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AB,s,'RACT Competition solves a universal problem about
pattern processing by cellular s,'stems. Competition allows cells
to automatically retune their sensitivity to avoid noise and
saturation effects. All compet:itive systems induce decision
schemes that permit them to be ,~lassified. Systems are identified
that achieve global pattern formation, or decision-making, no
matter how their parameters are chosen. Oscillations can occur
due to contradictions in a systelJll's decision scheme. The pattern
formation and oscillation results are extreme examples of a
complementarity principle that seems to hold for competitive
systems. Nonlinear competitive systems can sometimes appear,
to a macroscopic observer, to have linear and cooperative
properties, although the two types of systems are not equivalent.
This observation is relevant to theories about the evolutionary
transition from competitive to cooperative behavior.

1. Biological signal processilng and competitive
decisions

Darwin's classic work (1) on tble survival of the fittest empha-
sized the importance of competition as a universal principle of
biological organization. Darwin's theory was formulated in
terms of macroscopic variables such as competing species. More
recently, competitive interactions have been shown (2-5) to
solve a universal dilemma concerning the processing of pat-
terned information by any noisy system with finitely many
excitable sites. All cellular systems are of this type. This di-
lemma, called the noise-saturation dilemma, notes that small
signals to the system can get lost in noise wh~reas large signals
can saturate system response by exciting all of its sites and
thereby reducing to zero its S{~nsitivity to signal fluctuations.
The dilemma describes a fundBlmental problem concerning the
transmission of information by biological systems because, by
trying to avoid noise, the system might amplify the signals so
much that saturation occurs, Bmd conversely. The noise-satu-
ration dilemma is solved by competitive systems, and the so-
lution shows how such systE~ms can automatically retune
themselves to avoid both noise :md saturation. This fact supplies
a basic reason for the universal existence of competition on both
the microscopic and the macroscopic level and throws a new
light on Darwin's concept of biological competition.

Given that competitive systems are ubiquitous, we need a
general method for classifying some of the rich variety of their
dynamical possibilities. Smale (6) has shown that essentially any
dynamical behavior can be embedded in a suitably defined
competitive system. The present method reverses his approach
by providing a tool for designing, analyzing, and classifying
competitive systems that have desirable biological behavior.

This note announces that every competitive system induces
a decision scheme that can bE~ used for global analysis of the
competition as it evolves through time. The method has been
used to explicate radIcally different types of dynamical be-

havior within competitive systems. Section 4 below summarizes
a result concerning global pattern formation by systems pos-
sessing any number of competing populations. This result de-
scribes a principle of system design that guarantees the absolute
stability of pattern formation; that is, pattern formation occurs
no matter how system parameters are chosen within this class
of systems. This principle of design means intuitively that the
system possesses an adaptation level. Any such competitive
system is capable of resolving essentially arbitrary irregularities
in local system design into a global consensus or decision among
the system's components by balancing these irregularities
against the adaptation level. Some systems that arise within
Eigen's theory of macromolecular evolution are of this type (7).
Neural networks and other cellular and chemical mass action
systems are often of this form (3, 4, 8). The systems also suggest
new models of stable economic markets (M. W. Hirsch, personal
communication). .

Section 3 below illustrates how the method can be used to
prove global oscillation theorems for systems of arbitrarily many
competing populations (9). The oscillations reflect a system's
inability to arrive at a global decision. The two types of theo-
rems-pattern formation and oscillations-'::'-are extreme ex-
amples of a complementarity principle that seems to hold in
competitive systems. .

In this idea of decision, the decisions are defined by structures
that exist far from equilibrium. The method hereby shows that
measures of the nonequilibrium behavior of competitive sys-
tems often provide a deeper insight into their design than does
the traditional local analysis of their equilibrium points.

2, Decisions in competitive systems

Suppose that a system is defined by n quantities x = (Xl, X2, ...,
Xn) evolving through time. For example, X/(t) might be the
population size, or activity, or concentration, etc. of the ith
species Vi in the system, i = 1,2, ..., n. A system

dx
dt =/(x), X E R, [I]

is said to be competitive if its ith component

dx.df = /;(x) [2]

satisfies
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and the system remains in a bounded region R of Euclidean n
~pace. In other words, increasing xi can only decrease Xi'S rate
of change, but might not change it at all, for all i ~ j.

The new concept of decision can be motivated in the fol-
lowing fashion. Suppose that an experimentalist is looking at
a petri dish filled with an unknown material. What does the
experimentalist notice? Usually, one's attention goes to those
regions of the petri dish where something is changing. If sud-
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at time t = T [that is, d/dt Xj(t) :5 0], then at every future time
t ~ T, some state vi will be suppressed, but possibly different
states at different times. Set

S- = [x E R: M-(x) = 0] [10]

defin{~s the threshold at which suppression sets in, and the
negative ignition region

R- = [x E R: M-(x) :5 0] [II]

is a positively invariant region.
How are the regions R+ and R- used? Suppose x(t) never

enters R+. Then, by Eq. 4, each d/dt Xi(t) :5 0 at all times t ~
O. Consequently, Xj (t) monotonically decreases to a limit. In this
case, the competition never gets started. The interesting be-
havior in any competitive system occurs within the invariant
region R+, and really within the smaller invariant region R*
= R+ n R- because, if x is in R+ but not R-, all XiS are in-
creasing and the limit x( Q)) = limt_~ x(t) trivially exists.

After ignition takes place [i.e., x(t) is in R*], we keep track
of which state Vi is being maximally enhanced at any time. That
is, we pay attention to the biggest rates of change. If, for ex-
ample, M+[x(t)] = Mi[x(t)] for S :5 t < T but M+[x(t)] =
Mi[X(t)] for T :5 t < U, then we say that the system jumps from
i to j at time t = T. These jumps are the local decisions in a
compt~titive system. A jump from i to j can only occur on the
jump ;\'et

hi = [x EO" R*: Mi(x) = Mi(x) = M+(x)]. [12]

Becau.~e this set is defined where the XiS are changing at a
maximal rate, it defines a hypersurface that is far away from
the equilibrium points x such that dx/ dt = 0 of the system. By
studying the geometrical relationships of the jump sets within
R *, global results have been proved about pattern formation
and oscillations in nonlinear systems with any number n ~ 2
of coII:lpeting states. Below, I briefly summarize two applica-
tions of the theory to systems that are, on the surface, very
differt~nt, although both are amenable to the present
method.

3. Oscillations and the voting paradox
In ref. 9, n-dimensional generalizations

n
Xi = al(x)[l -L Bik(X)fk(Xk)], [13]

k=l
i = 1, 2, ..., n, of the three-dimensional Volterra-Lotka

system

denly a change occurs in a new region of the dish, attention is
focused on the new region. Our attention hereby jumps from
region to region as new chan,ges appear. Just as our attention
jumps to follow the most noticeable systeII:l changes, we can
formalize the maximal changes in system activity as decisions
within the system that regulate which of its regions are ac-
tive.

Actually, the intuitive notion of decision can be explicated
in several directions by using competitive systems as a guide.
The decisions to be described below are "local" decisions that
might, or might not, terminate as time goes on. When they
terminate in pattern formation, the entire system has made a
more global decision based on t.he series of local decisions. If this
competitive system is embeddl~ as a component in a hierarchy
of competitive subsystems, linked together by adaptive feed-
back pathways, then the patterns at each level in the hierarchy
sometimes mutually reinforce and amplify each other, thereby
locking each other into a global activity pattern that represents
a functional unit of the entire ~:ystem and which can thereupon
drive adaptive changes in system structure. Such adaptive
resonances define a yet higher sense in which competitive
systems participate in biological decision-making (5, 10). Each
of these levels of decision-making acts on different spatial and
temporal scales, and each must be analyzed before decision-
making by an organism as a ~,hole can be understood.

To see how jumps, or loc:ll decisions, are formalized, a
competitive system often can be written in the form

Xj = aj(xj)Mj(x), i = 1,2, ..., n. [4]

For example, in the classical "olterra-Lotka systems

ljf n
Xt = A.Xi (1 -L BtkXk), [5]

k=l

aj(Xi) = Ajxj, and

n
Mj(x~= 1 -L BjkXk

k=l

Intuitively, Mj(x) defines the competitive balance at the ith
state VI, and at(Xt) is an amplification coefficient that converts
the competitive balance into the growth rate dxt/dt of Xi. In
particular, at(Xt) > 0 unlessX/ = 0, at(O) = t1, and

~:$ 0 if i ~ j and xfR. [6]
oxl

To track which states are changing fastest and slowest, we de-
fine

~

M + (x) = maxkMk(x) and M-(x) = minkMk(x). [7]

One then proves that there exists a competition threshold;
namely, if M + [x(T)] ?:. 0 at S(lme time t = T, then M + [x(t)]
?:. 0 at all times t ?:. T. Thus, if some state Vi is being enhanced
at time t = T [that is, d/dt xi(T)?:. 0], then at every future time
t ?:. T, some state Vj will be enhanced, but possibly different
states at different times. In other words, if the competition
"ignites" at some time t = T, then it thereafter never turns off.
Set

S+=[xER:M+(x)=O] [8]

is thus a competition threshold, and once the positive ignition
rl'1!.ion

Xl = xl(1 -Xl -aX2 -(JXa)
I~2 = x2(1 -(JXl -X2 -axa) [14]

Xa = xg(1 -aXl -(JX2 -X3)

are globally analyzed. May and Leonard (11) studied system
14 to illustrate the voting paradox. Namely, if a + {J ~ 2 and
(J > 1 > a, then in pairwise competition in system 14, v 1 beats
V2, V2 beats Va, and Vg beats VI. When all three populations in-
teract, a global "contradiction is produced because, if the
winning relationship were transitive, VI could beat itself, which
is absurd. May and Leonard showed that this contradiction
produces sustained oscillations in system dynamics. They used
computer simulations and local analytic estimates to do this.
The present method provides a global analysis of system deci-
sions and hereby shows why the system is forced to jump infi-
nitely often in the cyclic order VI -V2 -V3 -VI, thereby
producing sustained oscillations.

Below are intuitively summarized some of the ideas that yield
pattern formation and oscillation theorems. First, one observes
that given initial data x(O) such that

SomM+[x(t)]dt<=. [151

R+=[~ER:M+{x)?:.O) [9]

I' ,'ntl.rpd. it never can be left. In mathematical parlance, R+
I' .1 1)C)siti,'ply invariant region.

Similarly. if.\I-[x(T)]:S: Oat some time t = T, thenM-[x{t))
~ C I at all times t ?:. T. Thus, if some state VI is being suppressed
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FIG. 2. (a) Sets 81 n 82. 82 n 83, and 83 n 81 are nonempty in
S+. (b) Positive ignition surface with equilibrium point P = (1 + a
+ .8)-J. (1,1,1). (c) Negative ignition surface with equilibrium point
P. (d) .Jump sets form a jump cycle VI -+ V2 -+ V3 -+ VI if (:J > 1 > a.

then the limit x( a» exists, and we say that pattern formation
occurs in response to x(O). It is also shown that if, starting at x(O),
there ensue only finit ~ IY many jumps, then relationship 15

holds, and consequentl x( a> ) exists. Intuitively this means that,

after all local decisions have been made, the system can form
a well-defined pattern (a». For example, suppose, starting at
x(O), all jumps are partially ordered so that no jump cycles (e.g.,
VI Vz V3 VI) exist. Then, only finitely many jumps can
occur, so pattern formation oc~curs. Moreover if relationship 15
holds, because M+ [x(t)] 2: 0 at all large times, it follows that
limt_~ M+ [x(t)] = O. Consequently, x(t) approaches an
equilibrium point that lies on S+. For example, in Volterra-
Lotka systems 5 with n = 3, to find the jump sets hj defined by
Eq. 12, one first notes if the planes Mj(x) = 0 and Mj(X) = 0
intersect on S+. The intersection is a line segment Ljj except in
trivial cases. Then, one definE~s the planar region interpolated
between Ljjand the point x = 0 and intersects this planar region
with R. to find hj. Because n = 3, no jump cycle exists unless
there are three line segments Ljlj2' Lj2j3' and Lj3/J on S+ with
iI, iz, and i3 distinct. If not, given any x(O), the limit x( a» exists;
that is, glowl pattern formation occurs. Moreover the limit x( a> )
lies on S+. Fig. 1 illustrates some Volterra-Lotka systems that
undergo global pattern formation.

The starting point for studying oscillations is the converse
statement:

So1M+I.X(t)]dt=<x> [16]

implies that infinitely many jumps occur. For example, the
jump sets of the Volterra-Lotka system 14 are depicted in Fig.
2. One finds that, if (j > 1 > a, jumps must cycle in the order
VI -V2 -V3 -VI if they occur at all. To show that this jump
cycle recurs infinitely often, we must prove relationship 16,
given prescribed initial data x(O). To do this, one studies the
ignition surface S+ defined by [8] to test which x(O)s generate
trajectories that penetrate S+ and which of these trajectories
are then repelled away from S+ into R *. Such trajectories will
satisfy M+[x(t)] ~ f for some E > 0 and all times t that are
sufficiently large. Then [16] readily follows. In system 14, all
trajectories penetrate s+ except those that have uniform initial
data %1(0) = X2(0) = %3(0). The latter trajectories remain uni-
formly distributed and approach the equilibrium point P = (1
+ a + {j)-1 (1, I, 1) that lies at the intersection of the dark lines

A
A 55. I 52

~

b

in Fig. 2b. What prevents other trajectories from approaching
p after they penetrate S+? The condition a + fJ 2: 2 guarantees
that p' is an unstable equilibrium point with respect to the di-
rections lying witltin R*.

After one is sure that x(O) generates infinitely many jumps,
how does one know which Xi oscillate persistently as t -..00; that
is, whiich Xi oscillate at arbitrarily large times and in such a way
that the limit xi( 00) does not exist? To study this, one defines an
asymptotic graph that decomposes the jumps that reoccur in-
finitely often into a collection of jump cycles among certain of
the sbues VI. In system 14, all of the VI, i = 1, 2, 3, are in the
asymptotic graph if a + fJ 2: 2 and fJ > 1 > a. One then shows
how tihose XI whose VI are in the asymptotic;~raph cannot stop
oscill~Lting as t -..00 without contradicting [16].

It dloes not follow that persistently oscillating XIS approach
a periodic solution as t -..00. For example, May and Leonard
(11) numerically demonstrated oscillations of ever-increasing
perioc[ in system 14 when a + fJ = 2, and Grossberg (9) showed
that such oscillations can occur when the trajectory approaches
a union of heteroclinic orbits (namely, orbits between two
equilibrium points) as t -..00.

4. Absolute stability of global pattern formation

In ref. 8 it is shown how a large class of systems defined by mass
action, or kinetic laws, and subjected to feedback excitatory and
inhibitory interactions undergo global pattern formation. That
is, given any initial data x(O), the system approaches a limiting
pattern x(oo) = limt_~ x(t) as time goes on. In general, there
can b4~ infinitely many possible x( 00 ) in a given system, but the
analysis of jumps provides considerable information about how
x( 00) depends on x(O).

Thl~ systems covered by this analysis include examples of
neural networks with recurrent on-center off-surround anato-
mies, biochemical mass action interactions, developmental
decisions, and interpopulation competition (see refs. 5 and 12
for the general theory). The theorem describes the behavior of
systerns that can be written as

XI = al(x)[bl(xI) -c(x)] [17]

wherl~, by [3], oc/ ()xi 2: 0, i = 1,2,. .., n. The results about [17]
suggest a solution to a dilemma that' has interested philosophers
and sc~ientists for hundreds of years: How can arbitrarily many
individuals, populations, or states, each obeying unique and
personal laws, ever interpret each other's signals or communi-
catioIlS well enough to ever agree about anything? Leibniz has
met t:his dilemma by developing his theory of monads (13). The

~ I '

FIG. 1. The sets Si = Ix E R~: Mi(X) = 0] are planar segments
in the case ofthree-dimenaional Volterra-Lotka systems. (a).-\11 three
Si. i = 1,2,3,formpartof$+.Be<:auseonlytwointersectionrS1 n S3
and SI n S2 are nonempty in S+, there are no jump cycles. Global
pattern formation therefore occurs. Moreover, there are two equi-
librium points (filled circles) on S+, but only the one on SIn S3 is
stable. (b) Only one intersection SI n S3 is nonempty in S+. Again,
global pattern formation occurs. The equilibrium point on S+ is
stable.
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Syste:m 21 can be written in the form of [17] by using the defi-
nitions ai(X) = Xi,

bj(Xj) = -Aj -Ij -11 + xiI [AjDj + Ij

CIEiarly [17] is vastly more general than [20]; for example, it
permits nonlinear combinations of the signals, rather than
merely additive ones, as well as state-dependent changes in the
parameters. Because global pattern formation obtains given any
choice of parameters in [17], I call the system absolutely stable.
Any mechanism that changes system parameters can cause
dramatic changes in the underlying decision scheme without
destroying the system's ability to reach a new global consensus.
The theorem thus constrains possible bifurcations in the space
of dec:ision schemes. This subject should be studied further.

For example, the system

Xi = -AXt + (B -Xt)!(Xt) -Xt L !(Xk)
k;"t

[22]

theorem suggests a different solution. In [17], each Vi can have
an essentially arbitrary signal function bi(Xi) as well as an ar-
bitrary amplification function ai(x). Global consensus, or pat-
tern formation, can be achieved despite these local irregularities
because there exists a commonly shared adaptation level c(x)
against which to evaluate lo(:al irregularities. The adaptation
level c(x) defines a type of symmetric long-range order that is
shared by the populations.

There seems to exist a complementarity, or trade-off, be-
tween how freely one can choose local parameters ("individual
differences") and how global the adaptation level ("communal
understanding") must be chosen to achieve global consensus
(8,9). For example, in the Volterra-Lotka system 14 there is
no adaptation level, and even linear feedback signals can pro-
duce sustained oscillations. By contrast, a large class of gener-
alized Volterra-Lotka systems [13] do undergo global pattern
formation. These are the systems whose interaction coefficients
Bik(X) are determined by statistically independent factors at
Vj and vk-namely, Bik(X) = gj(Xj)hk(Xk). Then [13] can be
written in the form of [17] and hence undergoes global pattern
formation. Thus, within Volterra-Lotka systems, only devia-
tions from statistically independent interactions can produce
sustained oscillations.

An important class of mass action systems undergoing com-
petitive feedback can be written in the form of [17]. To illustrate
this, consider the usual voltage law that underlies the circuit
diagrams of nerve cell membranes (14, 15):

oy iC -= (Y+ -Y)g+ 4- (Y- -Y)g- + (yP -Y)gP [18]
ot

in which C is cap~citance, the constants Y +, V-, and V Pare
excitatory (usually Na+), inhibitory (usually K+), and passive
saturation points, respectively; and g+, g-, and gP are excita-
tory, inhibitory, and passive (:onductances, respectively. The
voltage Y(t) is variable, and stays between Y+ and V- because
Y- .$ yP < Y+. Let Yj(t) be the voltage of the ith cell (or cell
population) Vi. Let C = 1 (that is, rescale the time variable), and
introduce the notation Y+ = B, yP = 0, and Y- = -V ,in which
B > 0 and D ~ 0 because Y- ~~ Y P < Y +. Suppose that the ith

excitatory conductance gj+ is iluluenced by a constant, or tonic,
external input Ij and by a positive feedback signalft(Yj) from
Vj to itself. Thus,gj+ =ft(Yi) -f- Ij. Let theilli inhibitory con-
ductance gj be influenced by a constant, or tonic, input it and
by competitive or inhibitory signals !k(Yk) from all cellsvk, k
r6 i. Thus, gj = Lk;o'j!k(Yk) .+ fj. Actually, one can think of
It and fj as varying slowly compared to the reaction rate of XI.
Let the passive conductance gf' equal the constant A. In all, the
feedback interactions define a recurrent on-center (Vj excites
itself) off-surround (Vk inhibits VI, i r6 k) anatomy. Eq. 18 then
becomes !

!it = -AYi + (B -Yi)[/j(Yj) + Ii]

describes the simplest competitive mass action feedback net-
work. If the signal function f( w) is chosen so that b( w) =
W -1 f (w) is strictly increasing, then the system chooses the

population Vj possessing the maximal initial.data and concen-
trates all system activity at VI. By contrast, if b(w) is a concave
function with a flat plateau between its increasing and de-
creasiJ:lg values, as when f(w) is a sigmoid or S-shaped signal
function, then a quenching threshold exists: initial activities that
are sl1rlaller than the quenching threshold are suppressed,
whereas the spatial pattern of initial activities that exceed the
quenching threshold is contrast-enhanced and stored (3, 16).
These results illustrate how a competitive system can sometimes,
but not always, behave, like a finite state machine. In particular,
a "hill" or "hump" in the graph of b( w) can significantly alter
system dynamics. Mimura and Murray (17) have noted the
importance of hills in determining the qualitative behavior of
prey-predator reaction-diffusion systems. Their goal was to
undenitand spatial heterogeneity, or patchiness, in these sys-
tems. In a neural context, analogous effects occur and are called
disinhibition or lateral masking (18, 19).

Global pattern formation in [17] is proved by first analyzing
how the hills in the functions bi(w) influence system dynamics.
It is shown how the decision rules sense these hills by causing
a nestt~ series of decision boundaries to be laid down as time
goes on. These decision boundaries suddenly appear at pre-
scribed times and, after they appear, each Xi(t) can fluctuate
only within the intervals that are defined by the boundaries.
Once all the boundaries are laid down, the decision process is
essentially complete, except for a possible series of minor system
adjustments. The concept of decision boundary is reminiscent
of the compartmental boundaries that Kauffman et al. (20)
have modeled for the development of the Drosophila embryo.
Howe1fer, the Kauffman et al. model describes a linear
threshold phenomenon that is due to the existence of a physical
boundary-in their case, an elliptic boundary. A decision
boundary is caused by nonlinear suprathreshold interactions
even u: no physical boundary effects occur.

To illustrate how hills are related to decision boundaries,
choose all bj(w) ;: b(w) and let b(u.) IJOSSt's.s finitely many local
maximla and minima. Consider the ahscissa "allies of the hill
peaks of highest height. There exists a timt' T I after which each
Xj(t) is trapped within an intervallwt",t't'n a pair of such ab-
scissa values. These abscissa valllt'~ art' tilt' first decision
boundaries to appear. To pro"t' this fact. tilt' ignition property

I -(Yi + D) [ L fk(Yk) + Ji ] ' [19]
i k~i

Now generalize [19]. Let each Vj have an arbitrary decay rate

Aj, an arbitrary excitatory saturation point Bj, and an arbitrary

inhibitory saturation point Di. Then [19] becomes

Iii = -AjYj + (Bi -Y')~i(Y') + I,]

.-(y, + D')[k~ifk(Yk) + h] [~O]

\\'hich is an n-dimensional mass action, or kinetic, network with

arbitrary parameters, tonic inputs, and feedback signalsfk(Yk).
To write [20] in the form pf [17], first let Xi = Yi + Dj and h;(Xi)

=h(Xi -Dj). Then, I

x, = -Ajxj + (Bj + D, I Xi)[h,(x,) + I,]

+ X, [ L hk(Xk) + h ] + A,D,. [21]
! k;o!,
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observer will not be able to understand how the system auto-
matically tunes its sensitivity to match fluctuating external
demands, among other properties, and efforts to model the
system out of linear components can lead to umphysical insta-
bilities (23).

This situation can create major conceptual difficulties when
one considers the evolution of biological order. How do com-
ponents that compete at early stages of evolution ultimately
cooperate to establish a more complex structure, such as an
organ? Does this switchover imply that the laws of interaction
change from a condition like [3] to a condition like [23]? Or do
the components compete throughout all the evolutionary stages,
but in such a fashion that earlier stages of competition alter
system parameters so that later stages can yield ostensibly co-
operative macroscopic properties? For example, if [22] has a
sigmoid signal f(w) and system sensitivity is modulated by a
variable arousal or enzymatic level, the system can choose a
winning population at low arousal levels and amplify all activity
levels at higher arousal levels (5). Interacting competitive
subsystems can also begin to resonate when their feedback
signals match and amplify each other (5, 10, 12).

Such considerations make it plain that the collective prop-
erties that define the evolutionary success of biological systems
often canno~be reliably guessed from a study of their isolated
components and indicate an important role for mathematical
analysis in understanding the principles of design on which
evolutionary success is founded.

This work was supported in part by National Science Foundation
Grant MCS 77-02958.

is used. If at any time t, Xj(t) equals one of these abscissa values,
then Mj[x(t)] = M+[il"(t)] ~ o. Consequently Xj ~ 0, so that
once Xj crosses an abscissa value, it can never cross back. Further
analysis shows that there exists a time T 2 > T I after which no
Xj(t) can cross the abscissa values between either the highest or
the next-highest hill peaks. This process of laying down decision
boundaries continues until each Xj(t) is trapped in the "bowl"
between a pair of successive hill peaks. The first stage of pattern
formation is then complete.

The second stage is analyzed by keeping track of that Xj(t)
whose hill height b[Xj(t)] is maximal. Denote the maximal hill
height by B[x(t)]; that is, 8[x(t)] = maxjb[Xj(t)]. By [17], B(x)
= M + (x) + c(x). After all dynamic boundaries are laid down,

jumps can occur among descending slopes of the hills (slopes
to the right of hill peaks) as B[x(t)] decreases monotonically
through time; or jumps can occur among ascending slopes of
the hills (slopes to the left of hill peaks) as B[x(t)] increases
monotonically through time; or a jump can occur from a de-
scending slope to an ascending slope but not conversely; or the
variable Xj(t) such that B[x(t)] = b[Xj(t)] can increase contin-
uously as B[x(t)] moves from a descending slope to an ascending
slope, but not conversely, because the Xj (t ) variables are trapped
within their bowls. In all, B[x{t)] can oscillate at most once after
the dynamic boundaries are laid down. Consequently, the limit
B[x(oo)] = limt~... B[x(t)] exists. Using this fact, it is then shown
that the limit c[x( 00)] = limt c[x(t)] of the adaptation level
also exits and equals B[x( 00 )]. In other words, the local decisions
among system components ultimately lead to the choice of a
set-point or asymptotic adaptation level c[x( Q) )]. Then each Xt
adjusts itself via [17] to this set-point as the limit x(oo) is ap-
proached.

The above analysis reveals that B[x(t)] is monotonic at large
times; that is, it is an asyn1ptotically Liapunov function.
Function B[x(t)] only becomes Liapunov, however, after the
decision boundaries have been laid down. Thus, the system
approaches a "classicallimit" only after its initially nonsta-
tionary dynamics of decision-making is over. A similar trend
often occurs in learning networks: after the nonstationary phase
of learning is over, the system settles down to a memory phase,
which is described by a stationary Markov chain (21).

5. Evolutionary switch from competition to
cooperation?

By analogy with [3], a cooperative system is one in which

~ (x) ~ 0 if i ~ j and x E R. [23]
()Xj

A competitive system can sometimes appear to be cooperative.
For example, Grossberg (3) proved that competitive schemes,
such as [22], can amplify the activities of all the competing
populations, thereby making it appear that an increase in one
population's activity has increased other populations' activities.
This property can drive all system activities into the range
where they are most sensitive to each other's signals. Grossberg
(5, 22) argued that this self-tuning, or normalization, property
lies behind a wide variety of biological phenomena such as
sensory adaptation and self-regulation. Nonlinear interactions
are required to achieve self-tuning, but the system's properties
can look linear to a macroscopic observer (see ref. 5, section 8).
A similar dilemma can occur in learning systems (21). Thus, a
system that looks linear and cooperative to an untutored ob-
server can, in reality, be nonlinear and competitive. Such an

1. Darwin, C. (1859) On the Origin of Species (London).
2. Grossberg, S. (1970) J. Theor. Bioi. 27,291-337.
3. (;rossberg, S. (1973) Stud. Appl. Math. 52,217-257.
4. (;rossberg, S. (1977) J. Math. Bioi. 4,237-256.
5. (;rossberg, S. (1978) in Progress in Theott?-tical Biology, eds.

Rosen, R. & Snell, F. (Academic, New York), pp. 183-232.
6. Smale, S. (1976) J. Math. Bioi. 3,5-7.
7. Eigen, M. & Schuster, P. (1978) Naturwissenschaften 65,

7-41.
8. (;rossberg, S. (1978) J. Math. Anal. Appl. 66,470-493.
9. Grossberg, S. (1978) J. Theor. Bioi. 73,101-130.

10. (;rossberg, S. (1980) Psychol. Rev. 87,1-51.
11. May, R. M. & Leonard, W. J. (1975) SIAM (Soc. Ind. Appl.

Math.) J. Appl. Math. 29,243-253.
12. Grossberg, S. (1978) in Progress in Theoretical Biology, eds.

I1losen, R. & Snell, F. (Academic, New York), pp. 233-374.
13. leibniz, G. W. (1925) The Monadology and Other Philosophical

VVritings, translated by Latta, R. (Oxford Univ. Press,
l.ondon).

14. Hodgkin, A. L. (1964) The Conduction of the Neroous Impulse
(Thomas, Springfield, IL).

15. Katz, B. (1966) Neroe, Muscle, and Synapse (McGraw-Hill, New
York).

16. Grossberg, S. & Levine, D. S. (1975) J. Theor. Bioi. 53,341-
3.80.

17. Mimura, M. & Murray, J. D. (1978) J. Theor. Bioi. 75,249-
262.

18. EIlias, S. A. & Grossberg, S. (1975) Bioi. Cljbernetics 20, 69-
98.

19. Levine, D. S. & Grossberg, S. (1976) J. Theor. Bioi. 61,477-
504.

20. Kauffman, S. A., Shymko, R. M. & Trabert, K. (1978) Science 199,
259-270.

21. Grossberg, S. (1969) J. Differential Equations 5,531-563.
22. Grossberg, S. (1980) Bull. Math. Bioi., in press.
23. Grossberg, S. (1978) Psychol. Rev. 85,592-596.


