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This paper describes new properties of competitive systems which arise
in population biology, ecology, psychophysiology, and developmental bio-
logy. These properties yield a global method for analyzing the geometric
design and qualitative behavior, e.g. limits or oscillations, of competitive
systems. The method explicates a main theme about competitive systems:
who is winning the competition? The systems can undergo a complicated
series of discrete decisions, or jumps, whose structure can, for example,
yield global pattern formation or sustained oscillations, as in the voting
paradox. The method illustrates how a parallel continuous system can be
analyzed in terms of discrete serial operations, but notes that the next
operation can be predicted only from the parallel interactions. It is
shown that binary approximations to sigmoid signals in nonlinear net-
works are not valid in general, It is also shown how a temporal series of
nested dynamic boundaries can be induced by purely nonlinear interac-
tive effects. These boundaries restrict the fluctuations of population sizes
or activities to ever finer intervals. The method can be used where
Lyapunov methods fail and often obviates the need for local stability
analysis. The paper also strengthens and corrects some previous results
on the voting paradox.

1. Introduction

Competitive systems arise in many areas of biology, such as population
biology and ecology (May, 1973; May & Leonard, 1975), psychophysiology
(Grossberg, 1973, 1977, 1978a, d; Ellias & Grossberg, 1975; Grossberg &
Levine, 1975; Levine & Grossberg, 1976), and developmental biology
(Grossberg, 1976a, b, c, 1978¢, d). A system x = f(x), or

xi=.fi(x)’ x=(x1,x2,...,x,,), i = 1,2,...,", (1)
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is said to be competitive if its solutions x(¢), ¢t > 0, remain in a bounded
region R and

o,

0x;
This paper describes a method for globally analyzing the limiting and
oscillatory behavior of n-dimensional nonlinear competitive systems. The
method explicates a main theme about competitive systems; namely, who is
winning the competition? This analysis reveals several new physical con-
cepts that are implied by the idea of competition. The first idea is ignition;
namely, once a competitive system starts to enhance some population,
thereafter some population will always be enhanced, albeit possibly
different populations at different times. The second idea is jumps, or local
decisions; namely, one keeps track of which population is being maximally
enhanced at any given time. Otherwise expressed, one analyzes who is
winning the competition at any given time. When a different population
starts to be maximally enhanced, the system ‘“‘decides” to enhance the new
population, or “jumps” between populations. The method classifies the
possible jumps in a given competitive system. This classification defines a
discrete jump diagram that is induced by the continuous competitive system.
The jump diagram explicates the idea that the system is making a series of
decisions as time goes on. Thus the continuous parallel interactions of the
system are analyzed in terms of discrete serial operations. The inteirelations
between these serial vs. parallel concepts shed some light on how a parallel
svstem can sometimes seem serial, even though one cannot predict its
temporal evolution without studying its parallel structure.

By studying the jump diagram, one can conclude whether the system
approaches a limit as ¢ — oo. If this occurs, one can speak of “pattern for-
mation” or “‘global consensus” arising asymptotically from the system’s
series of decisions. Alternatively, the system can oscillate persistently as
t — co. In the particular case of three populations interacting according
to the Volterra~Lotka system

(x) < 0ifi # jandxeR. 2)

X = x,(1 —x; —ax, — fx;) (3a)
5(2 = x2(1 - ﬁxl _— x2 - O(xs) (Sb)
5&‘3 = X3(1 - O£x1 - sz - X3), (30)

where § > 1 > o and a+f > 2, both periodic (¢+ = 2) and non-periodic
(e+p > 2) oscillations of bounded amplitude have been found and
illustrate the “voting paradox” (May & Leonard, 1975). This paradox
describes a global “contradiction” due to the fact that in purely pairwise
competition, population v, beats v,, v, beats v,, and v; beats v,. The jumps
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that take place in a competitive system are a source of oscillations, and
whether global limits, persistent oscillations, or even chaos result will
depend on details of system design. In particular, a series of very compli-
cated decisions, or oscillations, can occur even if the system eventually
undergoes pattern formation (Grossberg, 1978a). The existence of chaos is
not necessary to explain certain aspects of biological complexity: cf. Li &
Yorke (1975).

Another new idea is that of dynamic boundary. This is a purely nonlinear
concept that arises from the interaction of nonlinear signals and nonlinear
mass action laws in a competitive geometry. As the competition proceeds,
the dynamic variables, e.g. population sizes, activity levels, etc. get trapped
in a nested sequence of ever finer intervals. The dynamic boundaries are the
endpoints of the intervals that have already appeared up to a given time.
The decision process is essentially complete after all dynamical boundaries
have been switched on.

The above concepts compare and contrast interestingly with previous
concepts in the literature. Below some of these are briefly reviewed in crder
to make intuitive connections and to emphasi ze what is new in the present
method.

(A) LOCAL ANALYSIS OF CRITICAL POINTS AND LYAPUNOV METHODS

Two classical approaches have been used to analyze the Volterra—Lotka
system

X = x; (AL.— Y B,-kxk>, i=1,2,... 1. (4)

k=1
Lyapunov methods provide global information about the system if symmetry
assumptions are made about the competition coefficients B;;. For example,
if B;; = B;; for all i, j =1, 2,..., n, then the quadratic form:

V=S (x—%)By (x;— ), 5

=1
where the X; are equilibrium population sizes, is a Lyapunov function; that
is, the time derivative of ¥V, evaluated along system trajectories, satisfies
V < 0 (MacArthur, 1970). Consequently the system tends to minimize V
as t — oo. The method often fails in the absence of this physically unlikely
assumption* (May, 1973, p. 54). The present global method does not
require symmetry assumptions, but rather uses special properties of com-
petitive systems to derive detailed dynamical information.
In the absence of Lyapunov methods, one typically makes a local stability

* Also see Siljak, D. D. (1976). IEEE Trans. on Auto Control, Vol. AC-21, 2, 149, and
Goh, B. S. and Agnew, T. T. (1977). J. Math. Biol. 4, 275.
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analysis of all equilibrium points, or local estimates of asymptotic solutions,
and supplements these by computer simulations. May & Leonard (1975),
for example, hereby study three competing populations in system (3). Their
method makes use of a special choice of competition coefficients in which
only three parameters (¢, f§, 1) rather than nine parameters appear. If
B >1>uaand a+f > 2, these authors find non-periodic bounded oscilla-
tions of ever increasing cycle time. The non-periodic nature of the oscilla-
tions is justified using local approximations based on the assumption that
the oscillating solution approaches the set of straight lines between the points
(1, 0, 0), (0, 1, 0), and (0, O, 1). This assertion is almost correct. Between
each pair of these points, there exists a heteroclinic solution of system (3);
namely, a solution that approaches one point as ¢t — — oo and the other
point as ¢t — + oo. These heteroclinic solutions are not, however, straight
lines. The oscillating solution approaches the set of these three heteroclinic
solutions, and this explains the existence of slower oscillations as ¢ — + co.

The present method permits a global analysis of systems that significantly
generalize (3); for example,

fi=a) 1= 3 Nusis)] ©

where x = (xy, x;,...,x,)and i = 1, 2,..., n. In equation (6), the amplifica-
tion a,(x) can be a nonlinear function of the system’s state x, the signal
functions fi(x;) can be monotone-increasing nonlinear functions of x; that
satisfy mild positivity and smoothness conditions; and the competition
coefficients N, are related by inequalities rather than equalities. Moreover
this analysis identifies a large set of initial values x(0) that generate limits or
oscillations.

A further benefit of the present method is that it sometimes obviates
the need to study equilibrium points at all. Instead one studies the geometry
of the jump sets and of the ignition surfaces where competition sets in.
When the number of populations is large, stability analyses of equilibrium
points become tedious at best, and even where they are successful, they often
do not provide an adequate insight into system design and dynamics. For
example, the method explicates why system (3) cannot decide who should
win, by generating jump sets which force cyclic decisions to continue unabated
in the order v; — v, — v3 — vy as ¢ — 0.

(B) BINARY APPROXIMATIONS OF CONTINUOUS SYSTEMS

Glass & Kauffinan (1973) describe interesting results on some continuous
biochemical networks with sigmoid (S-shaped) signal functions. They note
that the sigmoid continuous networks can be approximated by discrete



DECISIONS IN COMPETITIVE SYSTEMS 105

logical networks in which the sigmoid signals are replaced by 0’s (where the
sigmoid is small) and 1’s (where the sigmoid is large). The present method
also assigns a discrete system to a continuous system, but the two methods
are otherwise quite different. The Glass-Kauffman method approximates
a continuous system with a discrete one. The present method identifies a
discrete system that is exactly generated by its continuous system. In parti-
cular, the Glass—-Kauffman approximation is not generally valid in com-
petitive systems. For example, in system (6) suppose that each fi(x;) is a
sigmoid function of x;. The Glass—Kauffman approximation would replace
this signal by a 0 when x; is small and by 1 when x; is large. By contrast, the
change of variable y; = fi(x;) transforms equation (6) into:

7= b0) 1= 3 Nan] )

Y = (Y1, V2, . - Yu), Where b(y) is again an admissible amplification function.
The dynamics of equation (7) are controlled by the signs of:

n

Z (Ny— Njk)bk(y)

k=1
on the sets where:

kzl (Nik‘"Njk)yk =0,i#].

Thus combinations of decay rates and signals on sets governed by linear
relations control equation (7), not an approximation by 0’s and 1’s. The system
in the next section also cannot be approximated by binary signals. I suggest
that the G-L method works only in certain cases where a serial mechanism
operates, but not in cases where parallel dynamics exist. Moreover, even in
serial cases, replacing a sigmoid by a 0-1 law is a singular limiting operation
that will change the dynamics unless decay rates and other parameters are
properly scaled; cf. Hsii (1977).

(C) SEQUENCES OF COMPARTMENTAL BOUNDARIES

Kauffman, Shymko & Trabert, e.g., Kauffman (1977), model the succes-
sive emergence of compartmental boundary lines during the development
of imaginal discs. The boundary lines cannot be crossed by cells after they
form. These authors model the phenomenon using a linear reaction—
diffusion system. Since the disc is elliptic in shape, they impose elliptic
boundary conditions on the system and find that the eigenfunctions of the
system are switched on with a timing and a shape that agrees surprisingly
well with the data. The remarkable implication of the model is that the
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boundary shape of the developing tissue might substantially control the
switching-in of cell migration boundaries that are interior to the disc.
Because the phenomenon described is a threshold phenomena, the linear
model can be thought of as an approximation at threshold levels to what-
ever suprathreshold nonlinear interactions are taking place in vivo. The
model’s strong point (its general description of elliptical boundary influences
at threshold) is also its main drawback, since not every elliptical region
develops into the same adult tissue. Apart from describing how different
cells can interpret the same linear threshold pattern, one must also ask how
nonlinear systems generate different patterns at suprathreshold activity levels,
even if they behave similarly at threshold levels.

Below an example is briefly sketched in which purely nonlinear inter-
actions, uninfluenced by boundary biases, can induce a temporal sequence
of nested dynamic boundaries (Grossberg, 1977, 1978a). The papers Ellias
& Grossberg (1975), Grossberg & Levine (1975), and Levine & Grossberg
(1976) describe some influences of boundary biases on suprathreshold
nonlinear network dynamics. An open problem of considerable importance
is to classify how different physical boundaries and suprathreshold non-
linear interactions work together to induce hybrid sequences of nested
dynamic boundaries.

Systems of the form:

%= —Ax; + (Bi—x)[fx) + 1] — x; [kzlfk(Xk) + Ji]a (8)

describe mass action competition among » populations v;, i = 1, 2,..., n.
Each v; has B, excitable (or occupiable) sites, of which x; are excited
(occupied), and B,—x; are unexcited (unoccupied) at any given time. The
feedback signals f(x;) are triggered by cellular activity. Term (B;—Xx;)
[fi(x)+1;] describes the switching on of unexcited sites B;—x; by a
positive feedback signal f(x;) from v; to itself, or by an excitatory input /;.
Term

—xi[k;1fk(xk) + Ji]
describes switching-off of excited sites x; by negative (or competitive) feed-

back signals f,(x,) from other populations v,, k # i, or by an inhibitory
input J;. System (8) is the special case of system:

% = a(x)[b{x;) — e(x)], )
wherein

ai(x) = x;, b(x) = Bx; [ filx) + L] — A= I, = J;,
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and
o) = 3 fix).

Using the present method, essentially any competitive system of the form
equation (9) can be proved to undergo global pattern formation (given any
x(0), the limit x(co) exists) if it satisfies mild smoothness and positivity
assumptions (Grossberg, 1977, 1978a). In other words, global pattern
formation occurs given any number of competing populations, essentially
any state-dependent amplifications a,(x), essentially any signal functions
b,(x;), and essentially any mean competition function, or adaptation level,
c(x). No boundary effects occur in system (9) because each v; experiences the
same competition function, or adaptation level, ¢(x). This theorem implies
that a tremendous liberty in choosing signals and amplifications is compatible
with global consensus, even under parametric excitations, if there exists a
common, albeit fluctuating baseline of competitive activity, namely c(x),
against which to evaluate these signals. Speaking heuristically, one can
say that arbitrary “individual differences” (such as signals and amplifica-
tions) in arbitrarily many “individuals” (n > 2) can be harmonized to yield
a global consensus if there exist shared ‘“communal understandings” (mean
competition function, adaptation level).

The proof is established by showing that the signal functions b,(x;) induce
a nested sequence of dynamic boundaries as the system evolves. For example,
in Fig. 1, activity level is denoted by w and all b, (w) are set equal to the
same function b(w) for simplicity. In system (8), for example, if all
fiw) = f(w), all B, =B, all A; = A, all I, =J; =0, and f(w) is linear
(f(w) = dw), then b(w) is constant. Hcence fluctuations in b(w) describe
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F1c. 1. Dynamic boundaries set in at a sequeﬁce of times T3 < T, < T3 < ... with

boundary values labelled 1, then 1 or 2, then 1 or 2 or 3, and so on.
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nonlinearities of the signal function f(w). Each “hill” in the graph of b(w)
is due to a random factor in its population; e.g. a subpopulation whose
signal thresholds are Gaussianly distributed about a mean threshold value.
It can be proved that, after a finite time 7', goes by, no x; can cross any of
the abscissa values labelled 1. These values have as their ordinate the
highest height of any “hill” in the graph of b(w). Then after a finite time
T, > T, goes by, no x; can cross any of the abscissa values labelled 1 or 2,
where the 2 values have as their ordinate the second highest height of any
“hill” in the graph of b(w). This process of switching-in uncrossable dynamic
boundaries continues until each x; is trapped in a “bowl” between two
consecutive peaks in the graph of b(w). After this occurs, the decision
process is essentially complete, and a series of minor decisions can occur
that Jead ultimately to global pattern formation. A visual metaphor of this
process is a lava field in which the height of the lava at each point v; is x(¢).
Initially there can be wild flowing and bubbling of lava across the field, but
eventually the lava cools enough to simmer for awhile before hardening into
a definite asymptotic pattern.

Equation (9) also includes a class of gencralized Volterra—Lotka systems
as a special case; namely, the systems

5= A= ¥, Nu@fiw], (6b)

whose state-dependent coefficients satisfy Ny(x) = g(x)h(x). In these
systems, the populations v; and v, influence N;(x) via statistically indepen-
dent factors g,(x;) and A.(x,), respectively. System (6b) can be written in the
form equation (9) by letting

a(x) = A(x)g{xy), bi(x;) = gi_l(xi):

and
()= 3 A,

Consequently, Volterra-Lotka systems with statistically independent inter-
actions, that are essentially arbitrary, undergo global pattern formation.
Otherwise expressed, the vector function G(x) = (g,(x;), &2(x2)s- - -, &u(Xs)
describes a state-dependent preference order that leads to global consensus.
Theorem 3 below shows that when no adaptation level exists in Volterra—
Lotka systems, global pattern formation need not occur. There seems to be
a trade-off, or complementarity, between how global the adaptation level
(“communal understanding”) is ‘and how freely local signals (“individual
diffcrences™) can be gencrated without destroying global consensus.
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2. Competitive Systems

It is often convenient to write a competitive system in the form
X; = a(x)M(x), (10)

X = (X1, Xp,...5 X), i =1, 2,..., n, where the continuous function a;(x)
represents the state-dependent amplification, and the differentiable function
M (x) describes the state-dependent competitive balance at population
v;,; e.g. in equation (6):

M) = 1= 3 Nufix),

and in equation (9):
M(x) = b{x;) — ¢(x).
In addition to amplifying the competitive balance, a,(x) keeps x; positive;
that is, keeps
xeRY ={yeR"y;>0,i=1,2,...,n}.
Populations v; with x;(0) = 0 are deleted from the network without loss of
generality. Throughout the discussion below, we therefore restrict attention

to systems whose variables remain in a bounded region R with positive
co-ordinates. The intuition that a,(x) is an amplification becomes

af(x)>0ifxeRandx; > 0,x; > 0.j # i. (1la)

That a,(x) keeps x; positive becomes: There exists a continuous function
d;(x) such that

alx;) = a(x)ifxeR (11b)
and

A

[_gy = a0 if1> 0, (11c)

0 dfy

)
(cf. Grossberg, 1977¢). Finally that M ,(x) rcpresents a competitive balance
becomes

oM ;
Fx—.‘(x) < 0ifi # jand xeR, (12a)

J
and kceping positive x; values from becoming unbounded is achieved by
supposing that there exists a constant C > 0 such that each
M(x) < Oifix[ >C (125)
where
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3. Ignition and Jumps

Every competitive system has the properties of positive ignition and
negative ignition. Positive ignition means that, after any population starts
to be enhanced, some population will be enhanced at all future times.
Negative ignition means that, after any population starts to be suppressed,
some population will be suppressed at all future times. These properties
are made precise in terms of the maximal and minimal balance functions.

M™*(x) = max,M,(x) (13a)
and
M™(x) = min M (x), (13b)

respectively.

Definition 1 (Ignition)

A system has the property of positive ignition if M*(x(T)) = 0 for some
Timplies M ¥ (x(¢)) > Oforall ¢+ > T. It has thc property of negative ignition if
M~ (x(T)) = 0 for some T implies M *(x(¢)) < 0 for all ¢t > T.

These ignition properties hold in a more general class of systems than
competitive systems. It is sufficient for the system to possess positive and
negative ignition surfaces.

Definition 2 (Ignition Surfaces)
System (10) has a positive ignition surface

St ={xeR:M¥(x) =0} (14a)
if 4
SA
¢ ‘(x) < 0ifi # jandxsS™. (15a)
X . flLso NEED (3%),
System (10) has a negative ignition surface
ST ={xeR: M (x) =0} (14b)
if
oM,
E‘(X)SOifi%jandan'. (15b)

J

Lemma 1 (Ignition)

System (10) has the properties of positive and negative ignition if it
satisfies (11) and possesses positive and negative ignition surfaces.

The simple proof, along with all other proofs, is in the Appendix. An
immediate consequence of Lemma 1 is the basic fact that every competitive
system possesses the properties of positive and negative ignition.
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How are the ignition properties used? Suppose for example that the
system never positively ignites. Then M ™ (x(¢)) < O for t > 0, so by system
(10) and (11), x;(t) <O for t >0 and all i = 1, 2,..., n Since each x; is
bounded, it monotonically decreases to a limit x;(c0). Speaking intuitively,
the competition never gets started. The positive ignition surface S* repre-
sents a type of competition threshold. It remains only to consider what
happens if positive ignition does occur. Below we often let M *(x(0)) > 0
without loss of generality. By system (10) and (11), this means that at every
time ¢t > 0, there exists some 7 such that x,(z) > 0. We will keep track
of which i satisfies M *(x(t)) = M,(x(¢)) at prescribed values of ¢. In other
words, we define the integer-valued function 7(¢) such that at every time
t >0,

M 7™ (x(2)) = M y(x(2))- (16)
The variable that is maximally enhanced is thus the variable
Y(#) = Xy (1) t> 0. (17)

Where can the trajectory x(¢), t > 0, be found after positive or negative
ignition takes place? The answer uses the notion of positive and negative
ighition regions.

Definition 3 (Ignition Regions)

The positive ignition region is

R* ={xeR:M"(x) > 0. (18a)
The negative ignition region is
R™ ={xeR:M™(x) < 0}. (18b)

After positive ignition occurs, x(z) € R™; after negative ignition occurs,
x(t) e R™. Tt suffices to restrict attention to system dynamics within these
regions.

To analyze system behavior more finely after positive ignition occurs,
we will study the function 1(z). To do this, we need the concept of jumps,
or parallel choices.

Definition 4 (Jumps)

The system jumps from i to j at time ¢ = T if there exist constants S and U
with S < T < Usuchthat/(r) = ifor S <t < Tand I(t) = jfor T <t < U.

4. Global Limits in a Generalized Pecking.Order

The importance of the maximal balance function M ™ and the jump
concept will now be illustrated by statements that imply the existence of a
limit x(c0) given any x(0) € R, or that global pattern formation occurs.
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Theorem 1
Given an x(0) € R, suppose that

EM“*(x(t)) dt < . (19)

Then the limit x(co) exists.

Using Theorem 1, one can prove that if only finitely many jumps occur
in response to initial data x(0), then x(o0) exists. Intuitively, this means that
after all local decisions have been made, the system can form a well-defined
pattern.

Corollary 1

If in response to initiai data x(0), all jumps cease after some time T < o0,
then x(co0) exists.

How can we decide in a particular system whether there are only finitely
many jumps? To do this, we must study geometrical relationships that
exist between the sets where jumps can occur between any pair (v;, v;) of
populations. Of particular interest arc cases wherein, given any pair (v;, v;)
of populations, if a jump can go from 7 to j at some x € R, then no jump
can go from j to i at any x € R. Intuitively, this concept establishes a local
ordering of decisions between populations that is the same no matter what
dynamical state the system attains.

Definition 5 (Jump Sets)
Given any pair (v;, v;) of distinct populations, and any set R < R, the set

JHR) = {xeR: M*(x) = My(x) = M(x) > 0} (20a)

is called the positive jump set between v; and v; in R. If a positive jump
can go from i to j at some x € R, but no jump can go from j to i at any
value of x € R, then the jump set is said to be directed from i to j, and is
denoted byAJiJ}(R) but not Jj(R). The (directed) negative jump set from
v; to v; in R, namely

J5R) = {xeR: M~ (x) = M{x) = M(x) < 0}. (20b)

is similarly defined.
Typically, we will choose R = R*, or R™, or R¥ = R* n R™, since we
are interested in jumps only after positive and/or negative ignition occurs.
One important case in which global limits exist arises because there
exists a ‘“‘generalized pecking order” among all populations. This concept
can be described using the idca of a directed jump cycle.
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Definition 6 (Directed Jump Cycle)

Suppose that all jump sets in R are directed. A directed jump cycle is said
to exist among the ordered and distinct populations v;, v,,..., v; if the
jump sets

Jl:tiz(R)’ Ji-*z.i;;(R)’ MRS} Jlt_ li,-(R)’ Jl::-l'l(R)

are non-empty.

Theorem 2 (Global Pattern Formation)

Consider any competitive system whose jump sets in R* are directed and
contain no directed jump cycle. Then given any x(0) € R, the limit x(c0) € R
exists.

Using Theorem 2, one can prove the existence of global pattern formation
in a class of generalized n-dimensional Volterra~Lotka systems. Consider
the systems

yf=A@oP—-i1wuxnﬂ, 1)

k=1

where y = (34, ¥2,-.., ¥y and i = 1, 2,..., n. System (21) contains general
state-dependent amplifications A,(y), nonlinear signal functions f,(y,), and
competition coefficients N. Our first task is to reduce system (21) to a
system of the form

X; = a{x) [1 - k§1 Nikxk] ) (22)

using the substitution x; = fi(y;). System (22) possesses linear interpopula-
tion signals. A formal comparison of systems (21) and (22) shows that

afx) = fi(f7 DA™ s o f T Hxa). (23)
One set of assumptions will be imposed to guarantee that ¢,(x) in equation

(23) satisfies conditions (11). The other set of assumptions concerns the jump
sets J5(RT). In equation (22),

Mx)=1- ¥ Nyx,
so that M (x) = M(x) only 1if
k':z'l(N,.k C N x =0, 24)
Equation (24) defines a hyperplane H;; through the origin in R". Since

i k=1

Rt = {xaf?i 1> min ) Nikxk}, (25)
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the (4, /)th jump set is contained in H;; N R™*, which is a polyhedral section
of a hyperplane. We will impose conditions on the coefficients N, which
imply the existence of directed jump sets J;5(R¥) that contain no directed
jump cycle. In particular, the jumps define a unidirectional drift, or pecking
order, among the populations (Fig. 2).

==
=

Fi1Gg. 2. A pecking order, or unidirectional drift, in the jumps between populations.

These conditions involve inequalities, rather than equalities, among the
coefficients N,,, and are therefore physically robust.

Corollary 2

In system (21), let each f;(w), w > 0, be a strictly monotone increasing
differentiable function such that
(1) the system is positive; that is,
f(0)=0 (26)
and a;(x) in equation (23) satisfies (11);
(2) the system is bounded; that is,

1 < Z Nikfk(oo): l= 1529"-9’1; (27)
k=1

and
(3) no directed jump cycle exists; that is, the populations {v;} can be
relabelled such that for any i < J,

Ny < Nyifk # i,], (28a)
and if

RZ,I (Nj = Njp)x, =0
then

k§1 (Nu — Npa(x) = 0. (28b)

Then given any positive initial data x(0), at most n—1 jumps occur soO
that a finite non-negative limit x(c0) exists.

Note that these global results do not require any study of equilibrium
points.
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Corollary 2 shows that the Glass—Kauffman binary approximation of
continuous networks is not justified in Volterra-Lotka systems, since sigmoid
signals fi(y;) can be chosen to satisfy its hypotheses. For example, one
constraint on f(¢;) is that a,(x) in equation (23) satisfies (11). Condition (11)
constrains a,(x;) only near x; ~ 0. For example, if

Ay) = A(y) = yifory; = 0, (29)

and
fly) = yf fory, = 0, (30)

then
ax) = afx;) = px; @ V¥ forx, ~0, €}))

and conditions (11) are satisfied for any § > 0if « > 1. In particular, sigmoid
behavior near y; = 0 (namely, f > 1) is a special case of Corollary 2.
Constraint (28b) can also be satisfied by sigmoid signals. For example,
if A(y) = y; and f(y,) = y3(1+y3~1, then a,(x) = 2x,(1—x;). Condition
(28b) then becomes
if

,Zl (Nig = Nj)x, =0
then

kZ1 (Ny = Nj)xi <0,

A special case of equation (22) is the Volterra-Lotka system

3
%= x; [1 -3 Nikxk], (32)
k=1

i =1, 2, 3, in which three populations compete. Herein it is easily deduceif
from the proof of Corollary 2 that all jump sets are directed, since d
M* =M;=M;>0and M* > M,, where {i, j, k} = {1, 2, 3}, then

Mj - Mi = (M+ — M)x(Ny — Njk):

so that the sign of N;— N; determines the direction of jumps between v,
and v;. By Corollary, 2 if any pair (v,, v,), (v,, v3), or (v3, v,) of populations
has an empty jump set, or if the jumps form a pecking order, then global
pattern formation occurs. For example, if any two planar sets

3
Pl(]') = {xs IR+3: Z N,-kxk = 1}, (33)
k=1
do not intersect, then the corresponding pairs of planar sets

Py) = {xa R2: Y Nuxy = v}, (34)
k=1
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do not intersect for any y € (0, 1). Then at least one jump set in R* is empty,
so that no directed jump cycle exists, and thus global pattern formation
occurs. This condition generates easily drawn examples of nonlinear com-
petition schemes among three populations in which global limits exist
(Fig. 3).

A

\

N
(c)

Fi1G. 3. Intersections of the sets Py(1) that produce global pattern formation.

5. Parametric Excitations Change the Decision Scheme

Figure 3 illustrates a physically interesting fact. Consider Fig. 3(c) for
definiteness. In Fig. 3(c), only one jump can occur. Suppose that the planar
surface closest to 0 is moved away from O without changing its direction.
The surface will eventually intersect the other two surfaces. If it does so
in a way that defines a pecking order, then global limits will again exist,
but two jumps can occur. If, however, the surface creates a cycle of directed
jump sets, then, as the next section will prove, sustained oscillations due to
infinitely many cyclic jumps among the populations can be generated. If the
surface is then moved further away from 0, it will again form no intersecticn
with the other two surfaces; again only one jump can occur. Such motions
of a surface can be effected by parametric excitation, via a parameter 8,
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of the form
3
J'Ci = x" [1 — 0 Z Nikxk] . (35)
k=1

To say that this parametric change does not alter the direction of the planar
sets Pyy) means that the relative strengths of the competition coefficients
on v; do not change in time. Parameter 8 can thus describe changes in the
sensitivity of v; to competitive signals. For example, if 6 increases slowly
as a function of time, then it can switch the system from global pattern
formation, to sustained oscillations, and finally back to global pattern
formation. With these remarks as a point of departure, it is clear that para-
metric excitations that do change the direction of the planar sets Py(y) can
exert even more dramatic effects, such as switching a system in which two
jumps generate pattern formation to a system in which infinitely many jumps
occur, to a system in which a different pair of jumps generates pattern
formation, and so on. These parametric changes can alter the system’s
geometry of interpopulation competition, rather than its intrapopulation
sensitivities. Such geometrical changes can be caused, for example, by
population migration if the competition coefficients are a function of inter-
population distance; cf. Grossberg (1978¢, section 19) for a related discus-
sion of cell aggregation in a nonlinear competitive system. Thus in systems
where the competitive interactions cause changes in system parameters via
feedback (say by creating gradients in which cells move), the jump structure
can also change as new parametric configurations emerge. An important
open problem (the “parametric feedback problem”) is to characterize the
types of feedback that generate a fixed asymptotic jump structure (including
jump cycles) vs. types of feedback for which no asymptotic jump structure
exists. In both types of system, the cells v; generate a “field” via their com-
petitive signals. This field, in turn, changes system parameters; for example,
by causing cell motion and thereby changing the competition coefficients,
or by altering cellular sensitivity by changing rate parameters. Given the
new parameters, the intercellular signalling creates a new field, which
changes system parameters once again. This feedback alternation between
successive fields and parametric responses thereupon continues. If an asymp-
totic field exists, i.e. a field as 1 — oo that is left invariant by its parametric
feedback, an observer might conclude that the system is ‘“developing”
towards this asymptotic field. If no asymptotic field exists, an observer might
conclude that the system is unpredictable, or physically ‘“chaotic”.

System parameters describe system structure, e.g. intercellular distances,
in the parametric feedback problem. Structure becomes a dynamic property
that is dependent on the nature of system feedback. For example, we might
say that a system has a definite geometry if certain parameters change
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very slowly with respect to the time scale of jumps, yet could still under-
stand how this geometry disintegrates rapidly when its maintaining feedback
is disturbed. '

Before leaving the subject of global limits, we note that Coroliary 1
has a partial converse. Corollary 1 is proved by showing that the existence
of finitely many jumps implies equation (19). Under what circumstances
does equation (19) imply that only finitely many jumps occur? To make
the main point, we restrict attention to Volterra-Lotka systems (32). The
main idea is that if the jumps in any jump cycle are separated fromeach other,
then equation (19) prevents the trajectory from travelling far enough to cross
more than finitely many jumps sets. This fact is particularly easy to state
when n = 3, since then all jumps are directed.

Definition 7 (Separated jump sets)

Two directed jump sets J;;(R*) and J,(R*), where R* = R* n R™, arc
separated if the stable manifold S(P) of every point P in their intersection
lies outside R*. (The stable manifold of P is the sct of points, other than P,
which lic on trajectories that approach P as ¢ — c0.) In mathematical
notation,

if PeJ;(R*) N J ;(R*),then S(P) n R* = ¢. (36)
The definition assures that system trajectories are repelled away from
points where directed jump sets of consecutive jumps intersect, so that
there will exist a positive minimum distance traversed between successive
jumps.

Corollary 3.

Suppose that a Volterra-Lotka system (32) with » = 3 has separated
jump sets. Then the following statements are equivalent:

(1) global pattern formation occurs;

(2) given any x(0) € R2, there exist finitely many jumps;

(3) given any x(0) e R2,

oOjM“ (x(1)) dt < o0. (19)

6. Sustained Oscillations

Below some global results are proved concerning the existence of
undamped oscillations in n-dimensional competitive systems. Several points
of interest concerning these results will now be summarized. First, one
can derive important information about oscillations by studying the positive
ignition surface S*. To carry out this study, it is unnecessary to consider
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equilibrium points that do not lie on S*. In system (3), for example, if
(1—a) (1—B) < 0, there are five possible equilibrium points in R3, but
only one of them lies on S*. This result is of philosophical and biological
interest. The existence of an ignition surface essentially characterizes the
system as a competitive one. The result shows that system design at the
extremal states where competition sets in (the competitive boundary) sub-
stantially constrains the competition after it gets under way (the competitive
interior). In addition to designing S* properly, we need also to guarantee
that the jump sets are sufficiently far apart from each other, as in
equation (36).

The results will be built up as a series of lemmas. Theorem I and Corollary
1 imply the following lemma, which is our point of departure.

Lemma 1 (Infinitely Many Jumps)
If in response to initial data x(0) € RE, the trajectory satisfies

TM*(x(1) dt = oo, (37)

then infinitely many jumps occur.
Condition (37) has the following important consequence.

Lemma 2 (Negative Ignition)

If condition (37) holds, then negative ignition occurs.

Since obviously condition (37) implies that positive ignition occurs, con-
dition (37) implies that the trajectory remains in the set R* = R* n R~
after some finite time, and jumps infinitely often within this set. Two tasks
remain. The first task is to see how proper design of S* allows us to con-
clude that condition (37) holds in response to a well-defined class of initial
data. The second task is to show how the existence of infinitely many jumps
implies the existence of undamped oscillations in the x;.

To guarantee condition (37), it is sufficient to repel a trajectory away
from S* after positive ignition takes place. Since S is characterized as the
surface in R where M* =.0, by repelling x(¢) into the interior of R™, one
keeps M*(x(t)) = 6 >0 for ¢t > T,, and thus condition (37) holds. This
observation leads to the next lemma, which we state using the notation S(P)
for the stable manifold of an equilibrium point P, with P deleted.

Lemma 3 (Ignition Surface)
Suppose that there are at most finitely many equilibrium points P,, P,,.. .,
Ppin ST. Let:
SP)nR*=¢, j=12,...,L. (3%)
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Suppose that there exist positive constants é and ¢ such that at every non-
equilibrium point y € S* that is outside the domain of repulsion of the
equilibrium points Py, P,,..., P;, these exists an i = i(y) such that

a(YM(y) < —6 (39a)
and
oM™
o, < —-e (39b)

Then any trajectory that intersects S at a nonequilibrium point satisfies
condition (37).

Thus any trajectory that ignites without being trapped at an equilibrium
point of S¥, is repelled into R* thereafter if conditions (38) and (39) hold.
In particular, if every trajectory eventually ignites, then condition (37)
holds for all

)¢ U S(P).
ji=1

If condition (37) holds, how much can one conclude about the existence of
oscillations ?

Definition 8 (Persistent and Undamped Oscillations)

The function x; undergoes persistent oscillations if it oscillates at arbitra-
rily large times. The function x; undergoes undamped oscillations if it under-
goes persistent oscillations and the limit lim x(f) does not exist.

t—=w

Lemma 4

If condition (37) holds, then some x; undergoes persistent oscillations.
The proof notes that there must be some x,(¢) such that y(z) = x,(¢) in
an infinite sequence of time intervals 7;,, T;,,... whose union

Ti=v T
k=1
satisfies:
| My(x(2)) dt = 0. (40)
Ti

If x; were monotone increasing after some finite time, then equation (40)
would imply the contradiction that x,(c0) = c0. Consequently x; undergoes
persistent oscillations.

Equation (40) does not, however, imply that x; undergoes undamped
oscillations, since it is possible for x; to approach zero in the intervals
when M; < M™. Then equation (40) might produce progressively smaller
oscillations as ¢ — oo since ag;x) = 0 when x; = 0. To derive undamped



DECISIONS IN COMPETITIVE SYSTEMS 121

oscillations from persistent oscillations, we must study whether x; is driven
away from 0 while M* = M, In particular, we must study the geometry
of the jump sets. The geometry of jump sets must also be studied to test
whether more than one x; oscillates persistently, in particular whether all
x; oscillate persistently.

Definition 9 (Asymptotic Graph)

The (positive) asymptotic graph A™ is the directed network of all vertices
v; such that y(r) = x,(¢) at arbitrarily large times, and of all directed edges
e;; such that a jump occurs from v; to v; at arbitrarily large times; i..
v; — v; means that jumps occur from i to j at arbitrarily large times.

In this definition, we do not explicitly say which initial data x(0) generates
the asymptotic graph under consideration, but this will always be clear in a
particular context. Because the asymptotic graph contains only vertices
and edges that represent configurations that repeat themselves infinitely
often, the following lemma holds.

Lemma 5 (Asymptotic Cycles)

The asymptotic graph 4* consists of a union of directed cycles v;, — v;,
— ... = v, — v;, such that any two vertices are connected by a directed
chain of edges; i.e., it is a Eulerian graph (Fig. 4).

oy

FiG. 4. The asymptotic graph 4 * is composed of cycles in which any population is
connected to any other population by a directed chain of asymptotic jumps.

It suffices to consider the jump sets of vertices in A*. We now study
the geometry of jump sets to decide when all the x; in A* undergo unda mped
oscillations. By Lemma 4, if a given x; satisfies equation (40) then it under-
goes persistent oscillations. Thus we wish to guarantee that M;(x(z)) is
sufficiently large whenever ¢ e T}, and that the total length of intervals in
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T, is infinite. The former constraint can be achieved by repelling the trajec-
tory away from S after positive ignition takes place. Since M+ = 0 on
S*, this will keep M™ positive at all large times. This can be achieved by
letting equations (38) and (39) hold. To guarantee that T; has infinite length,
it suffices to prevent jumps to and from v; from occurring too rapidly as
t — co. This can be achieved either if jump sets of the form J;(R*) and
J(R*) do not intersect, or if they do intersect at any point P, then trajec-
tories within R* are repelled from P. Consequently we assume that all
jump sets of vertices in A" are separated; or that, for any distinct v;, v;,
and v, in A%,

if PeJ;(R*) 0 J;(R¥)then S(P) n R* = ¢. (36)

Finally, to convert persistent oscillations into undamped oscillations, it
suffices to prevent x; from remaining close to zero throughout the time
intervals while M ™ = M, Hence we assume that if v; € A" then there exists
av;e A" such that

J (R ) Nn{xeRY:x; =0} = ¢. (41)

Because v; € A%, equation (41) implies that there exist time intervals when
M™* = M, and x; is bounded away from zero. If equation (36) also holds,
then the length of these time intervals will have a positive Jower bound, so
that x; will undergo sustained oscillations. These observations are summarized

below.

Theorem 3 (Sustained Oscillations).
1. Ignition Surface: Suppose that there arc at most finitely many
cquilibrium points P, P,,..., Py in ST, Let
SP)nR*=¢, j=12,...,L (38)
and suppose that there exist positive 5 and ¢ such that at any nonequili-

brium point y € S* that is outside the domain of repulsion of the equilibrium
points P,, P,,..., Py, there cxists an i = i(y) such that

a(Y)M{y) < -9, (3%a)
and
oM+
(» =< -—= (39b)
0x;
2. Jump Sets: Suppose that for any distinct v;, v;, v, € 4™,
if PeJ;{R*) N Ju(R*) then S(P) nR* = ¢. (36)

Moreover, given any v; € A", there exists a v;e€ A such that
Ji RN {xeRi:x; =0} =¢. (41)
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Then given any trajectory that intersects S* at a nonequilibrium point,
every x; in its asymptotic graph undergoes sustained oscillations as the
system jumps infinitely often among its Eulerian cycles.

The above constraints apply to Volterra~Lotka systems in a natural
way, and in fact are all trivially verified in equation (3) if a+f > 2 and
(1—a) (1—p) < 0. In equation (3),

Mi(x)=1—-x; —ox, — fx; (42a)

Mz(X) = 1 - ﬁxl — xz b aX3 (42b)
and

M3(x) = 1 —oXy — ﬁxl — X3 (420)

The planar sets M (x) = 0, xe R3,i = 1, 2, 3, are drawn in Fig. 5(a) under
the assumption f > 1 > «. In Fig. 5(b) and (c), the positive (negative)
ignition surface is drawn. In Fig. 5(a), there exist exactly five equilibrium
points. Note that only one equilibrium point P = (y, y, 7y), Wwhere
y = (14+a+p) "1, lies in S*, and that P is the only point of intersection
of ST and S~. Region R* is sandwiched between S and S~. To verify
equation (38), one notes that all solutions of the form x; = x, = x3 >0
converge to P whether or not e+ f > 2. If x+ f > 2, then the stable manifold

(b)

(c) (d)

F1G. 5. (@) The sets M(x) =0, x¢ R®,; (b) The positive ignition surface; {(c) The
negative ignition surfaces; (d) The jump sets.
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is one dimensional and equals

S(P) ={(y,y,y) # P:y > 0}.
In fact the eigenvalues at P are

M= =12, =}yfa+ B — 2+ (a— p)/3i],
and
Ay =%yla+ B —2— (2~ B)/3il;

cf.,, May & Leonard (1975). Thus P is a stable critical point unless
o+ > 2. In the latter case, only 4, has a negative real part and its eigen-
vector is (1, 1, 1). To verify equation (39), note that oM;/0x; is a negative
constant (—1, —a, or —f) for each / and j. To verify equation (36), the
jump sets are drawn in Fig. 5(d). They are triangular in shape, intersecting in
R* only at P. Hence equation (36) follows from equation (38) in this case.
To verify equation (41), note that since equation (3) is a three-dimensional
Volterra-Lotka system, all jumps are directed, and because f > 1 > «, all
jumps proceed along the cycle v; — v, - v; = v;. Thus all populations
v,, U5, and v, are in A7 It is obvious by inspection of Fig. 5(d) that for any
distinct choice of {i, j, k} = {1, 2, 3}, equation (41) holds. These results are
summarized in the following corollary.

Corollary 4 (Volterra-Lotka oscillations)

Suppose that f > 1 > « and o+ f > 2 in equation (3). Then in response
to any initial data x(0) € R% such that x(0) ¢ {(», , »): y > 0}, both positive
and negative ignition occur, equation (37) holds, infinitely many jumps
occur in the cyclic order v, — v, — v3 — v,, and all variables x;, i = 1, 2, 3,
undergo sustained oscillations.

Corollary 4 can be generalized to include more general Volterra—Lotka
systems than equation (3); for example:

3
X;=X; |:1 - Z Nikxk] s (32)
k=1

i =1, 2, 3, in which the coeficients 1, «, f§ are replaced by the inequalities
N,; > N,;, > N3y, N3y, > Ny, > N,;,, and Ny3 > N33 > N,3, and it is
required that the coefficient matrix N = |N;;| be invertible so that only
one PeS* exists. Again equation (36) follows from equation (38), and
equation (39) is obvious, but computing S(P) for these more general choices
of competition coefficients is tedious.

The above results provide information about the geometrical designs
that can produce global limits or oscillations. These results can, of course,
be supplemented by other forms of analysis, as in May & Leonard (1975),
where limit cycles are numerically found if «+f = 2 but non-periodic
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oscillations are found if ¢+ f > 2. May & Leonard claim that when
o+ f > 2, the non-periodic trajectory approaches the set of straight lines
between (1, 0, 0), (0, 1, 0), and (0, 0, 1). This is not correct. Fig. 6 shows the
vector field in the two-dimensional invariant region R,; where x, = 0,
X, >0, x3>20, M, >0, and M; <0. Clearly every trajectory that

enters R,; with x, > 0 approaches (0, 1, 0) as # > 4 co0. It is also clear by
the continuity of the flow that there is a heteroclinic trajectory from

(001) ¢

X3

©10)
X2

Fic. 6. The vector field in the region R,; admits a nonlinear heteroclinic trajectory
from (1,0, 0) to (0, 1, 0) if ¢ + f > 2.

0, 0, 1) to (0, 1, 0), but this trajectory is not a straight line, as can be shown
by contradiction. By contrast, if a4+ f = 2, there is a straight heteroclinic
trajectory from (0, 0, 1) to (0, 1, 0) of the form:
xz(t) — e(1 -a)t[A + e(l—a)t]——l’ x3(t) — e(a— 1)t[A~1 4 e(a-l)t]-—l.

In a similar fashion, there exist heteroclinic trajectories from (0, 1, O) to
(1, 0, 0), and from (1, 0, 0) to (0, O, 1), neither of which are straight lines.
Any trajectory that approaches the union of these heteroclinic trajectories
will have an increasing period of oscillation as # — oo since each heteroclinic
trajectory takes an infinite amount of time to go from its source to its sink.

7. Continuous, Parallel and Microscopic or Discrete, Serial, and
Macroscopic?

Several general themes and problems are suggested by the above results.
Of central interest is the fact that a continuous competitive system can be
analyzed in terms of a discrete series of jumps. The competition is expressed
by parallel interactions, yet the jumps occur serially in time. The analysis of
a parallel system in terms of serial events can be interpreted in terms of a
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macroscopic observer as follows: the observer measures the most detectable
changes in the system; these appear to be a serial series of enhancement
steps. However, accurate prediction of which step will follow the next
requires an analysis of the system’s microscopic parallel dynamics. This
example thus illustrates how a parallel system can appear to be serial when
observed through coarse measuring devices that are insufficient to predict
the system’s temporal evolution.

At least three major problems are suggested by the above results. First,
classify the asymptotic graphs that can arise in physically important
competitive systems. Second, classify parametric feedback schemes that do
generate a definite asymptotic graph as ¢ — oo vs. schemes that do not.
Third, classify the nested dynamic boundaries that arise due to particular
combinations of physical boundaries and nonlinear signals in competitive
systems.
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APPENDIX
Lemma 1

It suffices to prove that if M*(x(S)) = 0 at some time ¢ = S, then
d/dt M*(x(S)) > 0. Suppose that M™ (x(S)) = M (x(S)). Then

d ., oM, ,
A ACORINNEICOO
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~

or

d " oM,
M) = 3 T (N ax(HMUS)). (A1)
k=1 O0X

Since M (x(S)) = 0, the ith term in this sum vanishes. Since each x,(S) > 0,
equation (11) implies that each a(x(S)) > 0. :Moreover 0 = M™(x(S))
> M, (x(S)), and by equations (14a) and (15a), dM,/0x,(x(S)) < 0 for
k # i. Consequently, d/dz M*(x(S)) = 0 as desired. A similar proof using
equations (14b) and (15b) establishes negative ignition.

Theorem 1

If the system never positively ignites, then all x; monotonically decrease
to non-negative limits. If the system does ignite, then the integral

T M* (x(9) de

can be broken into two parts, one negative, say from time O to S, and one
positive, from time S to co. Hypothesis (19) says that this latter integral
is finite. Let S = O for definiteness. Define:

N(T) = | M*(x(9) dr. (A2)

Because M *(x(t)) > 0 for t > 0, hypothesis (19) implies that N(T) < o0
and that N(T') decreases monotonically to zero as T'— co. By equation (10),
foreveryi=1,2,...,n,

)'C,- = aiMi < a,-M+. (A3)
Since a,(x) is a continuous function on the compact set R, there exists a
d > 0 such that a,(x) < 6, x € R. By equation (A3),

% < SM*. (A4)

Integrate equation (A4) from any time T to any time U. Then:

U
x(U)—x(T) <6 { M *(x(0)) dt. (AS5)
T
By cquations (A2) and (AS),
x(U) — x(T) < SN(T). (A46)
Since lim N(T) = 0, equation (A6) shows that x;(¢) 1s essentially monotone

T—o0
decreasing as t — oo. Since also x; > 0, the limit x,(c0) exists, i = 1,2,...,n.
Corollary 1

Suppose that no jump occurs after ¢ = 7. Let M (x(z)) = M(x(t)) = 0,
t > T, for definiteness. By equation (10), x,(¢) > O for ¢t > T, and since x;
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is bounded above, x,(c0) exists. Also by equation (10), x, = a,M™ for
t > T, so that for any U > T,
U

x1(U) = x(T) = [ ay(x(D)M *(x(£) dt. (A7)

T
Since x,(T") > 0 and x,(¢) is monotone increasing for ¢t > T, it follows that
x,(t) = x,(T) > 0 for t > T. Thus by inequality (11), there existsa § > 0
such that a,(x(¢)) > 6 for t > T. By equation (A7),

x,(U) = x(T) = 513' M*(x(?)) dt. (A8)

Let U — oo and use the fact that x, (o) exists and is finite to conclude from
equation (A8) that:

T M*(x(1) d < o,

and thus that equation (19) holds.

Theorem 2

Since all jump sets are directed and no jump cycles exist, there must
exist finitely many jumps, in fact no more jumps than the number of jump
sets given any x(0). By Corollary 1, the limit x(o0) exists.

Corollary 2

The conditions on f; allow us to transform equation (21) to equation (22)
by substituting equation (21) into X; =f{y;)y;, and writing y, = fi '(x)
wherever y, appears, k£ = 1, 2,..., n. Boundedness follows from equation
(27) which implies inequality (12b). The main constraint is condition (28).
To check whether jumps between v; and v; are directed, suppose that

M*(x(T)) = M{x(T)) = Mx(T)) = O, (A9)
at some time ¢ = 7. Since ,
Mp = 1 - k;,_ Npkxk. (AIO)
equation (A9) implies that
kZI (Na — Nj)x(T) = 0. (A11)

To test the direction of jumps, we check the relative sizes of M i(x(T)) and
M (x(T')). By equation (A10) and (10),

ML G(T) = V(T = 3 (V= NidaxTM((T)).



DECISIONS IN COMPETITIVE SYSTEMS 129
By equation (A9),
M (x(T)) — M(x(T)) = M*(x(T)) Z (N ik = Na(x(T))

k=ij

>, .(N it — N p)a(X(T)M(x(T)).

+'k$i1
By equations (All) and (28b),
Mix(T)) = M((T)) = 3. (Nj— Nya,((T)) [M* (x(T))

k#ij
= My(x(T))]. (A12)
Clearly a,(x(T)) > 0 and M*(x(T)) > M (x(T)), for k =1, 2,..., n. By
inequality (28), also Nj, > Ny, for k # i, j. Consequently M ,(x(T)) = M (x(T))
so that, given any i < j, jumps can only go from 7 to j no matter how x(0)
is chosen, and at most n—1 jumps can occur.

Corollary 3

We already know that property (2) implies property (3), and that
property (3) implies property (1). To prove that property (1) implies property
(2), it suffices to show that x(¢) must travel at least some positive distance
¢ before a jump can occur. Separating the jump sets accomplishes this by
preventing x(¢z) from getting arbitrarily close to the intersection of any pair
of jump sets that represent a possible jump transition.

Lemma 1

If there are only finitely many jumps, then inequality (19) holds.

Lemma 2

If negative ignition does not occur, then x,(t) > Oforalli=1,2,..., n
and ¢t > 0. Since there exist only finitely many x;, equation (37) implies
that there exists some x;, say x,, such that:

[ M(x(1)) dt = oo, (A13)
T

where

M*(x(t) = M, (x(t))ifte T,. (A14)
By constraints (10), (11), and the fact that x; is monotone increasing, there
exists a & > 0 such that x; > 6M,. By equation (A13) and the fact that x,
is monotone increasing, it follows that x,(c0) = oo, which is impossible.

Lemma 3

By inequalities (39), after x(¢) intersects S™, it is repelled away from all
P,i=1,2,..., L. Consequently, x(t) can only approach S* from within R*
at a nonequilibrium point y that is as least some distance o away from any

5
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P,i=1,2,..., L Atany such y, M*(y) = 0 so that all a,(y)M,y) < 0,
i=1,2, .., n. If x(¢) could intersect S*, say x(T) = y when M*(x(T))
= M (x(T)) = 0, then

+ oM .
aM ((T)) = k; ka x(T)a(x(THM(x(T)).

dt

By equation (39), dM ¥ /dt (x(T)) > dé¢e. Consequently, x(¢) can never reach
S*, and remains uniformly bounded away from S* in R*. Thus there exists
an f > 0 and a T, such that M Tx() = pift = Tp, which implies equation
(37).

\

Lemma 4

If not, then all x; are monotonic after a prescribed time ¢t = T. The proqf
of Lemma 2 can now be¢ imitated to prove that some x;(c0) = co, which is™~,
impossible.

Lemma 5
The proof is an obvious consequence of the definition of 4™.

Theorem 3
The proof is outlined in the text.

Corollary 4
The proof is outlined in the text.



