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Do All Neural Models Really Look Alike?
A Comment on Anderson, Silverstein, Ritz, and Jones
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Department of Mathematics
Boston University

Several of the formal approaches that are used to explain psychophysiological
phenomena lead to different properties and principles of organization. These
approaches include computer, linear, and nonlinear models. The present note
illustrates this by citing differences between the linear theory of Anderson et al.
and the nonlinear theory of Grossberg. For example, when linear signals are
joined to neural mechanisms, the resultant model is unstable and is unable to
adapt or retune its sensitivity in response to changing input patterns. Nonlinear
signals overcome these difficulties and also compute reflectances, a Weber~
Fechner law, and complex decision schemes that transform input patterns be-
fore they are stored in short-term memory. The nonlinear theory also expresses
organizational principles that have been used to analyze a class of problems in
perception, reinforcement, sensory-motor development, and goal-oriented cogni-

tive behavior.

Noise-Saturation Dilemma: A Universal
Constraint on Cellular Information
Processing

The article by Anderson, Silverstein, Ritz,
and Jones (1977) suggests that concepts from
linear system theory, notably the eigenvalues
and eigenvectors of a symmetric matrix, can
be used to describe neural mechamisms related
to distinctive features, categorical perception,
and probability learning. The authors note
that the assumption of linearity is among some
“grievous oversimplifications of the physiol-
ogy’’ (Anderson et al., 1977, p. 444). 1 will
indicate below that when linear signals are
joined to well-known neural mechanisms, they
are inherently unstable. Stability can only be
salvaged using nonlinear mechanisms. More-
over, these nonlinear mechanisms have pre-
viously been mathematically analyzed and
exhibit phenomena such as those reported by
the authors, but for reasons that are not best
understood by means of eigenvalues and
eigenvectors.

The linear models also do not exhibit certain
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other properties that occur in the nonlinear
models as well as in a diverse body of psycho-
logical data (Grossberg, 1978a). These prop-
erties solve a universal problem about informa-
tion processing to which all cellular systems
are subjected, namely, the noise-saturation
dilemma. This dilemma is easy to state: Let a
pattern of inputs (I, Iy, ..., I,) excite a
collection of cells 2y, #3, . . ., 4. All cells experi-
ence in vivo a certain amount of noise, and all
cells possess only finitely many excitable sites.
If the inputs in the pattern are too small, they
get lost in the noise. If they are too large, they
can turn on all the excitable sites in all the
cells; that is, saturation, or sensitivity loss,
occurs. How can cellular systems balance be-
tween the two deadly extremes of noise and
saturation? The answer is that competitive
interactions between the cells or their inputs
cause the cells to automatically adapt, or
retune, their sensitivity in response to fluctua-
tions in the size of feedback signals or inputs
(Grossberg, 1970, 1972a, 1973 ; Sperling, 1970).
Feedback signals exist, for example, when the
cells reverberate activity in short-term

. memory. We will indicate below why a self-

tuning system in which feedback signals occur
is nonlinear. Thus, linear models omit a
fundamental principle of neural design: They
cannot retune, or adapt, themselves to fluctuat-
ing input demands. Another way of saying this
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is that linear models omit the nerve cells from
neural models, but cells are there for important
functional reasons.

Anderson et al. (1977) seem to have a mis-
conception about recent neural data that
prevents them from addressing the noise-
saturation dilemma. They cite recent data of
Creutzfeldt, Innocenti, and Brooks (1974),
which they say suggests that ‘“‘most cells in
primary visual cortex . . . are not strongly
coupled together, again implying a good deal
of individuality of cell response. . This
assumption allows us to represent these large-
scale activity patterns as vectors of high
dimensionality with independent components”
(Anderson ét al., 1977, p. 415; italics mine).
However, Creutzfeldt (1976) writes ‘‘Let us
assume that the cortical network consists of a
system of short-ranging excitatory and of
wider-ranging inhibitory interactions among
cortical neurons” (p. 457). It is shown below
that if the cells in the cortex did have inde-
pendent components, then they could not
easily survive the noise-saturation dilemma;
but if they have short-range excitatory inter-
actions and longer rangeinhibitory interactions,
then they can completely solve the noise-
saturation dilemma.

Positive Eigenvalues Cause Catastrophes
in Linear Systems

Anderson et al. (1977) consider linear
systems in which positive eigenvalues exist.
Their goal is to selectively amplify the neural
activities of certain internal states, or repre-
sentations, at the expense of other states. A
simple example illustrates the main idea. Let
there be #n cells 9;, where ¢ = 1,2, ..., n, and
let x;(t) be the activity or potential of v; at
time £ Suppose that the rate of change of x;,
namely, %;, satisfies the equation Z; = aix;,

wherei = 1,2, ...,nand wherea; > as 2> - --
2 a, > 0. This is a linear system, albeit a very
simple one, with positive eigenvalues
ay, aq, ..., a, If, for example, a; > az, then

x1(f) becomes much larger than all other
%¢(t) as ¢ becomes large, since each xi(f)
= x;(0)e**. This is the main use of positive
eigenvalues in the Anderson et al. article.
However, because the eigenvalues are positive,
all x;(t) approach infinity as ¢ becomes large,
which is physically meaningless. The authors
realize this and note that ‘‘unfortunately the
desirable features of positive feedback are
exactly the ones that cause catastrophes”
(Anderson et al., 1977, p. 427). To overcome
these catastrophes, the authors prevent the
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activities from changing by fiat after they
reach a certain maximum or minimal value.
This rather nonphysical property they call
“hard saturation’” (Anderson et al., 1977,
p. 444). In vivo, saturation also occurs, but it is
of a different type. If neural saturation is
added to this linear model, then differential
amplification is destroyed, and sensitivity loss
as well as noise amplification occurs.

To see this, we note that in vivo the equation
for a cell’s activity, or voltage V(f), often has
the form

&L= (vt = Vgt (V= N
+ (= V), ()

where Cis a capacitance ; the constants Vt, V™,
and V? are excitatory, inhibitory, and passive
saturation points, respectively, and g*, ¢~, and
gP are conductances that can be changed by
inputs (Hodgkin, 1964 ; Katz, 1966). We adopt
the convention that V+t > VP> V-, The
voltage V(¢) remains between V* and V-
Saturation can occur in Equation 1, for
example, if gt becomes so large that V()
approaches V*. Then, (V* — V)gt =20, so g*
thereafter has little influence on %E—/ How does
neural saturation influence the linear system
£; = aix;, wherei = 1,2, ..., n? For example,
let % = aix;(1 — x;), where 1 =1,2, ..., n
The term 1 — x; is analogous to the term
V+ — V in Equation 1. Suppose that all x;
start out positive but can have any values
whatever between 0 and 1. Then, all x;
approach 1 as ¢ increases. No matter how small
or different the x; are initially, they all eventu-
ally saturate at 1. As ¢ increases, there is a
complete loss of sensitivity to the initial
differences in the x;. Noise amplification also
occurs, since xis that are initially very small,
say due to a little prior noise, become maxi-
mally large as ¢ increases.

A Solution: Competition in
Mass-Action Systems

The problem of how to avoid these patholo-
gies was solved in Grossberg (1973). Below I
sketch relevant aspects of the solution and
show how differential amplification occurs in
nonlinear neural networks whose lineariza-
tions, near their equilibrium point, have nega-
tive eigenvalues. Moreover, these nonlinear
networks automatically adapt, or retune, their
sensitivity in response to fluctuating input
demands.
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First, we provide a heuristic derivation of
Equation 1 to clarify its statistical interpreta-
tion. Suppose that n cells v; are given and that
each cell #; is subjected to an input I;(f). Let
B be the total number of excitable sites in o,;
let x:(t) be the number of excited sites or the
potential at time ¢; and let B — x;(t) be the
number of unexcited sites at time £. Suppose
that excited sites spontaneously become un-
excited at rate 4. Also let unexcited sites be
excited by mass action at a rate jointly propor-
tional to their number B — x;(¢) and the
input intensity I;(f). Then,

Z = —Axi+ (B — x)I;, (2)

with 0 < x; < B, wherei =1, 2, ..., n. Each
%; in Equation 2 saturates at B as each I;
increases. How can this. be prevented?
This sensitivity loss can be explicated as fol-
lows. Often the information in an input
pattern (I, Iy, ..., I,) resides in the relative
input sizes (01,0s, ...,0,), where 6; = I, I,
n

and T = 3 I, is the total, or background,
E21

input activity. For example, in vision, these
relative sizes are the ‘‘reflectances’” (Corn-
sweet, 1970) of the pattern. How can a system
be designed that remains sensitive to the ratios
0; as the background input intensity I is

parametrically increased?
In order for each 7; to compute a ratio 6, it
must know what all the inputs are. Writing
= Ll + Z I.)™, it is clear that increas-

ing I, mcreases 0 and that increasing any I;,
where k 1, decreases #;. In other words, I
“excites’ 8, as in Equation 2; whereas all I;,
where k # 1,. “inhibit" 6;. Thus, the inputs
must compete at each #; in order to prevent
saturation and thereby compute the reflec-
tances. When this intuition is translated into
mass-action dynamics, we find a feed-forward
on-center (excite #;) off-surround (inhibit all
s, k ¥ 1) interaction pattern that obeys a law
like Equation 1 in which V=1x;, C=1,

+=B, V- = VP:O'gP=A,g+=I'~'and
g = 2. Ii; namely,

ki

Zi = —Axi+ (B — x)1i — x; > L. (3)
kptd

The new term —x; ;Z I says that excited sites
i

at 7; (which number x;) are inhibited (note the

minus sign) at a rate proportional to the total

inhibitory input (which is a sum of inputs

from the off-surround of #;). Thus, the off-

surround automatically changes the gain, or
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decay rate, of the system by multiplying x..
This multiplication of x; by inputs is called a
shunt. Additive models, such as the Hartline-

Ratliff model, do not automatically retune
themselves (Ratliff, 1965).

In response to fixed reflectances (6,82, . . .,0,)
and a fixed background input I, the x: in
Equation 3 approach the equilibrium
activities:

BI
= b @
(Set #; = 0 and solve for x;.) By Equation 4,

no matter how large I becomes, each x; is
proportional to 8;. There is no saturation
because the off-surround automatically retunes
x's sensitivity as I increases. Note also that
term BI(A + I)™! has the form of the Weber-
Fechner law. This sensitivity shift can also be
described in the following terms: Write I; in
logarithmic coordinates as K = log I;, and
let L = g. I+ be the off-surround input. Then,
s

Equation 4 can be rewritten as

BeX
A+ eX 4L
Using Equation 5, we can prove that a shift
in L shifts x:'s response curve without causing
any sensitivity loss. In fact, if L is changed

from L= L; to L = Ly, then the shift is
predicted to be

S =In[(4 + L)(4 + L)™], (6)

xi(K, L) = ()

since

(K + S, L1) = xi(K, Ly)
forall K2 0. (7)

A shift of this kind occurs in intracellular data
taken from bipolar cells in the mudpuppy
retina (Werblin, 1971). In summary, the
saturation problem is overcome by mass-action
systems undergoing competitive interactions.
In the language of neural networks, these
systems are said to obey the shunting law
(Equation 1) in an on-center, off-surround
anatomy. Cells in such networks automatically
compute reflectances, a Weber—Fechner law
and shift their response curves when the
inputs to their off-surrounds are parametrically
changed.

System 3 is linear in the variable x;, despite
the nonlinear occurrence of I in Equation 4
because it experiences no feedback signals.
Such signals are, for example, needed to keep
short-term memory traces active after external
inputs terminate. To prevent saturation, the
feedback signals should also be distributed
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in an on-center off-surround anatomy. Then,
Equation 3 is replaced by the nonlinear system

% = —Ax: + (B — x)[f(x0) + Ii]
— [ k);‘ flxe) + 731, (8)

where 1 =1,2,...,n Term (B — x)f(x;)

describes how a positive feedback signal f(x)

from #; to itself excites the unexcited sites

B — x; by mass action. The inhibitory term

— x; 3 f(xi) describes the switching off of
)

[ 3]
excitation at #; by inhibitory signals f(x:)
from all 73, where & £ ¢. Term I; is the total
excitatory input, and term J; is the total
inhibitory input at »:.

How should the feedback signal f(w) be
chosen as a function of cell activity w? Gross-
berg (1973) proves that linear signals [e.g.,
f(w) = Cw] and slower-than-linear signals
[e.g., f(w) = Cw(D + w)™'] both amplify
noise and are therefore unacceptable. Faster-
than-linear signals [e.g., f(w) = ¥?] suppress
noise but contrast enhance the system so
drastically that it acts like a choice, or finite-
state, machine exhibiting such phenomena as
categorical perception. Sigmoid, or S-shaped,
signals have very desirable properties, since
they cause a quenching threshold (QT) to exist.
Activities x; that are smaller than the QT are
treated like noise and quenched, or suppressed.
Activities larger than the QT are contrast
enhanced and stored in short-term memory.
Because the QT exists, varying the network’s
arousal level can retune which activities will
be stored in short-term memory, for example,
a low arousal level can generate a rapid choice.
This is again an adaptational effect. Sigmoid
signals occur, for example, in the data of
Freeman (1975) that Anderson et al. cite.

Now we make a crucial point. Every signal
f(w) that suppresses noise in Equation 8 is
nonlinear at small values of w. Thus, if we
shut off the inputs I; and J; and linearize
Equation 8 near the equilibrium point x; = 0,
wheres = 1,2, ..., n, then we find 2; = —Ax;,
where 7 = 1, 2, ..., n, which has the negative
eigenvalue — A4 despite the system’s ability to
differentially amplify certain activities at the
expense of others. Positive eigenvalues can
occur when the system is linearized near other
values of the x;. The nonlinear systems can
hereby blend together several reaction tend-
encies in a way that transcends the capabilities
of a linear system.

System Equation 8 is a very special example,
to be sure, but our conclusions can be general-
ized to large classes of nonlinear neural net-
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works (Ellias & Grossberg, 1975; Levine &
Grossberg, 1976). Indeed, I have recently
proved that every competitive system induces
a decision scheme that can be used to globally
characterize its dynamics, in particular, its
noise amplification properties (Grossberg,
1978b).

+ By contrast with the Anderson et al. linear
theory of distinctive features, nonlinear inter-
actions have been broadly used in other neural -
models of feature extraction (Grossberg, 1976a,
1976b; Pérez, Glass, & Shlaer, 1975; Von der
Malsburg, 1973). Von der Malsburg (1973)
and Pérez et al. (1975) used computer studies
to illustrate how a short list of stimulus pat-
terns can retune the responsiveness of a small
number of feature detectors. In Grossberg
(1976a, 1976b), it is shown how a stable,
globally self-consistent hierarchy of codes can
develop in response to an arbitrary input
environment if suitably defined feedback
expectations, antagonistic rebounds, coding,
pattern learning, and matching mechanisms
exist——all of which are defined by nonlinear
laws. Also an interpretation and extension of
stimulus sampling theory using nonlinear
mechanisms has been given (Grossberg, 1972b,
1972¢, 1974). A general analysis of the non-
linear feedback dynamics of systems under-
going plastic (long-term memory) changes has
been established (e.g., Grossberg, 1971, 1972d,
1974) and does not require the simplifying
symmetry assumption Agi; = Ag;;i of the
Anderson et al. analysis. Finally, these results
have been synthesized to suggest a theory of
human memory in which a few nonlinear
principles that express solutions to environ-
mental pressures to which a surviving species
must adapt are used to attack a class of
problems in  perception, sensory-motor
development, and goal-oriented cognitive be-
havior (Grossberg, 1978c).

The mechanisms and underlying principles
in the linear versus nonlinear models are as
different, say, as the mechanisms in computer
versus linear models. Deciding between these
alternative descriptions is an important prob-
fem for psychophysiology.
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