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Behavioral Contrast in Short Term Memory:
Serial Binary Memory Models or Paralle! Continuous Memory Models?

STEPHEN GROSSBERG!

Department of Mathematics, Boston University, Boston, Massachusetts 02215

This paper develops a model wherein STM primacy as well as recency effects can
occur. The STM primacy effects can be used to generate correct immediate recall of short
lists that have not been coded in LTM. The properties of the model are interpreted in
terms of explicit neural mechanisths. The STM primacy eflect is a behavioral contrast
effect that is analogous to the behavioral contrast that can occur during discrimination
learning. The adaptaticnal mechanism that accounts for these effects is also implicated in
data on reaction time, retinal adaptation, ratio scales in choice behavior, and von Restorfl-
type effects. Its ubiquitous appearance is due to the fact that it solves a universal problem
concerning the parallel processing of patterned data by noisy cells with finitely many
excitable sites. It is argued that the STM primacy effect is not measured in interference
experiments because it is masked by competitive STM interactions. These competitive
interactions do not prevent the L'T™M primacy effect from influencing performance. The
paper criticizes recent models of STM that use computer analogies to justifv binary codes,
serial STM buffers, and serial scanning procedures. Several deficiencies of serial models
in dealing with psychological and neural processing are overcome by a model in which
continuous STM activities and parallel real-time operations play an important role.

1. INTRODUCTION: SERIAL AND Brnary MEMORY PROCESSES OR PARALLEL AND
ConTiNnvous MeMORY PROCESSES 7

A great deal of experimental and theoretical work (e.g., Melton & Martin, 1972
Restle, et al., 1975; Tulving & Donaldson, 1972) has been done on problems;
relating to how learning subjects store data in short-term memory (STA) before it
5 transcribed into long-term memory (LTM) or otherwise transformed. Many
experimenta! findings have been interpreted, either explicitly or implicitly, in terms of
computer-like constructs, such as binary codes (Anderson & Bower, 1974; Atkinson
& Shiffrin, 1968), serial buffers (Atkinson & Shiffrin, 1968), and serial scanning procedures
(Sternberg, 1966). This paper suggests that the computer analogy has led to several
basic difficulties. It also suggests an alternative theory to explain how order information
it STM evoives in real time. This theory predicts a new experimental phenomenon,
debavioral contrast in time, analogous to the phenomenon of behavioral contrast in space
that occurs during discrimination learning (Bloomfield, 1969), and explains both pheno-
Tenz2 using collective properties of well-known neural mechznisms. The theory is
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illustrated by examples concerning frec recall, discrimination lcarning, reaction time,
perceptual adaptation, and von Restorff-type cﬂ'ec.ts. ' o

Discrete and serial memory models have an 1mmcc‘lmte appeal in situations where
behavioral responses are counted as they occur one at a time. However, discrete :md' serial
behavioral properties do not imply that the processes which control tl)Fxn are also dxscrc}c
and serial. Townsend (1974) has, for example, noted that the i"c:fctlon h.m.cs found in
the Sternberg paradigm do not imply a scrial. process by descnbmg stat.lstlcal pam.lhﬂl
processing completion times that are indistmgunsh.able f‘rom theu: serial processing
counterparts. It can furthermore be argued that accepting a.dlscrete se.nal.model preclgdcs
the study of some basic processes of learning and perception. Even in snmp'le behavioral
tasks, both continuous and discrete clements are evident, Mgny perce.pn'ons seem u?
be continuous; for example, colors or sounds seem to vary continuously in intensity and
quality. Yet the language with which we describ.e them seems to be n'luch more.dnsc:etc:
for example, letters such as A or B seem, in daily speech and listening, to bt: indecom-
posable units of behavior, and all of our language utterances seem to be built u'p.fn)r.n
finitely many such units. To understand the process ot: seeing a ?olor and descnbmg it
by language, we must face the problem of how Sf:emmgly continuous 1'c§)r'csentauuns
can interact, or be transformed, into seemingly discrete r.cprescn‘tatmm.a. We must be
able to discuss the “degree of continuity’ at all levels of this tx:anstorrfmtxon. .

The relationship between seemingly continuous and seemmgly discrete c.vents 15 a
deep one especially because the same behavior can secm to have el.ther type of 1cpres.clnkt;t
tion depending on how familiar it is to us. T he process of lcarr'lmg to walk or to ta x.:
illustrative. Before we can walk, attention is paid almost continuously to the ccv)mp.lex
cvoordinations that are required. Yet after we know how to wa-lk, much of th1's coordination
is automatic, so that we can simply start to walk, pay attention to f)ther thmgs, and thcr;
decide to stop walking. The control of walking cv'entually approximates a bmari/ ontot’
switch, except for some steering and object avoxda.nce. Thus the process of car.n.lr;g.
can alter the control of walking from a relativcly continuous representation to a relative }f
discrete one. A similar process occurs in many learning tasks wherein some form 3
“abstraction’’ occurs. Yet it would be wrong to belicv'e tha’t,, aff‘er su'ch a ‘t,ask is lcar:m .
its representation is “‘really”’ discrete rather than “seemingly or relatively dlscr.ctc,smje:
the brain waves that occur during familiar speech‘ or walking fluctuate cr;m.tumoue;;\i
through time across billions of cells (Donchin & Lindsley, 1969). _I\/([iorm_)vel the :0\:; :
spectrogram of familiar speech is an almost continuous flow of sound despite olur 11f fd -
sion that it is a series of discrete words (Lenncberg, 1967). In fact, an unfami xflr] :mii,l"
language does sound like an almost continuous flow of SOUl:ld. The p.ro.ce;;s'r.) ; n;t:
makes the sounds seem to be discrete by perceptually grouping them into learned units.

i ili ; in |
Thus if one accepts a binary representation of familiar events by fiat, then one must in |

principle miss vital ingredients of the learning process. In eﬂfects, the conscnsual impres-
sion of the event then blinds us to its functional representation. ' y

Similar considerations make it clear that even in tasks that appear setial, iUCh 15 .;c:lc
learning, important underlying control processes are paral‘lcil processes. For ;c.\.ut !.U‘;
the code that controls performance after a serial list is repetitively pr;v:r:txccd :m.‘ -no Jr i(:r
the individual list items. As Young (1959, 1961, 1963, 1968) notcd, if they were, prie
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wrial practice of a list A-B-C-D-... should yield marked positive transfer for later
«xrning of the paired associates A-B, C-D,..., but it does not. Horowitz and Izawa
:1963) suggested that more than one ttem can be the functional stimulus for a given
response in a serial list, in particular taat several iters preceding the TEeSpPONSse SCrve as
15 functional stimulus. This viewpoint illustrates the familiar idea that a series of items
an be chunked together (Miller, 1956) to form a new code whereby a series of hehaviors
can be more efficiently performed. Such a chunking process is based on the simultaneous
availability of all the individual units, and is thus a parallel process. .

2. Bowep SeriaL PositioN Curve 1N Free RecaLL

A basic datum about STM is the bowed serial position curve that is found in free
recall experiments (Fig. 1). When a subject repeats a sufficiently long standard list of
items in any order after hearing it once, the items near the beginning and end of the
iist arc performed earlicst and with the highest probability (Atkinson & Shiffrin, 1971).
The advantage of items near the list beginning is called a primacy effect, that of items
near the list end is called a recency effect. A computer analogy to explain these cffects
can be developed as follows; cf. Atkinson and Shiffrin (1968). Let a list ry , 7,,..., 7, of
behaviorally matched items be presented to a subject. It is supposed that each item is
either in an STM buffer, or js not in the buffer, at a given time. That is, assume that a
vinary code exists such that | is assigned to r, if 7, is in the buffer, and 0 is assigned to r;
ifr;is not in the buffer. If £ > 1 items are in the buffer at time ¢, one cannot determine
the order in which they entered the buffer by looking at their 0's and 1’s, since all & items

" that are in the buffer have the value 1. Thus a binary code carries no order information.

if there did not exist any internal trace of the order in which items occurred, there
would be no way to encodc this information in L'TM. Given a binary code, some mecha-
aism other than an item’s activity (0 or 1) is needed to code order information. A serial
STM buffer is therefore assumed to exist. Suppose that this buffer contains m serially
organized slots s, , $; ..., 5, . The first item 7, enters 5, . When r, occurs, it enters 5
and displaces 7, from s, to s, . Then r, displaces 7, from 5, to s, and r, from s, to s,.
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Fic. 1. Probability and order of recall in free recall experiment.
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One can then tell which items occurred first by testing their relative positions in the buffer,
The above process continues until m items are presented. Item r,,,, knocks 7, out of th.
buffer from slot s,,, and each successive item climinates the earliest remaining item
from the buffer at slot s, . In all, at any time there will be 2 block of successive items in
the buffer, each with activity 1. Thus, given a binary code, a serially organized STM buifer
is needed to store order information.

The binary buffer concept does not, however, explain the data in Fig. 1. If the buffer
worked in a deterministic fashion, then each item could be perfectly performed, and each
item would be performed in its correct order. The two bowed curves in Fig. 1 would
be replaced by a horizontal line and an increasing straight line, respectively. Consequently,
the buffer cannot work in a deterministic fashion. It must work probabilistically, if it
exists at all. Introducing probabilities brings continuous variables back into the model,
aud creates a hybrid mixture of computer and probabilistic ideas. To expiain the recency
effect, this hybrid model mnakes two more related assumptions, both of which say that
the buffer works badly in a prescribed way. First, one says that the buffer is leaky in the
sense that an item can fall out of the buffer even before it reaches s,, . Since the probability
of falling out increases as a function of how long an item is in the buffer, this makes it
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fermed at all positions's; . The code is shift-invariant. An cven more demanding implication
is that all codes that are hierarchically built up from the STM buffer must also be shift-
invariant. To predict the recency effect from a binary code model, one is hereby led to
conciude that the buffer is so poorly designed that it leaks, but is so exquisitely designed
that its cntire hicrarchy of codes is shift-invariant. Usually this implication is ignored,
possibly because it is so disturbing, and possibly because probabilistic modelers often
overinok real-time constraints on performing individual items when they construct their
models, ,

Given the considerable machinery that is needed to produce the recency effect using a

. binarv code, we ask whether it is necessary? In particular, the enormous amount of
R R 1]

neural data’ on continuously fluctuating potentials, spiking frequencies, and the like,
leads one to question the binary assumption itsclf. If the binary code is abandoned, then
all of the above difficulties evaporate. Items r; can then have fixed internal representations
7, that are innate or built up by learning; their codes need not move around in a buffer.
Thus there need be no shift-invariant code. Moreover, the v; nced not be lcaky, and
each subject can possess a recency gradient, rather than assuming the recency gradient

. 15 a statistical property of a pool of subjects, as in a binary theory.

most probable that the most recent items are still in the buffer (Fig. 2). A reccucy effect

for the probability of being in the buffer is achicved by averaging across subjects. In
each subject, however, items that remain in the buffer all still bave activity L. Probabilistic
models of STM usually stop at this point. They fail to ask a crucial question whose
answer casts doubt on the binary code assumption. How is the probability distribution
of heing in the STM buffer translated into the real-time performance of individual items

PROBASBILITY OF RECALL

LIST . POSITION

F16. 2. Recency cffect is ascribed to lesser probability of remaining in a serinl STM butler
as a function of duration in the buffer.

Given the above framework, it follows that any item r; can be performed from any
huffer position s, in order to derive a recency effect from subject performance. Otherwise
there would be 0 probability of performance of r; from aay s; from which r; could ot
be elicited.

This latter assumption implies that the motor code for performing any item can be
read out from any buffer position. This imposes extraordinary demands on system
design, and makes a definite statement about neural dynamics. It savs that the motor
codes for eliciting an item, although not initially learned at ail positions ;, can he per-

In a continuous theory, a recency gradient exists if the mostrecent items have the greatest
STM activity in their representations v;, say becausc their STM activity has had less
opportunity to decay, cither spontaneously or due to interference. If greater STM
activities translate into faster reaction times of item performance, then a recency effect
in performance can be achieved without the need to move items around in a serially
organized buffer. In other words, if continuous STM activities exist, then they already
carry order information. Below we suggest some STM interactions that can occur at a
single level of input processing. Section 7 discusses how L'TM feedback from a higher
network level can modify these properties. The paper Grossberg (1977a) develops a
more complete theory in which several levels of STM and LTM processing are needed
0 self-organize corplex behavioral codes, maps, and plans.

How does a continuous mechanisin work? Suppose for definiteness that cach item r;
has an internal representation v; with STM activity x; . If the most rccently presented
items have the largest STM traces, and if r; is the last item to have occurred, then », <
% < ¥y < -+ < ;. The storage of these STM activities must be distinguished from
their overt rehearsal. How does rehearsal translate differential STM activity into a
prescribed order of performance, in particular the order r;, r,_;, 7, 4,..., r;, in the
case when x) < x5 < %, < - < a; ! In many ncural examples, a nonspecific rehearsal,
of arousal, wave can accomplish this. Such a mechanis;n simultaneously amplifies all
STM activities so that they can exceed an output threshold, or alternatively lowers the
output threshold until it is exceeded by the STM activities (Fig. 3). The largest STM
activity &, exceeds the output threshold first, and thereby clicits the fastest output signal.
This output signal controls performance of item 7, . If this signal was not self-terminating,
then perseverative performance of item r, would occur. Under normal circumstances,
the output signal generates fecdback inhibition that self-inhibits, or resets, its STM
activity, Then the state 9,_, is most active, so that its output signal can elicit performance
of item 7;_, . This process of STM arousal and reset continues until all of the items are
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F1c. 3. Readout of STM by a nonspecific rehearsal wave, and reset of STM by feedhack
inhibition.

performed in the order r;, r;_, ,..., 7, . The role of nonspecific arousal and reset as re-
hearsal mechanisms are further discussed in Grossherg (1977a). This paper also describes
how a list can be grouped into parts which can all be performed in their correct arder.

In the above example, the nonspecific rehearsal mechanism is a parallel operation
that sitnultaneously influences all representations v;, despite the fact that item performance
is serial. Serial properties do not imply serial mechanisms.

3. PriMacy EFrFECT

The binary model also implies questionable conclusions to explain the primacy cifect
of Fig. 1. The binary model assumes that a further operation is activated by items while
they are in the STM buffer. This operation is described as coding the item in LTM.
Although the binary model does not describe the LTM coding mechanism, cleariy
more coding can occur the longer an item is in the buffer, other things equal. Consequently
the earliest items can be coded in LTM better than more recent items. This LTM
process is claimed to produce.the primacy effect. Thus early items produce a primacy
effect via L'TM, whereas late items produce a recency cffect via STM.

Several types of evidence are compatible with this view. For example, if STM storace
is inhibited by an interfering task, then the primacy effect remains but the recency effect is
obliterated (Atkinson & Shiffrin, 1971). The similarity of primacy effects with or without
interference is 2 main source of the belief that STM does not contribute to primacy.
This is only indirect cvidence, however, and it is argued in Section 7 that competitive
interactions acting in parallel across internal representations can effectively mask any
STM primacy effects that might exist, lcaving the impression that only. LT influences
performance. Other experiments are based on the premise that rehearsal should strengthen
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LTAL so that a good correlation between the number of rehearsals at different list
positions and the size of the LTM contribution to recall at these positions should argue
for I'TM as a basis for the primacy cffect (Rundus, 1971). This argument docs not help
if STM primacy effects are masked. Moreover, it has been shown that the sizc of the LTM
effect can depend on the type of rehearsal (maintenance vs claborative), and on whether
performance is measured by recognition or recall (Craik & Watkins, 1973; Woodward,
Biork. & Jongeward, 1973). In Grossberg (1977, Sects. 31 and 47) a coding mechanism
is described wherein mere repetition of items, improved recognition, and improved recall
are distinguished. Improved recognition can result from new code formation and sustained
S1'M activity of these new codes cven when individual itemcodes are rapidly reset inSTM.
Improved recall can result from the formation of new motor associations using the new
eodes as sampling sources. Because the sampling sources must be synthesized before the
motor associations can be learned, recognition often improves before recall does.

Using the L'TM primacy hypothesis, the binary model can fit some of the interference
and rehearsal data, but is also forced into the counterintuitive idea that items necar the
beginning of the list can only be performed in their correct order by being read out of
LTM. This idea overlooks the fact that a telcphone number can be perfectly repeated
immediately after hearing it, yet it could have been obliterated from memory by a distract-
ing event before performance occurred, so presumably was not stored in LTM. Indeed,
amnesic patients with Korsakoff syndrome have no L'TM capability, but exhibit esscntially
normal digit span performance (Baddeley & Warrington, 1970; Milner, 1956). These
examples question whether L'TM is necessary to produce a primacy effect. The data used
to support the I.TM contribution to the primacy effect do not disprove that STM also
contributes: to primacy, and sometimes without a large L'TM contribution.

4. STM Primacy ErFrecr

How can performance of a telephone number due to STM but not LTM be achieved ?
This is easy in the continuous model if the eatliest items have the largest STM activities,
since these items will be performed first when the STM field is amplified by a nonspecific
rehearsal wave. However, if the earliest items have the largest STM strengths in a short
list, then how can the most recent items also have large STM strengths in longer lists to
produce a bowed STM pattern across list representations, and thus the bowed order of
recall in Yig. 1? We will illustrate below how an STM primacy effect can be gencrated
in short lists, but becomes an STM bow in Jonger lists, such that the STM recency
effect becomes progressively stronger as list length increases. The list length at which the
bow appears is called the transient memory span (TMS). The TMS can depend on
such factors as a subject’s attentional and motivational statc, but it can be proved that the
TATS is no longer than the more familiar immediate memory span (Miller, 1956) under

| father general circumstances (Grossberg, 1977a, Sect. 32).

Perhaps the belicf that the STM activities of carlier items should always be weaker
supported the idea that only L'TM can ever gencrate a primacy effect, despite its un-
fortunate implications for the immediate recall of short lists. 1'o counter this belief, we
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note that an STM primacy effect has alreédy been found in some free recall data. Baddeley
and Warrington (1970) study amnesic Korsakoff patients whose STM is intact, but whose
LTM is nonfunctional. In free recall taks, these patients produce a bowed probability of

recall curve that is due to STM alone. Hogan and Hogan (1975) theoretically disentangle

STM and L'TM contributions in their free recall data for normal subjects, and find an
STM primacy effect which they mention without mechanistic interpretation. F urthérmore,
we will suggest that STM primacy is a temporal analog of a phenomenon which is more
familiar experimentaily, but which until recently was theoretically paradoxical; namely,
behavioral contrast in discrimination learning experiments (Bloomfield, 1969).

5. Benaviorar CONTRAST IN SPACE

A typical example of behavioral contrast is this. If a pigeon is rewarded on errorless
discrimination trials for pecking on a key illuminated by a light of wavelength ), then
during extinction trials, when the pigeon is allowed to peck in responses to keys illumi-
nated by various wavelengths, a generalization gradient of pecks centered at A is generated
(Fig. 4a). By contrast, if the pigeon is rewarded for pecking a key illuminated at wave-
length A;, and punished for pecking at a ncarby wavelength A, < A;, then during ex-
tinction, the pigeon pecks most vigorously at wavelength A; > A, (i.e., a peak shift occurs).
Remarkably, the pigeon pecks A; more vigorously than it would have pecked ), if A,
had not occurred (Fig. 4b); that is, behavioral contrast occurs. Behavioral contrast is

——
e

fm—————>
i

(a) A

(d)
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paraduxical because the punishing A, causes the pigeon to peck at the unrewarded A,
more than it would have pecked at the rewarded A in the absence of A, . The difficulty
in explaining behavioral contrast is this: Suppose that reward at A, generates a positive
ceneralization gradient centered at A, , and punishment at A; generates a negative generali-
ation gradient centered at As . If performance at A, is due to the net gradient, then a
seak shift will occur, but pecking at A, should be less vigorous than pecking at A, (Fig. 4c).
What then causes behavioral contrast ?
Grossberg (1975) suggests that behavioral contrast follows from a property of cell
populations that undergo mass action interactions in recurrent on-center off-surround
amatomies (Fig. 5). Grossberg (1973) derives networks of this type as a solution to a

i

Fi6. 5. Recurrent on-center off-surround anatomy can suppress noise, contrast enhance
suprathreshold patterns, and store them in STM without saturation.

universal problem concerning how patterned information can be processed by noisy
cells with finitely many excitable sites; cf., Levine and Grossberg (1976) or Grossberg
(1977b) for a review. In the present context, the populations are sensitive to different
hues. The on-center (excitatory fecdback) defines an excitatory generalization gradient
to nearby hues, and makes possible STM storage after external inputs cease. The off--
surround (inhibitory feedback) maintains network sensitivity to relative input sizes even
in response to Jarge inputs; otherwise expressed, automatic gain control, driven by the
off-surround, prevents cell saturation by adapting network responses to different back-

ground activity levels. The mass action laws reduce to the familiar cquations (Hodgkin,
1964; Katz, 1966)

av »
Co = (V= Vg -+ (Vo = V)g_ +(V, — V), M
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designates a passive channel. The convention is also accepted that depolarization makes
F{(¢) more positive.

It has been proved that such networks tend to conserve the total potential of all cellsinthe
network. This property is called normalization, and is a form of network adaptation due 1,
automatic gain control by its off-surround. In Fig. 4c, the net gradient is narrower than
the gradient in Fig. 4a. The total potential, or area under the curve in Fig. 4a, is approx-
imately conserved when the excitatory gradient is replaced by the narrower net gradient.
Normalization therefore amplifies the net gradient to produce the higher and steeper
normalized net gradient of Fig. 4d. Thus behavioral contrast can be explained as the result
of a net gradient normalized by a network that is capable of storing cucs in STM
without saturation.

The simplest example of this phenomenon occurs in feedforward networks (Fig. 6).

I

F1c. 6. Nonrecurrent on-center off-surround anatomy.

Let n cells (or cell populations) v, , i = 1, 2,..., #, be given, and let x,(t) be the potcatial
of 7, . In (1), replace ¥(t) by x,(t) and choose the constant parameters C = 1, ¥V, =B >0,
V.=V, =0,and g, = A > 0 for simplicity. The conductance g, is influenced by an
ie inflitencad hv an affcenirrnnind inout

nnnnnn tne tamut n — T and tha canductancs o

=—Axi+(B——x,~)]‘-—.\',~ZIk. ('n
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A
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If the inputs remain constant for awhile, then the system approaches equilibrium.
At equilibrium (d/dt) #; = 0 so that the equilibrium potential of v, is

% = BLJ(A +1), (3

where [ = Z;_l I, . Letting 0, = LI be the relative input to v;, (3) can be written as
1

x, = 0, BI[(A + I), ()

which shows that each v, retains its sensitivity to §; even as [ is parametrically increased.
The dependence of x; on the ratio 6; is a form of adaptation to changing background
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sctivity levels, Without such adaptation, each x; would rapidly saturate at B as I, increased.
Ratio theories have often been suggested by perceptual or learning data. For example,
Zeiler (1963) developed an adaptation-level theory in which the subject’s perception of
a stimulus depends on its ratio with respect to an internal norm, or adaptation level.
Luce (1959) developed a theory in which choice behavior depends on the ratio of two
reaction tendencies. Color theories are often based on ratios that represcnt the reflectances
of external objects (Cornsweet, 1970). I suggest that ratios appear in such a great variety
of situations to deal with the ubiquitous saturation problem. Even in the simplest case
of Eq. (4), however, the ratio influence is modified by a term BI(A + I)~* which is of
Weher-Fechner form (Cornsweet,” 1970, p. 249). In other examples of on-center off-
surround networks, only ratios above an adaptation level can cause positive x; values
(Grossberg, 1977c), or therc can be complicated hysteresis, normative, decision, and
related types of behavior (Grossberg, 1977a, b).

Wherever ratios appear in individual activitics x, , the total activity * = Y., ¥ obeys
1 normalization rule. In (4), x = Y, ¥, = BI(A + I)~! is always less than B. It thus
has an upper bound that is independent of the number z of cells and the total input /.
This is normalization in a fecedforward network. In a recurrent, or fecedback, network
the normalization property is strengthened. The normalized inequality & < B is replaced

by normalized equalities.

The law (4) has another important property; namcly, x,, plotted as a function of the
logarithm of its on-center K = In I; and its off-surround L = Y4, I, obeys

Thus, if the off-surround input is shifted fromL = L, to L = L, , the whole curve (5) is
shifted by an amount S = In[(4 + L, (A4 + L,)™], since

i x(K+ S, L) = x(K, Ly,) forall K>0. 6)
A similar shift occurs, for example, in bipolar cell responses in the mudpuppy retina
§(\\'erblin, 1971; Grossberg, 1977b, c). The shift relocates where x; is most sensitive.

| The above properties arc summarized hcrein to emphasize three points. First, in the
llaws (1) and (2), inputs exercise their effects by multiplying potentials. Hence these laws
{ure called shunting laws. Additive models cannot generate these cffects. Second, in (2),
izll cells ;. , k # 1, inhibit ; with equal strength. If this is not true, say because inhibitory
interactions become weaker as the distance between populations increases, then the
iormalization eflect becomes partial, and the total potential can grow to a finite asymptote
i more populations are excited; that is, the adaptation effect is only partial, and saturation
sarts to set in as the background input becomes large. Third, the normalization rule
aclps to clarify from a neurophysiological perspective why probability axioms often
modc] behavioral data so well. The normalization rule plays the role of summing all the
Probabilities to 1, and the shunting laws play the role of multiplying the probabilities of
independent cvents. However, even in Eq. (4), ratios do not appear alone, and the nor-
malization rule can often hold only partially, as we will sce below.
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6. BesavioraL CONTRAST IN TIME

Bowing in STM will now be explained as a hehavioral contrast effect that evolves as
items are presented in time, rather than across space. Before developing the ideas in
general, consider the simplest example as an illustration. Suppose that total activity is
normalized. Set it equal to 1, for definiteness, when some item is active in STNM. Also
suppose that when a new item occurs, the old item’s STM activity is reduced by a
multiplicative factor w due to shunting inhibition. When item 7, occurs, its activity x,
equals 1. When item 7, occurs, x, is changed to w. By normalization, ¥, = w and x, =
1 — w. If w > }, then x; > x, ; that is, an STM primacy effect occurs. A large value of w
means that the reverberating STM activity &, of v; can substantially inhibit v, when v,
is receiving an input duc to presentation of 7, . When r, occurs, the old STM activities
are again multiplied by w, so that %, = w? and x, = w(l — w). By normalization,
x, = 1 — w. Note that x; > x, and x; > x, . A bow has occurred at v, . As new items r;
are presented, ¢ > 3, the bow remains at position v,, but a pronounced recency effect
develops due to normalization. In particular, given any list of length & > 1, the last
item to enter STM always has STM activity | — w. Below we will show that a bow can
arise at any list position if network parameters are properly chosen.

The behavioral contrast mechanism can be derived from three concepts. The first
concept is operationally described by saying that new items change the STM activities
of old items by a multiplicative factor. This mechanism is the simplest rule for making
rigorous the idea that shunting interactions join the network populations together. There
exists a deeper justification for using the multiplicative rule. Grossberg (1977a) develops
a theory of neural coding, in which it is shown (Sect. 25) that the multiplicative rule
Jeaves invariant the codes of old items as new items occur and activate new codes. This
concept is needed to prevent each new item from destabilizing the internal representations
of all the old items. It says that new items do not deny the fact that old items occurred,
even if they alter their importance, or even totally inhibit them. The rule is therefore
called a Principle of Code Invariance. The theory hereby establishes a conceptual bridge
between statements about STM interactions—via Jaws describing cellular potentials

and signals—and statements about LTM interactions—via laws describing cellular .

learning. This bridge shows in a precise formal way how each type of law is adapted to
the needs of the other.

The multiplicative operations of the Invariance Principle have the following effect.
Let item 7, enter the network with STM activity ;. Let the ith item multiplicatively
modify the STM activity of all previous items 7, , 7, ,..., 7;_; by a factor @;. Suppose ry
enters with weight ¥, = u, . After r, occurs, &, = wyt; and x, = u, . After ry oceurss,
X, = Wat04tty , Xy = Wylly, and x; = u; . And s0 on. The total STM strength S; after 1,
occurs is thus

i ] i
S; = Z n W,y -
mel pemil

The second hypothesis is the Normalization Rulde. This says that total STAI strength
grows in a negatively accelerated way from a minimum of u, , when only ry occurs, to

(7
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some finite maximum A, The case #; = A characterizes complete normalization. An
analogous experimental phenomenon is that pupil diameter increases in-a negatively
uccelerated way as a function of the number of items presented to a subject (Kahneman
& Beatty, 1966), and onc might try to usc this paradigm to estimate ; and A{ in particular
cascs. Mathematically, the Normalization Rule says that

S; = w01 4 M(I — 6-1), (8)

“where M 2 uy; 3> 0 and 0 < 8 < 1. The parameters #,, M, and 8 can depend on the
‘geometry of the network as well as on attentional and motivational factors that can retune

network interactions (Grossberg, 1976a, b). Our goal is to solve for the weights wy,

k=2, in terms of the parameters §, A, and #;, { = 1, 2,.... That this can be done is
“summarized in the next statement.

(1) Suppose that the Invariance Principle and the Normalization Rule both hold;
that is, let both (7) and (8) hold. Then the shunting parameters can be explicitly deter-
mined. They are

105 (] — 01 —

U= T T ML — 08 k> )
Since the STM activity of v; after item r; occurs is, by the Invariance Principle,
j
X; = U; n W i<j) (10)

kil

the STM code can be completely solved by specifying the STM weight %, of the most
recent item #;, { = 1, 2,.... We assumec that ; estimates how much attention is paid to
item 7; as it is presented. Then (9) and (10) show that, once %, , M, and § estimate the
tode geometry, and (presumably constant) performance variables, it suffices to specify
how much attention is paid to each item as it is presented.

The following result also holds if each u#; depends only on r; and possibly cvents
71y Ta yeeey i that have preceded it.

(1I) Suppose that the Invariance Principle holds. If an STM bow occurs at position
Jin a list of length K, then it also occurs at position J given a list of any length &2 > K.
This strong property notes that the factors s, in (10) change the relative sizes of past
STM strengths, but not where local maxima or minima occur in the STM pattern across
old items. It is this property that allows us to definc a TMS for lists composed of matched
items presented under fixed performance conditions,

T'o derive further inforiation about the code, we now impose some natural constraints
on the #;. ‘These constraints do not hold if attentional conditions vary in an arbirary
fashion as new items are presented. They summarize in mathematical terms various
stable attentional conditions. Intuition suggests that if we pay equal attention to each
itenr as it is presented, then #y 22 1y 2> uy 2> -+ (cquality might be destroyed by negative
fecdback acting on later items) and that the »; cquilibrate at some positive value u,, as
longer lists ave used. This idea simply says that the STM strength of the last item should
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always be positive, if onc always pays attention to the most recent item, and can only
get weaker as i increases due to greater total inhibition from the larger numbers of items
that are already in STM. For example, if all u;, = u >0, then a fixed amount of ST)\]
strength is always given to the last item. In this case, if M > u, it can be proved that the
bow in STM occurs at item 7, , where J is the maximal index j such that

(M — 1)(1 — 082 > 1, (an

Thus a bow can occur at any list position if 1, 3, and 8 are suitably chosen.

Another plausible rule for the #; sequence is: set u, = uand u;, = 1y, k 2 2, where
u, < u. In other words, if r; occurs alone, then no inhibition occurs since no others
items are reverberating in STM to supply it. Once more than one item occurs, the most
recent item always has a fixed amount of STM strength due to a balancing out of excitation
and inhibition across all items. This occurs in the special case where ¥, = A and all
@, = w < 1. Both of these rules are a special case of the rule that

= =t sl = 0,

i > 1, with 4, > 1, > 0 and 0 < ¢ < 1. In other words, is negatively accelerated
function of 7. Choosing ¢ = 1 yields the rule u; = u, ,7 > 3 choosing ¢ = 0 yicids the
rule u, > #, = u,,, k 3> 2. The analysis can be generalized further by letting a twicc-
differentiable function u(t), t > 1, interpolate the sequence , , g ,...s; that is, let n(k)=u,.
%k > 1, and by placing hypotheses on «(t). A natural generalization of (12) is

(12
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Specizl hypotheses on #(?) are needed only to show that no morc than one bow occurs

. in the ST patterns (x;, %y ..., ¥,) no matter how long the list length L is chosen.

These hypothescs constrain the differential amounts of attention that can'be paid to

items without creating more than onc how. Without such constraints, a unimodal STM

pow is not guaranteed, and this fact is experimentally important, as will be illustrated in

Section 8. A sufficient condition that an STM bow is unimodal, if it occurs, is given by
the hypotheses (13):

(IV) If the Invariance Principle and Normalization Rule both hold, and u(t)
satisfics (13), then all the STM patterns (x; , X5 ,-.., ¥,) are cither increasing, decreasing,
or possess a unimodal bow. To prove that the bow is unimodal, function G(j) is extended
w0 a function G(t) of a continuous variable ¢ > 1. It is then verified using (7), (8), and (13)
that if G(T) = O then (d/dt) G(T') < O0; that is, once the primacy effect becomces a
recency effect, it can never flip back to a primacy cffect.

To assert that a unimodal bow occurs if (7), (8), and (13) hold, it therefore suffices to
guarantec that a primacy effect exists. By (10), this is true if and only if

G(2) = wauy — uy > 0. (16)
I(9) and (12) hold, (16) is truc if and only if
w0 -+ M(1 — 8) > 2[u + uo(l — 4], (17)

If (16) holds, the bow occurs at that index j = J where G(j) = wju;_, — u; changes
sign from positive to negative.

or that u(t) is a nonincreasing logarithmically convex function. Using these constraints :

on the %, , we can prove the following general statements. The existence of a limiting u. ;

is sufficient to prove that a recency effect always occurs in sufficiently long lists:

(I11) If the Invariance Principle and Normalization Rule both hold, and u,, exists.

then in all sufficiently long lists, a recency effect develops. This follows from (9) and (10). :

By (10), a recency effect develops if the function

G(j) = wjuyy — 4 (14
becomes negative as j becomes sufficiently large. To prove this using (9) and (10), one
shows that G(j) < 0 is equivalent to

B, — By, <1 +uhy, (15
where B, = u;1S; . Since lim;.,, B; = uZtM exists, the left-hand side of (15) approaches
0 as j — oo while the right-hand side exceeds 1. .

Properties (1I) and (I1I) indicate the tendency for the STM primacy effect, if it exists.
to become weaker as list length increases. This is because more and more of the normalized
total STM activity S; (M) gets devoted to the recency cffectas{ — 0. _

! 7. MaskinGg oF STM Primacy BY NORMALIZATION

|
|

The above sections note a behavioral rationale, a physiological mechanism, and some
* data in which an STM primacy eflect is implicated. Why then is there so little cvidence
of ST'M primacy in interference experiments, wherein the primacy effect is little changed
before or after interference with STM, yet the recency effect is almost entirely obliterated ?
One factor is that the STM primacy effect hecomes smaller as the list length increases.
I'suggest, however, that even when a large STM primacy effect exists, it can be masked
due to normalization.

To understand how this can happen, a brief review of how LTM is encoded in the
present framework is needed. A psychophysiological theory of L'TM encoding in response
to a list of items is successively developed in Grossberg (1969), Grossberg and Pepe
(1971), Grossberg (1974), and Grossberg (1977a). Many of these results were applicd to
the study of serial learning and paired associate learning, but they are readily adapted
to the free recalliparadigm. To fix ideas, suppose thattwo fields # M and & ® of populations
t," and ¢*, respectively, are given. Supposc that the populations & can send signals to
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the populations F? over directed pathways, or axons. Let an L'TM trace z,; be computeq
at the end of the pathway from v{! to o{*. Assume that z,; obeys the equation

(dldt)zy = —Cyzy + Sﬁ(xfm)x;y’

where C,; is the LTM decay rate, 5;,(x{") is the sampling signal from v{" to /®, b g
the STM trace of v{™, and xf¥ is the STM trace of v{¥ (Fig. 7). If " is sufficiently
large to make S(x{"") > 0, then z;; can sample the STM trace /., Thus LTM in the
model depends on a nonlinear mechanism that time-averages (via the term -C,z,)
the products of sampling signals and STM traces (via the term S;(x{")x{*). Each ¢'¥
controls all the LTM traces 21, 25, %3 ,... Via its sampling signals S;,(«{"), §,(x!1),
Sia(#{"),.... We therefore say that vf!) controls the LTM pattern 2, = (34, , 25 , 5p3 ,.0.).
All of the LTM patterns 2, can be different. These patterns are generated, via the products
Si(x§) ¥, by the distributions of STM activity that evolve across # V and F® through
time. The experimental paradigms of serial learning, paired associate learning, and free

recall can all produce different STM patterns, and hence different LTM patterns.

(1) (4}] (2)
% Sy Zij X
> @

vin v(z)
| i

F1G. 7. The signal Sy (x{"") from v{? is gated by z,, on its way to v®,
How is the L'TM pattern 2, read out to influence performance at some population ¢ ?
This can only happen if v{! is activated enough to elicit a sampling signal S;;(x{V). This
activation can, for example, be due to a probe stimuius that excites the STM trace +'!

of vV, or to a lingering STM activity x{" that is due to prior stimuli. Different experimental |
paradigms can generate different sequences of probes and hence different performance |

characteristics.

Readout from the LTM trace 2,; occurs when the sampling signal S;;(x{") from ¢! is !

gated by z,; on its way to /¥, The net signal to v{* is $,,(x{")z,; . This gating mechanism

is also a nonlinear process. Every active population in # " can produce such a gated signal
to 9§*). The total effect of # " on v{¥ is given by the sum of these gated signals; namely, by

T = E SisxM)z . (19

S

Thus L'TM can affect #® only if it is activated by STM-driven signals from .79,
The signal T; in (19) influences v{* by activating its STM trace +/*. Such a signal is
received by every o{”, and hereby generates a pattern (Ty, T, Ty ,.:.) of inputs across
F®, Competitive interactions within F® transform this input pattern to produce the
final STM pattern (+{?, x, #!?,...) across .# . Normalization of STA[ within .#® isa
particular consequence of these competitive interactions. After the populations in .7

compete for STM activity, the effects of this competition feed back into each LTM
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satiern due to the STM term &{* in (18). The STM competition hereby tends to produce

! ratio scales in L'IM as well as in STN; cf., Eq. (4). This (approximate) LTM ratio scale
| lelps to explain competitive retricval rules in free recall experiments (Rundus, 1973).
(18)| Note also that the sampling s’gnal Sy(x!") both controls performance, via (19), and

strengthens learning, via (18). This helps to physiologically explain how test trials can
act as training trials (Lachman & Laughery, 1968; Tulving, 1967), since making S;;(x{")
iarge enough to clicit performance also makes it large enough to strengthen the L'TM
wmace =5 . In more general physiological models, unbiased simultaneous sampling by
many cues of the same event is impossible unless the performance signal is large only if the
iearning signal is also Jarge. This constraint is called the local flow condition (Grossberg,
1972; 1974, Sect. V1).

What types of LTM patterns can evolve ? Suppose for simplicity that each ! sends
the same sampling signal Sy(x{"") to all cclls in.% . Also supposc that the STM patterns
across Z YV and F ¥ exhibit cither an STM recency gradient or an STM bow due to
presentation of the list vy, 5, 73,..., .. Then the pattern z; learns an L'TM primacy

" gradient: namely, 33, > 3;, > 233 > *** (The proof is in Grossberg (1977a, Sect. 32)).

"f a probe stimulus excites v{!’ on performance trials, then the signals from ¢! to #®
Catisfy S (xV) 2 > () 3y, > Sy(x1) 54, > . These signals clicit an STM
primacy effect across % 2. Thus, even if ¢{") samples an STM recency gradient across 2
on Jearning trials, it can perform an STM primacy gradicnt across &2 on performance
wials. This is due to the nonlinear nature of Egs. (18) and (19). The other populations
o, i 5% 1, usually do not learn an L'TM primacy gradient. For example, if of¥ and v

are simultaneously excited, 1 = 1, 2,..., L, and both experience STM recency gradients,
* then the maximum LTM trace in pattern 3; is 2, , and the other traces z;; decrease as a

* 1 function of | { — j | to produce a gencralization gradient that is centered at o). Moreover,

if the STM recency gradients are inhibited by interfering activities right after the last
i;iist item is presented, then 2y, > % > %53 > -, Most LTM storage is therefore
! concentrated at the populations that are excited by the beginning of the list, especially
I nthe L'TM primacy gradient controlled by v{?. (This is not true in serial learning, where
i 2bow in the L'TM pattern of correct associations can occur.)
. Given the above summary, we can now sce how an STM primacy gradient can be
" masked by normalization. To fix ideas, suppose that there cxist three fields .F F2),
. ind F® of populations. Let.#F (V consist of acoustically coded populations, # @ consist of
semantically coded populations, and & consist of motor control populations (Baddeley &
Warrington, 1970; Bartlett & Tulving, 1974; Craik, 1970; Craik & Lockhart, 1972;
" Jacoby & Bartz, 1972; Maskorinee & Brown, 1974). Suppose that both #1 and F@
; tan send signals to #9, from which performance is controlled by a nonspecific source of
; motor arousal. Also let LTM traces 2;; occur in the pathways from # @ to. ™), with z,
 wding a primacy gradient and the other z,, 7 +# 1, coding the type of gradients summarized
“above. Suppose moreover that prior presentation of a list ryy Fy .., 1y establishes either
a STM secency gradient or an STM bow across #W, and either an STM primacy
wmadient or an STM bow across F @ (Fig. 8a). By (19), the STM primacy gradient across
#% magnifies the L'TM primacy gradient that it reads out of LTM into STM at &7,
This magnified STM primacy gradient at & has to compete, however, with the STM
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F1c. 8. Normalization can mask an STM primacy gradient by competition with an STM
recency gradient.
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recency gradient that FW reads into F®. After normalization takes place across & o

the magnified STM primacy gradient is reduced due to competition by the STM recency

gradient.

By contrast, consider what happens if an interfering event inhibits all STM in FW,
F @, and F O, Correct performance is then impossible unless % ® is activated, since onlv
the pathways from # to. %™ contain L'TM traces. Suppose that F 2 is activated either
randomly, or uniformly using a nonspecific sampling signal. In either case, the 1T\
primacy gradient will be read into an STM primacy gradient across ' (Fig. 8b). This
LTM primacy gradient is not reinforced by an STM primacy gradicent across F, so
the net cffect on# @ is smaller than before. However, theSTM primacygradient across &
docs not have to compete with an STM recency gradient. Hence normalization will
amplify this STM primacy gradient, just as it amplifies the net gradient in Fig. 4. In all.
normalization can mask an STM primacy gradient by differentially suppressing its cffect
when an STM recency gradient exists.

8. OtHER BiNARY CopE DIFFICULTIES

—

The serial binary several other beliefs that might be statcd
too strongly. For example, if STM storage is thought of as a binary event, then one can
readily conclude that the number of rehearsals is the crucial parameter that determines
whether an item remains or is reinstated in the STM buffer. For example, Bower writes

“if the person is told during study of an item that its later recall will be worth a lot of

code assumption leads to
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money, he will concentrate harder (rehearse more, maintain that item in STM for a
longer time) and remember it better” (Hilgard & Bower, 1975, p. 580). However
“concentrating harder,” “rehearsing more,” and “maintaining that item in STM for a
longer time” can all be achieved by distinct mechanisms. Concentrating harder can, for
exatnple, generate an unusually large arousal level that supplements the item’s usual
input to STM (Grossberg, 1975). The two input sources acting together can create an
unusually large STM strength that, other things equal (which they usually are not),
increases the probability of saying the item, and of saying it out of order; in particular,
saying it at an earlier recall position, than would otherwisc occur. These effects can be

| generated without rehearsing this item any more than any other item.

A boost in STM strength of one item can depress the STM strengths of related items
that arc simultaneously in STM; cf., Ellis et al., 1971. This von Restorff-type of depression
can sometimes be due to the Normalization Rule, rather than to less rehearsal.

The fact that reaction time increases with the number of items in STM does not

* imply that recognition memory is rcalized by a serial scanning process (Sternberg, 1966).

In a normalized STM field, each item in the field—except possibly the last—has a smaller
STM trace if a longer list perturbs the field. If reaction time increases as STM activity
decreases, then reaction time will depend on how many items are stored in STM, even
though the rchearsal operation is a parallel operation that simultancously influences all
populations in the STM field.

9. CONCLUDING REMARKS

During the last decade, experimental and theoretical studies of STM and L'TM have

been remarkably vigorous and productive. The use of theoretical analogies from other

disciplines, such as the computer analogy, indicates a healthy desire to conceptually
organize the vast array of experimental findings. However, the binary and serial nature
of computer concepts lcads to conceptual difficulties in the many situations where
continuous and parallel brain processes are operative. Computer modelers often claim
that details like whether a code is binary or continuous are unimportant, because the
same global strategies, or wiring diagrams, will accur despite differences in the individual
components. Similarly, Townsend’s (1974) result showing the equivalence of serial and
parallel reaction time models has sometimes becn interpreted as saying that it does
not matter which type of model is used when memory processes are studied. The above
examples are a few of the growing number that show binary scrial models and continuous
parallel models to be fundamentally different in design and properties.
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