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This paper describes mechanisms of intracellular and intercellular adaptation that are due
to spatial or temporal factors. The spatial mechanisms support self-regulating pattern
formation that is capable of directing self-organization in a large class of systems, including
examples of directed intercellular growth, transmitter production, and intracellular con-
ductance changes. A balance between intracellular flows and counterflows causes adap-
tation. This balance can be shifted by environmental inputs. The decrease in Ca?”-
modulated outward K* conductance in certain molluscan nerve cells is a likely example.
Examples wherein Ca?" acts as a second messenger that shunts receptor sensitivity can also
be discussed from this perspective.

The systems differ in basic ways from recent diffusion models. Chemical transducers
driven by membrane-bound intracellular signals can establish long-range intercellular
interactions that compensate for variable intercellular distances and are invariant under
developmental size changes; diffusional signals do not. The intracellular adaptational
mechanisms are formally analogous to intercellular mechanisms that include cellular
properties which are omitted in recent reaction—diffusion models of pattern formation. The
cellular models use these properties to compute size-invariant properties despite wide
variations in their intercellular signals.

Mechanisms of temporal adaptation can be derived from the simplest laws of chemical
transduction by using a correspondence principle. These mechanisms lead to such proper-
ties of intercellular signals as transient overshoot, antagonistic rebound, and an inverted U
in sensitivity as intracellular signals or adaptation levels shift. Such effects are implicated in
studies of behavioral reinforcement, motor control, and cognitive coding.

1. Introduction. This paper discusses several basic issues concerning the
processing of patterned data by individual cells and by networks of cells.
These 1ssues can be loosely grouped under three general headings. (I)
Pattern registration without noise or saturation. This heading includes
phenomena such as neural short term memory and the maintenance of
morphogenetic patterns with properties such as sensory adaptation, con-
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trast enhancement, and self-regulation. (II) Pattern learning by parallel
sampling sources. This heading includes phenomena such as environmen-
tally directed growth, enhanced transmitter production, and altered con-
ductance or other receptor sensitivity changes in response to intercellular
signals. (III) The establishment of long range order in intercellular inter-
actions by chemical, as opposed to electrical transducers. These mech-
anisms lead to such phenomena as intracellular adaptation, overshoot,
antagonistic rebound, and transient sensitivity changes in response to input
fluctuations. Such phenomena occur regularly in psychological experiments
on reinforcement mechanisms, but are still not recognized to be adap-
tational effects due to the action of chemical transducers. The issues are
often motivated below by neural examples, but they apply equally to other
biological systems, and therefore have a universal significance.

We start by noting that certain phenomena, which have often been
treated as central biological facts—e.g. self-regulation (Wolpert, 1978)—are
automatic properties of deeper design principles; e.g. pattern registration.
One reason for this oversight in earlier work seems to be the omission of
cellular structure from many models of cellular interactions, including the
popular reaction—diffusion models. The results herein argue that cells have
been chosen as an ubiquitous evolutionary design for important functional
reasons, and that cellular structure should be reintroduced into cellular
models. N

We then suggest some mechanisms of intracellular processing that have
analogs in mechanisms of intercellular processing by networks of cells; e.g.
intracellular adaptation of photoreceptors (Baylor et al. 1974a, b; Baylor
and Hodgkin, 1974; Normann and Werblin, 1974) vs intercellular adapt-
ation due to lateral inhibition of retinal bipolar cells (Cornsweet, 1970;
Werblin, 1971). These intracellular mechanisms can be interpreted as
network interactions among intracellular components; e.g. of the cell
membrane as a network of macromolecules. The homology between
intracellular and intercellular network properties helps to clarify how
several levels of hierarchical cellular organization can stabilize and regulate
each other. '

2. Pattern Registration, Intercellular Adaptation, and Self-Regulation. All
cells face the noise-saturation dilemma, which can be solved either by
intercellular mechanisms, or by homologous intracellular mechanisms. The
dilemma can be stated as follows. Let a pattern of inputs (I,15,...,1,)
excite a collection of cells v,,v,,...,v,. All cells in vivo experience a certain
amount of noise, and all cells possess only finitely many excitable sites. If
the inputs in the pattern are too small, they get lost in the noise. If they
are too large, they can turn on all the excitable sites in all the cells; that s,
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saturation of the sites occurs, and the cells become insensitive to differences
and fluctuations in the input sizes. How can cellular systems balance
between the two equally deadly, but complementary, extremes of noise and
saturation?

The answer in terms of intercellular mechanisms is that competitive
interactions between the cells, or their inputs, cause the cells to automati-
cally retune their sensitivity in response to fluctuations in the size of
feedback signals or inputs (Grossberg, 1970, 1973, 1977, 1978a; Sperling,
1970). When this solution is modelled, it automatically has properties of
sensory adaptation and- self-regulation in special cases. Thus, satisfying the
design principle of accurately registering a pattern without noise or
saturation implies properties of adaptation and self-regulation as con-
sequences. This is not evident in recent models of self-regulation (Gierer
and .Meinhardt, 1972; Meinhardt and Gierer, 1974; Wolpert, 1978) if only
because these models do not include .the mass action laws that express
cellular structure. The simplest example of the intercellular solution is
reviewed below in order to motivate its intracellular analog. This example
makes our first point in an idealized setting, or gedanken experiment. Once
the point is made, a full understanding can be achieved by classifying
related possibilities that differ in their choice of rate constants, interaction
strengths, and other parameters. Papers in which this classification has
been undertaken are referenced below.

Suppose that n cells v; are given, and that each cell v; is subjected to an
input I,(t), i=1,2,...,n. Let B be the total number of excitable sites in v;;
let x,(t) be the number of excited sites at time t; and let B—x;(t) be the
number of unexcited sites at time t. Suppose that excited sites spon-
taneously become unexcited at rate 4. Also let unexcited sites be excited by
mass action at a rate jointly proportional to their number B —x;(t) and the
input intensity I;(¢). Then

X;=—Ax;+ (B—x;)1,, (1)

with 0<x;<B, i=1,2,...,n. Each x; in (1) saturates at B as each I,
increases. How can this be prevented? Often the information in an input
pattern (I,1,,...,1,) resides in the relative input sizes (0,,6,,...,0,), where
6;=I,1"1', and I=)%_, 1, is the total, or background, input activity. For
example, in vision these relative sizes are the reflectances (Cornsweet, 1970)
of the pattern. More generally, testing how well the ratios x;x; ' match the
ratios 0,0; ' provides a measure of how sensitive the cells are to differences
in their inputs. Otherwise expressed, we test how well the system factorizes

the data (0,,6,,...,6,) about pattern from the data I about total activity.
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This factorization property seems to underlie a variety of neural processes,
e.g. chromaticity vs luminosity information in vision; information about
the order with which list items occur vs information about their perfor-
mance velocity; cue information about an individual event vs its ability to
arouse performance (Grossberg, 1978b).

In order for each v; to compute a ratio 6, it must know what all the
inputs are. Writing 0,=1I,(I;+Y,.;I,)”*, it is clear that increasing I,
increases 0; and that increasing any I,, ki, decreases 8,. In other words, I,
“excites” 0, as in (1), whereas all I,, ki, “inhibit” 6,. Thus the inputs must
compete at each v; in order to prevent saturation and thereby compute the
“reflectances” 6,. When this intuition is expressed by mass action dynamics,
(1) is replaced by '

%= —Ax;+ B—x)I,—x; ¥ I, (2)

o k#i

The new term —x; ) ,.; I, says that excited sites at v; (which number Xx;)
are inhibited at a rate proportional to the total inhibitory input Y, .;I,. In
neural terminology, the inputs form a feedforward, or nonrecurrent, on-
center (excite v;) off-surround (inhibit all v,, k#1i) interaction pattern (Fig.
1). The off-surround automatically changes the gain, or decay rate, of the

I (1)

Figure 1. Cellular networks undergoing feedforward competitive mass action
interactions automatically retune their sensitivity using gain control by their
competitive signals

system by multiplying x,. This multiplication of x; by inputs is called a
shunt in neural terminology. Thus (2) describes, in neural terms, a non-
recurrent shunting on-center off-surround interaction. In general terms, (2)
describes a feedforward mass action competitive network.

In response to fixed reflectances (0,,6,,...,0,) and a fixed background
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input I, system (2) approaches the equilibrium activities

; I
. BI, _9 B

AT AT (3)

Thus no matter how large I becomes, x;x; ' =6,6; *. There is no saturation
because competitive signals automatically retune x;’s sensitivity as I
increases. Equation (3) has several other interesting properties. For ex-
ample, (3) factorizes x;’s response into a term depending only on the pattern
weight 0, and a term BI(A+1)"! depending only on the total activity I.
Consequently, the total activity x=) §_, x, satisfies

x=—-=B8B. (4)

The maximum value B of x is independent of the number n of cells, by
contrast with system (1), where the maximum value of x is nB. I call this
property normalization. In cellular competitive networks, normalization, or
an approximate version thereof, underlies self-regulation, or the invariance
of form under size changes (changes of n); cf. Wolpert (1974). The main
point of (3) and (4) is that normalization occurs in system (2) given any
choice of pattern (I,,1,,...,I,). System (2) also has the special property
that it preserves the relative sizes (6,,6,,...,0,) of the inputs in the activity
pattern (x;,X,,...,x,). This is generally false. Indeed, one of the important
lessons to be learned from cellular competitive systems is that their
transformations of inputs into activities can be extremely varied even
though a similar mechanism normalizes them all. As a simple example,
normalization continues to hold if parameter B in (2) is replaced by an
arbitrary positive number B; at each v, Then the inequality x< B is valid
with B=max; B;. In the absence of inhibitory interactions, we could only
conclude that x<)7_, B;. However each choice of the parameters B; alters
the transformation of inputs into activities. Thus the normalization pro-
perty depends on the existence of competitive interactions coupled into
cellular mass action laws, whereas details of the transformation from inputs
to activities depends on particular choices of parameters.

When feedback networks are considered below, the conclusion will again
be that normalization depends on the competitive geometry and the
cellular mass action laws, but not on the choice of input pattern or on the
exact form of the feedback signals. Such a conclusion does not hold, for
example, in the reaction—diffusion model of development that was pro-
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posed by Gierer and Meinhardt (1972) and Meinhardt and Gierer (1974).
For example, their model requires a special choice of signal function,
namely a sigmoid signal, to achieve self-regulation [see discussion after
(11)]. Different choices of signal function can dramatically alter the
pattern transformations that a cellular network can execute, and this is one
means whereby such networks can be designed to carry out different tasks.
However, the choice of signal function is not the mechanism behind their
normalization property.

Adaptation due to intercellular competition is illustrated by writing I; in
logarithmic coordinates as K=Ilogl; and the off-surround imput as L
=Y, +: 1. Then (3) can be rewritten as

Bek

W D=

L

()

By (5), a shift in L shifts x,’s response curve—i.e. its region of maximal
sensitivity—without causing any overall sensitivity loss—i.e. compression
of x;’s response interval [0, B]. If L is changed from L=L; to L=L,, then
the shift is

S=In[(A+L)(A+L,) 1] (6)
since

x,(K+S,L,)=x;(K,L,) forall K=0; (7)

cf. Werblin (1971). In summary, the saturation problem is overcome by
feedforward cellular systems undergoing competitive interactions.

Equation (2) is the simplest example of a feedforward cellular com-
petition, but considerable information is now available concerning how
more general choices of parameters, as in

X;=—Ax;+(B;—x;) Y. I,Cy; — (x;+ D;) Z ILEy;, (8)
| 1

k= k=

i=1,2,...,n, influence the transformation from input pattern (I,,1,,...,1,)
to output pattern (x;,x,,..., x,; Ellias and Grossberg, 1975; Levine and
Grossberg, 1976; Grossberg, 1978c¢). In (8), C,; is the excitatory interaction
strength from v, to v,, E,; is the inhibitory interaction strength from v, to
v;, and x; can fluctuate between a maximum value of B; and a minimum
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value of —D,<0, where 0 is scaled to be the passive equilibrium point
which x; approaches after all inputs are shut off. Equation (8) includes
arbitrary rate parameters and feedforward competitive geometries. When
these parameters are varied, the network can induce the following transfor-
mations of the input pattern into the activity pattern, among others:
inward and outward peak shifts, spurious peaks and peak splits, curvature
and edge detection, amplification of pattern matches, attenuation of pattern
mismatches, noise suppression, and variable sensitivity at variable adap-
tation or nonspecific arousal levels. Of course, normalization cannot
subserve these properties if the inhibitory interactions are chosen too weak.

Equations such as (8) are familiar in a neural context, where the
equation for a cell’s activity, or voltage V (t), often has the form

Vv
Co = (= V)g e (VT V)T (V=g )

Here C is a capacitance, the constants V7, V¥, and V™ are passive,
excitatory, and inhibitory saturation points, and g?, g*, and g~ are
conductances that can be changed by inputs (Kuffler and Nichols, 1976).
We adopt the convention that V™ >V?>V"~. Then the voltage V(t)
satisfies V">V (t)=V~. Equation (8) can be written in the form (9) by
rescaling time so that C =1, rescaling the voltage so that V?=0, and then
setting V=x, gf=A4, V'=B, V =-D, g =Yri_1,C,;, and g~
=Y7_,ILE,, for each i=1,2,...,n.

In many biological problems, feedback signals occur in addition to
feedforward inputs. Such signals are, for example, needed to keep short
term memory traces active after sensory inputs terminate (Grossberg, 1973,
1978b). They are also common in models of morphogenesis where they
make possible the maintenance of morphogenetic patterns (Gierer and
Meinhardt, 1972; Grossberg, 1976, 1978a; Lawrence et al., 1972; Meinhardt
and Gierer, 1974). The simplest feedback cellular competitive system is

X = _Axi+(B_xi)tf(xi)+1i]—xi[z f(xk)+Ji]’ (10)

k#i

i=1,2,..,n Term (B—x;)f (x;) describes how a positive feedback signal
f(x;) from v, to itself excites the unexcited sites B— x; by mass action. The
inhibitory term —x;),,; f (x,) describes the switching-off of excitation at
v; by competitive, or inhibitory, signals f(x,) from all v,, k#+i (see Fig. 2).
Term I; is the total excitatory input, and term J; is the total inhibitory
input at v. Again our gedanken experiment considers a system with
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broadly distributed inhibitory signals and unbiased rate parameters. How
should the feedback signal f(w) be chosen as a function of cell activity w
to guarantee useful transformations of input patterns into activity patterns
(X4,X5,...,x,)? In particular, what choices of f(w) suppress noise but can
store useful activity patterns? This problem was solved in Grossberg

I; ()

Figure 2. Cellular networks undergoing competitive feedback self-regulate as
they transform the input pattern before storing it

(1973), which should be consulted for details (or the review in Grossberg,
1978b). For present purposes, it is important to realize that all non-trivial
choices of signal function f(w) lead to normalization of the total activity
x(o0)=Ilim,,  x(t) as time increases, despite the fact that different signals
can dramatically alter the transformation from input to activity pattern.
The normalization is due to the combination of competition and cellular
mass action laws, not to the statistics of the signals. This result differs from
the phenomena reported to hold in the morphogenetic model of Gierer
and Meinhardt (1972, p. 34). In their model, neither cell saturation nor
inhibitory automatic gain control occur. For example, in one form of the
Gierer and Meinhardt model, the excitor x(w,t) obeys the reaction—
diffusion equation

2

- O0x _ -0°x
E-—Ax%—Bf(x)y +Caw2+D. (11)

In (11), the positive feedback term f (x) is chosen to be either a power or
sigmoid function of x. There is no saturation term in (11), since f(x) is
always monotone increasing. Term (B—x;)f (x;) in (10) plays the role of
f(x) in (11). Note that (B—x;)f(x;) is not monotone increasing, since it
equals zero when x;=B. Term v~ ! in (11) describes the effect of inhibitor
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y(w,t) on excitor x(w,t) by multiplying the positive feedback term f(x);
increasing inhibitor attenuates positive feedback. By contrast, in (10),
inhibitory signals appear in negative feedback terms, such as
—X; Y p2: f (x;), that have no analog in (11). Meinhardt and Gierer claim
that self-regulation can occur if f(x) is a sigmoid signal function, but not if
f(x) is a power signal function. Since a sigmoid signal can be approxi-
mated by a power signal at small values of x, it would appear that self-
regulation in (11) depends on the saturation, or insensitivity, of the sigmoid
signal at high excitor levels. It seems doubtful to me that the exquisite self-
regulation of biological patterns is caused by insensitivity of a signal
function to the high activity levels in these patterns, especially if cellular
systems automatically retune themselves to achieve an operating range that
maximizes their sensitivity.

3. Adaptive Resonance between Dipole Fields. An alternative picture of
self-regulation can be summarized by the phrase “adaptive resonance
between dipole fields” (Grossberg, 1978a, b). The normalization property is
only one ingredient in this picture. When the normalization property holds
among a collection of cells, it defines these cells as a functional unit, or
channel. This channel rapidly recalibrates all its inputs and feedback
signals until they equilibrate at an intracellular activity range within which
the internal biochemistry of each cell can sensitively react. Within this
range, the channel computes relative activities, or ratios, whose spatial
distribution across the channel’s cells depend on details of tissue design,
such as the choice of intercellular signal functions and interaction path-
ways. Tuning the operating range of the functional unit is a basic theme of
the systems, and is related to their self-regulatory capabilities. Tuning can
be .achieved by such mechanisms as nonspecific shunting of intéraction
pathways by enzymatic activation, or restriction of the cell subgroups that
are permitted to interact after a prescribed developmental stage. As an
example of the latter strategy, Grossberg (1978a) considers a system whose
cells each contain an intracellular dipole—cf. cAMP and cGMP—of
competing reactions; e.g. formally set n=2 in (10) and let x; and x, be the
activities of competing intracellular processes. Such a cell can normalize its
internal activity and can store arbitrary relative sizes of x, and x, even
after the cell is isolated. When the intracellular dipole interactions are
gated by slowly varying chemical transducers, a variety of subtle new
effects can occur, such as an inverted U in the sensitivity of the dipole as a
function of its total input size. See Section 10 below.

A dipole field is said to exist among a collection of cells, each.of which
possesses an intracellular dipole, when corresponding ends of all the
dipoles are capable of interacting via positive or negative cellular feedback,

/
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as illustrated by (10). A dipole field is thus composed of two parallel
recurrent subfields joined by competitive dipole interactions. The subfields
define functional sub-units, and the dipoles compute relative activation
levels between these sub-units. In the context of sensory neurophysiology,
an example of an intercellular dipole is a pair of competing on-cells and
off-cells, and the dipole subfields are recurrent on-center -off-surround
networks that join on-cells to on-cells and off-cells to off-cells (Grossberg,
1976, 1980).

An important theoretical issue is how do pairs of interacting dipole fields
retune each other’s operating levels to maximize each field’s sensitivity to
the other field’s signals, whether during uninterrupted development, or
during development after ablation experiments? I suggest that interfield
tuning is often achieved by matching mechanisms that are activated when
either field sends developing contacts to the other field, and that self-
regulating connections can be the result of such interfield tuning processes
even if the internal dynamics of the separate dipole fields do not
completely self-regulate. For example, syncytium formation during sea
urchin gastrulation (Gustafson and Wolpert, 1967) can be viewed as a
matching process whereby pseudopodia from certain mesenchymal cells
adhere to certain ectodermal cells. The selective pseudopod formation of
mesenchymal cells and the selective adhesiveness of ectodermal cells are
field properties that set the stage for this matching process. The develop-
ment of the rectinotectal map in Xenopus can also be viewed as a
matching process between two spatial maps (Keating, 1978; Meyer and
Sperry, 1978).

Laws for the directed growth of connections between dipole fields are
illustrated for the case of syncytium formation in Grossberg (1978a). These
laws are of the form considered in Section 5 below. When matching
between two dipole fields occurs, a dynamic state is elicited that I call an
adaptive resonance. The adaptive resonance locks the match into a
globally stable configuration via several feedback processes. When mis-
match occurs, processes of unstable competition for connection sites, reset
of the dipole patterns by interfield signalling, and motion of connections in
gradient fields can occur until the best possible match is attained. An
analogous tradeoff between resonance and reset seems also to occur during
the development of cognitive codes (Grossberg, 1980), but the reset
mechanisms in cognitive examples cause shifts in the transmission charac-
teristics of extant neural pathways rather than relocation of these path-
ways. Both types of example seem to obey similar formal laws, however.
This paper aims at clarifying and extending some of the interrelationships
between these ubiquitously occurring formal laws.
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4. Absolute Stability of Competitive Systems with Adaptation Level. The
results concerning (10) have been ' significantly generalized since 1973,
leading to a mathematical method that is defined for every competitive
system, where a competitive system 1S any autonomous system y=f(y), y
= (x;, X,,.--,X,), that remains in a bounded region R of R", and such-that

L (y)<0 ifi#jand yeR.

@xj

This method explicates the idea that a competition can be understood by
keeping track of who is winning it. By doing so, one shows that every
competitive system induces a decision scheme, which can be used to
analyse whether the competition will undergo pattern formation
(Grossberg, 1978d, 1978c) or sustained oscillations (1978d) as time goes on.
In particular, Grossberg (1978¢) proves that all competitive systems which
can be written in the form

% =a; ()b (x))— ¢ ()], “ (12)

y={(Xy,X5,...X,), undergo global pattern formation if a;(y), b;(x;), and c(y)
satisfy mild conditions. Global pattern formation means that, given any
nonnegative initial data y(0), the limit y(oo)=1lim,_ , y(t) exists. Otherwise
expressed, arbitrary local signals b,(x;) and amplifications a;(y) can be
synthesized to generate and store global patterns if there exists an
adaptation level c(y). In particular, any competitive cellular system

X;=—A;x;+ (Bi—x) L fi (%) + [;] — (x; + Ci)[ Z ﬁc(xk)+Ji:| (13)

k#i
can be written in the form (12) by choosing
a;(y)=x;+C, (14)

bi(x;)=—A;—I,—J;+ (x;+C;) '[A4,C;+1;+ (B;+ C,) f;(x;)] (15)

and

()= filx) (16)

k=1
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Thus global pattern formation occurs in (13) no matter how the para-
meters A;, B;, and C,, the signals f;(x;) and the inputs I, and J; are chosen.
I call the persistence of pattern formation under parametric changes
absolute stability of pattern formation. The absolute stability property
amply illustrates that cellular competition is a robust design framework in
which to study biological pattern formation.

Generalizations of (13), such as the feedback analog of (8), namely

Xij=—A;x;+ (Bi_xi)[ i f(xk)cki+1i:|

—(xi‘*'Di)[Zn‘, g(xk)Eki+Ji:|’ (17)

k=1

i=1,2,...,n, have also been analysed (Ellias and Grossberg, 1975; Levine
and Grossberg, 1976; Grossberg, 1978a, d). They are capable of transform-
ing the input pattern in various ways, such as generating hysteresis, lateral
masking, slow drifts, and travelling waves in the spatial locus of maximal
activity. If C,;#0 for some ki, then (17) is not a competitive system in
the mathematical sense. However, in all the physically interesting systems
of this form that have been considered, the spatial extent of excitatory
feedback is narrow relative to the spatial extent of negative feedback. For
present purposes, the most important conclusions are that competitive
feedback interactions in cellular networks solve the noise-saturation dil-
emma, are capable of normalization, and can be classified in terms of their
~underlying decision schemes.

These results are satisfying as far as they go, but they also focus our
attention on three related questions: To define a competitive network,
there must exist two types of signals, excitatory signals and inhibitory
signals. In many situations, extracellular signals of these two types are
known to occur; for example, in mammalian visual cortex (Creutzfeldt,
1976) and in the slime molds (Bonner, 1967; Keller and Segal, 1970). How
i1s the noise-saturation dilemma solved when intercellular excitatory and
inhibitory signals do not both occur? In particular, consider photo-
receptors in a vertebrate retina. Photons act as one type of extracellular
inputs to these cells, actually as inhibitory inputs since they hyperpolarize
the cells. What input source supplies the competitive interactions that
prevent saturation? One might hope that these interactions are derived
from neural feedback via the horizontal cells. However, such feedback does
not always appear to exist, and in any case, functionally isolated photo-
receptors have been shown capable of sensory adaptation (Baylor and
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Hodgkin, 1974; Baylor et al, 1974a, b; Normann and Werblin, 1974).
Finally, even in situations where competitive intercellular interactions now
exist, we must ask how the individual cells of ancestral organisms were
able to accurately register patterned data before these interactions evolved,
as they presumably must have to guide the evolution of the interaction
pathways? Such questions strongly point to-the existence of intracellular
mechanisms to supplement, and sometimes even to supplant, intercellular
schemes for dealing with noise -and saturation. In any case, they motivate
us to formally overcome noise and saturation even if only one type of
intercellular signal exists.

5. Nonstationary Prediction and Pattern Learning: Directed Growth,
Production, or Sensitization. Our goal is to show that a single in-
tracellular mechanism can solve the noise-saturation dilemma and can
guarantee unbiased spatial pattern learning under very general conditions.
The latter property builds on previous theorems concerning systems that
are capable of pattern learning. These systems were originally derived from
postulates concerning classical conditioning (Grossberg, 1964, 1967), but
gradually it became clear that they solve a universal problem about
nonstationary prediction that includes examples of enhanced transmitter
production (Deutsch, 1972; Eccles, 1964; Grossberg, 1969a, 1974), postsyn-
aptic sensitization (Grossberg, 1974; Woody et al, 1976), and directed
growth (Grossberg, 1978a) as special cases. The same laws can formally
hold in examples of all these processes despite the possible existence of
different chemical interactions to realize the laws in special cases. The laws
impose a canonical ordering for computing certain vital operations—e.g.
spatial averaging, temporal averaging, preprocessing, transduction, and
gating of signals. If this ordering was invented at a particular stage of
evolution, then it could be adapted to any later evolutionary specialization
in the following sense: Any number of cells, activated by arbitrary data
preprocessing, and sending out signals that might be influenced by
arbitrarily complex system-dependent transduction rules, can simul-
taneously learn an arbitrary spatial pattern without asymptotic bias due to
each other’s signals.

The laws were first defined and analysed in this generality in Grossberg
(1969b, 1971, 1972a). They have the following form.

X;=A;x; + Z Bz +1; (18)
keld
2ji=CjiZji+Djixi’ (19)
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where iel, jeJ, and I and J are arbitrarily large sets of indices. In a
neural setting, function x;(t) is the short term memory (STM) trace of cell
(population) v; and z;;(¢) is the long term memory (LTM) trace of the axon -
(population) e; from v; to v;. The terms 4;, B;;, C;;, and Dj; are continuous
functionals; that is, they can depend on the history of all the system’s
variables x; and z;; up to the present time. Functional 4; is the STM decay
rate of x;, and C;; is the LTM decay rate of z; Functional Bj; is the
performance signal carried by the pathway e;;. It is gated by z; on its way
to v, yielding a net effect of B;z; on X, All such signals are summed
(spatially averaged) to yield a total effect ) ., B;;z;; of intercellular signals
on v;. Functional D is a learning signal carried by the pathway e;. The
function z; is computed at the interface between e; and v—e.g., the
synaptic knob or postsynaptic membrane— where it takes a time average
(via Cj;) of the product of learning signal D; and postsynaptic STM trace
x;- Both the signals B; and D;; are nonnegative-—in neural examples they
often represent spiking frequencies or other signals that are derived from
suprathreshold potentials—and Bj; is related to Dj;. The inputs I; form the
pattern to be learned. In special cases, z; can represent the rate of
producing presynaptic transmitter, the strength of intercellular connections
from v; to v, or the postsynaptic sensitivity at v; in response to signals
from v i ‘

Unbiased pattern learning in a general anatomy can be proved in two
main steps. The first step will be reviewed because it provides insight into
why the intracellular mechanism works and what it means. This step is
summarized by saying that “pattern variables and total activity variables
factorize”. To achieve this, it is assumed that local symmetry axes exist, or
that signals and decay rates can depend on their sampling cell v; but not
on the sampled cells v, iel. Then (18) and (19) are specialized to the
systems

X;=—Ax;+ Y B,x,;+1, (20)
keJ
and

To see why factorization occurs, suppose that the inputs I; form a spatial
pattern I,(t)=0,K (t). Define the pattern variables X;=x;(} ,c;x;)”' and
Z;=2;(Q ker zy)~ . Then (20) and (21) imply

X =Y E((Z,—X)+F(0,—X,) (22)

ked
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and

Zji?Gj(Xi_Zji)- (23)
The coefficients Ej, F, and G, are E;=B;z;x" ', F=Kx~!, and G;=D;xz; !,
where the total STM and LTM activities x=Y,.,;x, and z;=),_,z; and
input K=Y, ., I, obey the equations

x=Ax+ ) Bz, +K (24)
keJ
Z;=C;z;+D;x. (25)

By (22) and (23), all the effects of the total input K are absorbed into the
coefficients E;, F, and G, Because all these coefficients are nonnegative,
term F(0,—X;) describes the tendency of X; to approach 0, term
Y kes Ex(Z,;—X;) describes the tendency of X; to act as a nonlinear center
of mass that responds to all the pattern weights Z, jeJ, and term G,(X;
—Z;) describes the tendency of each Z;; to approach X, The size of the
coefficients determines the sensitivity of X; or Z;; to these influences, and
thus the rate with which the pattern variables respond to them. If the
coefficients are sufficiently large, then X; approaches 6; and each Z
approaches X;. The net effect is that Z;; approaches 0;. Viewed from v;, the
LTM pattern (z;:i€l) becomes proportional to the input pattern (I;:
ieI). In examples of directed growth, this means that the connections from
v; to v, iel, ultimately match the morphogenetic source pattern (I;: iel).
In examples of classical conditioning, the transmitter production rates or
postsynaptic sensitivities match the pattern defined by the unconditioned
stimulus (UCS). See Grossberg (1969b, 1972a) for mathematical details.
The factorization property is the basis of the universality of this
mechanism. For example, suppose that (21) describes the effect of the
morphogenetic pattern (x;:iel) on the intercellular connections (z;;:i€l)
from v; to {v;: iel}. A connection from v; to v; can start to form only after
D;x; becomes positive. Functional D; is the expected value that a growing
pathway will reach v, from v; The product D;x; is the expected value that
a connection will form due to a statistically independent interaction
between growing pathways and v;’s ability to anchor them via x;’s activity
(adhesiveness). Functional D; can depend on the history of the system, in
particular on past activity levels of v; and on the medium in which
connections grow, according to any law that is nonnegative and con-
tinuous in time. Such complexities can easily lead to uncontrollable

BMB - D
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instabilities in a poorly designed system. Because D; appears in (23) only
through the coefficient G; however, the laws (20) and (21) overcome this
difficulty. The LTM trace Z; is inexorably drawn towards X; no matter
how complex D; is, since the size of D; merely determines the rate with
which this attraction manifests itself.

Having noted some of the benefits of factorization in self-organizing
networks, we must now ask a sobering question. System (20) and (21) does
not include the saturation terms that are ubiquitous in cellular systems.
How can we transform a system in which saturation can occur into a
system of the form (20) and (21), in which saturation does not occur, to
recover the benefits of factorization? This question can be refined by
noting that all the signals B; and D; in (20) and (21) are excitatory; there is
only one type of signal. Saturatlon can therefore be overcome in this
system only by an intracellular mechanism. What intracellular mechanism
overcomes saturation and simultaneously yields the factorizing from of (20)
and (21)? Can such a mechanism be interpreted as a competitive scheme
among intracellular components? The next section answers these questions
in the affirmative.

6. Conservation of Antagonistic Gates in Signal Transducer Channels. The
desired mechanism can be motivated as follows. Suppose that we try to
write the STM equation (20) including a saturation term (H —x;). Omit the
input term I; momentarily. Then

ked

Suppose that we could transform (26) into a competitive equation, much as
we transformed (1) into (2). Then corresponding to each excitatory term
B,z,;, we would need an “off-surround” of inhibitory terms B, ) . +; Zim-
Then (26) would be replaced by

X;=—Ax;+ (H—Xx;) Z B, z; — x; Z B, Z Zkm: (27)

ked ked m+*i

Unfortunately, this equation is physically meaningless. There is no physical
mechanism whereby a term z,, with m#i can influence x;, since x; is
computed in v, whereas z,, is computed at the interface of e, with v,
which is not near v;. Equation (27) violates the locality of the dynamics;
there is no way for z,, to jump from e,, to v, How can we recover the
effect of term ), .;z,, without violating locality? This is possible if we
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think of z,; as participating in a competitive process on an intracellular
level whose total activity L, self-regulates, or is conserved. Then, just as
Y nxiZus 18 complementary to z,;, so too is L, —z,; complementary to z,;,
or alternatively L,— B,z,; is complementary to B,z; but on an in-
tracellular level. We can therefore rewrite (27) in either of two ways:

X;=—Ax;+(H—x;) 3. Byzjy—x; ). By(Ly—zy) . (28)
keJ keJ
or
= _;ixi""' (H—x;) Z Bz — Z — B, z;). (29)
keJ keJ

Both of these processes are manifestly local. Because the terms
+x; Y xes Bizii cancel in both (28) and (29), (28) can be written in the form
(20) as

=—(4+ ). B.L)x;+H ) B,z (30)

keJ keJ

and (29) can be rewritten in the form (20) as

= —<A+ Y Lk)x,--f—H Y B,z (31)

keJ keJ

Thus locality, a-solution to the noise-saturation dilemma, and the factori-
zation property are all achieved by (28) or (29). A similar device works
when inputs I; are included. Then (28) is augmented to

X;=—Ax; + (H—Xi)I:Z Bkai+Ii:|_xi[z By (L —zii) + (M_Ii)J

keJ keJ

(32)

which can be rewritten in the form (20) as

kel ked

—<A+M—|— Y BkL,\)xi—l—H Y Byz;+HI;; (33)
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and (29) is augmented to

Xj=—Ax;+ (H—xi)[z Bkai'*‘Ii:l_xiljz (Ly — Byzy;) + (M_Ii):l,

keJ keJ
(34)
which can be rewritten in the form (20) as
kel kelJ

The physical meaning of (32) can be summarized as follows. At the
interface between e;; and v;, there exists a population of L; sites that act to
gate the signal B; from e; before it can reach v, These sites can be in
either of two complementary states. At any time, z; of these sites are in
one state, and the remaining L;= zj; sites are in the complementary state.
The total number, L; of sites in either state is conserved. A similar
conservation law divides the total number H of postsynaptic sites into
unexcited sites H —x; and excited sites x;. The signal B; couples the two
pairs of conserved antagonistic processes into two parallel, competing
channels that change the balance of excited sites x; through time. In
particular, B; interacts with the zj; sites to turn on unexcited sites H —x; of
the v; process by mass action, as in term (H —x;)B;z;. Signal B; also
interacts with the complementary L;—z; sites to turn off excited sites x; of
the v; process by mass action, as in term —x;B;(L;—z;; see Fig. 3). The

Zji —— H-x;

Bj - +

Signal Lj-zj

Figure 3. Flow-counterflow balance prevents saturation on an intracellular
level and permits factorization of pattern data from total activity data

net effect of turning on signal B; is thus to balance a flow against a
counterflow. If we interpret z; and L;—z; as the expected values of
competitive processes in an intracellular network, then B; acts to non-

specifically shunt, arouse, or tune this network into interacting with the
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complementary H sites; cf. Grossberg (1973). Otherwise expressed, B;
enzymatically activates the flow and counterflow according to mass action
laws.

The balance between flow and counterflow can easily elude experimental
detection. This is because the net effect of flow (H —x;)B;z;; and counter-
flow —x;B;(L;—zj;) is the term

—B;L;x;+HB;z. (36)

J

The LTM trace z; appears in (36) only as a gate of the excitatory signal
B;. Inhibition appears in (36) only as a gain change of x; by B;L;. The net
effect of B; on x; is thus to excite x; and to speed up x;’s rate of averaging
signals. In particular, if x; is the membrane potential of a nerve cell v;, and
the sites L; occur within the membrane of e; or v;, then measuring the
potential x; in response to the signal B; will not reveal the existence of
conserved antagonistic sites in the membrane. Instead, one might conclude
that B; has a purely excitatory effect on v;. A more direct measure of
membrane dynamics would be needed to reveal the complementary flows.
In cases where the flow is realized by an inward flux of an ion (e.g. Na™ or
Ca’*) and the counterflow is realized by an outward flux of a different ion
(e.g. K™), then the balance between flows can be measured by ionic probes,
and also provides a new functional insight into why the complementary
ionic fluxes exist.
Equation (34) has a similar physical interpretation. The terms (H
x;)B;z; and —x;(L;—B;z;) can be interpreted as follows. As in (32),
51gna1 B; couples the sites z; to the sites H —x; to cause an excitatory flow
(H —x)szJ, By contrast with (32), all the z; sites which remain un-
activated by B; contribute to the counterflow —x;(L;— szﬂ) A site in the
z; population is committed to the counterflow untll it 1S enzymatically
activated by B;, We can therefore interpret term B;z; as being pro-
portional to the fraction of z;; sites that are activated by B;.
Equation (34) will be used as the basis for the remainder of the paper,
since it has properties that generalize to situations where equation (32)

seems to be inadequate.

7. Shifting the Flow Balance by Learning. We must now ask the same
question about (21) that we did about (20): How can its factorizable form
be recovered despite the existence in vivo of saturating interactions? A
formal solution is to write the LTM equation as

N I




384 STEPHEN GROSSBERG

and then to cancel the terms +z;D;x; to rewrite (37) in the form (21) as

The net effect on (38) of the flow—counter-flow balance in (37) is an
excitatory coupling of signal D; to x; that is time-averaged by z;.

Each of the equations (34) and (37) exhibits a balance between two
complementary flows. The relationship between these flows is diagrammed
in Fig. 4. Note that whereas the LTM sites that are “on” excite the STM

+
Slow "on" Fast "off"

[P EE—

Signal

——

Slow "off" Fast "on"

-—

Figure. 4. Two parallel negative feedback loops among fast and slow variables
stabilize the temporal shifts in flow -counter-flow balance

sites that are “off’, the STM sites that are “off” inhibit the LTM sites: that
are “on”; and that whereas the LTM sites that are “off” inhibit the STM
sites that are “on”, the STM sites that are “on” excite the LTM sites that
are “off”. The net effect is two negative feedback loops acting in parallel
between the “fast” STM process and the “slow” LTM process.

Consider a situation in which the fast flow is realized by an inward ion
flux (e.g. Na* or Ca?*) and the fast counterflow is realized by an outward
ion flux (e.g. K¥). Then equation (37) describes a slow shift in the balance
of these two flows that is enzymatically driven by the signal D;. The effect
of learning in this example is to increase the flow (inward ion conductance)
and to decrease the counterflow (outward ion conductance) in response to
a later signal of unit size.

Data has been collected that is qualitatively compatible with this
concept. A long-lasting potentiation of cellular response in cells of the
sympathetic ganglion of the bullfrog has been traced to a change in ionic
conductance (Schulman and Weight, 1976), and in several molluscan
preparations (Anisodoris nobilis, Helix pomatia) it has been shown that
potentiation is due to depression of a late outward K™ current that is
dependent on a prior influx of Ca?* (Eckert and Lux, 1977; Eckert and
Tillotson, 1978). Such a coupling between inward and outward ion fluxes is
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compatible with the idea that they share a conserved process. Although the
present formalism represents the flow and counterflow as simultaneous
processes, they can clearly act sequentially on a fast time scale without
disturbing the main conclusions.

8. Long Range Order Due to Chemical Transduction of Signals: Action
Potential vs Diffusion. The property of local symmetry axes guarantees
factorization, but it also imposes a strong constraint on intercellular
signals, since each signal source v; then sends the same signals B; and D; to
all signal sinks, v;, iel, until the signals are gated by the LTM traces z;;.
This property is hard to justify if, for example, the distances between v; and
all the v,, iel, are not the same. How can factorization be recaptured when
each v; can send different signals to the several cells v;, ieI?

An answer was given in Grossberg (1972a). It is reviewed herein because
its relevance to a larger class of problems concerning developmental
biology has since then become clearer (Grossberg, 1978a), and because the
solution was not until now reconciled with the noise-saturation dilemma.
The original answer suggested new functional reasons why:

(1) intercellular signals are sometimes carried by chemical, rather than
electrical, signals; and

(2) intracellular signals are sometimes carried by the cell membrane,
rather than by signals that traverse the cell body cross section. In nerve
cells, these properties suggest a basic reason for the existence of action
potentials and chemical transmitter substances.

If the path weights b;; from v; to v; are arbitrary positive numbers, then
(20) 1s generalized to equation

)&i: "‘Axl_l_ z BkbkiZki+Ii, (39)

keJ

in which the temporal variation of the signal from v; to v; is described by
B;, but the net signal along e; is B;b;. How can we transform
(39) so that spatial pattern learning is unimpaired despite the biases
introduced by arbitrary path weights b;? It is easy to formally do this, but
then we must ask what the transformation means physically. Formally, we
need only to transform (39) and its companion LTM equation to a system
in which no biases b;; occur; namely,

keJ
and

Jat
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which is the same as (20) and (21) except that it uses the notation Wi
rather than z;, for the LTM trace from v; to v;. Comparison of (39) with
(40) imposes the definition w;=b;z;. But then (41) imposes the following
equation for z;;:

Zy=—C,z;+D;b; ' x; (42)

Jegi

Thus if path weights b; gate the performance s1gnals ; In (39), then
unbiased pattern learnmg occurs_if path weights b;' gate the learning
signals D; in (42).

At flrst broach, using D;b;" in (42), rather than D;b;, might seem
unintuitive. A mathematlcal ana1y51s (Grossberg, 1972a) shows, however,
that unbiased pattern learning cannot be achieved in a general anatomy if
(42) 1s replaced by

;=C,z;+D;bx,. (43)

JTJ Jonrne

It will now be shown that b3 ' in (42) has a natural physical interpretation,
in addition to its useful formal property. This physical interpretation will
be developed with nerve cells in mind, but since it depends on a simple
dimensional argument, it can be generalized to other types of cells.
Equation (43) also.has a physical interpretation. The two interpretations
describe classes of cells that utilize different mechanisms for carrying
intracellular signals.

It is well-known that the action potentials, or spikes, that carry electrical
signals along axons e; are determined by electrical and ionic events that
occur across the axon circumference, which in turn is proportional to axon
diameter. Let R;; equal the (average) diameter of the axon (population) ej;.
The main hypothesis leading to b; ' in (42) is that

b,=4;R

Ji § falat 1)

(44)

or that the total signal strength, or ionic flux, across the axon is
proportional to axon diameter. This hypothesis 1s compatible with the
classical assumption that the action potential is an all-or-none event that
propagates nondecrementally along the axon. For example, in mammalian
A-type axons (myelinatéd, somatic axons) extracellular recording shows
that spike amplitude increases linearly with axon diameter (Ruch et al.,
1961, p. 73). Suppose that after the signal in ¢, propagates down the axon
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circumference, it reaches the synaptic knob, where it disperses throughout
the cross-sectional area of the knob; for example, as ionic or electronic
fluxes, or processes that are triggered in parallel with these fluxes. Let the
rate of change of the LTM density at the interface between e; and v; be
proportional to the signal density. Finally, let the total effect of the signal
on the postsynaptic cell be determined by mass action; that is, the total
signal is proportional to the product of signal density, times LTM trace
density, times cross-sectional area of the knob.

These simple mass action rules generate (39) and (42) as follows. Signal
strength is proportional to Rj;, or to b;. The cross-sectional area of the
knob is proportional to Rj. Hence signal density at the cleft is pro-

portional to R;R;*=R; ', or to b; "', as in (42). Thus

(signal density) x (LTM density) x (area of knob);R X; Rjzl:bﬂzﬂ,

as in (39).

The above conclusion depends on a membrane-bound signal to yield
(42). By contrast, a mechanism whereby signals propagate throughout the
cross-sectional area of the axon—such as a diffusion—cannot produce
unbiased learning given arbitrary path weights, or at least such a mech-
anism is still unknown. The difficulty here is that signal strength is
proportional to Rﬂ, signal density is proportional to one, and the rate of
LTM density change is proportional to one. The total signal is pro-
portional to

(signal density) x (LTM density) x (area of knob)= b2 GZjie

Thus we are led to the system

= —Ax;+ ), Bybgz+1; (45)
keJ
and
= —D;z; +E;x; (46)

which can be written in terms of wy;=b;z;; as

Xj=—Ax;+ ). Bybywi+1, (47)

keld
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and

=—D.w,+E.b; X, (48)

Ji JUdie

This system cannot achieve unbiased pattern learning given arbitrary
positive b;; (Grossberg, 1972a).

The above observations suggest that the action potential interacts with
chemical transducers 'in a manner that can compensate for differences in
axon diameter, at least within a range of diameters such that (44) and the
conversion into signal densities hold. More generally, membrane-bound
intracellular signals and chemical transducers can work together to estab-
lish functionally strong long-range intercellular interactions even if the
structural pathways between the cells become smaller as a function of
intercellular distances. This compensatory transformation does not exist if
intercellular signals are elctrical and are carried passively, or electrotoni-
cally, within cells.

The membrane—chemical diad describes an intercellular signalling me-
chanism that is radically different from diffusion. It is suggested in
Grossberg (1969a, 1978b) that this property is one aspect of a general design
principle called spatiotemporal self-similarity which allows cells to learn
patterns from each other whose coded meaning is invariant under the
massive changes in their mutual distances due to development and growth.
Otherwise expressed, spatiotemporally self-similar cells are functionally
disengaged from the Euclidean geometry in which they sit, and functionally
embedded in a network geometry that allows them to establish de-
velopmentally stable long-range interactions.

9. Long-Range Order and the Noise-Saturation Dilemma. Can a system
that experiences the noise-saturation dilemma be written in a factorizable
form in which long-range order occurs, as in (39) and (42)? The answer is
“yes” if we use (34) as a guide. When the transformation in (32) is formally
applied to both the STM and LTM equations, it yields a system that does
not seem to admit a sensible physical interpretation. The transformation in
(34), by contrast, yields the system

X;=—Ax;+ (H—xi)[Z Bkbkizki"*’li}

keJ
—X{Z (Ly— Byby;zy;) + (M_Ii):l (49)
ked

and

=—C,z;;+(N;—z;)D;b; ' x;— z;;(P;— D;b}; ' x;), (50)

JTn JUgi
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which is physically interpreted in the same fashion as (34) and (37), and
which can be rewritten in the form (39) and (42). Thus system (49)-(50)
overcomes the noise-saturation dilemma, establishes long-range order, and
factorizes in an essentially arbitrary anatomy that can experience arbitrary
data preprocessing and simultaneous convergence of arbitrarily many
sampling sources. At the present time, these are the only equations known
to imply all these basic properties.

10. Temporal Adaptation: Overshoot, Rebound, and Inverted U. The adap-
tation that occurs in (49) and. (50) is spatial adaptation due to competition
between spatially distributed sites, despite the fact that all the sites might
exist in a single cell. There can also exist temporal adaptation within single
cells. Temporal adaptation is the phenomenon that is typically called
“intracellular adaptation”. Below it is shown how such a temporal
mechanism is derived from the gating law B;z; by applying a cor-
respondence principle. The derived mechanism can adapt or not depending
on the relative sizes of two decay rates. The mechanism also implies other
properties, such as temporal overshoot, rebound, and variable sensitivity as
a function of the adapting level, that have been reported in another place
(Grossberg, 1969a, 1972b, 1975), but without stressing their interpretation
as ‘adaptational effects. A new property describing the simultaneous
rebound of all differentially active cells in a field in response to a
nonspecific event (e.g. arousal, hormone) will also be derived.

The simplest intercellular transduction rule converts an output signal §
from one cell into a proportional input I to the receiving cell, viz., I = kS,
where k>0. The law whereby cell v; converts the signal B; into an input
B;z;; to v; is of this type, with S=B; and k=z;. Transduction can, for
example, convert an electrical input into a chemical output, an-input of
photons into an electrical output, and so on. Given this physical in-
terpretation, the law I =kS describes the gating of S by k. Data describing
the gating effect of transmitter on signals in various neural preparations is
described in Capek et al. (1971), Esplin and Zablocka-Esplin (1971),
McCandless et al. (1971), and Zablocka-Esplin and Esplin (1971). When
the transducing agent is released, degraded, or otherwise eliminated by the
transduction process, there must exist a mechanism whereby it can be
replenished, so that the rule I=kS can be at least approximately main-
tained through time. If we interpret k as the amount of transducer and kS
as the rate at which it is eliminated, then we are led to the following law
for the temporal evolution of the amount m of available transducer:

dm
d_t:A(k——m)—BmS. (S1)
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The term A(k—m) in (51) says that the amount m of transducer attempts
to maintain the level k. It does this by producing transducer m at a rate
Ak that is proportional to k, and by feedback inhibition of the production
rate at a rate — Am that is proportional to m. The term — BmS in (51) says
that the amount of transducer is reduced at a rate proportional to its
elimination. When m=k, this term is proportional to I, as desired. Thus
(51) is the law that “corresponds” to the law I=kS when depletion of
transducer can occur.

Temporal adaptation of the signal BmS can be explained as follows. Let
a signal of constant size S=S, be applied during a time interval [0, T]
that 1s sufficiently long for m(t) to approach its equilibrium value m,,.
Setting dm/dt =0 in (51), it follows that

Ak

= 5
M = AT BS, (52)

Not surprisingly, m_, is a decreasing function of S,, since more transducer
is eliminated if the input that activates it is greater. By contrast, the
intercellular signal at time ¢t = T has size (approximately) ‘

(53)

which 1s an increasing function of S,. Thus although the amount of
available transducer decreases, the net signal increases because the signal S
i1s coupled to m by mass action. Suppose that at time t=7T, the signal
suddenly increases in size to S=S,. If m(t) is a slowly varying function of
time, then in the time interval immediately following t =T, the intercellular
signal is

ABKS,

R 54
A+BS, (54)

BmS,=Bm_ S,=

In (54), S, acts as an adaptational baseline against which S, is evaluated,
just as I in (3) acts as an adaptational baseline against which I; is
evaluated. In (3), the baseline is due to fast spatial interactions across a
parallel network of cells. In (54), the baseline is due to slow temporal
interactions within a serial intracellular gate. If the rate with which m(r)
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changes is just as fast as the fluctuation rate of S(¢), then temporal
adaptation does not occur; it is due to the slow rate of m(t) relative to
S(t). For example, the fact that cones adapt better than rods in the
Necturus retina (Normann and Werblin, 1974) does not, by itself, imply
that their transduction mechanisms are different; a difference in relative
rates could suffice to explain this.

A similar explanation shows how a sudden increment in S(¢) from S, to
S, can cause a transient overshoot in the intercellular signal. Immediately
after the increment, (54) holds, but then m(t) slowly approaches its new
asymptote Ak(A+ BS,)” . Thus the signal BmS rapidly jumps from (53) to
(54), and then slowly decays to the asymptote

ABKS,

Riandaid W 55
A+ BS, 53)

More subtle effects occur if two transducer channels, C, and C,, lead to
output signals that mutually compete before they are further processed
(Fig. 5). For mathematical convenience, the inputs to each of the two
channels are broken up into two summands: an input [.that is commonly
shared by both channels—this is the adaptation level——and the net
additional input J that one of the channels, say C,, experiences—this is the
phasic, or test, input. The following statements have been proved, among
others (Grossberg, 1972b).

Let both channels equilibrate to constant positive levels of I and J. In
particular, after competition of signals occurs, only C, elicits a net output
signal. Then

(I) a sudden decrement in J can cause the cessation of the C,; output
and a transient rebound output from C,;

(IT) a sudden increment in the adaptation level I, by itself, can cause the
cessation of the C, output and a transient rebound output from C,;

(ITI) the absolute size of the C, rebound, given a fixed decrement in J, 1s
an inverted U function of the adaptation level I.

Quantitative formulas and predictions describing these and various other
effects are derived in Grossberg (1972b) concerning a class of experiments
about behavioral reinforcement. For example, property (I) helps to under-
stand how a reduction in conditioned reinforcer input J to one incentive
motivational channel can activate the complementary channel and serve as
a basis for counterconditioning; e.g. fear reduction can elicit transient
relief, or removal of consummatory goal cues can elicit frustration.
Property (II) shows how a novel event, by nonspecifically increasing the
adaptation level I, can also activate a specific process like countercon-
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ditioning. Property (III) shows how the adaptation level can modulate the
effect of rewarding inputs according to an inverted U function, and
predicts the existence of two types of emotional depression, an under-
aroused and an overaroused syndrome with significantly different symp-
toms, at the two ends of the inverted U. We now note that these results

On channel Off channel
(c,} ’ (Ca)

Competition

Transduction

Signals
° ® Activities
Inputs
J I
J I
t t

Figure 5. On-cell off-cell dipole: Onset of the phasic input J causes_on-cell
overshoot followed by a persistent on response; offset of the phasic input J
causes off-cell transient rebound

have a more general application to situations wherein chemical transducers
can be depleted by a slower process than the signal fluctuation rate. ’
For example, suppose that the motor command cells that control agonist
and antagonist muscles compete after receiving transduced phasic and
tonic signals. Analogously, suppose that feature detectors in a sensory
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cortex are arranged in on-cell off-cell dipoles, so that onset of a phasic
sensory cue persistently turns on its on-cell, whereas offset of this cue
transiently turns on the off-cell, which thereupon can sample a pattern to
be learned in response to cue offset (Grossberg, 1976, 1980). In either
case, we will show below that an unexpected or novel event can
simultaneously rebound the activities in all the on-cell off-cell dipoles by
causing an increment in non-specific arousal across all the cells. In the case
of motor control, this rebound can simultaneously brake hundreds of
muscles by matching the antagonist rebound to the size of the prior
agonist command. In the case of sensory or cognitive processing, the
rebound can simultaneously and differentially suppress those activities
across the feature detectors whose signals caused the unexpected event. In
both cases, the arousal event—which is controlled by a one-dimensional
command—can exquisitely reorganize the pattern across a high-
dimensional field of cells by actualizing a type of probabilistic logic in real
time; namely, if a certain degree of “on” activity implies an unexpected
event, then it is transmuted into a comparable degree of “off” activity.

To see this, let the phasic input to a given on-cell have intensity J and
the tonic input to both on-cell and off-cell have intensity I. The steady-
state potential in the on-cell is then x, =« (I+J) and in the off-cell is x,
=ol. Let each cell generate a proportional signal, for simplicity. Then
signal S, =f(+J) and signal S,=pI. Each signal is gated by its trans-
ducer m, or m,, respectively, whose steady state values are

Ak Lo Ak
™ e M= AT BS,

_ 59
A+BS, (59)

respectively. Now rapidly change the arousal level to I*>1, while holding
J fixed. The new signal values rapidly approach S§¥=p(*+J) and S%
= fI*, respectively. To achieve a rebound from on-cell to off-cell, the gated
signal to the off-cell must exceed that to the on-cell shortly after the
arousal level changes. If m; and m, change slowly, then this will occur if

S*i, < SEm,. (60)

By (59), inequality (60) is equivalent to

A
I*>14+—. 61
> +ﬁB (61)
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The crucial observation is that inequality (61) is independent of J. Thus if
the arousal increment exceeds Af~'B~!, then all dipoles will be simul-
taneously rebounded. Moreover, the rebound size is matched to the initial
on-cell activity because

ABB*kJ[I*—1—Ap~'B™ ]
[A+BBI[A+BB(I+J)] "’

which is a monotone increasing function of J.

Unfortunately, such explanations have been overlooked by the experi-
mentalists who do reinforcement, sensory, and motor experiments. In the
reinforcement area, for example, experimentalists continue to cite the
descriptive theory of Rescorla and Wagner (1972) and to perform experi-
ments based on that theory (Dickinson and Pearce, 1977). It is to be hoped
that as the adaptational properties of chemical transducers in competing
channels are recognized, experiments will be designed to test the sharper
distinctions that these properties describe, both in neural and nonneural
tissues.
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