17) = x,4y(Y). For & sufficiently large and j = J(k),, .

‘ ' b* — b(x(Yy)) < ¢f2. S (0]

Each function b(x;(t)) is uniformly continuous in ¢ 3> 0 for the same reason
that c(x(t)) is. Consequently there exists a y, 0 < y < B, such that for all large k&
and j = J(k),

0B —b(x() <e if te[V,,Yi+9y] (45)
Thus by (43) and (45),
' bx1)) — clx(t)) =€,  1€[Yy, Yi+ ). (46)

.Sincc also each x,(t) is bounded away from zero for telY,, Y.+ 9], (15
implies that there exists a § > 0 such that

a(x(1)) =28, te[Yy, Y4 ) (47)
Putting (46) and (47) together shows, by (1), that
xi(t) = b, te[Y,, Yy 4], (48)
or unat
O Z (Vi) +8e(t — Vi),  te[Yy, Yi+y] (49)

Thus x,(t) increases at an at least linear rate, that is independent of &, across an
:)nteg'al of length at least Sey, when te[Y,, ¥, + y). Denote this interval
Y Y. :

Now choose an x; such that j = J(k) at infinitely many values of k. This x;
traverses infinitely many of the intervals Q, . However, x; is bounded for all
t > 0. Thus the sets Q. such that j = J(k) must overlap as & — co. More pre-
cisely, there exists an infinite subsequence k, < ky < ky < ++- of k’s such that
J = J(k) and the closed interval R; = (\>_, 0, has positive length. Since
lim,., 8(¥(2)) = b*, (45) holds for any ¢ > 0 if E is chosen sufficiently large
Consequently given any € > 0,

0<b*—bw)<e if weR,. (50)
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That is, b(w) == b* if we R;. Thus at any sufficiently large time 7, such that
= J(k), it follows that

b(y(Yy) = b(x[(Yy)) = b*. (51

In other words, the maximal variable attains the maximal height 6* at a finite
time Y, . Thereafter, no further jumps can occur, since b(y(t)) is monotone
increasing. Thus all jumps cease after a finite time, and the proof can be
completed as in Case 1, which shows that, indeed, lim,., ¢(x(t)) = b*. This
completes the proof when all b; == b, except for the application of Lemma 1.

Given arbitrary b, , the same proof goes through because the original proof is
“local” and “‘exhaustive”. By this we mean the following. The proof when all
b; = b orders the hills by height and considers each hill in its turn. The position
in [0, B] of any given hill relative to other hills in the graph is immaterial. One
simply has to define sets of persistent jump variables on the hill. In this sense, the
proof is **local”, because one can worry about one hill at a time. The proof is
*“‘exhaustive”, because by considering all the hills, one can prove either that a
limiting height exists, or that the variables eventually get trapped in their bowls.
'T'he latter case then also implies that a limiting height exists. When the behavior
near the limiting height is considered, all that matters is that each limiting
variable is on an ascending slope, or that each limiting variable is on a descending
slope. Where thesc slopes are to be found is irrelevant—again, a *local”” condition
is studied.

To prove the theorem given arbitrary b;, it suffices to consider all the hills
on the graphs of all the b; . Order these hills by height, and then proceed exactly
as in the b; = b case. After one exhausts all these hills, one automatically exhausts
all the hills in the graph of each b, , so the proof can be completed in the same
fashion.

Now we-indicate how the above arguments can be adapted to cases in which
there are infinitely many hills on [0, B]. Order the hills so that P;; > P, == Py -
By hypothesis b(w) is either continuous on [0, B], hence uniformly continuous;
or 5(0) = o0 -and b(w) is uniformly continuous on [8, B] no matter how small
8 > 0 is chosen. Thus given any interval [§, B] and any ¢ > 0, there exists in
[8, B] only finitely many hills H; such that P, — I, >

First consider the case in which no height P, or depth I is a limit point of
other heights or depths (including the case where P, = +0). Then
limy, o(Py — V) = 0. Since also the sequence {P,} is monotone decreasing and
bounded below, limj., Py = lim,., Iy . Consequently, as t— oo either the
jumps are restricted to finitely many hills, which can be treated as above, or (40)
holds for all r > 0, and !

lim b(y(1)) = lim P~ ' (52)

By(52), a limiting height exists, and certain x; must keep moving onto shorter
hills as ¢ — co. Since these hills approach a limiting width of zero, and since
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at some time t > T,. Then, by (56), %(t) > 0. Consequently, x(t) mono-
tonically increases towards the limit x,(c0) unless there is a time ¢t > T, at which

bilxi(1)) == e(x(0)) + € (58)

There must be such a time, since otherwise d/xyo0)) — c(x(c0)) = ¢, and

thus x,(c0) = oo, which is impossible. Consider the first time t = T > T at
which (58) holds after an interval of times during which (57) holds. At this time,

0> L b(x(T) = BT £4T) (59)

By (56). £(T) = 0, and thus b'(x,(7)) < 0, so that x(T) is on a descending
slope, or plateau, of b;. Because (56) holds for all ¢ 2= T\ it follows that
x{(t) = x(T) for all t > T, since whenever x(t) = x,(T), (56) and (58) imply
that £,(f) > 0. The above argument can now be itcrated. After (57) holds during
some time interval, there must be a time when (58) holds while x; is on a des-
cending slope or plateau. Letting T; be the jth time at which (58) holds after
(57) holds, it follows that x,(t) > x,(Ty;) for t = T;;, and that x(T;) <
x,(Tw) < ---. If there are only finitelv many Ty;'s, then there exists a time U,
such that .
bi(xi(1)) < e(x(0)) 4 € forallt = U, (60)

Otherwise, there must exist infinitely many hills in the graph of b;. Since x;
is bounded, and bounded away from 0, and b, is continuous on the compact
set within which x; fluctuates, b, is also uniformly continuous. Consequently,
given any §, there exist only finitely many hills in the graph of b; whose width
or depth is greater than 8. If x; traverses infinitely many hills on which (58) holds
after (57) holds, it is eventually forced onto arbitrarily small hills whose heights
P, and depths I, both approach ¢(x(0)) + ¢, by (58). Thus at all large times,
by(x,(t)) — c(x(t)) = €/2, which again implies the impossible conclusion that
x,(o0) == 00. Consequently, given any € > 0, therc exists a time L, such that
(60) holds. A similar argument with reversed inequalities allows us to conclude
that there exists a time 7, such that

bx(t) = e(x(00)) — ¢ forallt > (61)
Since both (60) and (61) hold for any ¢ > 0,
lim bi(x(1)) = (x(e0))- 62)

The same argument holds for all { =1, 2,.., n. Consequently, system (1)
achieves weak global consensus. Morcover, since all the limits b,(x,(00)) exist and
equal c(x(00)), it follows that all the limits £,(co0) exist and equal 0. Thus whatever
oscillations occur in' the x,(f) become arbitrarily slow as ¢ — co.
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From (62), it follows that the limit x,(c0) exists unless there exists 2 nontrivial
interval W, of values throughout which b,(w) = b*. If x(t)e W, at all. large
times, then x(t) might oscillate back and forth across W, as £ — o0 th‘hout
contradicting the fact that b(xi(c0)) = b* = c(x(o0)). By (1), x,(t) can oscillate
back and forth across 1, at arbitrarily large times only if c(x(t)) oscillates above
and below b* at arbitrarily large times. Since M(f) = B(t) — ¢(x(t)) 2 0,
¢(x(1)) can only oscillate above b* at arbitrarily large times if B(2) als? gxceeds b*
at arbitrarily large times. In particular, if B(t) gets trapped on ascendmg.slopes at
all large times, then this cannot happen, since then B(t)—mong;onicall.y increases
to b* while B(t) = c(x(t)). Consequently, all limits x,(00) exist in this case.

Moreover, if every b; has only finitely many hills above the height b~, then
again all limits x,(o0) exist. To sce this, wait until all the x; have crossed over all
the peaks of those hills that they shall ever cross. Suppose that this occurs b?forc
time t = T. Because, bj{x,c0)) = b*, the following alternative holds: Either
by(x (1)) = b* for all ‘t = T, or b(x(t)) < b* for all £ > T. Only those x,(1)
for which b(x,()) = b* can cver equal y(t) at arbitrarily large times. Henceforth
we restrict attention to these persistent jump variables. Since all persistent x,(t)
have crossed their last hill before time ¢ = T, and by(x{t)) = b* = b,-(x,-(oo)),‘it
follows that all persistent x(t) are on descending slopes for ! > T, that is,
bi(x (1)) <O for ¢ > T. Using this fact, we will prove that Io M(t)ydt < oo.
This latter inequality implies that all limits x;(00) exist; see [l!, Theorem 1].

Since v() is restricted to descending slopes for all ¢t > T, B(r) is-monotonc
decreasing for ¢t >+ T. Consider the trajectory of a given x,(t) at all times when
v(t) = x(t), t => T. Suppose for definitcness that there is a sequence Uy,
Uyy o of nonoverlapping intervals of time, whose union is L, Sl‘lch that
¥(t) = x,(t) only if tg & .Suppose moreover that Uy, = [Sir» Tux) W he.nevcr
1) = x(t), it follows that %,(f) > 0. Consequently x{Ti) 2 xi‘(S,-k). It is also
true that x{S; k1) 32 *(Tx)- This follows from the fact that x; is trapped ona
descending slope, and that B(t) <0 for all ¢ = T. Thus the nonoverlappmg
intervals of time Uy, generate nonoverlapping intervals [x,(Su), x{(T)) in the
range of x;. Since x; is bounded, the total length of these ifxten'als, nar'ncly
S [xd Ti) — x(Six)), 1s finite. This total length can also be written as Il’a X df,
which can be written as f,_,‘ a,M dt. Since each x; is bounded away =Cfrom zero, it
follows that [y Al dtis finite for every persistent x; . 0}J—lox\'ever, J7 Mdt is the
sum over a finite number of these integrals, and thus fo Mdt < co.

Each limit x;{c0) therefore exists unless b; has infinitely many hills H, , H,,..
whose peak heights Py, P, ,... exceed b* and lim,,_. P,, = b*. Mo:jeovef', xi(t)
must reach cach of these hills as £ — oo, and x,(¢) = y(t) for some timc at
which x,(t) is on each hill. Otherwise ¥(t) would get trapped on descending
slopes at all large times. Also, by the uniform continuity of b;, the depths V;,
V, ... of these hills also satisfy lim,, .0 Vin = b*, and there exists a w* such that
the peaks and valleys of the hills converge to w* as m— 0. .

First consider the case in which b;{x(t)) > b* at all large times, despite the
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fact that b; has infinitely many hills. Consider times t == T at which ¢(¥(T)) = b*.
There must exis}. infinitely many such times, approaching infinity, at which
é((T)) < 0, so that ¢(x(t)) can oscillate around b* infinitely often. At every such
t = T, some variable, say x; , satisfies y(T) = x,(T). Thus %(T) > 0. Moreover
the x, for which b,(x/(T')) = b* satisfies #,(T) = 0. Since

Mm:i%wmmm
where all

oc
ox,,

((T)) >0,

there must exist an x,,, with & % 4, j, such that ,(T) < 0 at infinitely many of
the times T. This justifies the oscillation condition.

In the remaining case, there can exist b; which oscillate above and below b*
on infinitely many hills. Then a similar argument holds: In order for x; to get
across infinitely many hills, there ‘must exist infinitely many ¢ == T, approaching
infinity, at which b)(x(T)) > b*, c(x(T)) =b* and é(x(T)) < 0. Since
%;(T) = 0, there must exist an x, such that %(7T") < 0 at infinitely many values
of T. Thus all x,(c0) exist, except possibly in those cases wherein the oscillation
condition holds.

4. Finiye Jump CoNDITION

The proof of Theorem 1 does not rule out the possibility that infinitely many
jumps occur, say if a limiting height exists. Theorem 1 of [12] describes systems
of the form i

%; = a(x) g() [b6(x) — (=)}, (63)

in'which only finitely many jumps occur, and in which the jump trends through
time can be analyzed. This theorem depends on two properties that do not
generally hold in (1): First, because of the form of equation (63), the variables
are ordered in time; that is, they can be labeled so that x,(#) < x,(t) < - < x, (1)
for t > 0. Second, a self-similarity condition is assumed to hold between the
hills of the graph of b(w). This condition requires that the highest hills of the
graph are also the speepest hills. Self-similarity explicates the intuitive idea that
each hill-is due to averaging over some random factor that is distributed across a
subpopulation of each population, and that the averaging process will automatic-
ally produce a correlation between the steepness and height of the hills in many
cases. Theorem 1 above indicates that neither the ordering nor the self-similarity
is necessary to produce global limits.
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The question of when a system has only finitely many jumps is of -cons’i’derab‘lc
physical interest, since after all jumps cease the system has ”de:cndcd. on its
asymptotic pattern. There exist systems more g‘ene'ral than (63) in which only
finitely many jumps can occur even if sclf-simllanty. does not hold. In these
systems, the infinite sequences of jumps towards a limiting height are ruled out
by imposing.a dominance condition on the possible jumps between slopes. This
dominance condition is weaker than self-similarity because there need not be
any relationship between the relative height and steepness of a hill.

Tueorem 2 (Finite Jump Sequence). Given any n 2> 2, consider the systems
3 = a(x) gi(x,) [bx;) — e(¥)], (64)
tchere x == (%), Xg yey Xp) @nd i = 1,2,..., n. Let the following hypotheses hold:

1. Smoothness:
(a) a(x) is continuous for x = 0;
(b) gixy) is continuous for x; = 0;
(¢) by(x;) is either continuous with piecewise derivatives for x; =0, or is
continuous with piecewise derivatives for x; > 0 and b)(0) = co;
(d) c(x) is continuous with piecewise derivatives for x = 0.

2. Nonnegativity:

ax)>0 if x=0, (65)
gd{x) > gd0) =0, x>0, (66)
and
J-A _dt.v__. = 0. (67)
o &i(w)
Boundedness
lim sup by(w) < ¢(0, 0,..., ,..., 0,0), (68)

cwhere “co” is in the ith entry, i =1, 2,..., m.
4. Competition:
o >0, k=1,2,.,m (69)

ox, ©

5. Slope Dominance: ‘

Let there exist finitely many ascending slopes A, and descending slopes D, on

the graph of each function b(w), w € [0, B]. Given any pair A, and A, of ascending
slopes, let the slope functions s(w) = gw) bi(w) satisfy either

sfwy) = si(wr) if  bw;) =byfw) and w;e Ay, wE Aim (702)
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oo M
siw) <sfw) i bi(w) =b(w) and w;E Ay, wedn.  (70b)

Given any pair D;, and D,,, of descending slopes, let the slope functions satisfy either

s;(wg) > si(tr) ‘."f 1’1("’.1) =.,Bz(&"x) and w;e Dy, w €Dy, (71a)
or ’ : . : v
» () <l ] Heo;) =bifw;) - and- w; €Dy s —20,€ Dype— (71b)

Then given any nonmegative initial data x(0), finite nonnegative limits x(co) are
" approached after finitely many jumps occur.

Proof. The proof proce§d§ as in Theorem 1 until the case of a limiting
height is considered. Jumps then occur between finitely many variables on (say)
ascending slopes. By (24) and (64), a jump can occur from { to j at time T only if

sfx(T)) > s(x(T)  and  bi(x(T)) = by(x,(T)) - (72)

Thus by (70), once a jump occurs from a variable on a given ascending slope to a
different ascending slope, a jump can never return to the original variable. Since
these are only finitely many variables, only finitely many jumps are possible,
and the proof can be completed as in Case | of Theorem 1.

When Theorem 2 is applied to a gencralized Volterra-Lotka system of the
form

¥ = Di(xy) [l = i—, Si(x) Eki(-"')] ) (73)
k=1
with E(x) = Fi(x) Gix;), the slope function
) = DADCE o

By (70) and (71), sj(w;) and s,(w;) are compared at values w; and w; such that
by(tw;) = by(w;). Since bw) = GrY(w) in this case, the relative sizes of the
functions S;(t;) = Dj(w;) Gj(w;) and Siw;) = D(w;) G’'(w,) must be compared
at values of w; and w, such that G;(w;) = Gy(w.). T his observation leads to the
following corollary.

COROLLARY 3. Let system (713) with E(x) = F\(x) Gx,) satisfy the condi-
tions of Corollary 2. In addition, suppose that there exist finitely many ascending
slopes Ay, and descending slopes D of the functions G{(w), w € [0, B} Given any
pair Ay, and Ay, of ascending slopes, let the slope functions S{w) = Dyw) Gi(w)
satisfy either '

Sfwy) = Siw) i Glw) = Gw,) and wjedy, we€dm - (753)
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or
S(w) < Sw) f  Giw)=Giw) aid w€As, ©EAm: (75b)

Given any pair Dy, and Dy, of descending slopes, let the slope functions satisfy
either

S(w) = S(w) i Gfw)=Cw) and weDu, wmEDm (16
_or
S(o) < Siw) i Giw) = Giw) and w €D, @€Dim. (16)

Then given any nonnegative initial data x(0), finite nonnegative limits x(ov) are
approached after finitely many jumps occur.

5. MAXIMIZING PREFERENCE AND CONTRAST

Since by(xy) = G;'(x,) in the Volterra-Lotka systems (73), !f)cal r,nini‘ma of
G, are local maxima of b; . Thus the fact that dynamical bo’unda.nes are switched
in carliest at the abscissas of the highest peaks of b; translates into the fact that
dynamical boundaries are switched in earliest at the lowest valleys of G, . Each
G.,- can be interpreted as a preference function, since the. vector function G(x) —=
(Gy(%1)y Galx2)>--+s G.(x,)) rank-orders the strength of sngnals‘fr.om any popula-
tion v, to all the populations vy, Uz ;- Tn when the system is 1n state X. Thus
the above results proves that the dynamical boundaries are switched in at
successively highly values of preference as ¢ — oC. Once x; crosses thF 10wes}
valleys of the preference function G;, it can never Cross them again. This
defines a statistical tendency for the system to try to achieve the largest prefer-
ence values that are compatible with its initial data x(0) and the structure of the
state-dependent preference order G(x). Thus these Volterra—Lotka systems tend
to maximize preference, just as the analogous neural networks (4) tend to
maximize contrast, other things equal. It would appear to be wrong. howf:ver, to
assume that a maximization principle could be used to express this trend in these
nonstationary systems, although the search for such a princi'ple is a.lwa)'s a'
tempting adventure. Such a principle is often associated w1t'h a Llapurfox
function in classical examples. In the present cxamples, the maximum function
b(y(t)) is not a Liapunoy function at all valucs (')f t>=0. How_cver, where on}l\_\:
finitely many hills exist, b(y(t)) becomes a Liapunov function after a!l't ¢
dvnamical boundaries have been laid down; that is, after all' the decn§nons
have already been made. This is true because b(¥(t)) is then either }'estrlcted
to descending slopes at all large times, or after one jump to an ascending sl(?pe,
is restricted thereafter to ascending slopes. In the former case, b(y(.t)) is a
Liapunov function at large times; in the latter case, —b(y(t)) is a Liapunor
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function at large times. Thus, after the initially nonstationary dynamics of
decision-making is over, the systemn then settles down towards a “‘classical limit”".
A similar trend occurs in learning networks; after the nonstationary phase of
learning is over, the network settles down to a stationary memory phase, which is
described by a stationary Markov chain [13). Such examples suggest that global
insights into the nonstationary processes suggested by biology require concepts
and methods that genuinely transcend those that have proved so useful toward
understanding essentially stationary phenomena.

1.
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