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Abstract: A theory is presented of how global visual interactions between depth, length, lightness, and form percepts can occur. The
theory suggests how quantized activity patterns which reflect these visual properties can coherently fill-in, or complete, visually
ambiguous regions starting with visually informative data features. Phenomena such as the Cornsweet and Craik—O’Brien effects,
phantoms and subjective contours, binocular brightness summation, the equidistance tendency, Emmert’s law, allelotropia,
multiple spatial frequency scaling and edge detection, figure-ground completion, coexistence of depth and binocular rivalry,
reflectance rivalry, Fechner’s paradox, decrease of threshold contrast with increased number of cycles in a grating pattern,
hysteresis, adaptation level tuning, Weber law modulation, shift of sensitivity with background luminance, and the finite capacity of
visual short term memory are discussed in terms of a small set of concepts and mechanisms. Limitations of alternative visual theories
which depend upon Fourier analysis, Laplacians, zero-crossings, and cooperative depth planes are described. Relationships between
monocular and binocular processing of the same visual patterns are noted, and a shift in emphasis from edge and disparity
computations toward the characterization of resonant activity-scaling correlations across multiple spatial scales is recommended. This
recommendation follows from the theory’s distinction between the concept of a structural spatial scale, which is determined by local
receptive field properties, and a functional spatial scale, which is defined by the interaction between global properties of a visual
scene and the network as a whole. Functional spatial scales, but not structural spatial scales, embody the quantization of network
activity that reflects a scene’s global visual representation. A functional scale is generated by a filling-in resonant exchange, or FIRE,
which can be ignited by an exchange of feedback signals among the binocular cells where monocular patterns are binocularly
matched.
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formalisms is inherent in the nature of psychological

phenomena. Sperling (1981, p. 282) has, for example,

recently written:
In fact, as many kinds of mathematics seem to be
applied to perception as there are problems in percep-
tion. I believe this multiplicity of theories without a
reduction to a common core is inherent in the nature of
psychology . . . , and we should not expect the situa-
tion to change. The moral, alas, is that we need many
different models to deal with the many different as-
pects of perception.

The objects of perception and the space in which they seem to

lie are not abstracted by a rigid metric but a far looser one than

any philosopher ever proposed or any psychologist dreamed.
Jerome Lettvin (1981)

1. Introduction: The abundance of visual models.Few
areas of science can boast the wealth of interesting and
paradoxical phenomena readily accessible to introspec-
tion that visual perception can. The sheer variety of
effects helps to explain why so many different types of
theories have arisen to carve up this data landscape.

Fourier analysis (Cornsweet 1970; Graham 1981; Robson
1975), projective geometry (Beck 1972; Johannson 1978;
Kaufman 1974), Riemannian geometry (Blank 1978;
Luneberg 1947; Watson 1978), special relativity (Caelli,
Hoffman & Lindman 1978), vector analysis (Johannson
1978), analytic function theory (Schwartz 1980), potential
theory (Sperling 1970), and cooperative and competitive
networks (Amari & Arbib 1977; Dev 1975; Ellias &
Grossberg 1975; Grossberg 1970a; 1973; 1978e; 1981;
Sperling 1970; Sperling & Sondhi 1968) are just some of
the formalisms which have been used to interpret and
explain particular visual effects. Some of the most dis-
tinguished visual researchers believe that this diversity of
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The opinion Sperling offers is worthy of the most serious
deliberation, since it predicts the type of mature science
which psychology can hope to become, and thereby
constrains the type of theorizing which psychologists will
try todo. Is Sperling right? or Do there exist concepts and
properties, heretofore not explicitly incorporated into the
mainstream visual theories, which can better unify the
many visual models into an integrated visual theory?

Part I of this article reviews various visual data as well
as internal paradoxes and inherent limitations of some
recent theories that have attempted to explain these data.
Part II presents a possible approach to overcoming these
paradoxes and limitations and to explaining the data in a
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unified fashion. Numerical simulations that support the
qualitative arguments and mathematical properties de-
scribed in Part II are found in Cohen & Grossberg (1983a).
Pacll'ts I and II are self-contained and can be read in either
order.

Part |

2, The quantized geometry of visual space. There is an
important sense in which Sperling’s assertion is surely
correct, but in this sense it is also true of other sciences
such as physics. Different formalisms can probe different
levels of the same underlying physical reality without
excluding the possibility that one formalism is more
general, or physically deeper, than another. In physics,
such theoretical differences can be traced to physical
assumptions which approximate certain processes in
order to clarify other processes. I will argue that several
approaches to visual perception make approximations
which do not accurately represent the physical processes
which they have set out to explain. For this reason, such
theories have predictive limitations which do not permit
them to account, even to a first approximation, for major
properties of the data. In other words, the mathematical
formalism of these theories has not incorporated funda-
mental physical intuitions into their computational struc-
ture. Once these intuitions are translated into a suitable
formalism, the theoretical diversity in visual science will,
I claim, gradually become qualitatively more like that
known in physics.

The comparison with physics is not an idle one. Certain
of the intuitions which need to be formalized at the
foundations of visual theory are well known to us all. They
have not been acted upon because, despite their sim-
plicity, they lead to conceptually radical conclusions that
force a break with traditional notions of geometry. Lines
and edges can no longer be thought of as a series of points;
planes can no longer be built up from local surface
elements or from sets of lines or points; and so on. Alllocal
entities evaporate as we build up notions of functional
perceptual units which can naturally deal with the global
context-dependent nature of visual percepts. The formal-
ism in which this is achieved is a quantized dynamic
geometry, and the nature of the quantization helps to
explain why so many visual percepts seem to occur in a
curved visual space.

When a physicist discusses quantization of curved
space, he usually means joining quantum mechanics to
general relativity. This goal has not yet been achieved in
physics. To admit that even the simplest visual phe-
nomena suggest such a formal step clarifies both the
fragmentation of visual science into physically inadequate
formalisms, and the radical nature of the conceptual leap
that is needed to remedy this situation.

3. The need for theories which match the data’s co-
herence. As background for my theoretical treatment, I
will review various paradoxical data concerning interac-
tions between the perceived depth, lightness, and form of
objects in a scene. These paradoxes should not, I believe,
be viewed as isolated and unimportant anomalies, but
rather as informative instances of how the visual system
completes a scene’s global representation in response to
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locally ambiguous visual data. These data serve to remind
us of the interdependence and context-sensitivity of visu-
al properties; in other words, of their coherence. With
these reminders fresh in our minds, I will argue in Part II
that by probing important visual design principles on a
deep mathematical level, one can discover, as automatic
mathematical consequences, the way many visual prop-
erties are coherently caused as manifestations of these
design principles.

This approach to theory construction is not in the
mainstream of psychological thinking today. Instead, one
often finds models capable of computing some single
visual property, such as edges or cross-correlations. Even
with a different model for each property, this approach
does not suggest how related visual properties work
together to generate a global visual representation. For
example, the present penchant for modeling lateral inhi-
bition by linear feedforward operators like a Laplacian or
a Fourier transform to compute edges or cross-correla-
tions (Marr & Hildreth 1980; Robson 1975) pays the price
of omitting related nonlinear properties like reflectance
processing, Weber law modulation, figure-ground filling-
in, and hysteresis. To the argument that one must first
understand one property at a time, I make this reply: The
feedforward linear theories contain errors even in the
analysis of the concepts they set out to explain. Internal
problems of these theories prevent them from under-
standing the other phenomena that cohere in the data.

This lack of coherence, let alone correctness, will cause
aheavy price to be paid in the long run, both scientifically
and technologically. Unless the relationships among visu-
al data properties are correctly represented in a dis-
tributed fashion within the system, plausible (and eco-
nomic) ways to map these properties into other sub-
systems, whether linguistic, motor, or motivational, will
be much harder to understand. Long-range progress,
whether in theoretical visual science per se or in its
relations to other scientific and technological disciplines,
requires that the mathematical formalisms in which visual
concepts are articulated be scrupulously criticized.

4, Some influences of perceived depth on perceived size.
Interactions between an object’s perceived depth, size,
and lightness have been intensively studied for many
years. The excellent texts by Cornsweet (1970) and by
Kaufman (1974) review many of the basic phenomena.

The classical experiments of Holway and Boring (1941)
show that observers can estimate the actual sizes of
objects at different distances even if all the objects sub-
tend the same visual angle on the observers’ retinas.
Binocular cues contribute to the invariant percept of size.
For example, Emmert (1881) showed that monocular
cues may be insufficient to estimate an object’s length.
He noted, among other properties, that a monocular
afterimage seems to be located on any surface which the
subject binocularly fixates while the afterimage is active.
Moreover, the perceived size of the afterimage increases
as the perceived distance of the surface increases. This
effect is called Emmert’s law. Although the use of monoc-
ular afterimages to infer properties of normal viewing is
fraught with difficulties, other paradigms have also sug-
gested an effect of perceived depth on perceived size.

For example, Gogel (1956, 1965, 1970) has reported
that two objects viewed under reduction conditions (one




eye looks through a small aperture in dim light) will be
more likely to be judged as equidistant from the observer
as they are brought closer together in the frontal plane. In
a related experiment, one object is monocularly viewed
through a mirror arrangement whereas all other objects
in the scene are binocularly viewed. The monocularly
viewed object then seems to lie at the same distance as
the edge that, among all the binocularly viewed objects,
is retinally most contiguous to it. Gogel interpreted these
effects as examples of an equidistance tendency in depth
perception. The equidistance tendency also holds if a
monocular afterimage occupies a retinal position near to
that excited by a binocularly viewed object. One way to
interpret these results is to assert that the perceived
distance of the binocular object influences the perceived
distance of the adjacent afterimage by the equidistance
tendency, and thereupon influences the perceived size of
the afterimage by Emmert’s law.

Results such as these suggest that depth cues can
influence size estimates. They also suggest that this
influence can propagate between object representations
whose cues excite disparate retinal points and that the
patterning of all cues in the visual context of an object
helps to determine its perceived length. The classical
geometric notion that length can be measured by a ruler,
or can be conceptualized in terms of any locally defined
computation, thereby falls into jeopardy.

5. Some monocular constraints on size perception. Size
estimates can also be modified by monocular cues, as in
the corridor illusion (Richards & Miller 1971; see Figure
1a). In this illusion, two cylinders of equal size in a picture
are perceived to be of different sizes because they lie in
distinct positions within a rectangular grid whose spatial
scale diminishes toward a fixation point on the horizon.
An analogous effect occurs in the Ponzo illusion shown on
the right, wherein two horizontal rods of equal pictorial
length are drawn superimposed over an inverted V (Kauf-
man 1974; see Figure 1b). The upper rod appears longer
than the lower rod. The perception of these particular
figures may be influenced by learned depth perspective
cues (Gregory 1966), although this hypothesis does not
explain how perspective cues alter length percepts.
There exist many other figures, however, in which a
perspective effect on size scaling is harder to rationalize

(a) (v)

Figure 1. (a) The corridor illusion. () The Ponzo illusion.
(After Kaufman 1974. From Sight and Mind: An Introduction to
Visual Perception. Copyright © 1974 by Oxford University
Press, Inc. Reprinted by permission.)
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Figure 2. Attneave’s cat: Connecting points of maximum cur-
vature with straight lines yields a recognizable caricature of a
cat. (After Attneave 1954.)

(Day 1972). Several authors have therefore modeled
these effects in terms of intrinsic scaling properties of the
visual metric (Dodwell 1975; Eijkman, Jongsma & Vin-
cent 1981; Restle 1971; Watson 1978).

A more dramatic version of scaling is evident when
subjective contours complete the boundary of an in-
completely represented figure. Then objects of equal
pictorial size that lie inside and outside the completed
figure may appear to be of different size (Coren 1972).
The very existence of subjective contours raises the issue
of how incomplete data about form can select internal
representations which can span or fill-in the incomplete
regions of the figure. How can we characterize those
features or spatial scales in the incomplete figure which
play an informative role in the completion process versus
those features or scales which are irrelevant? Attneave
(1954) has shown, for example, that when a drawing of a
cat is replaced by a drawing in which the points of
maximum curvature in the original are joined by straight
lines, then the new drawing still looks like a cat (see
Figure 2). Why are the points of maximum curvature such
good indicators of the entire form? Is there a natural
reason why certain spatial scales in a figure might have
greater weight than other scales? Attneave’s cat raises the
question: Why does interpolation between points of max-
imum curvature with lines of zero curvature produce a
good facsimile of the original picture? Different spatial
scales somehow need to interact in our original percept
for this to happen. To understand this issue, we need a
correct definition of spatial scale. Such a definition should
distinguish between local scaling effects, such as those
which can be understood in terms of a neuron’s receptive
field (Robson 1975), and global scaling effects, such as
those which control the filling-in of subjective contours or
of phantom images across a movie screen, which subtends
a visual angle much larger than that spanned by any
neuron’s receptive field (Smith & Over 1979; Tynan and
Sekuler 1975; von Grunau 1979; Weisstein, Maguire &
Berbaum (1976).

6. Multipie scales in figure and ground: simultaneous
fusion and rivalry.That interactions between several spa-
tial scales are needed for form perception is also illus-
trated by the following type of demonstration (Beck
1972). Represent a letter E by a series of nonintersecting
straight lines of varying oblique and horizontal orienta-
tions drawn within an imaginary E contour and sur-
rounded by a background of regular vertical lines. The E
is not perceived because of the lines within the contour,
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Figure 3. The Kaufman stereogram induces an impression of
depth even though the darker line patterns are rivalrous. (After
Kaufman 1974. From Sight and Mind: An Introduction to Visual
Perception, Copyright © 1974 by Oxford University Press, Inc.
Reprinted by permission.)

since the several orientations of these interior lines do not
group into an E-like shape. Somehow the E is synthesized
as the complement of the regular background, or, more
precisely, by the statistical differences between the figure
and the ground. These statistical regularities define a
spatial scale — broader than the scale of the individual
lines — on which the E can be perceived.

In a similar vein, construct a stereogram out of two
pictures as follows (Kaufman 1974; see Figure 3). The left
picture is constructed from 45°-oblique dark parallel lines
bounded by an imaginary square, which is surrounded by
135°-oblique lighter parallel lines. The right picture is
constructed from 135°-oblique dark parallel lines bound-
ed by an imaginary square whose position in the picture is
shifted relative to the square in the left picture. This
imaginary square is surrounded by 45°-oblique lighter
parallel lines. When these pictures are viewed through a
stereoscope, the dark oblique lines within the square are
rivalrous. Nonetheless the square as a whole is seen in
depth. How does this stereogram induce rivalry on the
level of the narrowly tuned scales that interact preferen-
tially with the lines, yet simultaneously generate a co-
herent depth impression on the broader spatial scales that
interact preferentially with the squares?

Kulikowski (1978) has also studied this phenomenon by
constructing two pairs of pictures which differ in their
spatial frequencies (see Figure 4). Each picture is bound-
ed by the same frame, as well as by a pair of short vertical

-a

reference lines attached to the outside of each frame at
the same spatial locations. In one pair of pictures, spa-
tially blurred black and white vertical bars of a fixed
spatial frequency are 180° out of phase. In the other pair
of pictures, sharp black and white vertical bars of the
same spatial extent are also 180° out of phase. The latter
pair of pictures contains high spatial frequency compo-
nents (edges) as well as low spatial frequency compo-
nents. During binocular viewing, subjects can fuse the
two spatially blurred pictures and see them in depth with
respect to the fused images of the two frames. By con-
trast, subjects experience binocular rivalry when they
view the two pictures of sharply etched bars. Yet they stiil
experience the rivalrous patterns in depth. This demon-
stration suggests that the low spatial frequencies in the
bar patterns can be fused to yield a depth impression even
while the higher spatial frequency components in the
bars elicit an alternating rivalrous perception of the mon-
ocular patterns.

The demonstrations of Kaufman (1974) and Kulikowski
(1978) raise many interesting questions. Perhaps the most
pressing one is: Why are fusion and rivalry alternative
binocular perceptual modes? Why are coexisting unfused
monocular images so easily supplanted by rivalrous mon-
ocular images? How does fusion at one spatial scale
coexist with rivalry at a different spatial scale that repre-
sents the same region of visual space?

7. Binocular matching, competitive feedback, and mon-
ocular self-matching.These facts suggest some conclu-
sions that will be helpful in organizing my data review and
will be derived on a different theoretical basis in Part II. I
will indicate how rivalry suggests the existence of binocu-
lar cells that can be activated by a single monocular input
and that mutually interact in a  competitive feedback
network. First I will indicate why these binocular cells
can be monocularly activated. .
The binocular cells in question are the spatial loci
where monocular data from the two eyes interact to
generate fusion or rivalry as the outcome. To show why at
least some of these cells can be monocularly activated, I
will consider implications of the following mutually exclu-

b c

Figure 4. Demonstration of depth perception with and without fusion. (a) Sinusoidal gratings in antiphase can be fused to yield a
depth impression. (b) The square wave gratings yield a depth impression even when their sharp edges become double. (¢) A similar
dichotomy is perceived when single sinusoidal or bars are viewed. (After Kulikowski 1978.) Reprinted by permission from Nature,
volume 275, pp. 126-127. Copyright © Macmillan Journals Limited.
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sive possibilities: either the outcome of binocular match-
ing feeds back toward the monocular cells that generated
the signals to the binocular cells, or it does not.

Suppose it does not. Then the activities of monocular
cells cannot subserve perception; rather, perception is
associated with activities of binocular cells or of cells more
central than the binocular cells. This is because both sets
of monocular cells would remain active during a rivalry
percept, since the binocular interaction leading to the
rivalry percept does not, by hypothesis, feed back to alter
the activities of the monocular cells. Now we confront the
conclusion that monocular cells do not subserve percep-
tion with the fact that the visual world can be vividly seen
through a single eye. It follows that some of the binocular
cells which subserve perception can be activated by input
from a single eye.

Having entertained the hypothesis that the outcome of
binocular matching does not feed back toward monocular
cells, let us now consider the opposite hypothesis. In this
case, too, I will show that a single monocular representa-
tion must be able to activate certain binocular cells. To
demonstrate this fact, I will again argue by contradiction.

Suppose it does not. In other words, suppose that the
outcome of binocular matching does feed back toward
monocular cells but a single monocular input cannot
activate binocular cells. Because the visual world can be
seen through a single eye, it follows that the activities of
monocular cells subserve perception in this case. Conse-
quently, during a binocular rivalry percept, the binocu-
lar-to-monocular feedback must quickly inhibit one of the
monocular representations. The signals which this mon-
ocular representation was sending to the binocular cells
are thereupon also inhibited. The binocular cells then
receive signals only from the other monocular represen-
tation. The hypothesis that binocular cells cannot fire in
response to signals from only one monocular representa-
tion implies that the binocular cells shut off, along with all
of their output signals. The suppressed monocular cells
are then released from inhibition and are excited again by
their monocular inputs. The cycle can now repeat itself,
leading to the percept of a very fast flicker of one monocu-
lar view superimposed upon the steady percept of the
other monocular view. This phenomenon does not occur
during normal binocular vision. Consequently, the hy-
pothesis that a single monocular input cannot activate
binocular cells must be erroneous. Whether or not the
results of binocular matching feed back toward monocular
cells, certain binocular cells can be activated by a single
monocular representation.

An additional conclusion can be drawn in the case
wherein the results of binocular matching can feed back
toward monocular cells. Here a single monocular source
can activate binocular cells, which can thereupon send
signals toward the monocular source. The monocular
representation can thereby self-match at the monocular
source using the binocular feedback as a matching signal.
This fact implies that the monocular source cells are
themselves binocular cells, because a monocular input
can activate binocular cells which then send feedback
signals to the monocular source cells of the other eye. In
this way the monocular source cells can be activated by
both eyes, albeit less symmetrically than the binocular
cells at which the primary binocular matching event takes
place.

Grossberg: Quantized geometry of visual space

This conclusion can be summarized as follows: The
binocular cells at which binocular matching takes place
are flanked by binocular cells that satisfy the following
properties: (a) they are fed by monocular signals; (b) they
excite the binocular matching cells; (c) they can be excited
or inhibited due to feedback from the binocular matching
cells, depending upon whether fusion or rivalry occur.

It remains only to consider the possibility that the
results of binocular matching do not feed back toward the
monocular cells. The following argument indicates why
this cannot happen. A purely feedforward interaction
from monocular toward binocular cells cannot generate
the main properties of rivalry, namely a sustained monoc-
ular percept followed by rapid and complete suppression
of this percept when it is supplanted by the other monoc-
ular percept. This is because the very activity of the
perceived representation must be the cause of its habitua-
tion and loss of competitive advantage relative to the
suppressed representation. Consequently, the habituat-
ing signals from the perceived representation that inhibit
the suppressed representation reach the latter at a stage
at, or prior to, that representation’s locus for generating
signals to the perceived representation that are capable of
habituating. Such an arrangement allows the signals of
the perceived representation to habituate but spares the
suppressed representation from habituation. By symme-
try, the two representations reciprocally send signals to
each other that are received at, or at a stage prior to, their
own signaling cells. This arrangement of signaling path-
ways defines a feedback network.

One can now refine this conclusion by going through
arguments like those above to conclude that (a) the
feedback signals are received at binocular cells rather
than at monocular cells, and (b) the feedback signals are
not all inhibitory signals or else binocular fusion could not
occur. Thus a competitive balance between excitatory
and inhibitory feedback signals among binocular cells
capable of monocular activation needs to be considered.
Given the possibility of monocular self-matching in this
framework, one also needs to ask why the process of
monocular self-matching, in the absence of a competing
input from the other eye, does not cause the cyclic
strengthening and weakening of monocular activity that
occurs when two nonfused monocular inputs are ri-
valrous.

One does not need a complete theory of these proper-
ties to conclude that no theory in which only a feedfor-
ward flow of visual patterns from monocular to binocular
cells occurs (e.g., to compute disparity information) can
explain these data. Feedback from binocular matching
toward monocular computations is needed to explain
rivalry data, just as such feedback is needed to explain the
influence of perceived depth on perceived size or bright-
ness. I will suggest in Part II how a suitably defined
feedback scheme can give rise to all of these phenomena
at once.

8. Against the Keplerian view: Scale-sensitive fusion and
rivalry. The Kaufman (1974) and Kulikowski (1978) ex-
periments also argue against the Keplerian view, which is
a mainstay of modern theories of stereopsis. The Kep-
lerian view is a realist hypothesis which suggests that the
two monocular views are projected point-by-point along
diagonal rays, and that their crossing-points are loci from
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which the real depth of objects may be computed (Kauf- *
man 1974). When the imaginary rays of Kepler are trans-
lated into network hardware, one is led to assume that
network pathways carrying monocular visual signals
merge along diagonal routes (Sperling 1970). The Kep-
lerian view provides an elegant way to think about depth,
because (other things being equal) objects which are
closer should have larger disparities, and their Keplerian
pathways should therefore cross at points which are
further along the pathways. Moreover, all pairs of points
with the same disparity cross at the same distance along
their pathway, and thereby form a row of contiguous
crossing-points.

This concept does not explain a result such as Kulikow-
ski’s, since all points in each figure (so the usual reasoning
goes) have the same disparity with respect to the corre-
sponding point in the other figure. Hence all points cross
in the same row. In the traditional theories, this means
that all points should match equally well to produce an
unambiguous disparity measure. Why then do low spatial
frequencies seem to match and yield a depth percept at
the same disparity at which high spatial frequencies do
not seem to match?

Rather than embrace the Keplerian view, I will suggest
how suitably preprocessed input data of fixed disparity
can be matched by certain spatial scales but not by other
spatial scales. To avoid misunderstanding, I should im-
mediately say what this hypothesis does not imply. It
does not imply that a pair of high spatial frequency input
patterns of large disparity cannot be matched, because
only suitable statistics of the monocular input patterns
will be matched, rather than the input patterns them-
selves. Furthermore, inferences made from linear statis-
tics of the input patterns do not apply because the
statistics in the theory need to be nonlinear averages of
the input patterns to ensure basic stability properties of
the feedback exchange between monocular and binocular
cells. These assertions will be clarified in Part II.

Once the Keplerian view is questioned, the problem of
false-images (Julesz 1971), which derives from this view
and which has motivated much thinking about stereopsis,
also becomes less significant. The false-images are those
crossing-points in Kepler’s grid that do not correspond to
the objects’ real disparities.

Workers like Marr and Poggio (1979) have also con-
cluded that false images are not a serious problem if
spatial scaling is taken into account. Their definition of
spatial scale differs from my own in a way that highlights
how a single formal definition can alter the whole charac-
ter of a theory. For example, when they mixed their
definition of a spatial scale with their view of the false-
image problem, Marr and Poggio (1979) were led to
renounce cooperativity as well, which I view as an in-
stance of throwing out the baby with the bathwater, since
all global filling-in and figure-ground effects thereby
become inexplicable in their theory. Marr and Poggio
(1979) abandoned cooperativity because they did not
need it to deal with false images. In a model such as
theirs, the primary goal of which is to compute unam-
biguous disparity measures, their conclusion seems quite
logical. Confronted by the greater body of phenomena
that are affected by depth estimates, such a step seems
unwarranted. :
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9. Local versus global spatial scales. Indeed, both the
Kaufman (1974) and the Kulikowski (1978) experiments,
among many others, illustrate that a figure or ground has
a coherent visual existence that is more than the sum of its
unambiguous feature computations. Once a given spatial
scale makes a good match in these experiments, a depth
percept is generated that pervades a whole region. We
therefore need to distinguish the scaling property that
makes good matches based on local computations from
the global scaling effects that fill-in an entire region
subtending an area much broader than the local scales
themselves.

This distinction between local and global scaling effects
is vividly demonstrated by constructing a stereogram in
which the left “figure” and its “ground” are both induced
by a 5% density of random dots (Julesz 1971b, p. 336) and
the right “figure” of dots is shifted relative to its position
in the left picture. Stereoscopically viewed, the whole
figure, including the entire 95% of white background
between its dots, seems to hover at the same depth. How
is it that the white background of the “figure” inherits the
depth quality arising from the disparities of its meagerly
distributed dots, and the white background of the
“ground” inherits the depth quality of its dots? What
mechanism organizes the locally ambiguous white
patches that dominate 95% of the pictorial area into two
distinct and internally coherent regions? Julesz (1971b, p.
256) describes another variant of the same phenomenon
using a random-dot stereogram inspired by an experi-
ment of Shipley (1965). In this stereogram, the traditional
center square in depth is interrupted by a horizontal
white strip that cuts both the center square and the
surround in half. During binocular viewing, the white
strip appears to be cut along the contours of the square
and it inherits the depth of figure or ground, despite the
fact that it provides no disparity or brightness cues of its
own at the cut regions.

10. Interaction of perceived form and perceived position.
The choice of scales leading to a depth percept can also
cause a shift in perceived form, notably in the relative
distance between patterns in a configuration. For exam-
ple, when a pattern AB C is viewed through one eye and a
pattern A BC is viewed through the other eye, the letter
B can be seen in depth at a position halfway between A
and C (von Tschermak-Seysenegg 1952; Werner 1937).
This phenomenon, called displacement or allelotropia,
again suggests that the dynamic transformations in visual
space are not of a local character since the location of
entire letters, not to mention their points and lines, can
be deformed by the spatial context in which they are
placed. The nonlocal nature of visual space extends also to
brightness perception, as the following section sum-
marizes.

11. Some influences of perceived depth and form on
perceived brightness. The Craik—Q'Brien and Corn-
sweet effects (Cornsweet 1970; O’Brien 1958) show that
an object’s form, notably its edges or regions of rapid
spatial change, can influence its apparent brightness or
lightness (Figure 5). Let the luminance profile in Figure
5(a) describe a cross-section of the two-dimensional pic-
ture in Figure 5(b). Then the lightness of this picture
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Figure3. In(a), the laminance profile is depicted across a ane-
dimensional ray through the picture in (b). Although the inte-
riors of all the regions have equal luminance, the apparent
brightness of the regions is described by (c).

appears as in Figure 5(c). The edges of the luminance
profile determine the lightnesses of the adjacent regions
by a filling-in process. Although the luminances of the
regions are the same except near their edges, the per-
ceived lightnesses of the regions are determined by the
brightnesses of their respective edges. This remarkable
property is reminiscent of Attneave’s cat, since regions of
maximum curvature — in the lightness domain - again
help to determine how the percept is completed. In the
present instance, the filling-in process overrides the
visual data rather than merely completing an incomplete
pattern.

Hamada (1976, 1980) has shown that this filling-in
process is even more paradoxical than was previously
thought. He compared the lightness of a uniform back-
ground with the lightness of the same uniform back-
ground with a less luminous Craik—O’Brien figure super-
imposed on it. By the usual rules of brightness contrast,
the lesser brightness of the Craik—O’Brien figure should
raise the lightness of the background as its own lightness
is reduced. Remarkably, even the background seems
darker than the uniform background of the comparison
figure, although its luminance is the same.

Just as form can influence lightness, apparent depth can
influence lightness. Figures which appear to lie at the
same depth can influence each other’s lightness in a
manner analogous to that found in a monocular brightness
constancy paradigm (Gilchrist 1979).

12. Some influences of perceived brightness on per-
ceived depth. Just as depth can influence brightness
estimates, brightness data can influence depth estimates.
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For example, Kaufman, Bacon, and Barroso (1973) stud-
ied stereograms built up from the two monocular pictures
in Figure 6(a). When these pictures are viewed through a
stereogram, the eyes see the lines at a different depth due
to the disparity between the two monocular views. If the
stereogram is changed so that the left eye sees the same
picture as before, whereas the right eye sees the two
pictures superimposed (Figure 6[b]), then depth is still
perceived. If both eyes see the same superimposed pic-
tures, then of course no depth is seen. However, if one
eye sees the pictures superimposed with equal bright-
ness, whereas the other eye sees the two pictures super-
imposed, one with less brightness and the other with
more, then depth is again seen. In the latter case there is
no disparity between the two figures, although there is a
brightness difference. How does this brightness dif-
ference elicit a percept of depth?

The Kaufman et al. (1973) study raises an interesting
possibility. If a binocular brightness difference can cause
a depth percept, and if a depth percept can influence
perceived length, then a binocular brightness difference
should be able to cause a change in perceived length. Itis
also known that monocular cues can sometimes have
effects on perceived length similar to those of binocular
cues, as in the corridor and Ponzo illusions. When these
two phenomena are combined, it is natural to ask: Under
what circumstances can a monocular brightness change
cause a change (albeit small) in perceived length? I will
return to this question in Part II.

13. The binocular mixing of monocular brightnesses. The
Kaufman et al. (1973) result illustrates the fact that bright-
ness information from each eye somehow interacts in a
binocular exchange. That this exchange is not simply

PICTURE 1 PICTURE 2

(a)

(b}

Figure 6. Combinations of the two pictures in (a), such as in
(b), yield a depth percept when each picture is viewed through a
separate eye. Depth can be seen even if the two pictures are
combined to yield brightness differences but no disparity
differences.
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additive is shown by several experiments. For example,
let AB on a white field be viewed with the left eye and BC
on a white field be viewed with the right eye in such a way
that the two Bs are superimposed. Then the B does not
look significantly darker than A and C despite the fact that
white is the input to the other eye corresponding to these
letter positions (Helmholtz 1962). In a similar fashion,
closing one eye does not make the world look half as
bright despite the fact that the total luminance reaching
the two eyes is halved (Levelt 1964; von Tschermak-
Seysenegg 1952). This fact recalls the discussion of mon-
ocular firing of binocular cells from Section 7.

The subtlety of binocular brightness interactions is
further revealed by Fechner’s paradox (Hering 1964).
Suppose that a scene is viewed through both eyes but that
one eye sees it through a neutral filter that attenuates all
wavelengths by a constant ratio. The filter does not distort
the reflectances, or ratios, of light reaching its eye, but
only its absolute intensity. Now let the filtered eye be
entirely occluded. Then the scene looks brighter and
more vivid despite the fact that less total light is reaching
the two eyes, and the reflectances are still the same.

Binocular summation of brightness, in excess of proba-
bility summation, can occur when the monocular inputs
are suitably matched “within some range, perhaps equiv-
alentto Panum’s area . . . stereopsis and summation may
be mediated by a common neural mechanism” (Blake,
Sloane & Fox 1981). I will suggest below that the coexis-
tence of Fechner's paradox and binocular brightness
summation can be explained by properties of binocular
feedback exchanges among multiple spatial scales. This
explanation provides a theoretical framework in which
recent studies and models of interactions between bin-
ocular brightness summation and monocular flashes can
be interpreted (Cogan, Silverman & Sekuler 1982).

Wallach and Adams (1954) have shown that if two
figures differ only in terms of the reflectance of one
region, then an effect quite the opposite of summation
may be found. A rivalrous perception of brightness can be
generated in which one shade, then the other, is per-
ceived rather than a simultaneous average of the two
shades. I will suggest below that this rivalry phenomenon
may be related to the possibility that two monocular
figures of different lightness may generate different spa-
tial scales and thereby create a binocular mismatch.

Having reviewed some data concerning the mutual
interdependence and lability of depth, form, and light-
ness judgments, I will now review some obvious visual
facts that seem paradoxical when placed beside some of
the theoretical ideas that are in vogue at this time. I will
also point out that some popular and useful theoretical
approaches are inherently limited in their ability to ex-
plain either these paradoxes or the visual interactions
summarized above.

14. The insufficiency of disparity computations. It is a
truism that the retinal images of objects at optical infinity
have zero disparity, and that as an object approaches an
observer, the disparities on the two retinas of correspond-
ing object points tend to increase. This is the com-
monplace reason for assuming that larger disparities are
an indicator of relative closeness. Julesz stereograms
(Julesz 1971) have moreover provided an elegant para-
digm wherein disparity computations are a sufficient
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indicator of depth, since each separate Julesz random dot
picture contains no monocular form cues, yet statistically
reliable disparities between corresponding random dot
regions yield a vivid impression of a form hovering in
depth.

This stunning demonstration has encouraged a decade
of ingenious neural modeling. Sperling (1970) introduced
important pioneering concepts and equations in a classic
paper that explains how cooperation within a disparity
plane and competition between disparity planes can re-
solve binocular ambiguities. These ideas were developed
into an effective computational procedure in Dev (1975)
which led to a number of mathematical and computer
studies (Amari & Arbib 1977; Marr & Poggio 1976). Due
to these historical considerations, I will henceforth call
models of this type Sperling—Dev models.

All Sperling—Dev models assume that corresponding to
each small retinal region there exist a series of disparity
detectors sensitive to distinct disparities. These disparity
detectors are organized in sheets such that cooperative
effects occur between detectors of like disparity within a
sheet, whereas competitive interactions occur between
sheets. The net effect of these interactions is to suppress
spurious disparity correlations and to carve out connected
regions of active disparity detectors within a given sheet.
These active disparity regions are assumed to correspond
to a depth plane of the underlying retinal regions. Some
investigators have recently expressed their enthusiasm
for this interpretation by commiting the homuncular
fallacy of drawing the depth planes in impressive three-
dimensional figures which carry the full richness of the
monocular patterns, although within the model the mon-
ocular patterns do not differentially parse themselves
among the several sheets of uniformly active disparity
detectors.

That something is missing from these models is indi-
cated by the following considerations. The use of a stereo-
gram composed of two separate pictures does not always
approximate well the way two eyes view a single picture.
When both eyes focus on a single point within a patterned
planar surface viewed in depth, the fixation point is a
point of minimal binocular disparity. Points increasingly
far from the fixation point have increasingly large binocu-
lar disparities. Why does such a plane not recede toward
optical infinity at the fixation point and curve toward the
observer at the periphery of the visual field®? Why does
the plane not get distorted in a new way every time our
eyes fixate on a different point within its surface? If
disparities are a sufficient indicator of depth, then how do
we ever see planar surfaces? Or even rigid surfaces?

This insufficiency cannot be escaped just by saying that
an observer’s spatial scales get bigger as retinal eccen-
tricity increases. To see this, let a bounded planar surface
have an interior which is statistically uniform with respect
to an observer’s spatial scales (in a sense that will be
precisely defined in Part IT). Then the interior disparities
of the surface are ambiguous. Only its boundary dis-
parities supply information about the position of the
surface in space. Filling-in between these boundaries to
create a planar impression is not just a matter of showing
that the same disparity, even after an eccentricity com-
pensation, can be locally computed at all the interior
points, because an unambiguous disparity computation
cannot be carried out at the interior points. The issue is



not just whether the observer can estimate the depth of
the planar surface, but also how the observer knows that a
planar surface is being viewed.

This problem is hinted at even when Julesz stereo-
grams are viewed. Staring at one point in the stereogram
results in the gradual loss of depth (Kaufman 1974). Also,
in a stereogram composed of three vertical lines to the left
eye and just the two flanking lines to the right eye, the
direction of depth of the middle line depends on whether
the left line or the right line is fixated (Kaufman 1974).
This demonstration makes the problem of perceiving
planes more severe for any theory which restricts itself to
disparity computations, since it shows that depth can
depend on the fixation points. What is the crucial dif-
ference between the way we perceive the depths of lines
and planes? Kaufman (1974) seems to have had this
problem in mind when he wrote that “all theories of
stereopsis are really inconsistent with the geometry of
stereopsis” (p. 320).

Another problem faced by Sperling—Dev models is that
they cannot explain effects of perceived depth on per-
ceived size and lightness. The attractive property that the
correct depth plane fills-in with uniform activity due to
local cooperativity creates a new problem: How does the
uniform pattern of activity within a disparity plane rejoin
the nonuniformly patterned monocular data to influence
its apparent size and lightness?

Finally, there is the problem that only a finite number
of depth planes can exist in a finite neural network. Only a
few such depth planes can be inferred to exist by joining
data relating spatial scales to perceived depth — such as
the Kaufman (1974) and Kulikowski (1978) data summa-
rized in Section 6 — to spatial frequency data which
suggest that only a few spatial scales exist (Graham 1981;
Wilson & Bergen 1979). Since only one depth plane is
allowed to be active at each time in any spatial position in
a Sperling-Dev model, apparent depth should discretely
jump a few times as an observer approaches an object.
Instead, apparent depth seems to change continuously in
this situation.

15. The insufficiency of Fourier models. An approach with
a strong kernel of truth but a fundamental predictive
limitation is the Fourier approach to spatial vision. The
kernel of truth is illustrated by threshold experiments
with four different types of visual patterns (Graham 1981;
Graham and Nachmias 1971). Two of the patterns are
gratings which vary sinusoidally across the horizontal
visual field with different spatial frequencies. The other
two are the sum and difference patterns of the first two. If
the visual system behaved like a single channel wherein
larger peak-to-trough pattern intensities were more de-
tectable, the compound patterns would be more detect-
able than the sinusoidal ones. In fact, all the patterns are
approximately equally detectable. A model in which the
different sinusoidal spatial frequencies are independently
filtered by separate spatial channels or scales fits the data
much better. Recall from Section 6 some of the other data
that also suggest the existence of multiple scales.

A related advantage of the multiple channel idea is that
one can filter a complex pattern into its component spatial
frequencies, weight each component with a factor that
mirrors the sensitivity of the human observer to that
channel, and then resynthesize the weighted pattern and
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Figure7. When the Cornsweet profile (a) and the rectangle (b)
are filtered in such ‘a way that low spatial frequencies are
attenuated, both outputs look like a Cornsweet profile rather
than a rectangle, as occurs during visual experience.

compare it with an observer’s perceptions. This modula-
tion transfer function approach has been used to study
various effects of boundary edges on interior lightnesses
(Cornsweet 1970). If the two luminance profiles in Figure
7 are filtered in this way, they both generate the same
output pattern because the human visual system attenu-
ates low spatial frequencies. Unfortunately, both output
patterns look like a Cornsweet profile, whereas actually
the Cornsweet profile looks like a rectangle. This is not a
minor point, since the interior regions of the Cornsweet
profile have the same luminance, which is false in the
rectangular figure. -

This application of the Fourier approach seems to me to
be misplaced, since the Fourier transform is linear,
whereas a reflectance computation must involve some
sorts of ratios and is therefore inherently nonlinear.

The Fourier scheme is also a feedforward transforma-
tion of an input pattern into an output pattern. It cannot
in principle explain how apparent depth alters apparent
length and brightness, since such computations depend
on a feedback exchange between monocular data. to en-
gender binocular responses. In particular, the data re-
viewed in Section 4 show that the very definition of a
length scale can remain ambiguous until it is embedded
in a binocular feedback scheme. The Fourier transform
does not at all suggest why length estimates should be so
labile. The multiple channel and sensitivity notions need
to be explicated in a different formal framework.

16. The insufficiency of linear feedforward theories. The
above criticisms of the Fourier approach to spatial vision
hold for all computational theories that are based on
linear and feedforward operations. For example, some
recent workers in artificial intelligence (Marr & Hildreth
1980) compute a spatial scale by first linearly smoothing a
pattern with respect to a Gaussian distribution and then
computing an edge by setting the Laplacian (the second
derivatives) of the smoothed pattern equal to zero (Figure
8). The use of the Laplacian to study edges goes back at
least to the time of Mach (Ratliff 1965). The Laplacian is
time-honored, but it suffers from limitations that become
more severe when its zero-crossings are made the center-
piece of a theory of edges. _

One of many difficulties is that zero-crossings compute
only the position of an edge and not other related proper-
ties such as the brightness of the pattern near the edge.
Yet the Cornsweet and Craik-O’Brien figures pointedly
show that the brightnesses of edges can strongly influence
the lightness of their enclosed forms. Something more
than zero-crossings is therefore needed to understand
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Figure 8. When a unit step in intensity (a) is smoothed by a
Gaussian kernel, the result is (b). The first spatial derivative is
(c), and the second spatial derivative is (d). The second deriva-
tive is zero at the location of the edge.

spatial vision. The zero-crossing computation itself does
not disclose what is missing, so its advocates must guess
what is needed. Marr and Hildreth (1980) guess that
factors like position, orientation, contrast, length, and
width should be computed at the zero-crossings. These
guesses do not follow from their definition — or their
computation — of an edge. Such properties lie beyond the
implications of the zero-crossing computation, because
this computation discards essential features of the pattern
near the zero-crossing location. Even if the other proper-
ties are added to a list of data that is stored in computer
memory, this list distorts — indeed entirely destroys.— the
intrinsic geometric structure of the pattern. The replace-
ment of the natural internal geometrical relationships of a
pattern by arbitrary numerical measures of the pattern
prevents the Marr and Hildreth (1980) theory from un-
derstanding how global processes, such as filling-in, can
spontaneously occur in a physical setting. Instead, the
Marr and Hildreth (1980) formulation leads to an ap-
proach wherein all the intelligence of what to do next
rests in the investigator rather than in the model. This
restriction to local, investigator-driven computations is
due not only to the present state of their model’s develop-
ment, but also to the philosophy of these workers, since
Marr and Hildreth write (1980, p. 189): “The visual world
is not constructed of ripply, wave-like primitives that
extend and add together over an area.” Finally, because
their theory is linear, it cannot tell us how to estimate the
lightnesses of objects, and because their theory is feedfor-
ward, it cannot say how apparent depth can influence the
apparent size and lightness of monocular patterns.

17. The filling-in dilemma: To have your edge and fili-in
too. Any linear and feedforward approach to spatial vision
is in fact confronted with the full force of the filling-in
dilemma: If spatial vision operates by first attenuating all
but the edges in a pattern, then how do we everarrive ata
percept of rigid bodies with ample interiors, which are
after all the primary objects of perception? How can we
have our edges and fill-in too? How does the filling-in
process span retinal areas which far exceed the spatial
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Figure 9. In this luminance profile, zero-crossings provide no
information about which regions are brighter than others. Auxil-
iary computations are needed to determine this.

bandwidths of the individual receptive fields that phys-
ically justify a Gaussian smoothing process? In particular,
in the idealized luminance profile in Figure 9, after the
edges are determined by a zero-crossing computation,
the directions in which to fill-in are completely ambigu-
ous without further computations tacked on. I will argue
in Part II of this article that a proper definition of edges
does not require auxiliary guesswork.

Ishould emphasize what I do not mean by a solution to
the filling-in dilemma. It is not sufficient to say that edge
outlines of objects constitute sufficient information for a
viewer to understand a three-dimensional scene. Such a
position merely says that observers can use edges to
arrive at object percepts, but not how they do so. Such a
view begs the question. It is also not sufficient to say that
feedback expectancies, or hypotheses, can use edge infor-
mation to complete an object percept. Such a view does
not say how the feedback expectancies were learned,
notably what substrate of completed form information
was sampled by the learning process, and it also begs the
question. Finally, it is inadequate to say that an abstract
reconstruction process generates object representations
from edges if this process would require a homunculus for
its execution in real time.

Expressed in another way, the filling-in dilemma asks:
If it is really so hard for us to find mechanisms which can
spontaneously and unambiguously fill-in between edges,
then do we not have an imperfect understanding of why
the nervous system bothers to compute edges? Richards
and Marr (1981) suggest that the edge computation com-
presses the amount of data which needs to be stored. This
sort of memory load reduction is important in a computer
program, but I will suggest in Part II that it is not a rate-
limiting constraint on the brain design which grapples
with binocular data. I will suggest, in contrast, that the
edge computation sets the stage for processes which
selectively amplify and fill-in among those aspects of the
data which are capable of matching monocularly, bin-
ocularly, or with learned feedback expectancies, as the
case might be. This conclusion will clarify both why it is
that edge extraction is such an important step in the
processing of visual patterns, in partial support of recent
models (Marr & Hildreth 1980; Marr & Poggio 1979), and
yet edge preprocessing is just one stage in the nonlinear
feedback interactions that are used to achieve a coherent
visual percept.

Part i

18. Edges and fixations: The ambiguity of statistically
uniform regions.The remainder of this article will outline
the major concepts that are needed to build up my theory
of these nonlinear interactions. I will also indicate how
these concepts can be used to qualitatively interrelate
data properties that often cannot be related at all by



alternative theoretical approaches. Many of these con-
cepts are mathematical properties of the membrane
equations of neurophysiology, which are the foundation
of all quantitative neurophysiological experimentation.
The theory provides an understanding of these equations
in terms of their computational properties. When the
membrane equations are used in suitably interconnected
networks of cells, a number of specialized visual models
are included as special cases. The theory thereby indi-
cates how these models can be interrelated within a fnore
general, physiologically based, computational frame-
work. Due to the scope of this framework, the present
article should be viewed as a summary of an ongoing
research program, rather than as a completely tested
visual theory. Although my discussion will emphasize the
meaning and qualitative reasons for various data from the
viewpoint of the theory, previous articles about the theo-
ry will be cited for those who wish to study mathematical
proofs or numerical simulations, and Appendix A de-
scribes a system that is currently being numerically
simulated to study binocular filling-in reactions.

I will motivate my theoretical constructions with two
simple thought-experiments. I will use these experi-
ments to remind us quickly of some important relation-
ships between perceived depth and the monocular com-
putation of spatial nonuniformities.

Suppose that an observer attempts to fixate a percep-
tually uniform rectangle hovering in space in front of a
discriminable but perceptually uniform background.
How does the observer know where to fixate the rec-
tangle? Even if each of the observer’s eyes independently
fixates a different point of the rectangle’s interior, both
eyes will receive indentical input patterns near their
fixation points due to the rectangle’s uniformity. The
monocular visual patterns near the fixation points match
no matter how disparately the fixation points are chosen
within the rectangle.

Several conclusions follow from this simple observa-
tion. Binocular visual matching between spatially home-
geneous regions contains no information about where the
eyes are pointed, since all binocular matches between
homogeneous regions are equally good no matter where
the eyes are pointed. The only binocular visual matches
which stand out above the baseline of ambiguous homo-
geneous matches across the visual field are those which
correlate spatially nonuniform data to the two eyes.
However, the binocular correlations between these non-
uniform patterns, notably their disparities, depend upon
the fixation points of the two eyes. Disparity information
by itself is therefore insufficient to determine the object’s
depth. Instead, there must exist an interaction between
vergence angle and disparity information to determine
where an object is in space (Foley 1980; Grossberg 1976;
Marr & Poggio 1979; Sperling 1970).

This binocular constraint on resolving the ambiguity of
where the two eyes are looking is one reason for the
monocular extraction of the edges of a visual form and the
attendant suppression of regions which are spatially ho-
mogeneous with respect to a given spatial scale. Without
the ‘ability to know where the object is in space, there
would be little evolutionary advantage in perceiving its
solidity or interior. In this limited sense, edge detection
is more fundamental than form detection in dealing with
the visual environment.
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Just knowing that a feedback loop must exist between
motor vergence and sensory disparities does not deter-
mine the properties of this loop. Sperling (1970) has
postulated that vergence acts to minimize a global dispar-
ity measure. Such a process would tend to reduce the
perception of double images (Kaufman 1974). I have
suggested (Grossberg 1976b) that good binocular matches
generate an amplification of network activity, or a binocu-
lar resonance. An imbalance in the total resonant output
from each binocular hemifield may be an effective ver-
gence signal leading to hemifield-symmetric resonant
activity which signifies good binocular matching and
stabilizes the vergence angle. The theoretical sections
below will suggest how these binocular resonances also
compute coherent depth, form, and lightness infor-
mation.

19. Object permanence and multiple spatial scales. The
second thought-experiment reviews a use for multiple
spatial scales, rather than a single edge computation,
corresponding to each retinal point. Again, our conclu-
sions can be phrased in terms of the fixation process.

As arigid object approaches an observer, the binocular
disparities between its nonfixated features increase pro-
portionally. In order to achieve a concept of object per-
manence, and at the very least to maintain the fixation
process, mechanisms capable of maintaining a high cor-
relation between these progressively larger disparities
are needed. The largest disparities will, other things
being equal, lie at the most peripheral points on the
retina. The expansion of spatial scales with retinal eccen-
tricity is easily rationalized in this way (Hubel & Wiesel
1977; Richards 1975; Schwartz 1980).

It does not suffice, however, to posit that a single scale
exists at each retinal position such that scale size increases
with retinal eccentricity. This is because objects of differ-
ent size can approach the observer. As in the Holway and
Boring (1941) experiments, objects of different size can
generate the same retinal image if they lie at different
distances. If these objects possess spatially uniform inte-
riors, then the boundary disparities of their monocular
retinal images carry information about their depth. Be-
cause all the objects are at different depths, these distinct
disparities need to be computed with respect to that
retinal position in one eye that is excited by all the objects’
boundaries. Multiple spatial scales corresponding to each
retinal position can carry out these multiple disparity
computations. I will now discuss how the particular scales
which can binocularly resonate to a given object’s monoc-
ular boundary data thereupon fill-in the internal homoge-
neity of the object’s representation with length and light-
ness estimates, as well as the related question of how
monocular cues and learned expectancies can induce
similar resonances and thus a perception of depth.

20. Cooperative versus competitive binocular interac-
tions. One major difference between my approach to
these problems and alternative approaches is the follow-
ing: I suggest that a competitive process, not a cooperative
process, defines a depth plane. The cooperative process
that other authors have envisaged leads to sheets of
network activity which are either off or maximally on. The
competitive process that I posit can sustain quantized
patterns of activity that reflect an object’s perceived
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depth, lightness, and length. In other words, the com-
petitive patterns do not succumb to a homuncular dilem-
ma. They are part of the representation of an object’s
binocular form. The cells that subserve this representa-
tive process are sensitive to binocular disparities, but
they are not restricted to disparity computations. In this
sense, they do not define a “depth plane” at all.

One reason that other investigators have not drawn this
conclusion is because a binary code hypothesis is often
explicit (or lurks implicitly) in their theories. The intui-
tion that a depth plane can be perceived seems to imply
cooperation, because in a binary world competition im-
plies an either-or choice, which is manifestly unsuitable,
whereas cooperation implies an and conjunction, which is
at Jeast tolerable. In actuality, a binary either-or choice
does not begin to capture the properties of a competitive
network. Mathematical analysis is needed to understand
these properties. (I should emphasize at this point that
cooperation and cooperativity are not the same notion.
Both competitive and cooperative networks exhibit coop-
erativity, in the sense in which this word is casually used.)

A large body of mathematical results concerning com-
petitive networks has been discovered during the past
decade (Ellias & Grossberg 1975; Grossberg 1970a;
1972d; 1973; 1978a; 1978c; 1978d; 1978e; 1980a; 1980b;
1981; Grossberg & Levine 1975; Levine & Grossberg
1976). These results clarify that not all competitive net-
works enjoy the properties that are needed to build a
visual theory. Certain competitive networks whose cells
obey the membrane equations of neurophysiology do
have desirable properties. Such systems are called shunt-
ing networks to describe the multiplicative relationship
between membrane voltages and the conductance
changes that are caused by network inputs and signals.
This multiplicative relationship enables these networks
to automatically retune their sensitivity in response to
fluctuating background inputs. Such an automatic gain
control capacity implies formal properties that are akin to
reflectance processing, Weber law modulation, sen-
sitivity shifts in response to different backgrounds, as well
as other important visual effects. Most other authors have
worked with additive networks, which do not possess the
automatic gain control properties of shunting networks.
Sperling (1970; 1981) and Sperling and Sondhi (1968) are
notable among other workers in vision for understanding
the need to use shunting dynamics, as opposed to mere
equilibrium laws of the form I(A + J)—1. However, these
authors did not develop the mathematical theory far
enough to have at their disposal some formal properties
that I will need. A review of these and other competitive
properties is found in Grossberg (1981, Sections 10-27).
The sections below build up concepts leading to binocular
resonances.

21. Reflectance processing, Weber law modulation, and
adaptation level in feedforward shunting competitive net-
works. Shunting competitive networks can be derived as
the solution of a processing dilemma that confronts all
cellular tissues, the so-called noise-saturation dilemma
(Grossberg 1973; 1978¢). This dilemma notes that accu-
rate processing both of low activity and high activity input
patterns can be prevented by sensitivity loss due to noise
(at the low activity end) and saturation(at the high activity
end) of the input spectrum. Shunting competitive net-
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works overcome this problem by enabling the cells to
retune their sensitivity automatically as the overall back-
ground activity of the input pattern fluctuates through
time. This result shows how cells can adapt their sen-
sitivity to input patterns that fluctuate over a dynamical
raxlllge that is much broader than the output range of the
cells.

As I mentioned above, the shunting laws take the form
of the familiar membrane equations of neurophysiology in
neural examples. Due to the generality of the noise-
saturation dilemma, formally similar laws should occur in
nonneural cellular tissues. I have illustrated in Grossberg
(1978b) that some principles which occur in neural tissues
also regulate nonneural developmental processes for sim-
ilar computational reasons.

The solution of the noise-saturation dilemma that I
will review herein describes intercellular tuning mecha-
nisms. Data describing intracellular adaptation have also
been reported (Baylor and Hodgkin 1974; Baylor,
Hodgkin & Lamb 1974a; 1974b) and have been quan-
titatively fitted by a model in which visual signals are
multiplicatively gated by a slowly accumulating trans-
mitter substance (Carpenter and Grossberg 1981). The
simplest intercellular mechanism describes a competi-
tive feedforward network in which the activity, or poten-
tial, x,(2) of the it cell (population) v, in a field of cells vy,
Uy, « « . , U, responds to a spatial pattern I,(t) = 0,1(¢) of
inputs i = 1,2, . . ., n. A collection of inputs comprises
a spatial pattern if each input has a fixed relative size (or
reflectance) 6, but a possibly variable background inten-
sity I(t) (due, say, to a fluctuating light source). The

convention that kz 8, = 1 implies that I(¢) is the total
=1

input to the field; viz. I(t) = i Ii(t). The simplest
k=1

law which solves the noise-saturation dilemma describes

the net rate (dx,)/(dt) at which sites at v, are activated

and/or inhibited through time. This law takes the form:

%’%L: ~Ax, + (B — x)I, - (x, + C) ’(Z I 1)

i=12 ..., nwhereB>0= ~C and B=x(t) = —-C
for all times t = 0. Term —Ax, describes the spontaneous
decay of activity at a constant rate —A. Term (B — x,)I,
describes the activation due to an excitatory input I, in

the itt channel (Figure 10). Term —(x; + C) > I, de-
ki
scribes the inhibition of activity by competitive inputs

> I, from the input channels other than v,.
k=i

In the absence of inputs (namely all I, = 0, i = 1, 2,
. ., n), the potential decays to the equilibrium potential
0 due to the decay term —AX,. No matter how intense the
chosen inputs I,, the potential x; remains between the
values B and —C at all times because (B — x)I, = 0ifx; =

Band —(x, + C) > I, = 0 ifx, = —C. That is why B is
kot

called an excitatory saturation point and —C is called an
inhibitory saturation point. When x, > 0, the cell v, is said
to be depolarized. When x; < 0, the cell v, is hyper-
polarized. The cell can be hyperpolarized only if C > 0
since x,(t) = —C at all times ¢
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Figure 10. In the simplest feedforward competitive network,
each input 1, excites its cell (population) v, and inhibits all other
populations v;, j # i. (From Grossberg 1978e.)

Before noting how system (1) solves the noise-satura-
tion dilemma, I should clarify its role in the theory as a
whole. System (1) is part of a mathematical classification
theory wherein a sequence of network variations on the
noise-saturation theme is analyzed. The classification
theory characterizes how changes in network parameters
(for example, decay rates or interaction rules) alter the
transformation from input pattern (I;, I, . .., I,) to
activity pattern (x;, %, . . ., x,). The classification theory
thereby provides useful guidelines for designing net-
works to accomplish specialized processing tasks. The
inverse process of inferring which network can generate
prescribed data properties is also greatly facilitated. In
the present case of system (1), a feedforward flow of inputs
to activities occurs wherein a narrow on-center of excita-
tory input (term (B — x,)I,) is balanced against a broad off-

surround of inhibitory inputs (term —(x, + C) > B
ki

Deviations from these hypotheses will generate network
properties that differ from those found in system (1), as I
will note in subsequent examples.

To see how system (1) solves the noise-saturation di-
lemma, let the background ‘input I(#) be held steady for a
while. Then the activities in (1) approach equilibrium.
These equilibrium values are found by setting dx,/dt = 0
in (1). They are

_(B+0O1 c)

T ATI\"TBFC

Equation (2) exhibits four main features:

a) Factorization and automatic tuning of sensitivi-
ty.—Term 6, — C/(B + C) depends on the ith reflectance 6,
of the input pattern. It is independent of the background
intensity I. Formula (2) factorizes information about
reflectance from information about background intensity.
Due to the factorization property, x, remains proportional
to 8, — C/(B + C) no matter now large I is chosen to be. In
other words, x; does not saturate.

b) Adaptation level, featural noise suppression, and
symmetry-breaking.—Output signals from cell v; are
emitted only if the potential x, is depolarized. By (1), , is
depolarized only if term 0, — C/(B + C) is positive.
Because the reflectance 6, must exceed C/(B + C) to
depolarize x,, term C/(B + C) is called the adaptation
level. The size of the adaptation level depends on the ratio
of C to B. Typically B > C in vivo, which implies that C/(B
+ C) < 1. Were not C/(B + C) < 1, no choice of §, could
depolarize the cell, since 6,, being a ratio, never exceeds
1.

The most perfect choice of the ratio of C to Bis C/B =

@)
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1/(n — 1) since then C/(B + C) = 1/n. In this case, any
uniform input pattern I, = I, = . . . = I, is suppressed
by the network because then all 8, = 1/n. Since also C/ (B
+ C) = 1/n, all x; = 0 given any input intensity. This
property is called featural noise suppression, or the
suppression of zero spatial frequency patterns. Featural
noise suppression guarantees that only nonuniform re-
flectances of the input pattern can ever generate output
signals. ‘

The inequality B > C is called a symmetry-breaking
inequality for a reason that is best understood by consid-
ering the special case when C/B = 1/(n — 1). The ratio
1/(n — 1) is also, by (1), the ratio of the number of cells
excited by input I, divided by the number of cells inhib-
ited by input I,. Noise suppression 1s due to the fact that
the asymmetry of the intercellular on-center off-surround
interactions is matched by the asymmetry of the intra-
cellular saturation points. In other words, the symmetry
of the network as a whole is “broken” to achieve noise
suppression. Any imbalance in this matching of inter-
cellular to intracellular parameters will either increase or
decrease the adaptation level and thereby modify the
noise suppression property.

This symmetry-breaking property of shunting net-
works leads to a theory of how on-center off-surround
anatomies develop that is different from the one implied
by an additive approach, such as a Fourier or Laplacian
theory, if only because additive theories do not possess
excitatory and inhibitory saturation points. In Grossberg
(1978e; 1982€) I suggested how the choice of intracellular
saturation points in a shunting network may influence the
development of intercellular on-center off-surround con-
nections to generate the correct balance of intracellular
and intercellular parameters. An incorrect balance could
suppress all input patterns by causing a pathologically
large adaptation level. My suggestion is that the balance
of intracellular saturation points determines the balance
of morphogenetic substances that are produced at the
target cells to guide the growing excitatory and inhibitory
pathways.

¢) Weber-law modulation.-Term 8, — C/(B + C) is
modulated by the term (B + C)I(A + I)~ 1, which de-
pends only on the background intensity I. This term takes
the form of a Weber law (Cornsweet 1970). Thus (2)
describes Weber law modulation of reflectance process-
ing above an adaptation level.

d) Normalization and limited capacity.—The total ac-
tivity of the network is

_ _[B-@-1cH
x= ,21 e S A @)

By (3), x is independent of the number n of cells in the
network if either C = 0 or C/(B + C) = 1/n. In every case,
% = B no matter how intense I becomes, and B is
independent of n. This tendency for total activity not to
grow with n is called total activity normalization. Normal-
ization implies that if the reflectance of one part of the
input pattern increases while the total input activity
remains fixed, then the cell activities corresponding to
other parts of the pattern decrease.

Weber law modulated reflectance processing helps to
explain aspects of brightness constancy, whereas the
normalization property helps to explain aspects of bright-
ness contrast (Grossberg 1981). The two types of property
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are complementary aspects of the same dynamical
process.

22. Pattern matching and muitidimensional scaling with-
outa metric.The interaction between reflectance process-
ing and the adaptation level implies that the sum of two
mismatched input patterns from two separate input
sources will be inhibited by network (1). This is because
the mismatched peaks and troughs of the two input
patterns will add to yield an almost uniform total input
pattern, which will be quenched by the noise suppression
property.

By contrast, the sum of two matched input patterns is a
pattern with the same reflectances 9, as the individual
patterns. The total activity I + J of the summed pattern,
however, exceeds the total activities I and J of the
individual patterns. Consequently, by (2) the activities in
response to the summed pattern are

_(B+C)(I+J)'( __C )
iy e ey U ey @)
which exceed the activities in response to the separate
patterns. Network activity is thereby amplified in re-
sponse to matched patterns and attenuated in response to
mismatched patterns due to an interaction between re-
flectance processing, the adaptation level, and Weber law
modulation.

The fact that the activity of each cell in a competitive
network can depend on how well two input patterns
match is of great importance in my theory. Pattern
matching is not just a local property of input sizes at each
cell. A given cell can receive two different inputs, yet
these inputs may be part of perfectly matched patterns,
hence the cell activity is amplified. A given cell can
receive two identical inputs, yet these inputs may be part
of badly mismatched patterns, hence the cell activity is
suppressed.

This matching property avoids the homuncular dilem-
ma by being an automatic consequence of the network’s
pattern registration process. Various models in Artificial

Intelligence, by contrast, use a Euclidean distance

(Ix = Jp? or some other metric to compute’ patferrln
matches (Klatt 1980; Newell 1980). Such an approach
requires a separate processor to compute a scalar distance:
between two patterns before deciding how to tack the
results of this scalar computation back onto the main-
stream of computational activity. A metric also misses
properties of the competitive matching process which are
crucial in the study of spatial vision, as well as in other
pattern recognition problems wherein multiple scales are
needed to represent the data unambiguously.

In the competitive matching process, a match not only
encodes the matched pattern; it also amplifies it. A metric
does not encode a pattern, because it is a scalar rather
than a vector. A metric does not amplify the matched
patterns because it is minimized rather than maximized
by a pattern match. Moreover, what is meant by match-
ing differs in a metric and in a shunting network. A metric
makes local matches between corresponding input inten-
sities, whereas a network matches reflectances, which
depend upon the entire pattern. One could of course use
a metric to match ratios of input intensities, but this
computation requires an extra homuncular processing
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step and is insensitive to overall input intensity, which is
not true of the network matching mechanism. When the

long-range inhibitory term >, I x in (1) is replaced by
k=i

1

distance-dependent inhibitory interactions, as in equa-
tion (22) of Section 24, a global match of patterns is
replaced by simultaneous local matches on a spatial scale
that varies monotonically with receptive field size.

Although the properties of metric matches are disap-
pointing in comparison to properties of feedforward net-
work matching, they are totally inadequate when com-
pared to properties of feedback network matching. In a
feedback context, there is a flexible criterion of matching
called the quenching threshold (Section 28). This criteri-
on can be tuned by attentional and other cognitive fac-
tors. Furthermore, approximately matched patterns can
mutually deform one another into a fused composite
pattern via positive feedback signaling (Ellias & Gross-
berg 1975; Grossberg 1980b). These properties endow
the matching process with hysteresis properties that can
maintain a match during slow deformations of the input
patterns (Fender & Julesz 1967). When matching occurs
betwen ambiguous bottom-up input patterns and top-
down expectancies, the pattern fusion property can com-
plete the ambiguous data leading to a cognitively medi-
ated percept (Gregory 1966; Grossberg 1980b).

e primary use of network matching in my binocular
theory is to show how those spatial scales which achieve
the best binocular match of monocular data from the two
eyes can resonate energetically, whereas those spatial
scales which generate a mismatched binocular interpreta-
tion of the monocular data are energetically attenuated.

‘The ease with which these multidimensional scaling ef-

fects occur is due to properties that obtain in even the
simplest competitive networks. I use the term “multidi-
mensional scaling” deliberately, since similar competi-
tive rules often operate on a higher perceptual and
cognitive level (Grossberg 1978e), where metrical con-
cepts have also been used as explanatory tools (Osgood,
Suci, and Tannenbaum 1957; Shepard 1980).

An inadequate model of how cell activity reflects
matching can limit a theory’s predictive range. For exam-
ple, in a binocular context, I will use this relationship to
suggest how several types of data can be related, includ-
ing the coexistence of Fechner’s paradox and binocular
brightness summation (Blake et al. 1981), and the choice
between binocular fusion and rivalry within a given
spatial scale (Kaufman 1974; Kulikowski 1978). A reason
for binocular brightness summation is already evident in
equation (4). The effects of activities I and J on x, exceed
those expected from noninteracting independent detec-
tors, but are less than the sum I + J, as a result of Weber
law modulation (Cogan et al. 1982). In a feedback net-
work, the inputs I; and J, are chosen to be sigmoid, or S-
shaped, functions of the network activities at a prior
processing stage. The sigmoid signals are needed to
prevent the network as a whole from amplifying noise
(Section 28). Then (4) is replaced by a nonlinear summa-
tion process that clarifies the success of power law and
sigmoid summation rules in fitting data about spatial and
binocular brightness interactions (Arend, Lange & Sand-
ick 1981; Graham 1981; Grossberg 1981; Legge & Rubin
1981).




23. Weber law and shift property without logarithms. The
simple equation (1) has other properties which are worthy
of note. These properties describe other aspects of how
the network retunes itself in response to changes in
background activity. ’

The simplest consequence of this retuning property is
the classical Weber law :

—AI-I- = constant 5)

where Al is the just noticeable increment above a back-
ground intensity I. The approximate validity of (5) has
encouraged the belief that logarithmic processing deter-
mines visual sensitivity (Cornsweet 1970; Land 1977),
since A log I = (AI)/I, despite the fact that the logarithm
exhibits unphysical infinities at small and large values of
its argument. In fact, Cornsweet (1970) built separate
theories of reflectance processing and of brightness per-
ception by using logarithms to discuss reflectances and
shunting functions like I(A + J)=! to discuss brightness.
By contrast, shunting equations like (2) join together
reflectance processing and brightness processing into a
single computational framework.

Power laws have often been used in psychophysics
instead of logarithms (Stevens 1959). It is therefore of
interest that equation (2) guarantees reflectance process-
ing undistorted by saturation if the inputs I, are power law
outputs I, = NJPof the activities J, at a prior processing
stage. Reflectance processing is preserved under power
law transformations because the form of (2) is left invar-
iant by such a transformation. In particular,

_B+0I1(. ¢
Xi"A*+1("i B+C) ©)
where
R — 0
2 op
k=1
I=1]p 8)
and
n -1
s =m-1( 3 ) ®
k=1

To show how the Weber law (5) approximately obtains

in (2), choose
L=K+AL and L=I,=...=1 =K (l0)

Then the total input before increment Al is applied to I,
is I = nK. By (2),

_‘(B+C)(I+AI)<K+AI_ 9] )
MTTAFIFAT \nRKFAl BFC

IfI > Al and n > 1, then

K+Al _ C _Aln-1 I _ AL
ZKTAl BFC T n I3a17DP=71+D 1

where D = 1/n — C/(B + C). If I > A, then

(11)
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Consequently
x, = (B + C)(% + D) (14)
If x; is detectable when it exceeds a threshold T, then
Aew 15)
where
w=—L__p- 1
W=s7cC = constant (16)

A more precise version of the Weber law (5) is the
shift property. This property says that the region of max-
imal visual sensitivity shifts without compression as the
background off-surround intensity is parametrically in-
creased (Werblin 1971). The shift property obtains when
the on-center input I, is plotted in logarithmic coordi-
nates despite the fact that (2) does not describe log-
arithmic processing.

The shift property is important in a multidimensional
parallel processing framework wherein changes in the
number and intensity of active input sources can fluctu-
ate wildly through time. Given the shift property, one
can fix the activity scale (—C, B) and the network's out-
put threshold once and for all without distorting the
network’s decision rules as the inputs fluctuate through
time. A fixed choice of operating range and of output
thresholds is impossible in a multidimensional parallel
processing theory that is built up from additive proces-
sors. If a fixed threshold is selective when m converging
input channels are active, then it may not generate any
outputs whatsoever when n <€ m input channels of com-
parable intensity are active, and may unselectively gen-
erate outputs whenever n > m input channels are active.
Such a theory needs continually to redefine how big its
thresholds should be as the input load fluctuates through
time.

To derive the shift property, rewrite (2) as

. =B +Aclfi - CI an

Also write I, in logarithmic coordinates as M = log, I,, or

I, = e, and the total off-surround input as L = 2, I

k=i
Then, in logarithmic coordinates, (17) becomes
BeM — CL
ML) = T o 8

The question of shift invariance is: Does there exist a
shift § such that

M+ S,L)= x(M,L,) (19)
for all M, where S depends only on L, and L,? The
answer is yes if C = 0 (no hyperpolarization). Then

A+ L
s=1 1
°ge<A e L2)

which shows that successively increasing L by linear in-
crements AL in (18) causes progressively smaller shifts §
in (20). In particular, if L; = (n — 1)AL and L, = nAL,
then S approaches zero as n approaches infinity. If C >
0, then (19) implies that

(20)

THE BEHAVIORAL AND BRAIN SCIENCES (1983) 4 639



Grossberg: Quantized geometry of visual space

. [AB+ (B + COL, + AC(L, — L.Je~M
§ "l°g°[ AB ¥ B+ CL 2 ] @1)

By (21), S depends on M only viaterm AC(L; — L,)e—M,
which rapidly decreases as M increases. Thus the shift
property improves, rather than deteriorates, at the larger
intensities M which might have been expected to cause
saturation. Moreover, if B > C, as occurs physically, then
(20) is approximately valid at all values of M = 0.

24. Edge, spatial frequency, and reflectance processing
by the receptive fields of distance-dependent feedfor-
ward networks. Equation (1) is based on several assump-
tions which do not always occur in vivo. It is the task of
the mathematical classification theory to test the conse-
quences of modifying these assumptions. One such as-
sumption says that the inhibitory inputs excite all off-
surround channels with equal strength, as in term —(x,

+ C) > I of (1). Another assumption says that only
kyei

the ith channel is excited by the ith input, as in term
(B = x,)I,'of (1). In a general feedforward shunting net-
work, both the excitatory and the inhibitory inputs can
depend on the distance between cells, as in the feedfor-
ward network

S- A+ B-%) 3 WD - 6+ O P LB, @)
. k=1 k=1

Here the coefficients Dy; and E;, describe the fall-off
with the distance between cells v, and v, of the excitato-
ry and inhibitory influences, respectively, of input I; on
cell v,.

Eq:laﬁon (22) exhibits variants of all the properties
enjoyed by equation (1). These properties follow from
the equilibrium activities of (22), namely

F,I
b e @)
where
F, = 2 6,(BD, — CEy) (24)
k=1
G, = 2 6D, + E) (25)
k=1

in response to a sustained input pattern I, = 0,1, i =
1,2, . . ., n. See Ellias and Grossberg (1975) and Gross-
berg (1981) for a discussion of these properties. For pre-
sent purposes, I will focus on the fact that the noise
suppression property in the network (22) implies an edge
detection and spatial frequency detection capability in
addition to its pattern matching capability.

The noise suppression property in (23) is guaranteed
by imposing the inequalities

B2 D,<C2 E, (26)
k=1 k=1

i=1,2 ..., n Noise suppression follows from (26)
because then all x; =< 0 in response to a uniform pattern
(all 8; = 1/n) by (23) and (24). The inequalities (26) say,
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just as in Section 21, that there exists a matched symme-
try-breaking between the spatial bandwidths of excitatory
and inhibitory intércellular signaling and the choice of
inhibitory and excitatory intracellular saturation points
—C and B, respectively.

A distance-dependent network with the noise suppres-
sion property can detect edges and other nonuniform
spatial gradients for the following reason. By (26), those
cells v, which perceive a uniform input pattern within the
breadth of their excitatory and inhibitory scales are sup-
pressed by the noise suppression property no matter how
intense the pattern activity is (Figure 11). Only those cells
which perceive a nonuniform pattern with respect to
their scales can generate suprathreshold activity. This is
also true in a suitably designed additive network (Ratliff
1965). '

When the interaction coefficients Dy, and E;, of (22) are
Gaussian functions of distance, asin Dy, = D exp [—p(k —
2] and E;; = E exp [—v(k — i)2], then the equilibrium
activities x; in (23) include and generalize the model of
receptive field properties that is currently used to fit a
variety of visual data. In particular, the term F; in (24) that
appears in the numerator of x; depends on sums of
differences of Gaussians. Difference-of-Gaussian form
factors for studying receptive field responses appear in
the work of various authors (Blakemore, Carpenter &
Georgeson 1970; Ellias and Grossberg 1975; Enroth-
Cugell & Robson 1966; Levine & Grossberg 1976;
Rodieck & Stone 1965; Wilson & Bergen 1979). At least
three properties of (23).can distinguish it from an additive
difference-of-Gaussian theory. The first is that each dif-
ference-of-Gaussian form factor BDy, — CE,, in (24)
multiplies,” or weights, a reflectance 0;, and all the
weighted reflectances are Weber-modulated by a ratio of

A 7A N AR
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Figure 11. When the feedforward competitive network is
exposed to the pattern in (a), it suppresses both interior and
exterior regions of the pattern that look uniform to cells at these
pattern locations. The result is the differential amplification of
pattern regions which look nonuniform to the network, as in (b).




the background input I to itself. The difference-of-Gaus-
sian receptive field BD,;, — CE,, thereby becomes a
weighting term in the reflectance processing of the net-
work as a whole.

The second property is that each difference-of-Gaus-
sian factor BD;, — CEyis itself weighted by the excitatory
saturation point B and the inhibitory saturation point C of
the network, by contrast with a simple difference-of-
Gaussian Dy; ~ E;;. In networks in which zero spatial
frequencies are exactly canceled by their receptive fields,
the symmetry-breaking inequality B > C of the shunting
model predicts that the ratio pv—1 of excitatory to inhibi-
tory spatial bandwidths should be larger in a shunting
theory than in an additive theory.

‘A third way to distinguish experimentally between
additive and shunting receptive field models is to test
whether the contrast of the patterned responses changes
as a function of suprathreshold background luminance. In
an additive theory, the answer is no. In a distance-
dependent shunting equation such as (23), the answer is
yes. This breakdown is numerically and mathematically
analysed in Ellias and Grossberg (1975). The ratios which
determine x; in (23) lead to changes of contrast as the
background intensity I increases only because the coeffi-
cients Dy, and E,, are distance-dependent. In a shunting
network with a very narrow excitatory bandwidth and a
very broad inhibitory bandwidth, the relative sizes of the
x;are independent of I. The contrast changes which occur
as I increases in the distance-dependent case can be
viewed as a partial breakdown of reflectance processing at
high I levels due to the inability of inhibitory gain control
to compensate fully for saturation effects.

The edge enhancement property of a feedforward com-
petitive network confronts us with the full force of the
filling-in dilemma. If only edges can be detected by a
network once it is constrained to satisfy, even approx-
imately, such a basic property as noise suppression, then
how does the visual system spontaneously fill-in among
the edges to generate percepts of solid objects embedded
in continuous media?

25. Statistical analysis by structural scales: Edges with
scaling and reflectance properties preserved. Before
facing this dilemma, I need to review other properties of

the excitatory input term 5: I,D,, and the inhibitory
k=1

n
input term ., I xEx in (22). Let the interaction coeffi-
k=1

cients Dy, and E,; be distance-dependent, so that Dy, =
D( ~ 1) and Exy = E([k ~ i]) where the functions ()
and E(j) are decreasing functions of j, such as Gaussians,

Then the input terms _, I, Dy, cross-correlate the in-
k=1

put pattern (I,, I, . . ., I,) with the kernel D(j). Simi-

larly, the input terms i I, E;; cross-correlate the in-
k=1 °

put pattern (I}, I,, . . . , I,,) with the kernel E(j). These
statistics of the input pattern, rather than the input pat-
tern itself, are the local data to which the network reacts.
I will call the kernels D(j) and E(j) structural scales of
the network to distinguish them from the functional
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scales that will be defined below. The structural scales
perform a statistical analysis of the data before the shunt-
ing dynamics further transform these data statistics. Al-

though terms like i I, Dy; are linear functions of the
k=1

inputs I, the inputs are themselves often nonlinear (no-
tably S-shaped or sigmoidal) functions of outputs from
prior network stages (Section 28). Thus the statistical
analysis of input patterns is in general a nonlinear sum-
mation process. .

These concepts are elementary, as well as insufficient
for our purposes. It is, however, instructive to review
how statistical preprocessing of an input pattern influ-
ences the network’s reaction to patterns more complex
than a rectangle, say, a periodic pattern of high spatial
frequency bars superimposed on a periodic pattern of low
spatial frequency bars (Figure 12[a]). Suppose for defi-
niteness that the excitatory scale D(j) is narrower than the
inhibitory scale E(j) to prevent the occurrence of spurious
peak splits and multiple edge effects that can occur even
in a feedforward network’s response to spots and bars of
input (Ellias & Grossberg 1975). Then the excitatory
structural bandwidth determines a unit length over
which input data is statistically pooled, whereas the
inhibitory structural bandwidth determines a unit length
over which the pooled data of nearby populations are
evaluated for their uniformity.

MM
NN
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Figure 12. Transitions in the response of a network to a
pattern (@) with multiple spatial frequencies progressively alters
from (b) through (d) as the structural scales of the network
expand.
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It is easily seen that a feedforward network in which
featural noise suppression holds and whose excitatory
bandwidth approximates a can react to the input pattern
with a periodic series of smoothed bumps (Figure 12[b}).
By contrast, a network whose excitatory bandwidth
equals period 2o but is less than the entire pattern width
reacts only to the smoothed edges of the input pattern
(Figure 12[c]). The interior of the input pattern is statis-
tically uniform with respect to the larger structural scale,
and therefore its interior is inhibited by noise suppres-
sion. As the excitatory bandwidth increases further, the
smoothed edges are lumped together until the pattern
generates a single centered hump, or spot, of network
activity (Figure 12[d]). This example illustrates how the
interaction of a broad structural scale with the noise
suppression mechanism can inhibit all but the smoothed
edges of a finely and regularly textured input pattern.
After inhibition takes place, the spatial breadth of the
surviving edge responses depends on both the input
texture and the structural scale; the edges have not lost
their scaling properties. The peak height of these edge
responses compute a measure of the pattern’s reflec-
tances near its boundary, since ratios of input intensities
across the network determine the steady-state potentials
x,in (23). Rather than discard these monocular scaling and
lightness properties, as in a zero-crossing computation, I
will use them in an essential way below as the data with
which to build up binocular resonances.

26. Correlation of monocular scaling with binocular fu-
sion. The sequence of activity patterns in Figure 12(b),
12(c), and 12(d) is reversed when an observer steadily
approaches the picture in Figure 12(a). Then the spot in
Figure 12(d) bifurcates into two boundary responses,
which in turn bifurcate into a regular pattern of smoothed
bumps, which finally bifurcate once again to reveal the
high frequency components within each bump. If the
picture starts out sufficiently far away from the observer,
then the first response in each of the observer’s spatial
scales is a spot, and the bifurcations in the spot will occur
in the same order. However, the distance at which a
given bifurcation occurs depends on the spatial scale in
question. Other things being equal, a prescribed bifurca-
tion will occur at a greater distance if the excitatory
bandwidth of the spatial scale is narrower (high spatial
frequency). Furthermore, the registration of multiple
spatial frequencies (or even of multiple spots) in the
picture will not occur in a spatial scale whose excitatory
bandwidth is too broad (low spatial frequency).

The same sequence of bifurcations can occur within the
multiple spatial scales corresponding to each eye. If the
picture is simultaneously viewed by both eyes, the ques-
tion naturally arises: How do the two activity patterns
within each monocular scale binocularly interact at each
distance? Let us assume for the moment, as in the
Kaufman (1974) and Kulikowski (1978) experiments, that
as the disparity of two monocular patterns increases, it
becomes harder for the high spatial frequency scales to
fuse them. Since disparity decreases with increasing
distance, all scales can binocularly fuse their respective
patterns (assuming they are detectable at all) when the
distance is great enough, but the lower spatial frequency
scales can maintain fusion over a broader range of de-
creasing distances than can the higher spatial frequency
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scales. Other things being equal, the scales which can
most easily binocularly fuse their two monocular repre-
sentations of a picture at a given distance are the scales
which average away the finer features in the picture. It
therefore seems natural to ask: Does the broad spatial
smoothing within low spatial frequency scales enhance
their ability to binocularly fuse disparate monocular ac-
tivity patterns?

Having arrived at this issue, we now need to study
those properties of feedback competitive shunting net-
works that will be needed to design scale-sensitive bin-
ocular resonances in which the fusion event is only one of
a constellation of interrelated depth, length, and light-
ness properties.

27. Noise suppression in feedback competitive networks.
The noise-saturation dilemma confronts all cellular
tissues which process input patterns, whether the cells

“exist in a feedforward or in a feedback anatomy. As part of

the mathematical classification theory, 1 will therefore
consider shunting interactions in a feedback network

‘wherein excitatory signals are balanced by inhibitory

ones. Together, these feedback signals are capable of
retuning network sensitivity in response to fluctuating
background activity levels.

The feedback analog of the distance-dependent feed-
forward network (22) is

%’{x: —-Ax, + (B — x‘)[]i + 21 f(xk)Dki]

- + C)[K,. + ki g(xk)Ek,} @7
=1

i=12...,n Asin (22), term —Ax; describes the

spontaneous decay of activity at rate —A. Term (B — x,)];

describes the excitatory effect of the feedforward excita-

tory input J;, which was chosen equal to i I.D,, in
k=1

(22). Term —(x, + C)K, is also a feedforward term due to
inhibition of activity by the feedforward inhibitory input

K;, which was chosen equal to i ILE;, in (22). The
E=1

new excitatory feedback term 2, f(x;)D,, describes
k=1

the total effect of all the excitatory feedback signals f{x;) Dy,
from the cells vy to v,. The function f{x,) transmutes the
activity, or potential, of x; into a feedback signal f(x,),
which can be interpreted either as a density of spikes per
unit time interval or as an electrotonic influence, de-
pending on the situation. The inhibitory feedback term

kﬁ: g(xz) E,; determines the total effect of all the inhibi-
=1

tory feedback signals g(x,)E, from the cells v, to v;. As
in (22), the interaction coefficients Dy, and Ey, are often
defined by kernels D(j) and E(j), such that E(j) de-
creases more slowly than D(j) as a function of increasing
values of j.

The problem of noise suppression is just as basic in
feedback networks as in feedforward networks. Suppose,
for example, that the feedforward inputs and the feed-
back signals both use the same interneurons and the




same statistics of feedback signaling (fix) = g(x) to
distribute their values across the network. Then 27
becomes

%’% = —Ax, + (B - xi)é;l L + fx)]D,,

~(x, + C)ki [T, + fix)]Ey 28)
=1

i=12,..., n Insuch a network, the same criterion
of uniformity is applied both to feedforward and to feed-
back signals. Both processes share the same structural
scales. Correspondingly, in (28) as in (22) the single
inequality

B2 D,<C E, (26)
k=1 k=1

suffices to suppress both uniform feedforward patterns

and uniform feedback patterns.

28. Sigmoid feedback signals and tuning. Another type
of noise suppression, called signal noise suppression, is
also needed for a feedback network to function properly.
This is true because certain positive feedback functions
flw) can amplify even very small activities w into large
activities. Noise amplification due to positive feedback
signaling can flood the network with internally gener-
ated noise capable of massively distorting the processing
of feedforward inputs. Pathologies of feedback signaling
have been suggested to cause certain seizures and hallu-
cinations (Ellias & Grossberg 1975; Grossberg 1973;
Kaczmarek & Babloyantz 1977).

In Grossberg (1973), I proved as part of the mathemati-
cal classification theory that the simplest physically plau-
sible feedback signal which is capable of attenuating,
rather than amplifying, small activities is a sigmoid, or S-
shaped; signal function (Figure 13). Several remarks
should be made about this result.

The comment is sometimes made that you only need a
signal threshold to prevent noise amplification (Figure
13). This is true, but insufficient, because a threshold
signal function does not perform the same pattern trans-
formation as a sigmoid signal function. For example, in a

SIGNAL

ACTIVITY

Figure 13. A sigmoid signal f{w) of cell activity w can suppress
noise, contrast enhance suprathreshold activities, normalize
total activity, and store the contrast enhanced and normalized
pattern in short term memory within a suitably designed feed-
back competitive network.
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Figure 14. In Figures 10(a) and 10(b), the same input pattern

is differently transformed and stored in short term memory due
to different settings of the network quenching threshold.

shunting network with a narrow on-center and a broad
off-surround, a threshold signal chooses the population
that receive the largest input for activity storage and
suppresses the activities of all other populations. By
contrast, a sigmoid signal implies the existence of a
quenching threshold (QT). This means that the activities
of populations whose initial activation is less than the QT
are suppressed, whereas the activity pattern of popula-
tions whose initial activities exceed the QT is contrast
enhanced before being stored. I identify this storage
process with storage in short term memory (STM). In a
network that possesses a QT, any operation which alters
the QT can sensitize or desensitize the network’s ability
to store input data (Figure 14). This tuning property is
trivialized in a network that chooses the population which
receives the largest input for STM storage. In either case,
a nonlinear signal function is needed to prevent noise
amplification in a feedback network. This fact presents a
serious challenge to all linear feedforward models, such as
Fourier and Gaussian models.

A proper choice of signal function can be made by
mathematically classifying how different signal functions
transduce input patterns before they are stored in STM.
Consider, for example, the following special case of (28):

%. X = —Ax; + (B — x)[I; + flx,)] - xi[Ji + > f(xk)] , (29)

ki
i=1,2,...,n In(29), the competitive feedback term

> flx;) describes long-range lateral inhibition, just like
ki ‘

te;‘m' DY x in the feedforward network (1). Network (29)
k=i

strips away all extraneous factors to focus on the following
issue. After an input pattern (I, I, . . ., IL,Jwlo - -,
J..) delivered before time t = 0 establishes an initial
pattern (x,(0), x,(0), . . . , x,(0)) in the network’s ac-
tivities, how does feedback signaling within the network
transform the initial pattern before it is stored in STM?
This problem was solved in Grossberg (1973).

Chart 1 summarizes the main features of the solution.
The function g(w) = w—flw) is graphed in Chart 1
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Chart 1.

because the property that determines the pattern trans-
formation is whether g(w) is an increasing, constant, or
decreasing function at prescribed activities w. For exam-
ple, a linear flw) = aw determines a constant gw) = ag; a
slower-than-linear flw) = aw(® + w)~! determines a
decreasing g(w) = a(b + w)—1; afaster-than-linear flw) =
aw", n > 1, determines an increasing g(w) = aw"~1; and
a sigmoid signal function flw) = aw? (b + w?)~? deter-
mines a concave gw) = aw(b + w?)~ 1. Both linear and
slower-than-linear signal functions amplify noise, and are
therefore unsatisfactory. Faster-than-linear signal func-

tions, such as power laws with powers greater than one, -

or threshold rules, suppress noise so vigorously that they
make a choice. Sigmoid signal functions determine a QT
by mixing together properties of the other types of signal
functions.

Another important point is that the QT does not equal
the turning point, or manifest threshold, of the sigmoid
signal function. The QT depends on all of the parameters
of the network. This fact must be understood to argue
effectively that the breakdown of any of several mecha-
nisms can induce pathological network properties, such
as seizures or hallucinations, by causing the QT to assume
abnormally small values. Similarly, an understanding of
the factors that control the QT is needed to analyze
possible attentional and cognitive mechanisms that can
modulate how precise a binocular or bottom-up and top-
down match has to be in order to generate fusion and
resonance.

A formula for the QT of (29) has been computed when
this network is in its short term memory mode (set all
inputs I, = J, = 0). Let the feedback signal function flw)
satisfy

fw) = (30)
where C = 0, g(w) is increasing if 0 < w =< x1), and g(w) =
1if ¥ = w < B. Thus flw) grows faster-than-linearly if 0

= Cwg(w)
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Influence of signal function f{w) on input pattern transformation and short term memory storage.

= w=xD, linearly if s =< w =< B, and attains a maximum
value of C at w = B within the activity interval from O to B.
The values of flw) at activities w = B do not affect network
dynamics because each x;, = B in (29). It was proved in
Grossberg (1973, pp. 355-359) that the QT of (29) is

x(1)
QT = g—Zc=1

By (31), the QT is not the manifest threshold of flw),
which occurs where g(w) is increasing. Rather, the QT
depends on the transition activity where f(w changes
from faster-than-linear to linear, upon the maximum size
C of the signal function in the physiological range, upon
the number B of excitable sites in each population, and
upon the decay rate A.

By (31), an increase in C causes a decrease in the QT.
Increasing a shunting signal C that nonspecifically gates
all the network’s feedback signals can thereby facilitate
STM storage. Such a decrease in the QT can facilitate
binocular matching by weakening the criterion of how
well matched two input patterns need to be in order for
some network nodes to supraliminally reverberate in
STM. It cannot be overemphasized that this and other
desirable tuning properties of competitive feedback net-
works depend upon the existence of a nonlinear signal
function flw). For example, if fw) is linear, thenxM) = 0 in
(30) and the QT = 0 by (31). Then all positive network
activities, no matter how small, can be amplified and
stored in STM, including activities due to internal cellu-
lar noise.

@1)

29. The interdependence of contrast enhancement and
tuning. The existence of a QT suggests that the contrast
enhancement of input patterns that is ubiquitous in the
nervous system is not an end in itself (Ratliff 1965). In
feedback competitive shunting networks, contrast en-
hancement is a mathematical consequence of the signal




noise suppression property. This fact is emphasized by
the observation that linear feedback signals can perfectly
store an input pattern’s reflectances - in particular, they
do not enhance the pattern — but only at the price of
amplifying network noise (Chart 1). Contrast enhance-
ment by a feedback network in its suprathreshold activity
range follows from noise suppression by the network in its
subthreshold activity range. Contrast enhancement can
intuitively be understood if a feedback competitive net-
work possesses a normalization property like that of a
feedforward competitive network (Section 21). If small
activities are attenuated by noise suppression and total
activity is approximately conserved due to normalization,
then large activities will be enhanced.

The simplest example of total activity normalization in a
feedback competitive network follows. Consider network
(29) in its short term memory mode (all inputs I, = J, = (Q

Letx = xi be the total STM activity andlet F = D,

flx,) be the total feedback signal. Sum over the index : 1&

(29) to find that
de/dt = —Ax + (B — X)F (32)
To solve for the possible equilibrium activities of x(), let
dx/dt = 0 in (32). Then
Ax
B-x

By Chart 1, a network with a faster-than-linear signal
function chooses just one activity, say x,, for storage in
STM. Hence only one summand in F remains positive as
time goes on, and its x,(2) value approaches that of x(t).
Thus (33) can be rewritten as

Ax

=F

(33)

(34)

or equivalently

(35)

B—x—

Equation (35) is independent of the number of active
cells. Hence the total stored STM activity is independent
of the number of active cells. The limiting equation (33) is
analyzed for other choices of signal function in Grossberg
(1973).

30. Normalization and multistability in a feedback com-
petitive network: A limited capacity short term memory
system. Thus suitably designed feedback competitive
networks do possess a normalization property. Recall
from Section 21 that in a feedforward competitive net-
work, the total activity can increase with the total input
intensity but is independent of the number of active cells.
This is true only if the inhibitory feedforward interaction

E Iiin(1

strengths of the inhibitory pathways are weakened or fall
off rapidly with distance, then the normalization property
is weakened also, and saturation can set in at high input
intensities. The same property tends to hold for the
feedforward terms (B — x,)J; and —(x, + C)K; of (27).
The normalization property of a feedback competitive
network is more subtle (Grossberg 1973; 1981). If such a
network is excited to suprathreshold activities and if the

) is of long range across the network cells. If the
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exciting inputs are then terminated, then the total ac-
tivity of the network can approach one of perhaps several
positive equilibrium values, all of which tend to be
independent of the number of active cells. Thus if the
activity of one cell is for some reason increased, then the
activities of other cells will decrease to satisfy the normal-
ization constraint unless the system as a whole is attracted
to a different equilibrium value. This limited capacity
constraint on short term memory is an automatic property
in our setting. It is postulated without a mechanistic
explanation in various other accounts of short term mem-
ory processing (Raaijmakers & Shiffrin 1981, p. 126).
The existence of multistable equilibria in a competitive
feedback network is illustrated by equation (35). When
flw) is a faster-than-linear signal function, both A(B —
x)~1 and g(x) in (35) are increasing functions of x, 0 = x <
B, and g(x) may be chosen so that these functions intersect
at arbitrarily many values E, E,, . . . of x. Every other
value in such a sequence is a possible stable equilibrium
point of x, and the remaining values are unstable equi-
librium points of x. By contrast, if g(w) is a concave
function of w, as when flw) is a sigmoid signal function, a
tendency exists for the suprathreshold equilibria of x to be
unique or closely clustered together. These assertions are
mathematically characterized in Grossberg (1973).

31. Propagation of normalized disinhibltory cues. Just as
in feedforward networks, the feedback normalization
property is weakened if the inhibitory path strengths are
chosen to decrease more rapidly with distance. Then the
normalization property tends to hold among subsets of
cells that lie within one bandwidth of the network’s
inhibitory structural scale. In particular, if some cell
activities are enhanced by a given amount, then their
neighbors will tend to be suppressed by a comparable
amount. The neighbors of these neighbors will then be
enhanced by a similar amount, and so on. In this way, a
disinhibitory wave can propagate across a network in such
a way that each crest of the wave inherits, or “remem-
bers,” the activity of the previous crest. This implication
of the normalization property in a feedback network with
finite structural scales will be important in my account of
filling-in. Normalization within a structural scale also
endows the network’s activity patterns with constancy
and contrast patterns, as in the case of feedforward
competitive networks (Section 24). In a feedback context,
however, constancy and contrast properties can propa-
gate far beyond the confines of a single structural scale
because of normalized disinhibitory properties such as
those Figure 15 depicts.

32. Structural versus functional scales. The propagation
process depicted in Figure 15 needs to be understood in
greater detail because it will be fundamental in all that
follows. A good way to approach this understanding is to
compare the reactions of competitive feedforward net-
works with those of competitive feedback networks to the
same input patterns.

Let us start with the simplest case. Choose C = 0in (22)
and (27). This prevents the noise suppression inequalities
(26) from holding. Although feedforward and feedback
inhibition are still operative, activities cannot be inhib-
ited below zero in this case. Consequently, a uniform
input pattern can be attenuated but not entirely sup-
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Figure 15. Reaction of a feedforward competitive network (b)
and a feedback competitive network (c) to the same input
pattern (). Only the feedback network can activate the interior
of the region which receives the input pattern with unattenu-
ated activity.

pressed. Choose a sigmoidal feedback signal function to
prevent noise amplification, and thus to contrast-enhance
the pattern of suprathreshold activities. These hypoth-
eses enable us to study the main effects of feedback
signalling unconfounded by the effect of noise sup-
pression.

What happens when we present a rectangular input
pattern (Figure 15{a]) to both networks? Due to the
feedforward inhibition in (22), the feedforward network
enhances the edges of the rectangle and attenuates its
interior (Figure 15[b}). By contrast, the feedback network
elicits a regularly spaced series of excitatory peaks across
the cells that receive the rectangular input (Figure 15[c]).
This type of reaction occurs even if the input pattern is not
contrast-enhanced by a feedforward inhibitory stage, as
in Figure 15(b), before feedback inhibition can act on the
contrast-enhanced pattern. The pattern of Figure 15(c) is
elicited even if the feedback acts directly on the rectangu-
lar input pattern. Parametric numerical studies of this
type of disinhibitory feedback reaction are found in Ellias
and Grossberg (1975).

The spatial bandwidth between successive peaks in
Figure 15(c) is called the functional scale of the feedback
network. My first robust points are that a functional scale
can exist in a feedback network but not in a feedforward
network, and that, although the functional scale is related
to the structural scale of a feedback network, the two
scales are not identical. I will discuss the functional scale
given C = 0 before reinstating the noise suppression
inequalities (26) because the interaction between contrast
enhancement and noise suppression in a feedback net-
work is a much more subtle issue.
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33. Disinhibitory propagation of functional scaling from
boundaries to interiors. To see how a functional scale
develops, let us consider the network’s response to the
rectangular input pattern on a moment-to-moment basis.
All the populations v,, that are excited by the rectangle
initially receive equal inputs. All the activities x,,, of these
populations therefore start to grow at the same rate. This
growth process continues until the feedback signals
flx,)D,, and g(x,)E,, can be registered by the other.
populations v,. Populations v, which are near the rec-
tangle’s boundary receive smaller total inhibitory signals
. g(x,)E,; than populations which lie nearer to the
m=
rectangle’s center, even when all the rectangle-excited
activities x,, are equal. This is because the interaction
strengths E_, = E(| m — i |) are distance-dependent, and
the boundary populations receive no inhibition from
contiguous populations that lie outside the rectangle.

As aresult of this inhibitory asymmetry, the activities x,
near the boundary start to grow faster than contiguous
activities x, nearer to the center. The inhibitory feedback
signal g(x,JE; from v, to v; begins to exceed the inhibitory
feedback signal g(x,)E; from v; to v;, because x; > x;and E;;
= Ej Thus although all individual feedback signals
among rectangle-excited populations start out equal, they
are soon differentiated due to a second-order effect
whereby the boundary bias in the spatial distribution of
the total inhibitory feedback signals is mediated by the
activities of individual populations. ‘

As the interior activities x, get differentially inhibited,
their inhibitory signals g(xj)E(jk to populations v, which lie
even deeper within the rectangle’s interior become
smaller. Now the total pattern of inputs plus feedback
signals is no longer uniform across the populations v, and
v;. The populations v, are favored. Contrast enhance-
ment bootstraps their activities x; to larger values. Now
these populations can more strongly inhibit neighboring
populations that lie even deéper into the rectangle’s
interior, and the process continues in this fashion.

The boundary asymmetry in the total inhibitory feed-
back signals hereby propagates ever deeper into the
rectangle’s interior by a process of distance-dependent
disinhibition and contrast enhance ment until all the rec-
tangle-excited populations are filled-in by a series of
regularly spaced activity peaks as in Figure 11(c).

34. Quantization of functional scales: Hysteresis and
uncertainty.As I mentioned in Section 32, two distinct
types of spatial scales can be distinguished in a feedback
network. The structural scales D(j) and E(j) describe how
rapidly the network’s feedback interaction coefficients
decrease as a function of distance. The functional scale
describes the spatial wavelength of the disinhibitory
peaks that arise in response to prescribed input patterns.
Although these two types of scale are related, they differ
in fundamental ways.

They are related because an increase in a network’s
structural scales can cause an increase in the functional
scale with which it fills-in a given input pattern, as in the
numerical studies of Ellias and Grossberg (1975). This is
due to two effects acting together. A slower decrease of
D{j) with increasing distance j can increase the number of
contiguous populations that pool excitatory feedback.




This effect can broaden the peaks in the activity pattern.

-A slower decrease of E(j) with increasing distance j can
increase the number of contiguous populations which can
be inhibited by an activity peak. This effect can broaden
the troughs in the activity pattern. This relationship
between structural and functional scales partially sup-
ports the intuition that visual processing includes a spatial
frequency analysis of visual data (Graham 1981; Robson
1975), because if several feedback networks with distinct
structural scales received the same input pattern, then
they would each generate distinct functional scales such
that smaller structural scales tended to generate smaller
functional scales. However, the functional scale does not
equal the structural scale, and its properties represent a
radical departure from feedforward linear ideas.

The most important of these differences can be summa-
rized as follows. The functional scale is a quantized
property of the interaction between the network and
global features of an input pattern, such as its length.
Unlike a structural scale, a functional scale is not just a
property of the network. Nor is it just a property of the
input pattern. The interaction between pattern and net-
work literally creates the functional scale. The quantized
nature of this interaction is easy to state because it is so
fundamental. (The reader who knows some quantum
theory, notably Bohr's original model of the hydrogen
atom, might find it instructive to compare the two types of
quantization.)

The length L of a rectangular input pattern might equal
anonintegral multiple of a network’s structural scales, but
obviously there can only exist an integral number of
disinhibitory peaks in the activity pattern induced by the
rectangle. The feedback network therefore quantizes its
activity in a way that depends on the global structure of
the input pattern. The functional scales must change to
satisfy the quantum property as distinct patterns perturb
the network, even though the network’s structural scales
remain fixed. \

For example, rectangular inputs oflength L, L + AL, L
+2AL, . . ., L + wAL might all induce M, peaks in the
network’s activity pattern. Not until a rectangle of length
L + (w + 1)AL is presented might the network respond
with M, + 1 peaks. This length quantization property
suggests a new reason why a network, and perception,
can exhibit hysteresis as an input pattern is slowly de-
formed through time. This hysteresis property can con-
tribute to, but is not identical with, the hysteresis that is
due to persistent binocular matching as a result of positive
feedback signaling when two monocular patterns are
slowly deformed after first being binocularly matched
(Fender & Julesz 1967; Grossberg 1980b). Another con-
sequence of the quantization property is that the network
cannot distinguish certain differences between input pat-
terns. Quantization implies a certain degree of perceptual
uncertainty.

35. Phantoms. The reader might by now have entertained
the following objection to these ideas. If percepts really
involve spatially regular patterned responses even to
uniform input regions, then why don’t we easily see these
patterns? I suggest that we sometimes do, as when
spatially periodic visual phantoms can be seen superim-
posed upon otherwise uniform, and surprisingly large,
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regions (Smith & Over 1979; Tynan & Sekuler 1975;
Weisstein, Maguire & Berbaum 1976). The disinhibitory
filling-in process clarifies how these phantoms can cover
regions which excite a retinal area much larger than a
single structural scale. I suggest that we do not see
phantoms more often for three related reasons.

During day-to-day visual experience, several func-
tional scales are often simultaneously active. The peaks of
higher spatial frequency functional scales can overlay the
spaces between lower spatial frequency functional scales.
Retinal tremor and other eye movements can randomize
the spatial phases of, and thereby spatially smooth, the
higher frequency scales across the lower frequency scales
through time. Even within a single structural scale, if the
boundary of an input pattern curves in two dimensions,
then the disinhibitory wavelets can cause interference
patterns as they propagate into the interior of the activity
pattern along rays perpendicular to each boundary ele-
ment. These interference patterns can also obscure the
visibility of a functional scale. Such considerations clarify
why experiments in which visual phantoms are easily
seen usually use patterns that selectively resonate with a
low spatial frequency structural scale that varies in only
one spatial dimension. This suggestion that filling-in by
functional scales may subserve phantoms does not imply
that the perceived wavelength of a phantom is commen-
surate with any structural scale of the underlying net-
work. Rather I suggest that once a pattern of functional
wavelets is established by a boundary figure, it can
quickly propagate by a resonant filling-in reaction into the
interior of the figure if the shape of the interior does not
define functional barriers to filling-in (Section 40).

An important issue concerning the perception of phan-
toms is whether they are, of necessity, perceivable only if
moving displays are used, or whether the primary effect
of moving a properly chosen spatial frequency at a prop-
erly chosen velocity is to selectively suppress all but the
perceived spatial wavelength via noise suppression. The
latter interpretation is compatible with an explanation of
spatial frequency adaptation using properties of shunting
feedback networks (Grossberg 1980b, Section 12).

A possible experimental approach to seeing functional
scales using a stationary display takes the form of a two-
stage experiment. First adapt out the high spatial fre-
quencies using a spatial frequency adaptation paradigm.
Then fixate a bounded display which is large enough and
is shaped properly to strongly activate a low spatial
frequency scale in one dimension, and which possesses a
uniform interior that can energize periodic network
activity.

36. Functional length and Emmert's law. Two more
important properties of functional scales are related to
length and lightness estimates. The functional wave-
length defines a length scale. To understand what I
mean. by this, let a rectangular input pattern of fixed
length L excite networks with different structural scales. I
hypothesize that the apparent length of the rectangle in
each network will depend on the functional scale gener-
ated therein. Since a broader structural scale induces a
broader functional scale, the activity pattern in such a
network will contain fewer active functional wavelengths.
I suggest that this property is associated with an
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impression of a shorter object, despite the fact that L
is fixed.

The reader might object that this property implies too
much. Why can a monocularly viewed object have ambig-
uous length if it can excite a functional scale? I suggest
that under certain, but not all, monocular viewing condi-
tions, an object may excite all the structural scales of the
observer. When this happens, the object’s length may
seem ambiguous. I will also suggest in Section 39 how
binocular viewing of a nearby object can selectively excite
structural scales which subserve large functional scales,
thereby making the object look shorter. By contrast,
binocular viewing of a far-away object can selectively
excite structural scales which subserve small functional
scales, thereby making the object look longer. Thus the
combination of binocular selection of structural scales
that vary inversely with an object’s distance, along with
the inverse variation of length estimates with functional
scales, may contribute to an explanation of Emmert’s law.

This view of the correlation between perceived length
and perceived distance does not imply that the relation-
ship should be veridical - and indeed sometimes it is not
(Hagen & Teghtsoonian 1981) — for the following reasons.
The functional scale is a quantized collective property ofa
nonlinear feedback network rather than a linear ruler.
The selection of which structural scales will resonate to a
given object and of which functional scales will be gener-
ated within these structural scales depends on the in-
teraction with the object in different ways; for one, the
choice of structural scale does not depend on a filling-in
reaction. .

These remarks indicate a sense in which functional
scales define an “intrinsic metric,” which is independent
of cognitive influences but on whose shoulders correla-
tions with motor maps, adaptive chunking and learned
feedback expectancy computations can build (Grossberg
1978e; 1980b). This intrinsic metric helps to explain how
monocular scaling effects, such as those described in
Section 5, can occur. Once the relevance of the functional
scale concept to metrical estimates is broached, one can
begin to appreciate how a dynamic “tension” or “force
field” or “curved metric” can be generated whereby
objects which excite one part of the visual field can
influence the perception of objects at distant visual posi-
tions (Koffka 1935; Watson 1978). I believe that the
functional scale concept explicates a notion of dynamic
field interactions that escapes the difficulties faced by the
Gestaltists in their pioneering efforts to explain global
visual interactions.

37. Functional lightness and the Cornsweet effect. The
functional scale concept clarifies how object boundaries
can determine the lightness of object interiors, as in the
Cornsweet effect. Other things being equal, a more
intense pattern edge will cause larger inhibitory troughs
around itself. The inhibitory trough which is interior to
the pattern will thereby create a larger disinhibitory peak
due to pattern normalization within the structural scale.
This disinhibitory process continues to penetrate the
pattern in such a way that all the interior peak heights are
influenced by the boundary peak height because each
inhibitory trough “remembers” the previous peak
height. The sensitivity of filled-in interior peak size to
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boundary peak size helps to explain the Cornsweet effect
(Section 11). '

Crucial to this type of explanation is the idea that the
disinhibitory filling-in process feeds off the input inten-
sity within the object interior. The reader can now better
appreciate why I set C = 0 to start off my exposition.
Suppose that a feedforward inhibitory stage acts on an
input pattern before the feedback network responds to
the transformed pattern. Let the feedforward stage use its
noise suppression property to convert a rectangular input
pattern into an edge reaction that suppresses the rec-
tangle’s interior (Figure 15[b]). Then let the feedback
network transform the edge-enhanced pattern. Where
does the feedback network get the input energy to fill-in
off the edge reactions into the pattern’s interior if the
interior activities have already been suppressed? How
does the feedback network know that the original input
pattern had an interior at all? This is the technical version
of the “To Have Your Edge and Fill-In Too” dilemma that
I raised in Section 17. We are now much closer to an
answer.

38. The monocular length-luminance effect. Before sug-
gesting a resolution of this dilemma, I will note a property
of functional scales which seems to be reflected in various
data, such as the Wallach and Adams (1954) experiment,
but seems not to have been studied directly. This proper-
ty concerns changes in functional scaling that are due to
changes in the luminance of an input pattern. To illustrate
the phenomenon in its simplest form, I will consider
qualitatively the response of a competitive feedback net-
work such as (27) to a rectangular input pattern of increas-
ing luminance. In Figure 16(a) the rectangle intensity is
too low to elicit any suprathreshold reaction. In Figure
16(b) a higher rectangle intensity fills-in the region with a
single interior peak and two boundary peaks. At the still
higher intensity of Figure 16(c), two interior peaks
emerge. At successively higher intensities, more peaks
emerge until the intensity gets so high that a smaller
number of peaks again occurs (Figure 16[d]). This pro-
gressive increase followed by a progressive decrease in
the number of interior peaks has been found in many
computer runs (Cohen & Grossberg 1983a; Ellias &
Grossberg 1975). It reflects the network’s increasing
sensitivity at higher input intensities until such high
intensities are reached that the network starts to saturate
and is gradually desensitized. The quantitative change in
the relative number of peaks is not so dramatic as Figure
16 suggests.

If we assume that the total area under an activity
pattern within a unit spatial region estimates the lightness
of the pattern, then it is tempting to interpret the above
result as a perceived lightness change when the lumi-
nance of an object, but not of its background, is para-
metrically increased. This interpretation cannot be made
without extreme caution, however, because the func-
tional scaling change within one monocular representa-
tion may alter the ability of this representation to match
the other monocular representation within a given struc-
tural scale. In other words, by replacing spatially homo-
geneous regions in a figure by spatially patterned func-
tional scales, we can think about whether these patterns
match or mismatch under prescribed conditions. A




{a)

(b)
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Figure 16. Response of a feedback competitive network to a
rectangle of increasing luminance on a black background.

change in the scales which are capable of binocular
matching implies change in the scales which can energet-
ically resonate. A complex change in perceived bright-
ness, depth, and length may hereby be caused.

Even during conditions of monocular viewing, the
phenomenon depicted by Figure 16 has challenging im-
plications. Consider an input pattern which is a figure
against a ground with nonzero reflectance. Let the entire
pattern be illuminated at successively higher luminances.
Within the energy region of brightness constancy, the
balance between the functional scales of figure and
ground can be maintained. At extreme luminances, how-
ever, the sensitivity changes illustrated in Figure 16 can
take effect and may cause a coordinated change in both
perceived brightness and perceived length. If the func-

tional wavelength, as opposed to a more global estimate of

the total activated region within a structural scale, influ-
ences length judgments, then a small length reduction
may be detectable at both low and high luminances. This
effect should at the present time be thought of as an
intriguing possibility rather than as a necessary predic-
tion of the theory because, in. realistic binocular net-
works, interactive effects between monocular and bin-
ocular cells and between multiple structural scales may
alter the properties of Figure 16.
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39. Spreading FiRE: Pooled binocular edges, false
matches, allelotropia, binocular brightness summation,
and binocular length scaling. Now that the concept of a
functional scale in a competitive feedback network is
clearly in view, I can reintroduce the noise suppression
inequalities (26) to show how the joint action of noise
suppression and functional scaling can generate a filling-
in resonant exchange (FIRE) that is sensitive to binocular
properties such as disparity. Within the framework I have
built up, starting a FIRE capable of global effects on
perceived depth, form, and lightness is intuitively sim-
ple. I will nonetheless describe the main ideas in mecha-
histic terms, since if certain constraints are not obeyed,
the FIRE will not ignite (Cohen & Grossberg 1983a). I will
also restrict my attention to the simplest, or minimal,
network which exhibits the properties that I seek. It will
be apparent that the same types of properties can be
obtained in a wide variety of related network designs. The
equations that have been used to simulate such a FIrE
numerically are described in the Appendix.

First I will restrict attention to the case of a single
structural scale, which is defined by excitatory and inhibi-
tory kernels D(j) and E(j), respectively. Three main intui-
tions go into the construction.

Proposition 1.—Only input pattern data which are spa-
tially nonuniform with respect to a structural scale are
informative (Section 18).

Proposition II.-The ease with which two monocular
input patterns of fixed disparity can be binocularly fused
depends on the spatial frequencies in the patterns (Sec-
tion 6 and 8). This dependence is not, however, a direct
one. It is mediated by statistical preprocessing of the
input patterns using nonlinear cross-correlations, as in
Section 25. Henceforth when I discuss an “edge,” I will
mean a statistical edge rather than an edge within the
input pattern itself.

Proposition 111.-Filling-in a functional scale can only
be achieved if there exists an input source on which the
FIRE can feed (Section 33).

To fix ideas, let a rectangular input pattern idealize a
preprocessed segment of a scene. The interior of the
rectangle idealizes an ambiguous region and the bound-
aries of the rectangle idealize informative regions of the
scene with respect to the structural scale in question. A
copy of the rectangular input pattern is processed by each
monocular representation. Since the scene is viewed
from a distance, the two rectangular inputs will excite
disparate positions within their respective monocular
representations (Figure 17[a]). In general, the more
peripheral boundary with respect to the foveal fixation
point will correspond to a larger disparity.

Proposition I suggests that the rectangles are passed
through a feedforward competitive network capable of
noise suppression to extract their statistical edges (Figure
17{b]). Keep in mind that these edges are not zero-
crossings. Rather, their breadth is commensurate with
the bandwidth of the excitatory kernel D(j) (Section 25).
This property is used to realize Proposition II as follows.

Suppose that the edge-enhanced monocular patterns
are matched at binocular cells, where I mean matching in
the sense of Sections 22 and 24. Because these networks
possess distance-dependent structural scales, the sup-
pressive effects of mismatch are restricted to the spatial
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Figure 17. After the two monocular patterns (a) are passed
through a feedforward competitive network to extract their
nonuniform data with respect to the network’s structural scales
(D), the filtered patterns are topographically matched to allow
pooled binocular edges to form (c) if the relationship between
disparity and monocular functional scaling is favorable.

wavelength of an inhibitory scale, E(j), rather than involv-
ing the entire network. Because the edges are statistically
defined, the concepts of match and mismatch refer to the
degree of coherence between monocular statistics rather
than to comparisons of individual edges. Three possible
cases can occur.

The case of primary interest is the one in which the two
monocular edge reactions overlap enough to fall within
each other’s excitatory on-center D(j). This will happen,
for example, if the disparity between the edge centers
does not exceed half the width of the excitatory on-center.
Marr and Poggio (1979) have pointed out that, within this
range, the probability of false matches is very small, in
fact less than 5%. Within the zero-crossing formalism of
Marr and Poggio (1979), however, the decision to restrict
matches to this distance is not part of their definition of an
edge. In a theory in which the edge computation retains
its spatial scale at a topographically organized binocular
matching interface, this restriction is automatic.

If this matching constraint is satisfied, then a pooled
binocular edge is formed that is centered between the loci
of the monocular edges (Figure 17{c]). See Ellias and
Grossberg (1975, Figure 25) for an example of this shift
phenomenon. The shift in position of a pooled binocular
edge also has no analog in the Marr and Poggio (1979)
theory. I suggest that this binocularly-driven shift is the
basis for allelotropia (Section 10).
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If the two distal edges fall outside their respective on-
centers, but within their off-surrounds, then they will
annihilate each other if they enjoy identical parameters,
or one will suppress the other by contrast enhancement if
it has a sufficient energetic advantage. This unstable
competition will be used to suggest an explanation of
binocular rivalry in Section 44.

Finally, the two edges might fall entirely outside each
other’s receptive fields. Then each can be registered at
the binocular cells, albeit with less intensity than a pooled
binocular edge, due to equations (2) and (4). A double
image can then occur. I consider the dependence of
intensity on matching to be the basis for binocular bright-
ness summation (Section 13).

The net effect of the above operations is to generate two
amplified pooled binocular edges at the boundaries of an
ambiguous region if the spatial scale of the network can
match the boundary disparities of the region. Networks
which cannot make this match are energetically attenu-
ated. Having used disparity (and thus depth) information
to select suitable scales and to amplify the informative
data within these scales, we must face the filling-in
dilemma posed by Proposition III. How do the binocular
cells know how to fill-in between the pooled binocular
edges to recover a binocular representation of the entire
pattern? Where do these cells get the input energy to
spread the FIRE? In other words, having used noise
suppression to achieve selective binocular matching, how
do we bypass noise suppression to recover the form of the
object?

If we restrict ourselves to the minimal solution of this
problem, then one answer is strongly suggested. Signals
from the pooled binocular edges are topographically fed
back to the processing stage at which the rectangular
input is registered. This is the stage just before the
feedforward competitive step that extracts the monocular
edges (Figure 18). Several important conclusions follow
immediately from this suggestion:

U
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Figure 18. Monocular processing of patterns through feedfor-
ward competitive networks is followed by binocular matching of
the two transformed monocular patterns. The pooled binocular
edges are then fed back to both monocular representations at a
processing stage where they can feed off monocular activity to
start a FIRE.




1) The network becomes a feedback competitive net-
work in which binocular matching modulates the pattern-
ing of monocular representations.

2) If filling-in can occur, a functional scale is defined
within this feedback competitive network. A larger dis-
parity between monocular patterns resonates best with a
larger structural scale, which generates a larger func-
icslionzlll1 scale. Thus perceived length depends on perceived

epth.

3) The activity pattern across the functional scale is
constrained by the network’s normalization property.
Thus perceived depth influences perceived brightness,
notably the lightnesses of objects which seem to lie at the
same depth.

In short, if we can overcome the filling-in dilemma at all
within feedback competitive shunting networks, then
known dependencies between perceived depth, length,
form, and lightness begin to emerge as natural conse-
quences. I know of no other theoretical approach in which
this is true.

It remains to indicate how the FIRE can spread despite
the action of the noise suppression inequalities (26). The
main problem to avoid is summarized in Figure 19.
Figure 19(a) depicts a pooled binocular edge. When this
edge adds onto the rectangular pattern, we find Figure
19(b). Here there is a hump on the rectangle. If this
pattern is then fed through the feedforward competitive
network, a pattern such as that in Figure 19(c) is pro-
duced. In other words, the FIRE is quenched. This is
because the noise suppression property of feedforward
competition drives all activities outside the hump to
subthreshold values before the positive feedback loops in
the total network can enhance any of these activities.

I'have exposed the reader to this difficulty to emphasize
a crucial property of pooled binocular edges. If C > 0 in
(27), then an inhibitory trough surrounds the edge (Fig-
ure 19[d]). (If C is too small to yield a significant trough,
then the pooled edge must be passed through another
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Figure19. The FIRE is quenched in (a)-(c) because there exists
no nonuniform region off the pooled binocular edge which can
be amplified by the feedback exchange. In (d)-(f), the inhibitory
troughs of the edges enables the FIRE to propagate.
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stage of feedforward competition.) When the edge in
Figure 19(d) is added to the rectangular input by a
competitive interaction, the pattern in Figure 19(¢) is
generated. The region off the hump is no longer uniform.
The uniform region is separated from the hump by a
trough whose width is commensurate with the inhibitory
scale E(j). When this pattern is passed through the feed-
forward competition, Figure 19(f) is generated. The non-
uniform region has been contrast-enhanced into a second
hump, whereas the remaining uniform region has been
annihilated by noise suppression. Now the pattern is fed
back to the rectangular pattern stage and the cycle re-
peats itself. A third hump is thereby generated, and the
FIRE rapidly spreads, or “develops,” across the entire
rectangular region at a rate commensurate with the time
it takes to feed a signal through the feedback loop. Since
the cells which are excited by the rectangle are already
processing the input pattern when the FIgE begins, it can
now spread very quickly. '

Some further remarks need to be made to clarify how
the edge in Figure 19(d) adds to the rectangular input
pattern. The inhibited regions in the edge can generate
signals only if they excite off-cells whose signals have a net
inhibitory effect on the rectangle. This option is not
acceptable because mismatched patterns at the binocular
matching cells would then elicit FIREs via off-cell signal-
ing. Rather, the edge activities in Figure 19(d) are rec-
tified when they generate output signals. These signals
are distributed by a competitive (on-center off-surround)
anatomy whose net effect is to add a signal pattern of the
shape in Figure 19(d) to the rectangular input pattern. In
other words, if all signaling stages of Figure 18 are chosen
to be competitive to overcome the noise-saturation di-
lemma (Section 21), then the desired pattern transforma-
tions are achieved. This hypothesis does not necessarily
imply that the pathways between the processing stages
are both excitatory and inhibitory. Purely excitatory path-
ways can activate each level’s internal on-center off-
surround interneurons to achieve the desired effect.
From this perspective, one can see that the two monocu-
lar edge-extraction stages and the binocular matching
stage at the top of Figure 18 can all be lumped into a single
binocular edge matching stage. If this is done, then the
mechanism for generating FIREs seems elementary in-
deed. If competitive signaling is used to binocularly
match monocular representation and to feed the results
back to the monocular representations, then a filling-in
reaction will spontaneously occur within the matched
scales.

40. Figure-ground separation by filling-in barriers. Now
that we have seen how a FIRE can spread, it remains to say
how it can be prevented from inappropriately covering
the entire visual field.. A case in point is the Julesz (1971)
5% solution of dots on a white background in the stereo-
gram of Section 9. How do the different binocular dis-
parities of the dots in the “figure” and “ground” regions
impart distinct depths to the white backgrounds of these
two regions? This is an issue because the same ambiguous
white background fills both regions. '

I suggest that the boundary disparities of the “figure”
dots can form pooled binocular edges in a spatial scale
different from the one that best pools binocular edges in
the “ground” scale. At the binocular cells of the “ground”
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scale, mismatch of the monocular edges of the “figure”
can produce an inhibitory trough whose breadth is com-
mensurate with two inhibitory structural wavelengths.
The spreading FIRE cannot cross a filling-in barrier (F18)
any more than a forest fire can across a sufficiently broad
trench.

Thus, within a scale whose pooled binocular edges can
feed off the ambiguous background activity, FIREs can
spread in all directions until they run into FiBs. This
mechanism does not imply that a FIRE can rush through
all spaces between adjacent FiBs, because the functional
scale is a coherent dynamic entity that will collapse if the
spaces between FiBs, relative to the functional scale, are
sufficiently small. Thus a random placement of dots may,
other things being equal, form better FiBs than a deter-
ministic placement which permits a coherent flow of FIRE
to run between rows of FiBs. A rigorous study of the
interaction between (passive) texture statistics and (co-
herent) functional scaling may shed further light on the
discriminability of figure-ground separation. The impor-
tant pioneering studies of Julesz (1978) and his colleagues
on texture statistics have thus far been restricted to
conclusions which can be drawn from (passive) correla-
tional estimates.

41. The principle of scale equivalence and the curvature
of activity-scale correlations: Fechner’s paradox, equi-
distance tendency, and depth without disparity. My de-
scription of how a FIRE can be spread and blocked sheds
light on several types of data from a unified perspective.
Suppose that, as in Section 36, an ambiguous monocular
view of an object excites all structural scales due to self-
matching of the monocular data at each scale’s binocular
cells. Suppose that a binocular view of an object can
selectively excite some structural scales more intensely
than others due to the relationship between matching and
activity amplification {Section 22). These assumptions are
compatible with data concerning the simultaneous activa-
tion of several spatial scales at each position in the visual
field during binocular viewing (Graham, Robson &
Nachmias 1978; Robson & Graham 1981), with data on
binocular brightness summation (Blake, Sloane & Fox
1981; Cogan, Silverman & Sekuler 1982), and with data
concerning the simultaneous visibility of rivalrous pat-
terns and a depth percept (Kaufman 1974; Kulikowski
1978). The suggestion that a depth percept can be gener-
ated by a selective amplification of activity in some scales
above others also allows us to understand: (1) why a
monocular view does not lose its filling-in capability or
other resonant properties (since it can excite some struc-
tural scales via self-matches); (2) why a monocular view
need not have greater visual sensitivity than a binocular
view, despite the possibility of activating several scales
due to self-matches (since a binocular view may excite its
scales more selectively and with greater intensity due to
binocular brightness summation); (3) why a monocular
view may look brighter than a binocular view (Fechner’s
paradox) (since although the matched scales during a
binocular view are amplified, so that activity lost by
binocular mismatch in some scales is partially gained by
binocular summation in other scales, the monocular view
may excite more scales by self-matches); and (4) yet why a
monocular view may have a more ambiguous depth than a
binocular view (since a given scene may fail to selectively
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amplify some scales more than others due to its lack of
spatial gradients [Gibson, 1950]).

The selective-amplification that enhances a depth per-
cept is sometimes due to the selectivity of disparity
matches, but it need not be. The experiment of Kaufman,
Bacon, and Barroso (1973) shows that depth can be
altered, even when no absolute disparities exist, by
varying the relative brightnesses of monocular pattern
features. The present framework interprets this result as
an external manipulation of the energies that cause selec-
tive amplification of certain scales above others, and as
one that does so in such a way that the preferred scales are
altered as the experimental inputs are varied.

The same ideas indicate how a combination of monocu-
lar motion cues and/or motion-dependent input energy
changes can enhance a depth percept. Motions that
selectively enhance delayed self-matches in certain scales
above others can contribute to a depth percept. All of
these remarks need quantitative implementation via a
major program of computer simulations. The simulations
that have already been completed do, however, support
the mathematical, numerical, and qualitative results on
which the theory is founded (Cohen & Grossberg 1983a).
Although this program is not yet complete, the qualita-
tive concepts indicate how to proceed and how various
data may be explained in a unified fashion that are not
discussed in a unified way by competing theories.

The idea that depth can be controlled by the energy
balance across several active scales overcomes a problem
in Sperling-Dev models. Due to.the competition be-
tween depth planes in these models, only one depth
plane at a time can be active in each spatial location.
However, there can exist only finitely many depth
planes, both on general grounds due to the finite dimen-
sion of neural networks, and on specific grounds due to
inferences from spatial frequency data wherein only a few
scales are needed to interpret the data (Graham 1981;
Wilson & Bergen 1979). Why, then, do we not perceive
just three or four different depths, one depth correspond-
ing to activity in each depth plane? Why does the depth
not seem to jump discretely from scale to scale as an
object approaches us? Depth seems to change continu-
ously as an object approaches us despite the existence of
only a few structural scales. The idea that the energy
balance across functional scales changes continuously as
the object approaches, and thereby continuously alters
the depth percept, provides an intuitively appealing
answer. This idea also mechanistically explicates the
popular thesis that the workings of spatial scales may be
analogous to the workings of color vision, wherein the
pattern of activity across a few cone receptor types forms
the substrate for color percepts.

The present framework suggests an explanation of
Gogel's equidistance tendency (Section 4). Suppose thata
monocularly viewed object of ambiguous depth is viewed
which excites most, or all, of its structural scales through
self-matches. Let a nearby binocularly viewed object
selectively amplify the scales with which it forms the best
pooled binocular edges. Let a FIRE spread with the
greatest vigor through these amplified scales. When the
FIRE reaches the monocular self-matches within its scale,
it can amplify the activity of these self-matches, much as
occurs during binocular brightness summation. This shift
in the energy balance across the scales which represent




the monocularly viewed object impart it with depthful-
ness. This conclusion follows — and this is the crucial point
- even though no new disparity information is produced
within the self-matches by the FIRE. Only an energy shift
occurs. Thus, although disparities may be sufficient to
produce a depth percept, they may not be necessary to
produce one.

I suggest instead that suitable correlations between
activity and scaling across the network loci that represent
different spatial positions produce a depth percept.
Depth is perceived whenever the resonant activity dis-
tribution is “curved” among several structural scales as
representational space is traversed, no matter how -
monocularly or binocularly - the activity distribution
achieves its curvature. This conclusion may be restated as
adeceptively simple proposition: An object in the outside
world is perceived to be curved if it induces a curvature in
the abstract representational space of activity-scale
correlations.

Such a conclusion seems to smack of naive realism, but
it is saved from the perils of naive realism by the highly
nonlinear and nonlocal nature of the shunting network
representation of input patterns. The conclusion does,
however, provide a scientific rationale for the tempta-
tions of naive realism, and points the way to a form of
neorealism if one entertains the quantum-mechanical
proposition that the curvature of an object in the outside
world is also due to curved activity-scaling correlations in
an abstract representational space. Such considerations
lead beyond the scope of this article.

The view that all external operations that cause equiv-
alent activity-scaling correlations generate equivalent
depth percepts liberates our thinking from the current
addiction to disparity computations and suggests how
monocular gradients, monocular motion cues, and
learned cognitive feedback signals can all contribute to a
depth percept. Because of the importance of this concep-
tion to my theory, I give it a name: the principle of scale
equivalence.

42. Reflectance rivalry and spatial frequency detection.
The same ideas suggest an explanation of the Wallach and
Adams (1954) data on rivalry between two central figures
of different lightness (Section 13). Suppose that each
monocular pattern generates a different functional scale
when it is viewed monocularly (Section 38). Suppose,
moreover, that the monocular input intensities are
chosen so that the functional scales are spatially out of
phase with each other. Then when a different input
pattern is presented to each eye, the feedback exchange
between monocular and binocular cells, being out of
phase, can become rivalrous.

This explanation leads to a fascinating experimental
possibility: Given an input figure of fixed size, test a series
of lightness differences to the two eyes. Can one find
ranges of lightness where the functional scales are
rivalrous followed by ranges of lightness in which the
functional scales can match? If this is possible, then it is
probably due to the fact that only certain peaks in the two
scales match binocularly. The extra peaks-self-match.
Should this happen, it may be possible to detect small
spatial periodicities in lightness such that binocular
matches are brighter than self-matches. I am not certain
that these differences will be visible, because the filling-
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in process from the locations of amplified binocular
matches across the regions of monocular self-matches
may totally obscure the lightness differences of the two
types of matches. Such a filling-in process may be in-
terpreted as a type of brightness summation.

Another summation phenomenon which may reflect
the activation of a functional scale is the decrease in
threshold contrast needed to detect an extended grating
pattern as the number of cycles in the pattern is in-
creased. Robson and Graham (1981) explain this phe-
nomenon quantitatively “by assuming that an extended
grating pattern will be detected if any of the independent-
ly perturbed detectors on whose receptive field the
stimulus falls signals its presence” (p. 409). What is
perplexing about this phenomenon is that “some kind of
summation process takes place over at least something
approaching 64 cycles of our patterns . . . it s stretching
credulity rather far to suppose that the visual system
contains detectors with receptive fields having as many as
64 pairs of excitatory and inhibitory regions” (p. 413). This
phenomenon seems less paradoxical if we suppose that a
single suprathreshold peak within a structural scale can
drive contiguous subthreshold peaks within that scale to
suprathreshold values via a disinhibitory action. Sup-
pose, moreover, that increasing the number of cycles
increases the expected number of suprathreshold peaks
that will occur at a fixed contrast. Then a summation effect
across 64 structural wavelengths is not paradoxical if it is
viewed as a filling-in reaction from suprathreshold peaks
to subthreshold peaks, much like the filling-in reaction
that may occur between binocular matches and self-
matches in the Wallach and Adams (1954) paradigm.

Due to the large number of phenomena which become
intuitively more plausible using this type of filling-in
idea, I believe that quantitative studies of how to vary
input brightnesses to change the functional scales gener-
ated by complex visual stimuli deserve more experimen-
tal and theoretical study. One challenge is to find new
ways to selectively increase or decrease the activity with-
in one structural scale without inadvertently increasing or
decreasing the activities within other active scales as well.
In meeting this challenge, possible effects of brightness
changes on perceived length are no less interesting than
their effects on perceived depth. For example, suppose
that an increase in input contrast decreases the functional
scale within a prescribed structural scale. Even if the
individual peaks in the several functional scales retain
approximately the same height, a lightness difference
may occur due to the increased density of peaks within a
unit cellular region. This lightness difference will alter
length scaling in the limited sense that it can alter the ease
with which matching can occur between monocular sig-
nals at their binocular interface, as I have just argued. It
remains quite obscure, however, how such a functional
length change in a network’s perceptual representation is
related to the genesis of motor actions, or whether motor
commands are synthesized from more global properties
of the regions in which activity is concentrated across all
scales. To the extent that motor consequences help to
shape the synthesis of perceptual invariants, no more
than a qualitative appreciation of how functional length
changes can influence effects like Emmert’s law may be
possible until quantitative sensory-motor models are de-

fined and simulated.

THE BEHAVIORAL AND-BRAIN SCIENCES {1983) 4 653




Grossberg: Quantized geometry of visual space

43. Resonance in a feedback dipole field: Binocular devel-
opment and figure-ground completion. My discussions of
how a FIRE spreads (Section 39) and of figure-ground
completion (Section 40) tacitly used properties that re-
quire another design principle to be realized. This design
suggests how visual networks are organized into dipole
fields consisting of subfields of on-cells and subfields of
off-cells with the on-cells joined together and the off-cells
joined together by competitive interactions. Because this
concept has been extensively discussed elsewhere
(Grossberg 1980b; 1982c; 1982d), I will only sketch the
properties which I need here.

I will start with a disclaimer to emphasize that I have a
very specific concept in mind. My dipoles are not the
classical dipoles which Julesz (1971b) used to build an
analog model of stereopsis. My dipoles are on-cell off-cell
pairs such that a sudden offset of a previously sustained
input to the on-cell can elicit a transient antagonistic
rebound, or off-reaction, in the activity of the off-cell.
Similarly, a sudden and equal arousal increment to both
the on-cell and the off-cell can elicit a transient antagonis-
tic rebound in off-cell activity if the arousal increment
occurs while the on-cell is active (Figure 20). Thus my
notion of dipole describes how STM can be rapidly reset,
either by temporal fluctuations in specific visual cues or
by unexpected events, not necessarily visual at all, which
are capable of triggering an arousal increment at visually
responsive cells. In my theory, such an unexpected event

AN

Figure 20. An antagonistic rebound, or off-reaction, in a gated
dipole can be caused either by rapid offset of a phasic input or
rapid onset of a nonspecific arousal input. As in Figure 21,
function J(f) represents a phasic input, function I(t) represents a
nonspecific arousal input, function x4(f) represents the poten-
tial, or activity, of the on-channel's final stage, and function x4(f)
represents the potential, or activity, of the off-channel’s final
stage. (From Grossberg 1982c.)
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Figure 21. In the simplest example of a gated dipole, phasic
input J and arousal input I add in the on-channel to activate the
potential «;. The arousal input alone activates x,. Signals 8, =
flx;) and 8, = fix,) such that S, > S, are thereby generated. In
the square synapses, transmitters 2z, and z, slowly accumulate to
a target level. Transmitter is also released at a rate proportional
to 5,z in the on-channel and S,z, in the off-channel. This is the
transmitter gating step. These signals perturb the potentials x,
and x,, which thereupon compete to elicit the net on-reaction x5
and off-reaction xg. See Grossberg (1980b; 1982d) for a mathe-
matical analysis of gated dipole properties. (From Grossberg
1982¢.)

is hypothesized to elicit the mismatch negativity compo-
nent of the N200 evoked potential, and such an antagonis-
tic rebound, or STM reset, is hypothesized to elicit the
P300 evoked potential. These reactions to specific and
nonspecific inputs are suggested to be mediated by slowly
varying transmitter substances — notably catecholamines
like fiorepinephrine — which multiplicatively gate, and
thereby habituate to, input signals on their way to the on-
cells and the off-cells. The outputs of these cells there-
upon compete before eliciting net on-reactions and off-
reactions, respectively, from the dipole (Figure 21).

In a dipole field, the on-cells are hypothesized ta
interact via a shunting on-center off-surround network.
The off-cells are also hypothesized to interact via a shunt-
ing on-center off-surround network. These shunting net-
works normalize and tune the STM activity within the on-
subfield and the off-subfield of the total dipole field
network. The dipole interactions between on-cells and
off-cells enable an on-cell onset to cause a complementary
off-cell suppression, and an on-cell offset to cause a
complementary off-cell enhancement. This duality of
reactions makes sense of structural neural arrangements
such as on-center off-surround networks juxtaposed
against off-center on-surround networks and uses this
unified processing framework to qualitatively explain
visual phenomena such as positive and negative after-
effects, the McCollough effect, spatial frequency adapta-
tion, monocular rivalry, and Gestalt switching between
ambiguous figures (Grossberg 1980b).

The new features that justify mentioning dipole fields
here are that the on-fields and off-fields can interact to
generate functional scales, and that the signals which




regulate the balance of activity between on-cells and off-
cells can habituate as the transmitter substances that gate
these signals are progressively depleted. These facts will
now be used to clarify how figure-ground completion and
binocular rivalry might occur. I wish to emphasize, how-
ever, that dipole fields were not invented to explain such
vispal effects. Rather, they were invented to explain how
internal representations which self-organize (e.g., devel-
op, learn) as a result of experience can be stabilized
against the erosive effects of later environmental fluctua-
tions. My adaptive resonance theory suggests how learn-
ing can occur in response to resonant activity patterns,
yet is prevented from occurring when rapid STM reset
and memory search routines are triggered by unexpected
events. In the present instance, if LTM traces are placed
in the feedforward and feedback pathways that subserve
binocular resonances, then the theory suggests that bin-
ocular development will occur only in response to reso-
nant data patterns, notably to objects to which attention is
paid (Grossberg 1976b; 1978e; 1980b; Singer 1982). Be-
cause the mechanistic substrates needed for the stable
self-organization of perceptual and cognitive codes are
not peculiar to visual data, one can immediately under-
stand why so many visual effects have analogs in other
modalities.

An instructive instance of figure-ground completion is
Beck’s phantom letter E (Section 6). To fully explain this
percept, one needs a good model of competition between
orientation sensitive dipole fields; in particular, a good
physiological model of cortical hypercolumn organization
(Hubel & Wiesel 1977). Some observations can be made
about the relevance of dipole field organization in the
absence of a complete model.

Suppose that the regularly spaced vertical dark lines of
the “ground” are sufficiently dense to create a statistically
smoothed pattern when they are preprocessed by the
nonlinear cross-correlators of some structural scales
(Glass & Switkes 1976). When such a smoothed pattern
undergoes noise suppression within a structural scale,
it generates statistical edges at the boundary of the
“ground” region due to the sudden change in input
statistics at this boundary. These edges of the (black) off-
field generate complementary edges of the (white) on-
field due to dipole inhibition within this structural scale.
These complementary edges can use the ambiguous (pre-
processed) white as an energy source to generate a FIRE
that fills in the interior of the “ground.” This FIRE defines
the ground as a coherent entity. The “ground” does not
penetrate the “figure” because FiBs are generated by the
competition which exists between orientation detectors
of sufficiently different orientation.

A “figure” percept can arise in this situation as the
complement of the coherently filled-in “ground,” which
creates a large shift in activity-scale correlations at the
representational loci corresponding to the “ground” re-
gion. In order for the “figure” to achieve a unitary
existence other than as the complement of the “ground,”
a mechanism must operate on a broader structural scale
than that of the variously oriented lines that fill the figure.
For example, suppose that, due to the greater spatial
extent of vertical ground lines than nonvertical figure

lines, the smoothed vertical edges can almost completely

inhibit all smoothed nonvertical edges near the figure-
ground boundary. Then the “figure” can be completed as
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a disinhibitory filling-in reaction among all the smoothed
nonvertical orientations of this structural scale. Thus,
according to this view, “figure” and “ground” fill-in due
to disinhibitory reactions among different subsets of cells.
A lightness difference may be produced between such a
“figure” and a “ground” (Dodwell 1975).

A similar argument sharpens the description of how
figure-ground completion occurs during viewing of the
Julesz 5% stereogram (Section 40). In this situation, black
dots that can be fused by one structural scale may none-
theless form FiBs in other structural scales. A FIRE is
triggered in the structural scales with fused black dots by
the disinhibitory edges which flank the dots in the scale’s
white off-field. This FIRE propagates until it reaches r1Bs
that are generated by the nonfused dots corresponding to
an input region of different disparity. The same thing
happens in all structural scales which can fuse some of the
dots. The figure-ground percept is a statistical property of
all the FIrEs that occur across scales.

44. Binocular rivairy. Binocular rivalry can occur in a
feedback dipole field. The dynamics of a dipole field also
explain why sustained monocular viewing of a scene does
not routinely cause a perceived waxing and waning of the
scene at the frequency of binocular rivalry, but may
nonetheless cause monocular rivalry in response to suita-
bly constructed pictures at a rate that depends on the
juxtaposition of features in the picture (Grossberg 1980b,
Section 12). I will here focus on how the slowly habituat-
ing transmitter gates in the dipole field could cause
binocular rivalry without necessarily causing monocular
waxing and waning.

Let a pair of smoothed monocular edges mismatch at
the binocular matching cells. Also suppose that one edge
momentarily enjoys a sufficient energetic advantage over
the other to be amplified by contrast enhancement as the
other is completely suppressed. This suppression can be
mediated by the competition between the off-cells that
correspond to the rivalrous edges. In particular, the on-
cells of the enhanced edge inhibit their off-cells via dipole
competition. Due to the tonic activation of off-cells, the
off-cells of the other edge are disinhibited via the shunt-
ing competition that normalizes and tunes the off-field.
The on-cells of these disinhibited off-cells are thereupon
inhibited via dipole competition.

As this is going on, the winning edge at the binocular
matching cells elicits the feedback signals that ignite
whatever FIREs can be supported by the monocular data.
This resonant activity gradually depletes the transmitters
which gate the resonating pathways. As the habituation of
transmitter progresses, the net sizes of the gated signals
decrease.

The inhibited monocular representation does not suffer
this disadvantage because its signals, having been sup-
pressed, do not habituate the transmitter gates in their
pathways. Finally, a time may be reached when the
winning monocular representation loses its competitive
advantage due to progressive habituation of its transmit-
ter gates. As soon as the binocular competition favors the
other monocular representation, contrast enhancement
bootstraps it into a winning position and a rivalrous cycle
is initiated.

A monocularly viewed scene would not inevitably wax
and wane, for the following reason. Other things being

THE BEHAVIORAL AND BRAIN SCIENCES (1983) 4 655




Grossberg: Quantized geometry of visual space

equal, its transmitter gates habituate to a steady level
such that the habituated gated signals are an increasing
function of their input sizes (Grossberg 1968; 1981;
1982e). Rivalry occurs only when competitive feedback
signaling, by rapidly suppressing some populations but
not others, sets the stage for the competitive balance to
slowly reverse as the active pathways that sustain the
suppression habituate faster than the inactive pathways.
The same mechanism can cause a percept of monocular
rivalry to occur when the monocular input pattern con-
tains a suitable spatial juxtaposition of mutually competi-
tive features (Rauschecker, Campbell & Atkinson 1973).

45. Concluding remarks about filling-in and quantization.
The quantized dynamic geometry of FIRE provides a
mechanistic framework in which the experimental inter-
dependence of many visual properties may be discussed
in a unified fashion. Of course, a great deal of theoretical
work remains to be done (even assuming all the concepts
are correct), not only in working out the physiological
designs in which these dynamic transactions take place
but also in subjecting the numerical and mathematical
properties of these designs to a confrontation with quan-
titative data. Also, the discussion of disinhibitory filling-
in needs to be complemented by a discussion of how
hierarchical feedback interactions between the feedfor-
ward adaptive filters (features) and feedback adaptive
templates (expectancies) that define and stabilize a devel-
oping code can generate pattern completion effects,
which are another form of filling-in (Dodwell 1975;
Grossberg 1978e, Sections 21-22; 1980b, Section 17;
Lanze, Weisstein & Harris 1982). Despite the in-
completeness of this program, the very existence of such a
quantization scheme suggests an answer to some funda-
mental questions. s

Many scientists have, for example, realized that since
the brain is a universal measurement device acting on the
quantum level, its dynamics should in some sense be
quantized. This article suggests a new sense in which this
is true by explicating some quantized properties of bin-
ocular resonances. One can press this question further by
asking why binocular resonances are nonlinear phe-
nomena that do not take the form of classical linear
quantum theory. I have elsewhere argued that this is
because of the crucial role which resonance plays in
stabilizing the brain’s self-organization (Grossberg 1976;
1978e; 1980b). The traditional quantum theory is not
derived from principles of self-organization, despite the
fact that the evolution of physical matter is as much a
fundamental problem of self-organization on the quan-
tum level as are the problems of brain development,
perception, and learning. It will be interesting to see, as
the years go by, whether traditional quantum theory
looks more like an adaptive resonance theory as it too
incorporates self-organizing principles into its computa-
tional structure.

APPENDIX

The following system of equations defines a binocular inter-
action capable of supporting a filling-in resonant exchange
(Cohen & Grossberg 1983a).
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Monocular representations

d
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=(x + D) kgl Lol + z]+Ey (A1)

d
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—(x;g + D) kzl Lale + z]*E, (A2

where [£]* = max(¢,0).

Binocular matching

21 Fulfing) + fxg)]

Vi = - (A3)
A+ é} Cuulfixgy) + )]
and
Gy =Cy + Ey (A5)
Binocular-to-monocular feedback
S Pt
k=1
z, = —————— (46)
A+ + 3 Graty)
Ft = B*Cf, — D*E}, (A7)
and
Gt = Cf, + Ef, (A8)

Equation (A1) describes the response of the activities x,,, i = 1,
2,. . ., n, inthe left monocular representation. Eachx, obeysa
shunting equation in which both the excitatory interaction
coefficients Cy, and the inhibitory interaction coefficients E,, are
Gaussian functions of the distance between v, and v,. Two types
of simulations have been studied:

Additive inputs.—All I,; are chosen equal. The terms J,,
register the input pattern and summate with the binocular-to-
monocular feedback functions z,. _

Shunting inputs.—All J;, are chosen equal. The terms I,
register the input pattern. The binocular-to-monocular feed-
back functions z; modulate the system’s sensitivity to the inputs
Iz in the form of gain control signals.

Equation (A2) for the activities x5, { = 1, 2, . . ., n, in the
right monocular representation has a similar interpretation.
Note that the same binocular-to-monocular feedback functions
z, are fed back to the left and right monocular representations.

The binocular matching stage (A3) obeys an algebraic equa-
tion rather than a differential equation due to the simplifying
assumption that the differential equation for the matching ac-
tivities y; reacts quickly to the monocular signals flx,,) and
fixrg). Consequently, y, is always in an approximate equilibrium
with respect to its input signals. This equilibrium equation says
that the monocular inputs flx;;) and flx, 5} are added before
being matched by the shunting interaction. The signal functions
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fw) are chosen to be sigmoid functions of activity w. The
excitatory interaction coefficients C;, and inhibitory interaction
coefficients E;; are chosen to be Gaussian functions of distance.
The spatial decay rates of Cy,, C,,, and C}, are chosen equal. The
spatial decay rates of E;,, E,,, and E}, are chosen equal. The on-
center is chosen narrower than the off-surround.

After the monocular signal patterns (flx;,), fix,,), . . ., fix,,))
and (fix,p), fixeg), . . . , fx,p)) are matcged athZhe binoct?llgr
matching stage, the binocular activities y, are rectified by the
output signal function g(y,), which is typically chosen to be a
sigmoid function of y;. Then these rectified output signals are
distributed back to the monocular representations via competi-
tive signals (A6) with the same spatial bandwidths as are used
throughout the computation.

Numerical studies have been undertaken with the following
types of results (Cohen & Grossberg 1983a). An “edgeless blob,”
or Gaussianly smoothed rectangular input, does not su-
praliminally excite the network at any input intensity. By
contrast, when a rectangle is added to the blob input, the
network generates a FIRE that globally fills-in the “figure”
defined by the rectangle and uses the rectangle’s edges to
generate a globally structured “ground” (Figure 22). Despite
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Figure 22. Figure-ground filling-in due to a rectangle on an
“edgeless blob”: By itself, the blob elicits no suprathreshold
reaction in the binocular matching field at any input intensity.
By itself, in a network without feedback from the matching field,
the rectangle elicits only a pair of boundary edges at any input
intensity. Given a fixed ratio of rectangle to blob intensity in the
full network, as the background input intensity is parametrically
increased, the network first elicits subthreshold reactions to the
edges of the rectangle. Once the quenching threshold is exceed-
ed, a full blown global resonance is triggered. Then the rec-
tangle fills-in an intensity estimate between its edges (the
“figure”), and structures the blob so that it fills-in an intensity
estimate across the entire blob (the “ground”). The two inten-
sity estimates reflect the ratio of rectangle-to-blob input inten-
sities. (From Cohen & Grossberg 1982.)

the fact that the network is totally insensitive to the blob’s
intensity in the absence of the rectangle, the rectangle’s pres-
ence in the blob sensitizes the network to the ratio of rectangle-
plus-blob to blob intensities, and globally fills-in these figure
and ground lightness estimates. Parametric input series have
been done with rectangles on rectangles, rectangles on blobs,
triangles on rectangles, and so forth to study how the network
estimates and globally fills-in lightness estimates that are sensi-
tive to the figure-to-ground intensity ratio.

Monocular patterns that are mismatched relative to a pre-
scribed structural scale do not activate a FIRE at input intensities
that are suprathreshold for matched monocular patterns. Thus,
different structural scales selectively resonate to the patterns
that they can match. Different structural scales also generate
different functional scales, other things being equal.

Matched monocular patterns such as those described above
have been shown to elicit only subliminal feedforward edge
reactions until their intensities exceed the network’s quenching
threshold, whereupon a full-blown global resonance is initiated
which reflects disparity, length, and lightness data in the man-
ner previously described.
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“Filling-in"’ between edges

Lawrence E. Arend, Jr.
Eye Research Institute of Retina Foundation, Boston, Mass. 02114

I would like to mention several “filling-in” phenomena, some of
which seem to me to be particularly problematic for the reso-
nance explanations of Grossberg’s model, and some problematic
for other filling-in models as well. Since I have attempted no
simulations with this model I present them as potential difficul-
ties rather than contradictions.

The first issue concerns the smoothing of filled-in areas. In
Grossberg’s target article little attention is devoted to the fact
that no geriodicity of brightness is perceived in homogeneous
image regions. Such a fundamental observation should not be
minimized, even in the developmental stages of a model with
other, more interesting properties. If the smoothness is to be
attributed to summation among the responses at different func-
tional scales, there must evidently be many (and even more
structural scales since pattern/structure interaction limits the
number of functional scales). Summation of outputs of such a
dense population of structural scales would tend to diminish the
perceptual impact of the quantum properties of the model.

The problem of limiting the spread of effects from an edge is
more complicated than is evident from the simple Craik-
O’Brien-Cornsweet edge alone. The observation that the scal-
lop luminance distribution and true luminance edge both look
like the edge rather than the scallop takes on additional impor-
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tance in light of the global nature of the filling-in. In fact, the
term “filling-in” is itself something of a misnomer when applied
to the Craik-O’Brien-Cornsweet illusion. Extensions of the
original observations show that something resembling indefi-
nite integration over differential information from rnultiple
edges is involved (Arend 1973; Arend, Buehler & Lockhead
1971). K'several Cornsweet scallops of the same handedness are
present (Figure 1[b]) the effects of one edge are not terminated
by a second edge, but rather extend undiminished to the areas
beyond, summing with the effects of succeeding edges. Analo-
gous effects in arrays of colored papers under nonuniform
illumination (Land & McCann 1971) extend over very broad
regions. In these cases filling-in due to resonant-exchange
would have to occur aver a number of functional scales and over
long distances, without creating visible periodic nonunifor-
mities within subregions of the pattern.

A further problem is a challenge not only to the resonant-
exchange model, but to all current filling-in models: The domain
affected by an edge is limited. The resonant-exchange model
uses binocular mechanisms to limit interactions to areas in the
same depth planes. There are, however, similar limits to the
domain of interactions even within the same depth plane. When
the disk containing the scallops of Figure 1(b) is placed beside a
second disk on a black background, the scallops do not alter the
appearance of grays on the second disk, even though it lies in the
same depth plane physically and perceptually. The outer ring of
the scalloped disk appears darker than a physically separated
patch of the same luminance. If the integration extended over
the intervening disk borders, the two equal-luminance regions
should have the same brightness.

A similar domain-of-integration effect occurs in Land’s color
invariance demonstration (Land 1977). Two identical colored
paper arrays were illuminated by separate light sources, the
source for each consisting of three narrowband lights. Land
demonstrated that within each array the papers” hues depend on
the relationships among all the chromaticities in the array rather
than local chromaticities. By separately adjusting the two illumi-
nants’ three components, Land matched the chromaticity of one
‘array’s “green” paper to that of a “blue” paper in the second. In
spite of physical identity of the light reaching the eye from the

Luminance Brightness

Visual Angle

Figure 1 (Arend). Spatial luminance distributions (left) and
corresponding brightness distributions (right) along the radius
of a spinning disk. Each luminance distribution begins at 10 mL
at the extreme left. (From Arend, Buehler & Lockhead 1971.)
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two papers, they retained their white-illuminant hues within
the tolerances of color names, i.e., there was a normalization of
color within the array. In Land’s model the normalization occurs
in the process of integrating edge information along lines
through the array. As in the case of the two disks just described,
the integral must not extend over the edges intervening be-
tween the two arrays if the “green” and “blue” patches are to
look different. If the integrals over edges along a line between
the “green” and “blue” patches include the differences at the
edges of the two arrays, the two patches should have the same
hue rather than the reported “green” and “blue.”

1 know of no model (including Land’s and my own) capable in
its present form of explaining this limitation to subdomains of
integration. In the model presented by Grossberg the spread
process is stopped by well-defined processes. The model should
therefore be capable of generating psychophysically testable
predictions of stimulus conditions defining boundaries of per-
ceptual domains of integration.
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a property ot the subtractive lateral inhibition networks based
on the Hartline-Ratliff model from Limulus. Grossberg’s basic
model in his Equation 1 is almost exactly the differential of this
model. The adaptation characteristic has also been used in a
similar subtractive network adapted to mammalian conditions
(Bridgeman 1971).

As Grossberg notes, noise suppression is also characteristic of
additive networks under some conditions (Ratliff 1965), and has
been quantitatively analyzed (Bridgeman 1978). Grossberg is
right that contrast of pattern responses in linear additive models
does not change as a function of suprathreshold background
luminance, but contrast does change with luminance when
physiologically realistic boundary conditions are imposed on
activity levels in the additive model.

Grossberg notes that inhibitory networks will carry stimulus-
generated disturbances far beyond the anatomical spread of
individual inhibitory connections. This important characteristic
is also shared by additive models (Bridgeman 1971), and forms
one of the bases for rejecting a strict detector scheme in higher-
level sensory coding; if activity from a restrictea region is
recoded by inhibition over a wide region of a network, most of
that information is present in areas not directly affected by the
original input. In addition to the spatial spread, there is also a
temporal spread of information which has been simulated pa-
rametrically (Bridgeman 1971; 1978). Temporal spread of infor-
mation does not support comparisons with short term memory
because of the very short persistence of activity held in these
networks and because the bottom-up nature of the storage is
more comparable to iconic storage than to short term memory.

The relationship of lateral inhibitory models with spatial
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frequency analysis has also been noted previously (Bridgeman
1977); if each neuron in the network has the same lateral
inhibitory coefficients, the network will be tuned to be max-
imally sensitive to a single spatial frequency.

Other issues are broader than the generality of the mathe-
matical properties of inhibitory networks and deal with the
appropriateness of these and similar simulation programs. First,
the use of shunting inhibition rather than subtractive inhibition
is a physiological assumption which can be tested empirically.
The original model for shunting inhibition is an axo-axonal
synapse in the spinal cord; conventional postsynaptic inhibition,
which is subtractive, is more common in the cortex. A possible
source of shunting inhibition in cortex is the recent discovery of
the widespread distribution of neuropeptide transmitters.
These transmitters often act on target neurons not by changing
postsynaptic potentials directly, but by changing postsynaptic
sensitivity to other neurotransmitters. This biochemical scheme
complicates mathematical simulations because two separate
systems with different dynamics are involved.

One of the paradoxes of model building is that even if a model
is successful in simulating a number of psychological charac-
teristics in realistic ways, there is no guarantee that other
models might not do the same. One way to restrict the number
of possible models is to use our knowledge about the physiologi-
cal substrate of the networks to show that each parameter of the
network has a physiological concomitant. This homeomorphic
approach has been used in simulating additive networks (Ratliff
1965; Bridgeman 1971), and needs to be done more thoroughly
for the Grossberg alternative.

The most problematic aspect of all simple models applied to
complex phenomena, including my own, is the comparison
between network activity and organismic behavior or experi-
ence. This problem is illustrated with Grossberg’s efforts to
solve the “filling in” problem by literally having modulations of
network activity fill in areas to which the model’s elements are
insensitive. This effort assumes the need for a rather literal
isomorphism between the activity and the network and the
resulting perceptions. But filling in and related issues may be
pseudo-problems because a literal isomorphism is not required.
The only essential feature is a second-order isomorphism
(Shepard & Chipman 1970) where there is a one-to-one relation-
ship between network activity and experience. As applied to the
Grossberg simulations presented here, second-order isomor-
phism means that it is not necessary to fill a homogeneous area.
with network oscillations for it to “appear” filled in. The asym-
metry of the Laplacian edge might do the job equally well with
fewer added assumptions. Many of the problems of binocular
summation and rivalry might be handled in a similar way. As
long as no homunculus is looking at a realistic picture painted on
the inhibitory network, information can be represented in
nonliteralistic ways.

Finally, there is a question whether large-scale effects such as
those simulated here can be appropriately discussed at the level
of interactions between a relatively small number.of neuronsin a
single layer. I call this objection “Uttalism” in honor of Uttal’s
(1973) strenuous objections to these sorts of extrapolations. At
the beginning of Part II, for instance, Grossberg states the
problem as that of relating the psychological data to the mem-
brane equations of neurophysiology. This misses the point,
because one of the great powers of brain organization is that
algorithms at a higher level can become independent of the
membrane equations which must support them at alower level.
The now-commonplace analogy of the computer program inde-
pendent of the computer’s hardware applies here. Lower-level
models, of course, must be consistent with neurophysiology,
but by the time we get to correlates of experience involving
millions or billions of neurons interacting over hundreds of
milliseconds, the neurophysiological scale of analysis may be no
more useful than describing the pattern on an oriental rug by
specifying the color of one knot after another; when you are

finished, you still don’t know what the rug looks like. We know,
for instance, that many of the properties of short-term memory,
such as a variety of cognitive “chunking” effects, are inconsis-
tent with storage in a single-layer network. The network de-
scribed in Section 28 is too microscopic a level to support
plausible explanations of short-term memory. Again, account-
ing for the McCullough effect (Section 43) in a simple topo-
graphic model is difficult because the effect can last for weeks, to
be recalled only by the specific stimuli which first elicited it.
New information can come in without erasing the old.

Grossberg has made a major contribution to mathematical
modeling of sensory systems, but should not be expected to
answer all questions in a single stroke. David Marr’s (1982,
Chapter 1) point that algorithms are just as important as neu-
rophysiology on the one hand and psychophysics on the other
must eventually be integrated into models simulating cognitive
processes.

Functional and computational aspects of
perception %
Hans Buffart -

Department of Experimental Psychology, University of Nijmegen, 6500 HE
Nijmegen, The Netherlands

1. Methodology. Marr (1977) emphasizes the distinction be-
tween functional and computational theories. A functional theo-
ry is “an abstract formulation of what a system processes and
why.” A computational theory explains how the system is
constructed and why it works on the basis of the given “hard-
ware.” Grossberg’s paper represents a computational theory
about the functional behaviour of the visual system. However,
without a functional theory a computational theory eludes
falsification.

1.1. Modeling cognition in terms of networks. Which theoretical
principle determines which network is sensitive to cognitive
factors? Brightness- (van den Brink & Keemink 1976) and size-
perception (Rock 1977) may be influenced by interpretations,
but binocular rivalry is hardly influenced (Levelt 1968).

Which theoretical principle justifies an interpretation of a
cognitive phenomenon in terms of some network-property?
“Gestalt switching” in ambiguous patterns may be interpreted
as a two-stage process (Grossberg 1980b) and..can thus be
described by a dipole field. But even in the absence of percep-
tual ambiguity perception is a two-stage process (Leeuwenberg
1982; van Tuijl & Leeuwenberg 1979). Perceptual ambiguity is
only an extreme case, and sometimes it is not even experienced
(Buffart, Leeuwenberg & Restle 1981).

1.2. Alternative modelling of retinal interactions. In his target
article Grossberg ascribes Weber’s law to a feedforward net-
work. This is, indeed, an explanation, but the assumption that
Weber’s law is due to a chemical process transforming light-
energy into electrical activity is equally admissible (Cornsweet
1970). The chemical model fits the classical data of Kénig and
Brodhun (1889); it predicts (Buffart 1978, 1981) the shift of the
relative threshold, r, due to the overall luminance in spatial, f
(van Nes 1968; van Nes & Bouman 1965) and temporal (de
Lange 1957) frequency detection. It also explains why under
some conditions this threshold’s dependency on spatial frequen-
cy remarkably changes from expl[af] into exp[3af].

The latter functions arouse doubt whether the interaction
coefficients between retinal cells can be described by Gaussian
distributions. Much the best set of orthonormal functions de-
scribing the data in the frequency domain is the set of Laguerre
functions. This means that the interaction between cells would
be better described by a Lorentz distribution. In the first
approximation this coincides with the Gaussian distribution, but
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it has the computationally inconvenient, yet theoretically
important property that its spread is infinite.

1.3. Alternative interpretation of psychophysical data. Hochberg
(1964) and Levelt (1968) proposed that binocular interaction is
due to a permanent rivalry at the micro level even in the case of
perceptually nonrivalrous images. In a crucial experiment Fox
and Mclntyre (1967) produced evidence for this hypothesis.
Consequently, brightness summation does not occur, and al-
though itis strongly advocated (Blake & Fox 1973; Curtis & Rule
1978; Engel 1967, 1969) a comparative test (de Weert & Levelt
1974) has shown that averaging or weighting models describe
the data better.

The computational modelling of Grossberg is evidently so
powerful that networks can be designed showing permanent
rivalry and brightness weighting. But this again emphasizes the
need for a functional model.

2. A Julesz-Levelt model for cyclopean perception. If a func-
tional model is falsified, all related networks are falsified, but the
reverse is not true. A network is more specific about elec-
trophysiological factors. Phenomena in cyclopean perception,
explained by Grossberg on the basis of networks, can, for
instance, also be explained by a functional model (Buffart, 1981)
unifying the ideas of Julesz (1971) and Levelt (1968).

Briefly, the model is as follows. The left () and right (r) retinae
are only sensitive to luminance increase (+) and decrease (-).
Every point, 7, in the cyclopean space, R2, has four states, j,
representing the type (I+, I—, r+, r—) of signal processed.
These exclude each other and there are restrictions (Figure 1)on
the mutual transitions (the rivalry principle). Note that the
seemingly evident on-off interaction during binocular rivalry is

.absent. A two-dimensional vector, called a disparity-detector,
d, determines the retinal place; ¥ + d, from which the transi-
tion-inducing signal originates. After defining the state, x, of the
whole system one defines mathematically the probability densi-
ty; p(x,t), to find the system in state x at time ¢. The dynamic
development of such a system is described by the so-called
master-equation:

(d/de) plx,f) = !.If [wlx,y:t)p(y.1) — wly,xt)p(x, )]

Reformulating this into an equation for the dynamic develop-
ment of the probability-density P(j, dr, £) in the point #a psycho-
physical meaning is assigned to the transition-probability per
unit time, w. Here three independent interactions are supposed
to take place in the cyclopean space: First, an autonomous
spatial interaction, mostly interpreted as cooperation. Second,
an autonomous disparity interaction (Fender & Julesz 1967).
Third, the permanent rivalry interaction (Figure 1), for which w
is identified with the retinal output representing the luminance

decreas decrease increase

——e—

Figure 1 (Buffart). The transition-schema of the four cyclo-
pean states: monocular, on-off transitions; binocular, on-on and
off-off transitions. A state may only be reached due to a retinal
signal of the same type.
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change per unit time. The resulting equation looks like a
competitive network, and may serve as a functional justification
of the computational approach. It appears that several phe-
nomena are due to functional aspects of the cyclopean system.

For instance, the model shows depth due to disparity, it
explains displacement, depth due to brightness and in the
presence of rivalry (Kaufinan, Bacon & Barroso 1973), the role of
bias in ambiguous stereograms (Julesz 1971b), and filling in
(Gerrits & Vendrik 1970a, 1970b, 1972, 1974; Julesz 1971b).
The system is multistable in the case of binocular rivalry, and
transitions are mainly caused by stimulus changes in the non-
dominant eye (Levelt 1968). The first-approximation model for
binocular brightness is a modified version of the centroid model
(Schrodinger 1926). Data on binocular as well as monocular
brightness perception are fitted. Vernier acuity, stereo acuity,
and Panum’s area may be identified with the three types of
interactions. In the first order the autonomous disparity interac-
tion is an Ornstein-Uhlenbeck process fitting the data of Fender
and Julesz (1967), and the autonomous spatial interaction is a
Wiener process from which the U-shaped curves for optimal
apparent motion may be derived.

Note that phenomena caused by specific computational prop-
erties can never be explained by a functional theory.
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(A3) “Perception” occurs by the temporal course of such
activity and, in particular, visual “percepts” are determined
when such activity reaches equilibrium conditions.

It is these assumptions which drive Grossberg to consider a
large range of visual (and other) phenomena in terms of the
generalized coding equation

- il“‘f"““Lki(B"_x‘)'l‘Jr:Erlc"l' ®
p 2 4

where A;, By, C,represent excitatory, inhibitory (or quenching),
and threshold vectors which determine the time varying re-
sponse of cells x,. It should be noted that such coefficients are
adequate for the determination of inter- and intracell facilitation
and inhibition since the summation occurs (r, m, r) over any
specified class of units (including the cell itself if required).

The question is: Do these assumptions, and the associated
network equation (1), satisfy Grossberg’s claim to have gener-
ated a most general language to describe visual function? This
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can be answered in two ways. One, can we prove that all known
models for specific visual function are examples of this formula-
tion? Two, can we analytically derive such a representation from
known neurophysiological and psychophysical results?

As Grossberg and others (Caelli 1982) have already pointed
out, any filter model or general linear systems approach to
spatial vision can be represented in discrete form by (1) with
appropriately defined equivalence classes and weighting func-
tions (A, B, C in (1)) which define filter profiles. Equally, all
existent models for “cooperative” or “competitive” visual phe-
nomena rely on (a) some form of interelement interaction, (b)
summation, and (¢} usually some threshold device. Again, these
processes are precisely encoded in (1), and implicit in the
assumptions of the Grossberg representation. The feedforward
and feedbackward constraints on such systems are encoded in
(1) via the time series characteristics of the A, B, C vectors
where, for example we may further consider A(t) = F(B(t — k)),
etc.

Concerning the second question, perhaps the most general
{and generally accepted) model for a given cell’s electrical
activity is (Leake & Anninos 1976).

b=+ ﬁl C,e,) @
j=

where m, = the external input to cell i (afferent volley including
the resting potential), ¢,= the output of cell i (for example,
average membrane potential), g(d) = some function of the
input or output of cell j relevant as input to other cells, and C,; =
the connectivity between cells i and j reflecting complex dendri-
tic processes (C, would represent recurrent collaterals). This
representation (2), again, is compatable with (a) so long as the
coeffients A, B are seen as weighting functions and summation
(n, m) occurs over all elements.

So we may well conclude, from the answers to the two
questions posed above, that the Grossberg formulation is gener-
al in both senses of the word. This is not the limitation of his
theory. No, where Grossberg’s work (including the present
treatments of depth and stereopsis) is incomplete is in the
generation and prediction of precise psychophysical data, be-
sides the general existence of psychophysical functions.
Grossberg makes the comparison between models in physics
and visual perception and correctly concludes about the latter
that we do not have a general theory or even language for visual
function. However, we should not think that physics has.
Physical laws and general representations exist to describe
physical phenomena (for example, special and even general
relativity). However, when it comes down to specific explana-
tions with respect to the prediction of events as sophisticated as
visual phenomena, physics is equally deficient. In fact,
Grossberg’s distinction between functional and spatial scales
and, in particular, the relationships between computational
networks (giving functional scales) and psychophysical scales
(spatial scales) is important. But, again, detailed evaluation of
precise psychophysical data is required before this general
language can be validated and accepted.

Grossberg does not need to reject other models of precise
visual function in order to prove that his representation is valid.
For example, though the very activity of (1) is in general
nonlinear, this does not imply that from the next level such
nonlinear networks cannot be represented by a linear system.
Analogously, the highly nonlinear activity of subatomic particles
does not preclude a linear molecular chemistry. Equally, (1)
does not necessarily imply that aspects of receptive field func-
tion or geometry cannot be modelled in linear systems (linear
filter) terms. Just the opposite: since A, B, in (1) and C in (2)
represent weighting functions, such components have a filter
representation, and vice versa.

When “filling in” fails

Stanley Coren

Department of Psychology.‘ University of British Columbia, Vancouver, B.C.,
Canada V6T 1Y7

Grossberg has offered an interesting and ambitious model which
he believes explains a number of lightness and form interac-
tions. Of particular ixjterest are the Craik-O’'Brien and Corn-
sweet effects (Cornsweet 1970; O’Brien 1958), which show how
a sharp local change inluminance can alter the apparent bright-
ness of a fairly wide region of the field. Perhaps conceptually the
simplest example of such an effect is shown in Figure 1(a), where
we have two linear luminance gradients, equal in mean intensity
and spatially adjacent To one another. The resultant percept is
shown as Figure 1(b), which is a sensation equivalent to two
uniform areas differing in brightness.

Actual measuremen?s were taken on a pattern similar to this,
using six experimentally sophisticated observers. Each matched
the apparent brightness of the two regions using a variable
reflectance rotor. The patterns themselves were produced on a
rotor, and were 0.5° of visual angle, and each gradient varied
from a minimum reflectance of 40% to a maximum of 45%; thus
at the boundary the ratio of the reflectances was 1.13. The mean
matched reflectance difference was 1.11, which is not statis-
tically different from that expected on the basis of edge com-
putation, and the two regions appeared quite uniform. Thus, in
accordance with Grossberg’s reasoning, we have demonstrated
both the filling-in and the edge-computation processes.

With this in mind let us now simply extend this pattern, so
that instead of having two linear gradients as shown in Figure
1(a) we now have five linear gradients, as shown in Figure 1(c).
Since nothing about such an extension apparently affects any of
the theoretical mechanisms suggested by Grossberg, we should
now expect the perception of five uniform bands differing in
brightness by the sequential product of the brightness transi-
tions, which comes to a ratio of 1.6 between the leftmost band
and the rightmost.

When the same observers now made brightness matches on
such a pattern, they produced a reflectance ratio of 0.98, which
is not significantly different from 1.0, representing no perceived
brightness difference; this is significantly below the expected
1.6 predicted from the theory. However, perhaps even more
important, the apparent uniformity of the individual bands is
now gone, and the apparent brightness profile looks like that
shown in Figure 1(d). The filling-in mechanism seems to have
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Figure 1 (Coren). The luminance pattern shown as a produces
the apparent brightness pattern shown as b, complete with
filling in. The luminance pattern shown as ¢ produces the
apparent brightness pattern shown as d, with no filling in.
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failed completely, and the creation of brightness differences
from the local luminance transitions now also seems inopera-
tive, although, from a conceptual standpoint, patterns 1(a) and
1(c) should not alter the operation of the theoretical mechanisms
in any way. .

What is going on in this situation? Perhaps the simplest
explanation would maintain that although relative luminance
changes at an edge or contour may be combined with a filling-in
process between local transitions, some absolute brightness
information is still available. When the local luminance transi-
tions predict values which are at variance with the global
luminance assessment, the relative information is disregarded
or deemphasized. Certainly in Figure 1(c) there is a large
discrepancy, since the local transitions would predict an appar-
ent brightness difference of 60% between the rightmost and
leftmost bands! With the abandonment of the local differencing
strategy, the filling-in strategy is also no longer needed, hence
the bands no longer appear to be uniform.

The alert reader has probably noticed that the term “strategy”
was slipped into the above discussion, thus implying some
cognitive factor which serves as a global modifier of the final
result. This is quite correct. There is already evidence suggest-
ing that basic brightness interactions, such as simultaneous
brightness contrast, may be altered by cognitive factors (Coren
1969; Coren, Porac & Ward 1979). In fact, whether one obtains
brightness contrast effects or brightness assimilation may de-
pend upon some sort of cognitive selection process (Festinger,
Coren & Rivers 1970). Since both of these processes also involve
some sort of filling in between the contours, it would not be
surprising to find that the filling-in process itself may be subject
to situational and cognitive factors as well. Certainly such a
mechanism could be used explain the results obtained here. In
any event, the above demonstration indicates that some sort of
global mechanism must be involved to determine when filling in
and edge computation occur. Without such an additional mech-
anism, not only filling in, but also the Grossberg model, must
fail.

Grossberg’s ‘“‘cells” considered as cell
assemblies

G. J. Dalenoort
Institute of Experimental Psychology, University of Groningen, 9750 AA
Haren, The Netherlands

Grossberg has presented some interesting hypotheses on per-
ceptual processes in self-organizing neural networks. They are
based on a mathematical formalism, which he has called an “on-
off geometry” of which he has been the architect. This formalism
is intended as part of a general theory for perceptual and
cognitive processes. I share Grossberg’s belief in the possibility
of such a general theory, and I do not share the expectation of
Sperling (1970), although I do agree with his observation. I
cannot think of any reason why we should not be able to
formulate a general set of equations, as in physics. We must not
expect that we will be able to solve it in general, but, again as in
physics, we must construct various approximations, and thus
obtain relatively simpler equations for specific phenomena and
questions we want to answer. And even if the equations would
still be too complex (nonlinearities seem to be the rule), it still
seems likely that the underlying local principles and mecha-
nisms must be relatively simple, so that computer simulations
may be feasible. We must not forget that the physicist too must
be satisfied with an understanding of principles and mechanisms
for only idealized and simplified cases, and that he will not even
consider writing down the Maxwell equations for, say, a televi-
sion set. Nevertheless, he is able to write them down, and even
to solve them, at least approximately, for every separate partof a
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complex system. In physics the construction of common-core
theories, and the reduction of specific phenomena to the com-
mon core, has never been a simple and straightforward affair.
We should not despair of the admittedly more complex system
of the brain. I consider Grossberg’s proposals an important step
in the effort, albeit a number of my questions have not yet been
incorporated in his model so far. I shall here briefly indicate
some of them, which can in principle be incorporated in
Grossberg’s theory.

His basic building blocks are ‘cells’ v}, Ug, - . ., 0, (Sec. 21),
which are defined in a functional manner (Eq. 1), as I see it. We
know that the building blocks of the brain are neurons, and
there are sufficient reasons not to identify Grossberg’s cells with
neurons. But then the question arises, What are these cells? I
think the best answer is that they are fuzzy sets of neurons, with
excitation patterns that change according to context, This idea
originates from Hebb’s (1949) hypothesis on cell assemblies, and
I have proposed (Dalenoort 1982a) to continue to call them thus,
albeit the concept must be brought up to date considerably. It is
then also conceptually easy to interpret Grossberg’s equation for
the changes of interaction strengths between his cells in terms of
synaptic modification, which is still the most serious candidate
for the process underlying learning; most current neural net-
work models are based on some form of it. Hebb has also
postulated that the condition for synaptic modification is more
or less simultaneous activity of the neurons concerned, which
relates to theories of conditioning. It is remarkable that Hebb's
hypothesis on cell assemblies has been neglected so long, and I
consider it of fundamental importance that it can be tied to
Grossberg’s model in a natural manner. For me, it is the
“missing link” between Grossberg’s functional cells and the
neural level (see further Dalenoort 1982a, 1982b).

In attempts to construct networks of neurons which are
connected such as to form cell assemblies, and that can do
simple computations (Dalenoort 1982b, and more recent work),
I have come to the conclusion that a concept cannot be carried
by a simple, single cell assembly, but by a cluster of intercon-
nected cell assemblies. Different subsets provide a sufficient
number of assembly states; they are excited according to the
context. Such complex assemblies must have a quenching
threshold (cf. Grossberg, Sec. 28), such that excitation levels
under it can “mumble on,” but ones above it will quickly and
autonomously rise to the maximum level. The quenching
threshold is then a collective property of the neurons involved,
that themselves can be simple threshold elements. Context can
then be envisaged as maximum excitation of a few current
concepts (cell assemblies), and under-quenching-threshold ex-
citation of related concepts which are thus primed, and will be
more easily excitable in full.

There are good reasons to assume that the neurons of one cell
(assembly) are distributed over the network. But this might be
difficult to reconcile with the on-off geometry of Grossberg’s
Figure 10, because the cells v, are functional and not localized in
space. Therefore it might be preferable to introduce an “activity
control center” that keeps the average total activity constant, at
least above quenching threshold, instead of a proliferation of
mutual inhibitory connections. (cf. Amari 1982). This total
activity is attractive to equate with what is usually called arousal.
Itis reasonable to assume that a maximally excited (complex) cell
assembly will take its share of the total allowed activity, so that
the number of concepts that can be simultaneously at their
maximum is restricted. If we interpret temporal éxcitations as
short-term memory, we would then have an explanation of its
restricted capacity. »

The interpretation of Grossberg’s cells in terms of cell assem-
blies also seems to solve another problem: How can functional
scales serve as a memory for abstract concepts, such as “rec-
tangle.” It seems that such semantic properties can better be
tied to structural cell assemblies than to dynamical activity
patterns alone, given their large variety, corresponding to the
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large variety of rectangles, which are all categorized as “rec-
tangle.” Grossberg’s proposal of quantization processes is attrac-
tive for, among other phenomena, the filling-in phenomenon,
but less so for categorization, and other higher-level processes.
Filling-in seems a peripheral process (where “cells” may be
more localized), and categorization a more central process.

Finally two comments, of a linguistic nature. I prefer not to
use the expression “to store in short-term memory” (Sec. 21) for
the models of networks, becauss there is no separate store: the
system is considered as self-organizing. I propose to reserve it
for the models of the “human, information-processing para-
digm” (which, as I see it, is largely restricted to modeling the
above-quenching-threshold activity, which indeed is serial in
nature). Second, I propose to speak of the “noise-saturation
problem” (Sec. 21) since Grossberg solves it, whereas a dilemma
implies a choice.

There are many other issues that would deserve mentioning,
e.g. controlled versus automatic processing, primitive concepts
(also visual ones), spreading activity, etc. In principle, they can
all be accommodated in this framework of on-off geometry and
cell assemblies, which therefore, to me, provides the outlines
for a general theory.
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On psychophysical linking hypotheses, the
direction of pattern induction, and the
representation of distance and size

John M. Foley

Department of Psychology, University of California, Santa Barbara, Calif,
93106

Unlike some modern theorists, Grossberg takes seriously the
myriad of distortions, illusions, induction effects, and global
context effects that characterize vision. He undertakes to give a
unified account of a larger range of these phenomena than
anyone since the Gestalt psychologists. His characterization of
the classes of phenomena that a general theory of vision must
encompass is a good one, and his proposed competitive feed-
back network with several structural scales appears to be a
promising basis for visual theory. Some critical assumptions,
however, are not made clear, and some of the phenomena that
the theory is said to account for, particularly those of distance
and size perception, are not adequately dealt with.

Any theory of perceptual phenomena must specify not only
how the visual system responds to stimulation, but also how that
response is related to the experience of the perceiver (what are
sometimes called psychophysical linking hypotheses).
Grossberg’s theory is not explicit about these hypotheses, and
consequently it cannot be tested by perceptual experiments.
Central to the paper is the notion that if a perceived pattern
extends through a region of the visual field, a corresponding
pattern of activity must extend through regions of the network
associated with that part of the field. In some passages it appears
that, for each structural scale, perceived lightness at one point in
space is assumed to depend. on activity at one point in the
network, but in other passages a more complex relation is
specified (e.g., Section 38). When the distance dimension is
considered, the correspondence between positions in the neu-
ral network and positions in visual space is abandoned al-
together. Distance is coded in terms of an energy balance across

functional scales (Section 41). Although the binocular depth
mixture phenomenon (Foley 1976) suggests a colorlike code for
distance, the idea of different representations for distance and
frontal extent still seems counter-intuitive in view of the very
close relation between these dimensions. There is some hint
(Section 3) that Grossberg thinks the kind of representation he
uses offers advantages in dealing with the mapping of sensory
inputs into other subsystems. The theory would benefit if these
assumptions and their rationales were made explicit.

"The theory postulates a process for pattern matching with
many desirable features. Among these are its directness and its
allowance for a flexible criterion of matching, mutual deforma-
tion of two patterns, and hysteresis. This pattern matching is
produced by excitatory and inhibitory feedback among pattern
sensitive cells. Grossberg’s proof that the simplest plausible
feedback signal that will suppress noise has a sigmoid signal
function is important. There is both physiological and psycho-
physical evidence for signal functions of this form (Legge &
Foley 1980; Wilson 1980), but no functional role has been
previously ascribed to them.

A central concern of the theory is the propagation of activity
patterns through homogeneous regions between edges. This
filling-in process is a fandamental property of the competitive
feedback network, which is the backbone of the entire theory.
The phantom gratings described by Tynan and Sekuler (1975)
and Weisstein, Maguire, and Berbaum (1977) are taken as
evidence of this perceptual filling-in process. 1 agree with
Grossberg that these induced gratings suggest interaction
among cells sensitive to patterns. However, the induced grat-
ings are generated in a direction parallel to the inducing grating,
whereas in Grossberg’s network the propagation of disinhibition
is at right angles to the inducing edge. The much more robust
induced grating effect which occurs when the test region is
illuminated is also parallel to the inducing grating (McCourt
1982). This induced grating provides another challenge to the
theory in that it is 180° out of phase with the inducing grating.
The importance of a nonzero luminance in the test field seems to
fit with Grossberg’s Proposition I11 (Section 39) that propagation
of inhibition occurs only if there exists an input source on which
the FIRE can feed, but the FIRE spreads in the wrong direction to
account for these induced pattern effects. A second property of
the filling-in process is that the propagation of activity between
two edges is quantized in the sense that there can exist only an
integral number of disinhibitory peaks between any pair of
edges. This provides an explanation for hysteresis during defor-
mation. However, there does not appear to be any direct
evidence of this kind of perceptual quantization.

In the treatment of the perception of distance and depth the
main idea seems to be that larger disparities activate larger
structural scales, a conjecture made earlier by Marr and Poggio
(1979). This is contradicted by the finding that the maximum
disparity that will produce fusion or depth is independent of the
luminance spatial frequency of the pattern (Pulliam 1981).
There is a more fundamental problem as well. Although in
principle, if direction is known, horizontal and vertical dis-
parities together are sufficient to compute distance, in practice
vertical disparities do not produce a depth signal, and horizontal
disparity is not sufficient to determine perceived distance or
depth (Foley 1980). This point is clearly acknowledged (Section
18), yet most of the discussion of distance perception appears to
proceed on the assumption that disparity (presumably horizon-
tal disparity, since no reference is made to vertical disparity)
determines perceived distance. No provision is made for the fact
that binocular distance perception involves the integration of
disparity with an egocentric distance signal (Foley 1980).

There is a further problem with the representation of size.
Perceived size is postulated to depend on the number of func-
tional wavelengths generated between the representation of
two edges of an object, which in turn depends on the disparity
and therefore on the object’s distance. This implies that per-
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ceived size is quantized and, therefore, that the size-distance
invariance principle (the real-image analogue of Emmert’s law)
holds only roughly at best. In fact, if an observer is required to
directly match a frontal extent to some fraction of its distance,
size-distance invariance holds rather precisely (Foley 1968).
Although these comments have focused on phenomena that
pose problems for the theory, there is a wide range of phe-
nomena that the theory gives good promise of encompassing.

Experimental test of a network theory of
vision

David H. Foster

Department of Communication and Neuroscience, University of Keele,
Kegle, Staffordshire ST5 5BG, England

A frequent problem in evaluating neural-network models is
deciding whether they should be tested against neurophysi-
ological or against behavioral data. Grossberg’s network model
is clearly concerned with behavior. In the full feedback version
ofhis network there are, however, seven adjustable parameters,
and with this potential flexibility in specification some difficulty
in producing testable hypotheses might be anticipated. In
Section 32 Grossberg emphasizes an important qualitative fea-
ture of his model: the generation of constrained patterns of
spatially periodic activity in response to appropriately bounded
inputs. These patterns are initiated at the edges of the input
field and propagate within its interior. The failure commonly to
perceive these spatial patterns is subsequently attributed to the
randomization of spatial phase at high spatial frequencies and to
the production of interference effects. Nevertheless, in Section
35 Grossherg does offer a specific qualitative prediction from his
theory, an experimental test of which I report below. First, I
want to consider some other issues raised by Grossberg.

Cats, homunculi, metrics, and impletions. Grossberg uses Att-
neave’s cat (Attneave 1954) to provide some motivation for his
edge-initiated filling-in process. He poses the question in Sec-
tion 5, “Why does interpolation between points of maximum
curvature with lines of zero curvature produce a good facsimile
of the original picture?” The answer is that it may not always do
so, and when it does, it may be trivial. Consider a contour which
consists of large sections on which curvature variation is small
and small sections on which curvature variation is large. Then a
good approximation (in terms of pointwise error) can be
achieved by replacing the sections of small curvature by straight
lines and the sections of large curvature by points, as was done in
Attneave’s cat. But for a contour characterized differently, for
example, a circle, the approximation does not work.

_Grossberg's argument against the applicability of a Fourier-
theoretic approach in Section 15 appears in one place homuncu-
lar. He argues that after spatial frequency processing a high-pass
filtered version of a rectangular function would look like a
Cornsweet profile rather than a rectangle. But the requirement
here is that the two outputs should be the same, which they are,
not that they should look like their inputs,

In Section 22 Grossberg criticizes those models in Artificial
Intelligence that use a metric to compute pattern matches. He
objects that a metric requires a separate processor to compute
the scalar distance between two patterns before deciding how to
tack the results of this scalar computation back onto the main-
stream of computational activity. But something like this two-
stage operation may well underlie mental rotation performance
investigated by Shepard (Shepard & Metzler 1971) and others
(e.g. Just and Carpenter 1976). That is, matches between the
patterns are computed at successive stages, and it is these
computations which govern the evolving sequence of mental
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transformations. His criticism that “a metric does not encode a
pattern” misses the point that metrics are used to compare the
results of those encodings. That a metric “does not amplify the
matched patterns because it is minimized rather than max-
imized” is merely a matter of convention: A simple algebraic
manipulation converts it to a measure of similarity. Nor need a
metric be restricted to making “local matches between corre-
sponding input intensities.” Metrics may be used implicitly by
the nervous system in considerably more complex ways, operat-
ing upon whole patterns, for example in determining apparent
motion between sequentially presented disparate figures (Fos-
ter 1978; Mori 1982), and in determining the discriminability of
local features (Foster 1980). On the other hand, it is not easy to
see how Grossberg’s network explains the easy recognition of
reflected and point-inverted patterns, and the easy recognition
of patterns differing by dilatations.

The operational novelty of Grossberg’s network lies in the
edge-initiated filling-in process generated in response to spa-
tially bounded inputs. On the basis of the algorithm described in
Section 33, the level of activity generated for a spatially uniform
and therefore edgeless field should be much less than that for a
large but bounded field. I know of no psychophysical evidence
that suggests that the interiors of these large fields should differ
so perceptually. .

An experimental test. In Section 35 Grossberg proposes a
simple but critical experimental test of his theory. He suggests
that the high spatial frequency components of the patterns of
activity induced by a spatially bounded input can be adapted out
by using a spatial frequency adaptation paradigm. A low spatial
frequency pattern of activity should then be detectable when
fixating a bounded display which is large enough and has a
uniform interior. I performed such an experiment in collabora-
tion with Dr. M. J. Musselwhite of this department.

We used a square 10° X 10° 10 cycles per deg square-wave
grating; oriented vertically, as the adaptation field, and a square
2° X 2° uniform field as the test field. Both test and adaptation
field were presented on zero background. The luminance of the
uniform field and the maximum luminance of the grating, both
white light, were each 300 cd per m2, about 2000 Td. This
retinal illuminance of the grating was sufficient to produce
significant adaptation at the fundamental spatial frequency
(Maudarbocus & Ruddock 1973). The adaptation field and test
field were presented monocularly in a standard cyclic mode: 2-
min adaptation to the grating, and either 2- or 4-sec exposure of
the test field. During the adaptation period, the point of gaze
was moved continuously over the central two-thirds of the
grating; during the test period, the test field was fixated cen-
trally. Subject DHF was practised in performing this type of
experiment, and MJM, although not practised, had experience
in related psychophysical experiments.

The results of this experiment were as follows. With the 4-sec
test field, both DHF and MJM observed no low spatial frequen-
cy structure. Interestingly, when the 2-sec test field was used,
one of us (MJM) observed two low-contrast vertical bands;
significantly, this effect was very much reduced when a fixation
point was introduced into the centre of the test field, suggesting
that the effect might have been an artifact of edge after-images.
Independent of whether a fixation point was used, DHF failed
to detect any low spatial frequency structure with the 2-sec test
field.

It might be argued that the conditions used in this experiment
were not optimal for manifesting the hypothesized low spatial
frequency patterns of activity. Yet the effects of the 10 cycles per
deg adaptation field should have been sufficiently localized in
the spatial frequency domain not to extend beyond 2 octaves,
i.e. not below 2.5 cycles per deg, and the test field was suffi-
ciently large to allow at least the generation of patterns with
periodicity of 2 cycles per deg.

In summary, this experimental evidence for Grossherg's theo-
ry is not compelling. It might be that the conditions of the
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experiment were chosen inappropriately, but, in the absence of
explicit values offered by Grossberg, some choice had to be
made.

Experimental demonstration of “shunting
networks,” the “sigmoid function,” and
“adaptive resonance” in the olfactory
system

i |
Walter J. Freeman
Department of Physiology—Anatomy, University of California, Berkeley,
Calif. 94720

My work and Grossberg’s offer a striking case history of what
happens when two investigators, one theoretical working from
the top down, the other experimental working from the bottom
up, meet on mathematical ground. Our commonality holds in
particular at the later stages of sensory processing and the earlier
stages of perceptual processing. I will comment on three basic
features of Grossberg’s model: the “feedforward shunting net-
work,” the “sigmoid” input-output function, and the feedback
network with “adaptive resonance.” I will use these to illustrate
the developments, modifications, and reinterpretations re-
quired in order to realize a working physiological model within
the general theory.

The experimental work has been done over the past two
decades on the vertebrate olfactory system (ghepherd 1972,
Freeman 1975, 1981). In many respects the olfactory bulb is the
simplest, most accessible, and best understood part of the brain
devoted to higher information processing, yet it manifests trans-
formations of sensory input that have been described in other
sensory systems. This accords with Grossberg’s intent that his
theory hold more broadly than for vision.

A “shunting network” operates in the outer layers of the bulb,
which receives axon terminals from the olfactory receptors. This
operation has been identified as “presynaptic inhibition”
(Minor, Flerova & Byzov 1969); however, it is not merely
presynaptic, and it is not inhibition in the classical Sherrington-
ian sense, because it is multiplicative and not additive.

The operation is mediated by a pool of interneurons in the
outermost cellular layer. They are mutually excitatory and form
what I have called a KI, set (Freeman 1975). A transient
excitatory perturbation of these neurons induces a surge of
activity that long outlasts the transient and attenuates the
transmission of receptor input to the bulb. The agent of attenua-
tion is nonsynaptic and probably involves the release, accumula-
tion, and slow clearance of a substance such as potassium in the
extracellular space in this synaptic layer.

Strictly speaking, this subsystem is not a “feedforward” net-
work, because the degree of attenuation depends on the in-
duced interneuronal activity and not directly on the input. Yet
the overall operation yields the desired properties of range
compression and signal normalization, in a manner formally
related to Rushton’s (1965) prescription for accommodation in
the visual system. Clearly such a mechanism is essential at or
near the first central station in every sensory pathway, including
the olfactory one, in which the input to a glomerulus might be
carried by from 1 to 20,000 axons, depending on odor type and
concentration. ) .

Analogously, in simulating the operations of the bulb with
nonlinear differential equations (Freeman 1979b), it is neces-
sary to employ a KI_ set with an output that attenuates the
simulated input to the inner bulb, in order to avoid saturation
and instabilities of the inner subsystem.

The KI,_ set has other functions as well. It clips and holds the
input from a sniff. It provides a degree of contrast enhancement

by the extension of the attenuation effect from each local domain
into its surround. It has a stable mutually excitatory state that
provides a steady excitatory bias to the inner bulb, maintaining
the inner bulbar subsystem in a quasilinear domain. It compen-
sates for surges in activity levels of inhibitory interneurons in
the inner bulb that are induced by inhalation (Gonzales-Estrada
& Freeman 1980). The KI, set also has a zero stable state. In
theory the transition from the high to the low state can be
induced by a single inhibitory pulse, and can be reversed by a
single excitatory pulse. This property might serve as a means for
rapidly switching the bulb “off” and “on.” However, no means
to experimentally demonstrate the requisite inhibitory centrifu-
gal pathway has yet been found.

It is remarkable that these many janitorial functions of range
compression, bias control, and the taking of local spatial and
temporal integrals and derivatives should. be executed by a
single population of interneurons, prior to the real work of
pattern recognition. These operations are more clearly or com-
plexly manifested in other sensory systems; inevitably they are
the first to be encountered by physiologists working inwardly
from receptors. On the whole they are well understood as types
of sensory preprocessing. As Grossberg notes, the extrapola-
tions to “feature detectors” and “frequency extractors” should
be regarded with scepticism.

The existence of the “sigmoid function” for olfactory neural
sets was predicted from the properties of bulbar electrical
activity and was demonstrated experimentally by computing the
probabilities of neural axonal pulses conditional on amplitudes
of dendritic potentials (Freeman 1975). An equation describing
this function has been derived in part from the Hodgkin-Huxley
system (Freeman 1979¢). It may well provide for the bulb the
properties of noise suppression and signal enhancement de-
scribed by Grossberg.

Three points deserve brief mention. First, this function
represents a collective property and does not hold in this form
for single neurons. Second, it is a major determinant of the
global stability of the olfactory bulb. Third, the maximal slope of
the curve is displaced to the excitatory side of the rest point of
the abscissa. This means that input does not merely excite the
bulb; it increases the global interaction strength. Thereby the
inner mechanism changes with each inhalation from a quasi-
equilibrium state to a limit cycle state and then back again.

The inner mechanism is formed by excitatory and inhibitory
neurons with mutual excitation, mutual inhibition, and negative
feedback comprising a KII set, which is related (loosely speak-
ing) to Grossberg's “dipole” (an unfortunate choice of terms,
considering physiologists” half century of experience with corti-
cal dipole fields of potential). The output of this set to the next
cortical stage is a “wave packet” having a carrier frequency of
40-80 Hz and a duration on the order of 0.1 sec. The repetitive
state transition with respiration is the key process leading to the
self-organization property of the bulb manifested in these bursts
of activity.

Herein is revealed the phenomenon of “adaptive resonance.”
Information is carried by the wave packet in the patterns of
amplitude and phase modulation of the carrier wave in its spatial
dimensions. These patterns develop in part in respect to the
initial conditions at the onset of the state change induced by
inspiration, but in larger part in respect to intrinsic synaptic
connections formed during prior experience (Freeman &
Schneider 1982). These spatially patterned connections, to-
gether with centrifugal controls, serve to define the “expectan-
cy” that is being “matched” in some sense (not correlation) with
the spatial pattern of input (Freeman 1979a).

In serial pictures of bulbar spatial patterns of activity recon-
structed by computer graphics (Freeman 1973) one can “see”
Grossberg’s FIRE ignite and spread with each inhalation. Signifi-
cantly, these “waves” do not propagate; they are standing waves
that wax and wane over the time-envelope of the wave packet,

while the filling-in takes place.
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There are numerous differences and uncertainties to be dealt
with between theory and data. The experimental difficulties of
precise description and measurement are taxing. However,
there is no question that here is a robust convergence of theory
and experiment that tells us we are on the right path.

To have your edge and fill-in too

W. Eric L. Grimson

Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Mass. 02139

The basic tenets of Grossberg’s target article appear to be that (1)
there is significant evidence that different visual properties
interact to create a global visual perception; (2) current theories
of early visual processing are restricted to analyzing single visual
properties and cannot provide a coherent explanation of these
effects; and (3) the model proposed by Grossberg provides the
coherent basis needed. While there is probably little argument
with the first claim, there is some contention as to the tightness
of the interaction. In other words, can early visual processing be
considered as a system of roughly independent modules which
interact loosely to create a global perception, or is the process-
ing so tightly interconnected that the simplest possible descrip-
tion of the process is in terms of its interactions? To use Marr’s
terminology (Marr 1976a), can early visual processing be mo-
deled by Type 1 theories, or must one resort to Type 2 theories?
Iwill argue that a coherent explanation of a broad range of visual
perceptions is, in.fact, provided by the Type 1 theories of the
computational vision approach of Marr and others, contrary to
Grossberg's presentation of that approach. Moreover, the
model proposed by Grossberg and the models developed within
the Marr approach are differentiated by the fact that the latter
attempt to provide explanations at the level of mechanism,
algorithm, and computational theory, thereby providing an
equally coherent and perhaps more comprehensive explanation
and understanding of the visual system, while the Grossberg
model is restricted to the level of a mechanism.

Do alternative theories of early visual processing provide an
explanation of the cited effects, or do they demonstrate, as
Grossberg claims, a lack of coherence and correctness? While it
certainly does not constitute a final answer, I will argue that the
computational approach of Marr and many others is not incon-
sistent with the discussed data. Grossberg characterizes this
approach as a zero-crossing-based one; however, the definition
of zero-crossings that is presented, and consequent inferences

based upon it, do not coincide with the viewpoint presented by »

Marr and coworkers. First, while the zero-crossings of an image
filtered with a Laplacian of a Gaussian (V2G) are an important
component in the computational theories of early vision, they do
not constitute the entire initial representation of the image.
Rather, they provide an initial encoding of the changes in the
image from which a rich symbolic representation, called the
primal sketch, can be computed (Marr 1976b). Second, the term
zero-crossing may be potentially misleading or misunderstood.
As Marr and Hildreth (1980) clearly state, a step change in
-intensity at some scale is represented by the combination of a
zero-crossing, which marks the location of the change, and an
amplitude associated with that change, measured as the slope of
the directional derivative taken perpendicular to the zero-
crossing segment. This amplitude captures the sharpness and
contrast of the underlying intensity change. This is not guess-
work, as suggested several times by Grossberg, but follows
naturally from the definition of the spatial-frequency-tuned
channels and the behaviour of the signal near a zero-crossing in
such a channel (see Marr and Hildreth 1980, p. 195) and is
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clearly included in both the proposed computation of the edge
and in the suggested neural model, contrary to Grossberg’s
opinion of Section 16.

While only the positions and contrast signs of the zero-
crossings may occasionally be sufficient, (for example in stereop-
sis, (Marr & Poggio 1979; Grimson 1981)), it is clear that the
amplitude of the zero-crossing is an important, robust, and
easily computable attribute of an intensity change. As has
previously been noted, a zero-crossing representation of the
image is extremely rich in information. Logan’s theorem (Logan
1977) shows that band-pass filtered one-dimensional signals are
almost completely characterized by just the positions of the
zero-crossings, and extensions by Poggio (1982) suggest that the
same may be true in two dimensions. Moreover, a computer
algorithm by Nishihara (Winston 1979), based on the positions
of the zero-crossings and their amplitudes, is able to reconstruct
a close approximation to two-dimensional signals.

One consequence of the richness of zero-crossings (including
their amplitude) is that a lightness reconstruction can be ex.
ecuted from them, contrary to Grossberg’s claim. For example,
Horn’s algorithm (Horn 1974) based on Land’s retinex theory
(Land & McCann 1971), while developed in a slightly different
context, clearly illustrates one method for computing light-
nesses (which, for certain classes of images, correspond to
reflectance) that is compatible with a zero-crossing representa-
tion, and that clearly explains effects like the Cornsweet and
Craik-O’Brien effects (see Frisby 1979 for a discussion of this).
Hence, in those cases where the Horn algorithm is applicable,
lightness reconstruction follows from a zero-crossing-based
representation.

Moreover, explanations within the context of this representa-
tion have been offered for many other standard visual illusions.
Examples for which at least partial explanations have obtained
include the Poggendorf illusion (Glass 1970), the Mueller-Lyer
illusion, and variants involving perceived motion of the illusion
undergoing real time blurring (Zucker 1980), the Harmon-
Julesz Lincoln image (Hildreth 1980), the change in perception
of a checkerboard from edges to diagonals with change in
viewing distance (Hildreth 1980), the cafe wall illusion, and so
on.

A second class of effects raised by Grossberg as an example of .
the limitations of zero-crossing-based computations is figure-
ground completion. The examples include the perception of a
5% density Julesz random dot pattern, and the Julesz version of
the Shipley experiment. This is a second type of filling-in,
similar to the lightness reconstruction, but now based on filling-
in depth information. Contrary to Grossberg’s claim that “all
global filling-in and figure-ground effects hereby become inex-
plicable in their [Marr and Poggio’s] theory,” a rigorous com-
putational theory and algorithm for interpolating visual surfaces -
from depth information based on a zero-crossing representation
have been proposed and tested (Grimson 1982a, 1982b). This
theory requires no homunculus (a term frequently applied by
Grossberg), operates directly on a depth representation
(whether from disparity information obtained from stereo, or
other depth information), and is based on an analysis of the
image irradiance equation (Horn 1977; Grimson 1982b, 1983)
and on how the shape of a surface can be inferred from both the
locations of the zero-crossings and those locations that do not
contain a zero-crossing. The theory has also been given a solid
physical motivation, by relating the model obtained on first
principles from the image irradiance equation to the physics of
thin plates. The perceptions of the 5% random dot pattern and of
the Julesz-Shipley experiment follow straightforwardly from
this theory and have been demonstrated computationally. Fur-
ther, since the interpolation process applies in principle across
the entire depth representation, any feature evident in one
image but occluded in the other will be assigned depth values
based on the interpolation between known depth points; hence
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it will inherit a depth percept strongly influenced by its nearest
binocular neighbour. In addition, the vivid subjective contours
associated with sharp changes in disparity (such as those ob-
served in random dot stereograms) are easily localized by the
“discontinuities” in the interpolated surface.

One of the major models that has been bujlt upon a zero-
crossing representation, and indeed, the model which provided
the initial motivation and development of the zero-crossing
representation, is the Marr-Poggio stereopsis theory (1979)
(with several important modifications suggested by Mayhew &
Frisby 1981 and extensive testing reported in Grimson 1981).
Many of the effects discussed by Grossberg fall naturally into the
domain of this model and most of the criticisms leveled by
Grossberg at what he calls Sperling-Dev models do not apply to
the MPG model. One already discussed is the interpolation of
disparity data to obtain figure-ground effects and to compute
complete surface representations. A second is that the Kaufman
observation that depth can depend on fixation has been demon-
strated in the MPG model (Grimson 1982b). A third is that while
Sperling-Dev type models are restricted to a finite set of depth
planes, the accuracy of the MPG model is not so limited. Since it
has been demonstrated that zero-crossings can straightfor-
wardly be localized to subpixel precision (Hildreth 1980; see
also Crick, Marr & Poggio 1980), the computéd disparity and
depth have similar resolution.

Within the MPG model, which is built directly on processing
of a zero-crossing representation within a set of roughly inde-
pendent spatial frequency tuned channels, effécts such as the
coexistence of depth and binocular rivalry, multiple spatial
scales, and disparity hysteresis follow naturally. Moreover, the
model has been demonstrated to be consistent with human
perception over a range of images (although mnot all; see for
example Mayhew & Frisby 1981). Examples (se¢ Grimson 1981)
include the ability to compute depth when (1) one or both halves
of a random dot stereogram are blurred, (2) band-pass filtered
noise is added to one image, (3) one of the images is decorrelated
at random, (4) one of the images is diagonally decorrelated, (5)
one of the images is compressed, (6) one of the images is reduced
in contrast, and so on. Moreover, in situations in which humans
cannot perform stereopsis, the algorithm has also been demon-
strated to be incapable of computing depth, for example, if one
half of the stereogram is high-pass filtered and the other half is
appropriately low-pass filtered. A second example is the case in
which one of the random dot pairs is contrast reversed. We
know that human observers cannot fuse these images, and the
MPG algorithm also fails. Although the performance of
Grossberg’s proposed scheme on this range of images is not
indicated, and although a precise definition of what constitutes a
matching pattern in his scheme is not indicated, one can infer
the performance of the scheme from Figure 17. Given the
nonpreservation of contrast sign in the structural scales shown in
Figure 17(b), one would expect that reversing the contrast of
one monocular pattern would result in similar representations.
In this case, the pooled binocular edges of Figure 17(c) would
presumably still be formed, implying that Grossberg’s model
would incorrectly (from the point of view of the human system)
fuse the contrast-reversed stereogram.

Given that primal-sketch-based theories seem to provide just
as coherent an explanation of many different visual perceptions
as the scheme proposed by Grossberg (and perhaps have been
more extensively demonstrated on actual images, wherein the
need to define a precise algorithm ensures that all the details of
the process have been explicitly accounted for), how do the
schemes differ? Marr, Poggio and others have frequently
stressed (see for example (Marr 1982)) the need for explanations
of visual processing at several levels, singling out in particular
the levels of mechanism, algorithm, and theory. An explanation
at the level of mechanism does not preclude an explanation at
the level of computational theory, and vice versa. While it is

clearly important to have an understanding of the mechanisms
involved in executing visual computation, it is equally as impor-
tant to have an understanding at the other levels. Thus, while
the proposal made by Grossberg may lead to a better under-
standing of the underlying mechanisms involved, it is not
incompatible with algorithmic and computation-theoretic mod-
els, and it is moreover limited in the explanations it can provide
at those levels. Two examples illustrate this point. The first
concerns lightness reconstruction, such as in the Cornsweet
effect. Grossberg’s explanation (Section 37) is mechanistic in
basis and relies on an explanation of how inhibitory troughs
interact within a complex network. It does not say why the effect
occurs in a computational sense. On the other hand, the Land-
Horn computational theory provides a clear explanation for why
the human system “incorrectly” computes lightness in the
Cornsweet effect, namely that slow gradients of intensity are
discarded in computing lightness, since physically they gener-
ally correspond to illumination gradients, and not to gradients in
the surface photometry. The second example concerns using
computational theories and algorithms to predict and under-
stand mechanisms in the visual system. In particular, the model
of the retina due to Richter and Ullman (1982), demonstrating
that the X-ganglion cells in the inner-plexiform layer appear to
be performing a V2G convolution and that the Y-ganglion cells
appear to be performing a time derivative of a V2G convolution,
was motivated in part by the theoretical and algorithmic models
of zero-crossing computations, and may provide, in part, an
explanation of why that mechanism is evident in the human
system. More recently, in a study directly motivated by the
zero-crossing theory, Richter (work in progress) has obtained
preliminary evidence suggesting that some of the simple cells of
area 17 respond to zero-crossings in the output of the ganglion
cells (where zero-crossings are to be distinguished from inten-
sity step changes). Again, the study followed directly from
predictions made by a computational theory, and provides a
mechanism-level explanation of the corresponding aspects of
the computational theory. In summary, to obtain a complete
understanding of the processing of the human visual system one
lrequires a synthesis of models and explanations at all levels,
|computational theory, algorithm, and mechanism; no one level
is sufficient.

Physiological models and geometry of visual
space

Tarow Indow
School of Social Sciences, University of California, Irvine, Calit. 92717

To be honest, I had not been aware of Grossberg’s work until I
was sent this target article. Hence, I read the text with great
interest, and it reminded me of my experience of almost thirty
years ago. That is the impression I had when I studied articles by
Selig Hecht, e.g., “Vision: II. The nature of the photoreceptor
process” (Hecht 1934).

Models for perception in physiological terms. The Hecht ap-
proach is a most systematic mathematical systematization of
visual processes at that time. As another example, we can
mention N. Rashevsky’s (1968) approach. Compared with the
latter, however, the Hecht approach is more concrete and much
tighter in its connection with experimental data. As early as
1918, Hecht proposed a basic equation for the photoreceptor
process. Suppose there is photosensitive material S of amount a.
When stimulated by light of intensity I (t = 0), S is changed into
its photochemical product which initiates the series of events
ending in the outgoing impulse to the nerve. By denoting the
amount of that product by x, he assumed dx/dt = k, I{a — x) —
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kyxn n = 1 or 2 and derived a number of equations which fit
experimental data on reaction time, dark and light adaptations,
flicker, intensity discrimination, visual acuity, etc. Al are di-
rectly related to x. For example, when the equilibrium state x to
Iand that to (I + AI) have a constant difference, then (I + Al) is
assumed to be just noticeably different from I. In other words,
all the subsequent physiological processes are assumed to be
linear to x. Setting aside this problem, though I was a student, I
felt keenly that this type of approach cannot be completely
confirmed by psychophysical experiments alone. The final ver-
ification has to wait developments of neurophysiological experi-
mental techniques.

Itis interesting to see that the Grossberg Equation (1) is of the
same form as Hecht’s equation except for its third term, and that
both make use of the equilibrium state (Equations [2] and [22] in
Grossberg’s article). In this case, x, represents the potential of
the ith cell at some stage which is due to depolarization or
hyperpolarization. It is true that we feel perceptual phenomena
are “accounted for” if these are related to their underlying
physiological processes. However, once we use equations which
bhave physiological terms, there is no other way to achieve the
final verification than to directly record the assumed processes.
Grossberg started from discussion about “theoretical diversity”
as “multiplicity of theories,” which seems to be “inherent in
nature of psychology.” I feel that another fatal burden is inher-
ent in the nature of psychology. That is, all models giving
explanatory feeling cannot be self-contained. The problem is
boiled down to the question of what is more productive, ventur-
ing into physiological hypotheses or staying within the self-
contained level. As an example of models belonging to the
second category, I would like to mention the Harvich and
Jameson opponent. process model for color vision. Chromatic
response functions consist of stimulus values measured in a
psychophysical experiment (cancellation) and, in theory, vari-
ous quantitative predictions on phenomenology of color are
possible from these. The model assigned neurophysiologists a
task to look for the corresponding physiological phenomenon at
some stage of the process, but, no matter whether this is
discoverable or not, the model is a compact description of a
perceptual process in terms of the corresponding stimulus
intensity.

Geometry of visual space. Another example of self-contained
models in perception may be the geometry of visual space. Ifthe
global structure of visual space is formulated in terms of a
geometry, it is a model to describe perceptual phenomena by
themselves or by their correspondence with stimulus configura-
tion. As is well known and referred to in Grossberg’s target
article, R. K. Luneburg (1947, 1950) proposed a hypothesis that
visual space is hyperbolic and of constant curvature to “account
for” the discrepancy between parallel- and equidistance-alleys,
etc. This is a kind of explanation different from that offered to
“account for” perceptual phenomena in terms of physiological
processes. For example, the two alleys are not the same “be-
cause the visual space is non-Euclidean.” However, it is a
different question to ask why the visual space is described by
such and such a geometry, including the Euclidean case, too. As
I have been working on this problem (Indow 1979, 1983), 1
expected a great deal from the title of Grossberg’s article and by
his promise “to explain why so many visual percepts seem to
occur in a.curved visual space.” However, what is given in
Section 41 is too abstract and not really informative, Edge-
detection and figure-ground separation are discussed, but it is
hard to see how to derive from this approach real geometrical
properties like straightness, perpendicularity, parallelness,
congruence, etc. It will take a long time before we can reach the
stage of having a concrete image of the neurophysiological
processes underlying these perceptual aspects. To systematize
perceptual processes in their own terms will be useful to hasten
the arrival of that stage.
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The role of analog models in our digital age

Bela Julesz
Bell Laboratories, Murray Hifl, N.J. 07974

It is a dilemma what to do after reading Grossberg’s interesting
article on neural modeling, particularly of modeling global
stereopsis of random-dot stereograms (RDS), a kind of problem
that has preoccupied me throughout my scientific career. Shall I
clutter the literature by repeating the content of dozens of
articles of mine from 1960 till 1971 that were omitted by
Grossberg (during which the notions of “false target elimina-
tion,” “cooperativity,” “hysteresis,” “multiple stable states,”
“globality,” “plasticity,” “filing in,” etc. were first introduced
and observed in the field of stereopsis, culminating in my
spring-coupled-magnetic-dipole-model of stereopsis to account
for these notions), or refrain from commenting at allP? After all,
Grossberg did refer to several of my contributions, including my
book (Julesz 1971b) that contained all these findings; he even
referred to my analog dipole model in a sentence: “My dipoles
are not the classical dipoles which Julesz (1971b) used to build an
analog model of stereopsis.”

Since Grossberg reviews neural network models of stereop-
sis, including his own, the omission of my analog model (and my
computer simulated recursive and cooperative model of ster-
eopsis, called AUTOMAP-1 [Julesz 1962] published nine years
before all the models cited) must mean that Grossberg either did
not regard the dipole model as “neural,” or “mathematical,” or
interesting.

Let me stress that I consider Grossberg’s model and his
mathematical insights to be of great importance for psychobiol-
ogy, but at the same time I want to explain why I regard analog
models, such as my own, as an alternative if not a better way to
communicate mathematical ideas and complex perceptual phe-
nomena to workers in brain research. In doing so, I claim that
explicit differential equations describing neuronlike elements in
pools are not more “scientific,” “neural,” or “mathematical”
than implicit morphological models. As a matter of fact, my
analog model of stereopsis has a deep “neural” content, and is
superior to existing algorithmic models on two accounts. First, it
is matched to human heuristics (i.e., its workings can easily be
grasped by the intelligent layman); and, second, it can account
for both cooperativity and plasticity, which most other models
cannot do (or have these properties deeply hidden in their deep
structures).

In order to keep this commentary short, I ask the reader to
consult the original papers describing my analog dipole model of
stereopsis. I introduced this model in order to account for the
many cooperative and plastic phenomena in stereopsis, particu-
larly the Fender-Julesz hysteresis effect under binocular retinal
stabilization (Fender & Julesz 1967). (A RDS has to be brought
within 6 min arc alignment for fushion, but after fusion it can be
pulled apart up to 120 min arc on the retinae before fusion
breaks.) The plasticity of being able to fuse RDS pairs of
different sizes (Julesz 1960) could easily be explained by the
model. The first serial version of this model I described in my
MIT lectures in 1969 and in Berlin, April 1970 (Julesz 1971a).
My book contains an entire chapter devoted to this model. Since
I showed that a model of stereopsis must be parallel (Julesz
1964), since a 2% unambiguous bias can pull an ambiguous RDS
into the biased state (whereas in a serial process attaining firsta
96% correlation instead of 100% would yield a good match, de
facto, stereopsis seeks 100% matches), we introduced a parallel
spring-coupled model (Julesz & Chang 1976). This parallel
model, with its neural implications, is further discussed for the
expert in the Handbook of Sensory Physiology (Julesz 1978a)
and for the intelligent layman in an American Scientist article
(Julesz 1974).

In essence, my spring-coupled-magnetic-dipole model is the
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generalization of the zipper (Julesz 1974). A left and right
magnetic dipole array (with adjacent magnets in each array
coupled by springs) glide over each other. The black and white
dots in the RDS polarize the corresponding magnetic dipoles in
two possible ways, and the spring coupling is switched on only
after polarization. The left and right dipole arrays have opposite
polarization, so when they slide above each other correlated
domains contain facing magnetic dipoles that become in-
terlocked. After such a “hyper-dipole” is formed, one can slide
the arrays farther away (in search of corresponding areas with
larger binocular disparities) without causing the already in-
terlocked hyper-dipoles to unlock. I regarded this “generalized
zipper” as a rather unique device. It permits us to search for
correlated areas in a 2-D manifold. After an adequately large
correlated area has been found, it will interlock, and resist
unlocking as we seek other matches with larger disparities by
sliding the dipole arrays (or deforming them). If by chance
sporadic patches interlock, they are usually small, and the
sliding of the arrays will exert tension through the springs that
will unlock the small interlocked patches (that constituted false
matches).

In the articles cited I give many illustrations of how the model
can easily account for the Fender—Julesz hysterésis effect, or for
the fusion of 15% expanded half-stereopairs. Particularly impor-
tant is the explanation of why the weakening of stereoscopic
local interaction reduces perceived global depth. For instance,
Frisby and Julesz (1975) demonstrated that random-line stereo-
grams in which the left and right corresponding line segments
(needles) were perpendicular to each other still gave global
depth percepts, but the perceived depth was much less than in
stereograms where the corresponding needles shared the same
orientation. Most models based on pools of disparity-tuned
neurons cannot account for such a reduction in perceived depth
as the local binocular interaction between corresponding ele-
ments decreases. For the spring-coupled-dipole model the
weakening force between the interlocked dipoles permits the
neighboring springs to turn the dipoles. And it is the turning of
interlocked dipoles (more precisely, the horizontal projection of
this turning) that corresponds to perceived depth.

Such examples and similar ones are given in the articles cited
to demonstrate the power of explanation achieved by the analog
dipole model. So far so good. But how can magnetic dipoles and
their rotations have neurological significance? This is also ex-
plained in the articles (Julesz 1974, 1978). One rotating in-
terlocked dipole corresponds to “reading out” the output of
different binocular disparity-tuned neurons that inspect the
same retinal locus, while the joint parallel rotation of many
adjacent interlocked dipoles corresponds to reading out the
output of pools of binocular disparity detectors tuned to the
same disparity, but inspecting many different retinal loci.

It is these two “hypercolumns” or “processing pools” that are

the two hyperunits of global stereopsis of RDS. Indeed, Gian

Poggio (1980) recently found in Area 17 layers IVB and IVC of
the behaving monkey cyclopean units that fire for dynamic RDS
(at 100 frames/sec rates) without any monocular density (con-
trast) difference, except binocular disparity.

Let me stress that I derived my dipole model deliberately, in
place of mathematical models (and to replace my less satisfactory
AUTOMAP model based on computer simulation). Originally, my
background was in applied mathematics, particularly in non-
linear oscillator theory, before my metamorphosis into a psy-
chologist. For years before this metamorphosis I was interested
in pulling the frequency of a powerful oscillator (magnetron) by a
much weaker one (klystron). Obviously, my first cooperative
model of stereopsis was formulated between coupled oscillator
arrays, where the frequency pulling between corresponding left
and right oscillator pairs had corresponded to the sensing of
depth at that locus. However, to my amazement, this rather
elegant model was not comprehensible either to the physicist or

to the psychologist. Only now, when “limit cycles,” “bifurca-
tions,” etc. are part of the physicist’s curriculam would such a
model have wider appeal.

So, for the “far-interaction” I decided to use magnetic dipoles
and for the “near-interaction” spring couplings. I found that
suddenly I could communicate with almost everyone who in
childhood had played with magnets and springs. I think I
succeeded in translating the complex phenomenology of global
stereopsis into a heuristically matched model, as attested by the
many references to this model by both physicists and psychol-
ogists. As a matter of fact, this model is one of the simplest
cooperative models known, simpler than Ising-models, since
the “order parameter” is just binocular matching between
already polarized left and right dipole arrays.

It is interesting to note that the cooperative model of stereop-
sis by Sperling (1970), which he developed independently from
my dipole model about the same time or slightly after, consists
of two parts: an “energy well” model in which convergence
movements of the eye distort the shape of the well enabling a
ball to roll down into the pit, or get caught in an earlier dip. This
global analog model is supplemented by aneural model, and the
correlation between the two models is not worked out in every
detail. Nevertheless, it is the “energy well” model of Sperling
that had the greater influence on brain research, while his
neural model is much less cited. Let me note that the Fender-
Julesz hysteresis effect, which occurs in the total absence of
convergence eye movements, has always been a difficult prob-
lem to reconcile with the Sperling model in which “vergence
energy” has a substantial role. Sperling himself wanted to know
about further reconfirmation of this hysteresis effect. This has
been reconfirmed by Diner (1978) in his Ph.D. thesis, in which
he used binocular retinal stabilization and found hysteresis both
for temporalward and nasal pulling (while Fender & Julesz 1967
used only temporalward disparities).

In summary, I wanted to stress that complex mathematical
ideas do not have to wait for sophisticated mathematical tools.
The conceptual models already existed years ago enabling re-
searchers to account for many complex perceptual phenomena,
at least qualitatively, and to predict a few new ones. That the
novel mathematical insights enable Grossberg to elucidate
global perceptual phenomena by neural computations is an
important step. Whether the quantitative tools are powerful
enough to predict novel global phenomena (experimentally not
yet observed) remains to be seen.

On the need for discipline in the
construction of psychological theories

Donald Laming

University of Cambridge, Department of Experimental Psychology,
Cambridge CB2 3EB, England

My comment is chiefly metatheoretic and is succinctly ex-
pressed by an analegy:

Imagine a large jigsaw puzzle, possibly a very large puzzle.
No one knows how large the puzzle is because some unknown
proportion of the pieces are missing — we can each of us think of
interesting and relevant experiments of which the outcomes are
not yet known. The picture which usually accompanies such a
puzzle is also missing — so that each person’s vision of what that
state of nature will ultimately prove to be is restricted to what he
can conjecture from assembling the available pieces. Gross-
berg’s target article presents his synthesis-of those pieces which
relate to visual perception.

There are two stages in such a synthesis that are, to varying
degrees, arbitrary. First, with a very large jigsaw puzzle it is a
useful strategy to gather pieces with some identifiable charac-
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teristics — green pieces, say, that might all be part of a tree ~ in
the hope that they all belong to the same region of the puzzle.
Even so here; different theorists make slightly different selec-
tions of experimental findings on which to ground their theories.
Second, unless the selected puzzle pieces actually interlock, it is
amatter of conjecture how they should be disposed with respect
to each other, and each theorist brings his own particular
intuitions to guide his conjectures. This much is apparent from
the number of theoretical essays and the variety of mathematical
formalisms which Grossberg lists in his opening paragraph.
~ Now, if one is able to gather a high proportion of the pieces
from some small region of the puzzle, there is little uncertainty
about how those pieces should be assembled. Such a situation is
identifiable in practice because the shape of the theory is, as it
were, forced by the experimental data, as is common in the
physical sciences. And the correct assembly of even a very small
part of the puzzle is a useful exercise, not least because it points
the way to crucial experiments that need to be carried out. But if
only a small proportion of the pieces is available, the manner of
their assembly will depend much more on prior intuitions about
what the state of nature looks like than on experimental evi-
dence. And the attempt to assemble those pieces may actually
be counterproductive; his prior intuitions may cause the theo-
rist to overlook other related pieces, or even to deny the
relevance of such pieces presented to him. No one knows that
proportion of relevant empirical findings is at present to hand in
the field of visual perception; that is a question about how much
more remains to be discovered and is, of necessity, a matter of
opinion. But, in view of the dangers of premature theorization —
the history of psychology is littered with it — I think we should
demand of any theoretical essay, such as Grossberg’s, a high
density of experimental evidence linked by a parsimonious set of
theoretical constructs. Grossberg’s article, to my mind, pres-
ents the contrary complexion.

Grossberg might reply, with some justification, that his work
here and elsewhere presents a detailed exploration of the
properties of cooperative and competitive networks and is
valuable, at the least, on that account. But why explore these
particular ideas? Well, the visual pathway is known to be
composed of discrete cell bodies interconnected by discrete
neural processes — naturally modelled as a network. Other
known physiological properties, such as “saturation,” are im-
posed on those networks and exploration proceeds within these
constraints. The search is on for those kinds of network, subject
to the chosen constraints, which best match the phenomena of
visual perception.

There are some hidden assumptions here which need to see
the light of day. First, even though visual perception is medi-
ated by an assemblage of neural units, each of which may be
modelled by a network, it is by no means necessary that
particular properties of those networks be germane to the
psychological process of perception. There are very large num-

bers of neural units involved and the phenomena of visual.

perception might depend rather on the behaviour of aggregates
of neural units in which, as in the Central Limit Theorem, the
idiosyncracies of the individuals are lost; the discrete nature of
the charge on an electron is of no consequence in electrical
engineering. Second, it is not necessary that all of the visual
pathway be essentially engaged in the mediation of perception
all of the time. For the most part visual perception is veridical,
suggesting a basically linear process, so the saturation of neural
units which Grossberg models as a sigmoid signal function
(Figure 14) may not be essentially to perception at all; it might,
instead, simply be a physiological device for suppressing the
contribution of certain units, allowing the perceptual process to
be carried by other units still operating within their linear
dynamic rariges. Third, there is a minor obsession with “the
filling-in dilemma,” as though visual perception consisted es-
sentially of the realization in the head of a morphologically
similar model of the physical world. This, I assert, is not
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necessary, and the filling-in dilemma is an artificial problem.

If I may be permitted to make a selection of pieces from the
jigsaw puzzle somewhat different from that favoured by
Grossberg, it can be shown that visual perception is differen-
tially coupled to the physical world (Laming 1973, pp. 145-150).
The crucial observation in this demonstration is that the psycho-
metric function for the detection of an increment AL added to a
continuous background L is approximately a normal integral
with respect to the square of AL (Leshowitz, Taub & Raab 1968;
Nachmias & Kocher 1970), so that the psychophysical discrimi-
nator must see a quantity proportional to (AL)2. Such a quantity
can be produced only if the increment be first stripped from the
background in the course of visual processing, and this means
differential coupling.

Now apply this insight to the perception of the Cornsweet
figure (Figure 5). Only changes in luminance are available as a
basis for perception. The abrupt transitions are easily per-
ceived, while the ramps present small gradual changes which
are made even smaller by square law processing and are sub-
merged in the background noise (an instance of “low-signal
suppression”; Swets 1961). So the observer perceives only the
abrupt changes in luminance and (presumably) cannot dis-
tinguish the Cornsweet figure from a similar figure with real
changes in luminance and no ramps. Of necessity (Figure 14[c])
the two figures look alike. If the sensory information available to
the observer from the Cornsweet figure be reflected outwards to
the physical level of description, traversing the processing
system in reverse direction, it will be found to correspond to the
similar figure with real changes in luminance; and this, I insist,
is a sufficient explanation of the phenomenon.
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Grossberg accomplished the modeling of these data by means
of a shunting competitive, or on-center off-surround, network of
neuron populations obeying the neuron membrane equations.
Various examples of such networks have been used in his models
and those of his coworkers (Ellias & Grossberg 1975; Grossberg
1973, 1976a, 1976c; Grossberg & Levine 1975; Levine &
Grossberg 1976) and related networks have appeared concur-
rently in the work of several other neural modelers such as
Sperling and Sondhi (1968), Wilson and Cowan (1972, 1973),
and Amari (1977). There were two primary reasons for introduc-
ing this class of networks, one neuroanatomical and the other
psychophysiological. The neuroanatomical reason was that simi-
lar networks have long been known to exist in both the horse-
shoe-crab eye and the vertebrate retina, and much evidence
points to their existence in the visual and somatosensory cor-
tices. The psychophysiological reason was that such networks
are efficacious for contrast enhancement and noise suppression.
In Grossberg’s terms, the feedback competitive dynamics with
shunting interactions overcome the noise-saturation dilemma:
how to prevent parts of the pattern with small intensity, or
network noise, from being amplified and flooding the network,
and differences between parts of the pattern with large intensity
from being blurred.

One of the two largest schools of thought about complex visual
processing emphasizes the detection of specific features, where-
as the other school emphasizes the perception of spatial fre-
quencies. Various attempts have been made to synthesize the
feature-detection and spatial-frequency emphases, and

Grossberg’s is one of the best such attempts. His papers from -

1973 to 1976, including his joint work with me and with Ellias,
stressed festure detection. Specifically, in much of this work,
the populations making up the network were columns in the
visual cortex, each sensitive to a given position or line orienta-
tion. How detectors of various features were chosen during
development, and thus how sensory codes were established,
was also considered.

In more recent work, including the present article, Grossberg
has indicated that the same set of networks can be utilized to
explain spatial frequency data as well. Specifically, a realistic on-
center off-surround anatomy will have interpopulation interac-
tions depending on distance, because the density of cell connec-
tions decreases in approximately a Gaussian manner with dis-
tance. The “on-center off-surround” property means that
inhibitory interactions have a wider spread than excitatory
interactions. Both of these spreads interact with the external
input to determine natural spatial scales of the network. Thus,
under certain conditions, a network’s response to a uniform
rectangular input can include spatially periodic patterns, analo-
gous to “phantoms” which are sometimes seen in real life.

Grossberg’s network provides insight into two questions that
are of concern to artificial intelligence theory as well as to
biology. The first question is, How does a network decide
whether two input patterns from different sources, such as from
the two eyes, match? Most artificial intelligence theories relate
matching or mismatching to a metric which measures the
absolute difference or squared difference between intensities of
two patterns at given locations and then sums these distances.
Such a metric performs its function but requires a separate
processor that is apart from the network. Grossberg shows that
matching or mismatching can arise out of the dynamics of the
competitive network: “A given cell can receive two different
inputs, yet these inputs may be part of perfectly matched
patterns, hence the cell activity is amplified. A given cell can
receive two identical inputs, yet these inputs may be part of
badly mismatched patterns, hence the cell activity is sup-
pressed” (Section 22). Such matching or mismatching is shown
to subserve binocular fusion or rivalry, and transitions from one
to another.

The other question is, How is edge proc_essin%;upplemented
by processing of the interiors of a pattern? A contrast-enhancing

network will tend to enhance edges and suppress locally uni-
form patterns. Yet if an edge is a boundary between light and
dark regions, the visual system needs to be able to tell which is
which. The functional spatial scales that arise from excitatory
and inhibitory spreads are shown to be a means for filling in the
space between edges.’

Grossberg suggests that functional scales lead to a “quantiza-
tion” (i.e., discretization) of perceived visual space. Perceived
length of an object is interpreted as a number of “quanta,” so
that any input changes, such as brightness or depth changes,
which affect the functional scales will also affect length judg-
ments. A variety of illusions where the same object appears to be
of different size in different contexts, such as the corridor and
Ponzo illusions, can also be explained in this manner. Grossberg
asks the question of how such quantization of space is compati-
ble with the fact that depth seems to change continuously, not in
jumps, as an object is moved toward the observer. A partial
answer is suggested in terms of energy balance but the question
is still an open one.

Grossberg’s paper is closer than any other I have read to a
comprehensive theory of vision. The middle sections. of the
article which review the structure developed earlier for the
contrast-enhancement network could be somewhat shorter for
better presentation of the many important new ideas contained
herein. Some aspects of visual processing are not discussed
here, such as interactions between different retinal and cortical
levels (except for monocular-binocular interactions); these
questions are partly covered by some of the earlier papers
referenced here and are partly still open ones. Grossberg's
overall theory poses a formidable challenge to both the experi-
mentalist and the theorist in visual psychophysiology. Anyone
possessing data on size, depth, and form perception should
investigate whether those data are accounted for by the theory
herein and, if a counterexample should be found, suggest an
alternative theory which accounts for as large a body of data as
Grossberg’s.

Failures of Grossberg’s theory to compute
depth, form, and lightness

Steven E. Poltrocka and Marilyn Shawab

2Bell Laboratories, Murray Hill, N.J. 07974; bRutgers University, New
Brunswick, N.J. 08903

Grossberg's theory lends itself to several interpretations that
differ in degree of theoretical importance. First, it can be
interpreted as Grossberg proposes it, as a theory of perceptual
experience. According to this interpretation, differentials in
neural activity, as described by shunting networks, exactly
define the percept. This position can be assailed simply by
finding situations in which the activity of the network fails to
match the percept. A weaker interpretation is to assume that
shunting networks describe an early stage of visual representa-
tion, providing a data base for further perceptual computation.
In this case, mismatches between network activity and percep-
tion can be attributed to later processes. A third and still weaker
interpretation is that shunting networks provide a mathematical
tool, similar to probability theory, that could be useful to the
psychological theorist. Grossberg’s analysis of shunting net-
works helps the investigator select a network with characteris-
tics to match specific functional theories of perception.

Our criticisms focus on the first, and strongest, of these
interpretations. Suppose, as Grossberg asserts, these computa-
tional systems provide a theory of experienced perception. Are
the requirements that we normally impose on a psychological
theory satisfied by the shunting networks? We expect a theory
to provide explanations of observed phenomena and predictions
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of the outcome of future research. Grossberg attempts to explain
perception of depth, length, lightness, and the interaction
among these domains. We raise questions about the ability of
the theory to account for critical phenomena in each perceptual
domain. Indeed, we suggest that, in some instances, his expla-
nations are inadequate for the phenomena he considers. Fur-
thermore, Grossberg fails to provide any clear predictions from
the theory. When a prediction is offered (for example, for
perception of phantoms), reasons why the prediction might fail
are advanced.

Perception of length. The theory stipulates that length is
coded as the number of excitatory peaks in a structural scale; this
code is called a functional scale. The peaks are generated by a
filling-in resonant exchange (FIRE) driven by the luminance in
the interior of an object. In general, any given object will be
represented by a different number of peaks in different struc-
tural scales. The perceived length of an object is determined by
the number of peaks in the most active structural scale, which is
determined by binocular matching. Thus in a monocular pre-
sentation length is ambiguous because self-matching prevents
the differential excitation of structural scales that is needed to
determine which functional scale is appropriate.

Tachistoscopic length. We now consider what appear to be
consequences of this theory of length perception. Consider how
the network would respond to binocular, tachistoscopic presen-
tation of a white line (or bar) on a black field. The binocular
presentation will insure that an appropriate scale is used to
measure length. The network will respond by sharpening the
edges of the line (or bar), then feedback will initiate the filling-in
process, thereby defining the interior. However, the offset of
the stimulus will remove the luminance required to drive the
filling-in process. Thus it seems that the observer should judge
the line (or bar) to be shorter (narrower) than the same stimulus
presented for longer duration. In addition, the stimulus will
appear dark in the center and brighter near its ends (edges).

While these predictions follow quite naturally from the theo-
ry, we would be surprised if they are confirmed by experimenta-
tion. Of course, before such an experiment could be conducted
we must have quantitative descriptions of temporal characteris-
tics of the FIRE, and we must know whether a mask is required to
quench the FIRE. To permit a rigorous test of the theory these
characteristics should be established on the basis of prior experi-
mentation and model fitting. At present the theory does not
appear to be described in sufficient detail to decide even the
form of the shunting network in advance.

Black-white asymmetry. As we understand the theory, an
asymmetry in the perception of dark and light stimuli is implied.
A vertical black bar presented on a white background cannot
generate a functional scale because the low luminance of the
black stimulus cannot drive the FIRE. Thus the observer lacks
any information about the width of a black stimulus. An observer
should be incapable of comparing the widths of black and white
stimuli, as the white stimulus will always have width defined by
the functional scale, but width will be undefined for the black
stimulus. If the theory truly requires such an asymmetry in
perception of black and white forms, then the theory is in-
correct. )

Perception of depth. The theory represents depth by the
relative activations of structural scales. Objects at greater dis-
tance are assumed to differentially activate fine scales, and near
objects activate coarse scales. The differential activation is a
result of binocular matches of disparate stimuli. Grossberg
argues that a primary advantage of his theory is its ability to
represent depth and the interaction of depth with length and
brightness. However, a theory that claims to account for percep-
tual experience must explain how both binocular and monocular
depth cues result in appropriate activation patterns.

In apparent contradiction, Grossberg claims that monocular
stimulu (1) self-match, thereby activating all structural scales
equally, and (2) contain texture information that causes differen-
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tial activation of structural scales similar to the patterns caused
by binocular matches. Unfortunately, we do not understand
how texture gradients supplant self-matching in the determina-
tion of scale activation. More generally, it is unclear how the
theory can accommodate the range of effective monocular cues
to depth. As a particular example, consider the profound effect
that interposition has on perception of depth. When placed in
conflict with binocular disparity, interposition typically domi-
nates the perception of depth (Schriever 1925). How can inter-
position differentially activate structural scales, overwhelming
the pattern induced by disparity?

Grossberg suggests that monocular illusions of size and depth,
such as the Ponzo illusion, result from activation patterns in the
structural scales that are equivalent to those produced by an
object in depth. The texture of the stimulus is presumed to be
computationally equivalent to the corresponding object. This
claim is vulnerable to both a logical and an empirical argument.
First, his principle of scale equivalence implies that the con-
verging lines in the Ponzo illusion should be experienced as
receding in depth. In fact, the depth is correctly perceived at
the same time that the length of the cross bars is misjudged.
Second, it has been observed that Zulu tribesmen, who lacked
experience with linear architecture, failed to perceive these
illusions (Deregowski 1973); This seems to pose a serious prob-
lem for the theory because it claims that the activation pattern
arises naturally from the computational processes required for
binocular vision. Therefore, these cultural differences should
not be observed.

Grossberg suggests that the theory can account for Gogel’s
(1956, 1965, 1970) observations that a monocularly viewed
object acquires the depth of the closest binocularly viewed
object. He explains that a FIRE spreads from the binocularly
viewed object to differentially excite the structural scales of the
monocularly viewed object. This explanation seems in conflict
with earlier arguments that object boundaries act as filling-in
boundaries to prevent the spread of FIre. Indeed, the activity
would have to spread through a black region separating the
objects, violating the requirement that luminance is required to
drive the resonance exchange.

Perception of brightness. The theory represents brightness by
the relative energy in a functional scale corresponding to an
object. Brightness constancy is explained as resulting from
normalization activity in a structural scale. Thus the theory
predicts, correctly, that stimulus brightness is judged relative to
other stimuli at the same depth. However, it is unclear how the
theory would account for certain findings regarding depth and
brightness.

First interposition is an effective means for determining
perceived depth and thus perceived lightness (Gilchrist 1977).
(Though Gilchrist distinguishes between brightness and light-
ness [shades of gray], Grossberg uses these terms interchange-
ably.) Furthermore, Hochberg and Beck (1954) showed that
perception of brightness depends on the perceived source of
illumination and angle of view of an object, and cannot be
explained by the pattern of retinal stimulation. An upright
trapezoid illuminated from above and viewed monocularly ap-
peared to be a dark, horizontal square until a stick was waved
behind it to establish its true orientation, and thus its bright-
ness. The retinal stimulation corresponding to the trapezoid was
unchanged, but the depth information provided by interposi-
tion of the trapezoid and the stick were sufficient to alter the
percept. Thus the theory must provide an explanation of how
interposition selects an appropriate scale. )

Conclusions. In attempting to evaluate the adequacy of shunt-
ing networks as a theory of perceptual experience we noted
several inconsistencies between the theory, as we understand
it, and perception of length, depth, and brightness. However,
we anticipate that the theory may be readily modified to account
for at least some of these phenomena. This adaptability of the
theory is attractive but poses a problem for the research psychol-
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ogist. Grossberg seems to avoid settling on a specific, testable
form of the network, relying on different shunting networks to
explain different perceptual phenomena. Thus the theory can-
not predict perception but is modified to match perception. We
wonder whether any perceptual experiences are excluded,
given the flexible way in which Grossberg adapts the mathemat-
ics of shunting networks.

Possibly there is no ready answer to how monocular cues such
as interposition, height in the picture plane, and aerial haze
modify structural scale activity to affect perception of depth.
Perhaps it is more appropriate to restrict the theory so that the
shunting networks compute an early stage of visual representa-
tion that differs from, but constrains, the perceptual experience.
Adopting this perspective might suggest reasonable limits on
the domain of perceptual phenomena to be explained by the
theory. Alternatively, Grossberg’s development of the mathe-
matics of shunting networks may prove most useful as a general
tool for the building of specific models.

W[EL
Robert Rosen B
Department of Physiology and Biophysics, Dalhousie University, Halifax,
N.S., Canada B3H 4H7

On non-quantum quantization

Most pioneering work in theoretical science has an essential
epistemological component, and it certainly has radical epis-
temological implications. This is clearly true of Grossberg’s
work, and at several levels. In these brief comments I shall
consider only one limited aspect: Why do the paradigms of
physies, which are supposed to be universal, prove to be of such
little use in dealing with integrative organic phenomena? In
particular, as Grossberg himself says, why should quantum
theory be so linear, while phenomena of self-organization are so
stubbornly nonlinear? Is there something essential missing from
the physics, or are we missing something in the biology?

There are a number of alternative approaches to quantum
theory, but they are all mathematically equivalent. Thus their
physical content is also identical. Tracing back from
Schrodinger’s original formulation, which is intuitively perhaps
the most transparent, we find that it has its roots in Hamilton’s
Principle, which is a form of Least Action law going back to
D’Alembert. In Hamilton’s formulation, we find an essential
restriction; although it can encompass systems for which the
impressed forces are time-dependent (i.e. nonconservative sys-
tems), it cannot encompass those for which these forces are not
gradients of some scalar potential. Likewise, the forces of
constraint on the system must be holonomic if Hamilton’s
Principle is to be valid. In other words, the apparatus of
quantum theory is valid only in situations entirely governed by
scalar potentials.

Physicists have been fortunate that such situations are com-
mon enough, and important enough, so that this limitation can
be ignored by them. Biologists are not so fortunate; the systems
with which they must deal essentially violate these basic re-
strictions. Moreover, biologists must concern themselves with
transients, and not just stationary or steady-state behavior.

Look, for example, at Grossberg’s basic dynamical equations
(1). Not only are they nonstationary (nonconservative), but they
cannot, even in principle, arise from the scalar potentials so dear
to physics. Indeed, in physical terms, such a system of first-
order dynamical equations would, in mechanics (either classical
or quantum) translate into a situation in which the system
possesses no degree of freedom (recall that an unconstrained
mechanical system with n generalized coordinates possesses n
degrees of freedom; such a system loses a degree of freedom
whenever a nonholonomic constraint is imposed on it). There-
fore, such a system is as far away from obeying Hamilton’s

Principle as it possibly can get. As such, it cannot possibly be
described by any formalism derived from quantum theory.

Seen in this light, Grossberg’s suggestion that the characteris-
tics of biological self-organization should be taken as fandamen-
tal is a challenging one. Could it be, for example, that the
familiar paradoxes of quantum theory, which have led many
thoughtful physicists, starting with Bohr, to deny that the
quantum-mechanical formalism has any single self-consistent
physical interpretation, arise because the interaction of a system
with a meter involves nonpotential forces, and thus violates the
conditions under which quantum mechanics itselfis valid? If so,
then the properties of biological meters, as in the visual system,
may enter in an essential way into the very heart of physics.
Studies like those of Grossberg, which bear precisely on these
points, will provide a basic conceptual prerequisite for dealing
with this matter, and physicists ignore such possibilities at their
peril.

Field of feature detectors or features
detected by a field?

Robert L. Savoy
The Rowiand Institute for Science, Inc., Cambridge, Mass. 02142

The author requests that his article “be viewed as a summary of
an ongoing research program, rather than as a completely tested
visual theory” (Section 18). In keeping with that request, I will
focus on several questions that the theory raises, my intent
being to highlight those aspects of the theory that seem to be the
most novel, the most surprising, and/or the most testable.
Given the range of topics that Grossberg touches on, and the
necessary brevity of the present commentary, I will only be able
to discuss a select group of such issues.

In Section 24 Grossberg says that “the noise suppression
property in the network (22) [feedforward, distant dependent
system] implies an edge detection and spatial frequency detec-
tion capability in addition to its pattern matching capability.” It
seems to me from the subsequent discussion that until the Dy,
and E,, are specified explicitly, this is largely equivalent to: It
responds to spatial nonuniformities. In the case of an edge, this
is a useful property . . . an edge is in some sense the canonical
(and most extreme, naturally occurring) spatial nonuniformity.
We want a system’s response to an edge to be particularly
strong. But why are spatial frequencies special?

The answer, in Grossberg’s model, is that the particular
choice of Dy, and E,, in a given network defines a “structural
scale” that can exhibit preferential spatial frequency response.
One could say that Grossberg (like other theorists) is postulating
a group of different spatial interactions to obtain different
frequency channels. This property is not inherent in Equation
22. Assuming various Dy, and E,, distributions, as in Figure 11,
is logically analogous to assuming various receptive field sizes of
center-surround cells.

But Grossberg's model, while getting a variety of spatial
scales by fiat, represents the activity of those scales in a com-
pletely different way than is envisioned in a feature detector
model. In fact, nothing short of the whole field of “cells” in
Grossberg’s network could be called a “feature detector” if the
feature being considered is an oriented bar. :

The idea is that, in the usual, hierarchical feature detector
conceptualization, center-surround cells (one class of feature
detector) are used to build up the “simple” cells of oriented line
detectors (another class of feature detectors). This conceptual-
ization has both advantages and disadvantages, which will be
compared with those of Grossberg’s model in a moment.

Grossberg’s system could be said to have “center-surround”
feature detectors based on the choice of the D, and E;, as in
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Figure 11. But subsequent detection of features such as a bar is
due to the behavior of the field as a whole; it is not channeled
through a single “higher” feature analyzer. Grossberg correctly
observes that in such a system, “features” are not the appropri-
ate unit of analysis. The behavior of the model is inherently too
global for that.

What are the consequences of these distinctive approaches?
In the case of Grossberg’s field, there is the immediate potential
for explaining many facts about perception that are inextricably
global. “Filling-in” phenomena are, perhaps, the most intrigu-
ing, i.e., the filling-in of depth planes discussed by Grossberg
here, but also pattern completion and illusory motion effects
discussed elsewhere. Other global phenomena include light-
ness, complex random dot stereograms, and sensitivity to many
cycles of a grating pattern. While it may be possible in yet higher
stages of a “feature detector” model to incorporate such global
effects, Grossberg is attacking them directly at 2 more immedi-
ate level.

On the other hand, some appealing aspects of the “feature
detector” view are lost. For instance, in adaptation to a spatial
frequency grating, the fact of its one-dimensional character is a
priori arbitrary, but shows up in the cortical physiology. Thus,
while one might not have predicted frequency-specific adapta-
tion on a priori grounds, the knowledge of fatigue in neurons
plus the finding of simple and complex receptive field cells make
a nice, concise story. It is the studies of orientation-specific
frequency adaptation more than any other single psychological
experiment that suggest that grating patterns are tapping into
something that is physiologically “real” in the system.

Note that grating patterns are special in terms of Grossberg’s
model as well, but for different reasons. They are not special
because the linear orientation taps into a field of linear feature
detectors repeatedly, but rather because the periodicity at a
fixed frequency repeatedly excites one particular field of center-
surround cells. Furthermore, when the long-distance interac-
tion made possible by the “filling-in” mechanisms is added to
the system, a kind of positive feedback based on the match
between physical periodic stimulus and the underlying struc-
tural scale (D, and E,,) can arise. This could lead to a global
fatigue of that spatial scale system.

So, a-grating (in contrast to a single bar) is a special stimulus
for both systems, but for different reasons. For a field of feature
detectors, it is because a grating is many copies of the right
feature — the fact that it is periodic is something of a coincidence.
(Note that some people would argue that higher feature detec-
tors want more than a single bar — but the argument can still
hold.) In Grossberg’s model it is the spatial periodicity that is
fundamental. '

It seems to me, assuming the above interpretation of the
models is correct, that this distinction has considerable predic-
tive import. For example, radially periodic (circular annuli)
stimuli might resonate with Grossberg’s structural scales, but
would not consistently excite a given class (frequency and
orientation) of linear feature detectors. Checkerboard patterns
(or checkerboard arrays of variously oriented gratings) might
also distinguish the two.

A different sort of question, primarily quantitative, is raised
by the “pattern matching” properties of the purely feedforward
system (Grossberg’s Equation 1, Section 21). Consider the sum
of two patterns that have no spatial overlap . . . that is, each
pattern is zero where the other one is positive. Equation (1) says
that, in all cases, the peak response to the sum of such stimuli
will be less than the maximum peak response for either of the
individual stimuli presented alone, to wit, “the sum of mis-
matched input patterns from two separate input sources will be
inhibited by network (1). This is because the mismatched peaks
and troughs of the two input patterns will add to yield an almost
uniform total input pattern, which will be quenched by the
noise suppression property.” [Section 22, emphasis added.]
What is meant, quantitatively, by “almost uniform”? Consider,
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for concreteness, a square wave grating of frequency f, as the
first stimulus. If the second stimulus were another square wave
grating of frequency f, but of opposite phase, the sum of the two
would be exactly uniform, and Grossberg’s network (1) would
attenuate such a stimulus drastically, as desired. But now make
the second stimulus a rectangle grating offrequency f, but with a
duty cycle much less than one-half. Fthis stimulus is added in a
phase such that the narrow “on” regions are centered in the
broad “off” regions of the first stimulus, how much should the
sum be attenuated? A little attenuation by total energy normal-
ization is probably okay, but irrelevant. The key issue is, When
is a sum of two patterns “almost uniform” enough to
be quenched to zero by noise suppression? This quantitative
question is crucial in Grossberg’s subsequent model of binocular
cooperativity (Figure 18) because the first stage is a strictly
feedforward network. This stage is subsequently used to control
rivalry or positive feedback for fusion. In short, the quantitative
details of pattern matching for interesting stimuli are crucial for
the success of Grossberg’s approach.

Note that more elaborate systems (e.g., the feedback network
of Equation 27) allow for (realtime?) modulation of the “quench-
ing threshold.” It seems to me that this feature could be helpful
in explaining the subjective experience of unconscious search-
ing to find a stereoscopic match, e.g., in looking at complex
random dot stereograms, where, at first, nothing but a confusion
is seen, but then slowly, often over a period of 20~40 seconds, a
region of stereoscopic fusion appears and then spreads to the
rest of the field.

Finally, let me mention a few questions about the quantized
geometry of responses. Grossberg argues that one of the prob-
lems of Sperling-Dev models is that it is wrong to quantize the
activity of sheets of depth planes in an all-or-none manner. If
such were true, we would see discrete jumps in depth. Yet
Grossberg quantizes, through FIRE-created periodicities, re-
sponses that seem to correspond to a variety of phenomena
(length, lightness) whose quantal jumps we would surely notice.
Grossberg addresses this issue to some extent, but I'll remain
equally skeptical of either kind of underlying quantization until
it can be demonstrated visually. Grossberg suggests ways to look
for such things, although warning that the effects will be weak.

Viewing the issues of pattern matching, quantization, and
global feature analysis as a whole, in the specific context of vision
and stereopsis, I suppose my main concern is more an intuitive
one than a principled theoretical one. I worry that there is a
mismatch between the very robust, continuously variable sub-
jective impressions of visual sensations and what appear to be
rather triggerlike quantum transformations, some based on
thresholds or quenching, in Grossberg’s model here. Quantita-
tive correlation to experimental studies is one way to address
this concern. Fortunately, in Grossberg’s present paper, much
of the modeling is closer to testable psychophysics than is
presently the case in some of his other work. Indeed, Grossberg
suggests several tests himself, and I have perhaps indicated a
few more. I hope this will lead to detailed, quantitative connec-
tions between constructs in the model and the variety of light-
ness, depth, and size effects that Grossberg discusses, as part of
his ongoing work.

In closing, let me add that, as usual, studying a paper by
Grossberg brings unique rewards. He judiciously selects a small
number out of the myriad of psychological effects available and
pushes these, theoretically, as far as he can. His data summaries
focus attention on theoretically relevant portions of findings.
This alone often illuminates a muddied field of investigation.
Furthermore, it has been my experience, even in'cases when I
would summarize the data differently, or when I would choose
different data to study, and even when I'm not convinced by a
particular aspect of the model, that following Grossberg’s analy-
sis is invariably good exercise for any modeler’s brain. It has
often supplied me with conceptual tools for thinking about brain
models that I have seen nowhere else.
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False dilemmas: Confusion between
mechanism and computation

Kent A Stevens

Department of Computer and Information Science, University of Oregon,
Eugene, Ore. 97403

Grossberg motivates his theoretical stance largely by posing
“dilemmas” that certain alternative theories cannot explain, but
that his can. The dilemmas, however, derive mostly from
misunderstandings or misrepresentations of those alternative
theories. My comments on this will lead into a more substantial
issue: the restricted explanatory power of Grossberg’s theoreti-
cal ideas.

First consider Grossberg’s indictment of the edge detection
theory of Marr and Hildreth (1980): “Because their theory is
linear, it cannot tell us how to estimate the lightness of objects,
and because their theory is feedforward, it cannot say how
apparent depth can influence the apparent size and lightness
patterns of monocular patterns.” Grossberg sees the inability of
their theory to account for lightness and depth phenomena as an
insurmourntable dilemma. For there to be a dilemma, of course,
these phenomena must be integral to edge detection, therefore
requiring an explanation by any proposed theory of edge detec-
tion. But Marr and Hildreth believe otherwise; their theory is
cast within a computational framework (Marr 1976, 1977) which
assumes a sense of modularity in visual processing (discussed
momentarily), Hence we find Grossberg criticizing a theory for
not accounting for phenomena that its authors regard as beyond
its scope.

In much the same vein, Grossberg claims that the Marr and
Poggio (1979) stereopsis theory is similarly flawed. This theory is
condemned for its inability to account for: effects of perceived
depth on perceived size and lightness (e.g. Emmert’s law,
Gogel’s equidistance tendency, the Gilchrist effect), surface
interpolation (the “filling in” of a smooth surface between sparse
loci where stereo disparity is known), the perception of planarity
and rigidity, and other spatial phenomena. Most of the dilem-
mas hinge on Grossberg’s incorrect claim that Marr and Poggio’s
(1979) theory of human stereopsis is an attempt to account for
depth perception from binocular vision; in fact it concerns the
computation of stereo disparity. Curiously, while Grossberg
points out the fallacies that come from confusing disparity with
distance (Section 14), he then cites Marr and Poggio and others
for elucidating the distinction between disparity and distance
(Section 18).

Grossberg, referring to Marr and Poggio (1979), concludes
that “all global filling-in and figure ground effects hereby be-
come inexplicable in their theory.” But again, those effects are
beyond the scope of a theory of disparity computation. More-
over, it is not as if Marr and Poggio have no theoretical account
for filling-in (surface interpolation). Marr [1978] provides a
concrete computational framework for the representation of
visible surfaces and for the processes that integrate 3-D informa-
tion from different sources (e.g., stereopsis, motion, shading,
and texture gradients). In the proposed representation, both
distance and surface orientation are made explicit (with inter-
polation across smooth regions) and discontinuities in either
distance or surface orientation are also explicitly marked. Phe-
nomena such as Emmert’s and Gogel's seem more appropriately
attributed to processes operating on such a 3-D representation
than to stereopsis. Grossberg should also study the computa-
tional theory of surface interpolation that Grimson (1981) has
developed and implemented in conjunction with the Marr-
Poggio stereo matching algorithm.

Let us turn now to the modularity hypothesis. Marr, along
with many others, expects that distinctly different information
processing problems (e.g., edge detection, stereopsis, light-
ness, motion detection, surface color) have essentially indepen-
dent solutions (Marr 1976, 1977) and for that reason, are amena-

ble to separate study, at least initially. Of course that hypothesis
might be wrong - the modularity we see might be wishful
thinking ~ in which case to understand any one aspect of vision
seemingly would require understanding every other aspect. But
then, the success of recent computational theories is very
promising and suggests otherwise.

It should go without saying that the principle of modularity is
rather subtle. For instance, it does not imply strict physical
separability at the level of neural mechanisms. Roughly, it
means that independent visual information, such as color and
motion, are treated as independent by the visual system, de-
spite the fact that the percepts derive from neural processes that
share many common mechanisms and pathways. Some interac-
tion phenomena, such as color-contingent motion aftereffects,
are attributed to limitations of the neural mechanisms to pro-
cess-independent types of visual information completely inde-
pendently. Other interactions, such as between apparent size
and distance (Emmert’s law), or between distance and proximity
(Gogel’s equidistance tendency), or between lightness and sur-
face orientation (Gilchrist) are functional, and reveal the visual
system’s ability to reason about space, illumination, and
reflectance.

Grossberg does not seem to make any such distinctions, nor
does he differentiate between a theory of information processing
and a theory of the neural mechanisms that implement a pro-
cess. What one finds, instead, is an explanation of visual phe-
nomena directly in terms of feedback networks of neurons.

Vision certainly involves feedback of various sorts, such as
light and dark adaptation, the control of vergence movements
during stereopsis, and the influence of object recognition on
perceived figure—ground. Where the information being fed
back is simple (e.g., may be characterized as a single continuous
variable, as might be the case with light adaptation), an explana-
tion of the feedback mechanism might suffice. However, as
Marr and Poggio (1977) eloquently argue, complex information
processing requires satisfactory descriptions at several levels, of
which a mechanism description is but one. They distinguish the
computational theory (What is the goal of the computation, why
is it appropriate, and what is the logic of the strategy by which it
can be carried out?), the level of representation and algorithm
(What is the representation for the input and output, and what is
the algorithm for the transformation?) and the level of imple-
mentation (How can the representation and algorithm be real-
ized physically?).

Grossberg’s descriptions of visual computations, unfortunate-
ly, are primarily at the level of mechanism, of patterns of neural
activity within networks. There is no notion, for instance, of
symbolic information processing. For those of us interested in
understanding vision, the real problems seem to lie here.

Adaptive resonance theory: Problems with
prediction

Mark Wagner

Psychology Department, York University, Downsview, Ontario, Canada
M3J 1P3

Grossberg’s theory is quite impressive. Only someone with a
broad theoretic vision, a keen mind, and a large amount of
intellectual courage could produce a theory of such breadth and
sophistication. In particular, Grossberg’s attempt to relate phe-
nomena at higher levels of scale (such as subjective contours) to
phenomena at lower levels of scale (such as receptive fields) is
laudable. Some of the greatest recent advances in physics
involve a renormalization process (somewhat like Grossberg’s)
in which lower-level phenomena are summarized to yield phe-
nomena at higher levels of scale. Psychobiology (whose object of
study is the complex pattern of neuronal firing as it relates to
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higher-order perceptions) is a natural place to apply such renor-
malization procedures. '

Several objections need to be met before adaptive resonance
theory can be accepted as the theory of visual perception,
however. First of all, I do not feel that Grossberg’s theory can
truly be said to unify all of the many visual models mentioned in
the introduction into an integrated visual theory, as the author
suggests. Many of these theories are designed to address aspects
of visual perception to which Grossberg’s theory is inapplicable.
For instance, I doubt that the precise localization of points in
visual space entailed by the hyperbolic geometry of Blank (1978)
and Luneburg (1947) can be derived from Grossberg's formula-
tion. Adaptive resonance theory may possess wide application,
but it is not all-inclusive.

Second, the form of the theory is perhaps too general. The
theory could “predict” any number of alternate sets of empirical
findings. For example, the model could predict either noise
suppression or noise enhancement. Suitable parameter values
are chosen after the fact to produce noise suppression. The
model could predict either signal noise suppression or signal
noise enhancement. A specific form of the positive feedback
function f{w) is chosen to produce signal noise suppression. The
same pattern occurs throughout the paper. As the mathematics
grows to fit new phenomena, the overly general model is
constrained (somewhat arbitrarily) to conform to what is already
known. This flaw is not fatal provided that once all constraints
are specified, the model can still make further predictions of
empirically testable phenomena.

Third, in an attempt to predict such additional phenomena,
Grossberg sometimes incorrectly reinterprets the meaning of
certain perceptual laws in order to make them fit the model.
Two examples may clarify this point.

a) The derivation of Weber's law (found in Section 23) does not
really produce Weber's law. As the problem is set in Equation
10, the total input I is equivalent to uniform background lumi-
nance and Al is a particular stimulus added to this field. The
“Weber's law” derived is thus the absolute threshold for stim-
ulus detection above background luminance. Weber’s law, as it
is generally used, refers to the amount of additional stimulation
needed to detect a just noticeable difference in a suprathreshold
stimulus. That is, instead of saying that I, = K + Al (the
background luminance plus some additional luminance at a
particular point), the equation should read I, = K + i + Al
(where i is a suprathreshold stimulus impinging on v,). The total
input before Al is applied to I} is I = nK + i. Following
essentially the same argument as Grossberg, 1 find that (i +
AD/(I + AI) = constant, which is not at all like Weber's law.
(Essentially, I just substituted i + Al for Al in the equations). An
alternate interpretation of Weber's law would be to say that T as a
whole is the stimulus. In this case Al should increment I as a
whole (i.e., I, = I,= . . . =1, = K + Al). This formulation will
not produce Weber’s law either.

b) The derivation of hysteresis (found in Section 34) is also not
correct. Hysteresis commonly refers to the tendency for a
perception to persist once established. A stimulus which nor-
mally would not produce a certain percept if presented immedi-
ately produces the percept when the stimulus is gradually
approached from another stimulus which does produce the
percept. In Grossberg's theory, a large number of physical
lengths will produce the same perceived size. Any stimulus
from length L to length L + w A L will produce M, disinhibitory
peaks and thus the same size estimate. Whether L + w A L is
approached gradually from L or is presented directly does not
matter. The same number of peaks will be produced, and thus
the same size estimate will be made. If anything, Grossberg's
formulation argues against hysteresis.

Finally, Grossberg’s theory makes several startling predic-
tions for phenomena which have not been extensively investi-
gated (e.g., ghost images, luminance-depth interactions, a lag
between filling-in and the construction of contours, etc.). The
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ultimate acceptability of Grossberg’s theory rests on whether or
not these and other predictions can be born out in subsequent
empirical investigation.

Author’s Response

Interdisciplinary aspects of perceptual
dynamics

Stephen Grossberg

Center for Adaptive Systems, Department of Mathematics, Boston
University, Boston, Mass. 02215

Before replying to the interesting specific issues raised by
the commentators, I will set the stage with some general
remarks.

1. Fourier analysis as a perceptual representation. My
theory attempts to provide a unified framework for phys-
ically understanding at least three types of data and
theory that were heretofore separate: Fourier theory of
pattern perception, edge and local feature extraction
theories, and cooperative theories of depth perception.

The Fourier theory is of special importance for under-
standing my target article. For simplicity, consider a
function flx) of a single spatial variable x. Its Fourier
representation .

76) = [atyoostm) + bokinteldy (0

expresses f(x) as a sum of cosines cos (xy) and sines
sin(xy) of different frequencies y weighted by frequency-
dependent amplitudes '

aty) =1 " frarostym)ds ®

and

by =2

Such a decomposition shows how a function f{x) whose
mass is localized 'in a small region of x-space can be
represented as a superposition of spatially periodic func-
tions with different spatial frequencies and amplitudes.
The spatially periodic functions oscillate at values of x that
can extend far beyond the region of x-space where flx) #
0. The many successes of the Fourier approach is generat-
ing and interpreting perceptual experiments are by now
well known. :

Difficulties of interpretation arise when one views the
Fourier approach as a physical theory wherein a Fourier-
analyzed input pattern is represented by periodic pertur-
bations within a perceptual space. Such a representation
is implicit in the manner that Fourier theory is used to
analyze an input scene before resynthesizing the scene
into a percept from suitably weighted spatially periodic
functions. Such a representation is also explicitly sug-
gested by various data, such as the forward masking
experiments of Weisstein et al. (1977). In these experi-
ments, dots or oriented bars are used to mask later bulls-



eye or oriented grating patterns. Even a dot that is 0.17°
in diameter can mask a complete 5° bulls-eye, not just the
bulls-eye center. In another version of this experiment, a
vertical bar mask is followed with a 1.5° circular patch of
vertical grating whose position with respect to the bar is
varied. Pattern-specific masking occurs at spatial separa-
tions as great as 4.25°. Thus the grating is masked even
when no spatial overlap occurs between the mask and the
target. Weisstein and Harris (1980) provide an elegant
review of these and related results.

Such findings raise various basic issues. If a small spot
can influence a region 5° or larger in a frequency-specific
way then why don’t we see this influence of the spot while
it is on? Why does the spot’s surround look spatially
homogeneous? The Fourier theory provides a simple
rationale: The spot selectively desensitizes Fourier com-
ponents in the surround, but the sum of these compo-
nents is spatially uniform. When a bulls-eye later probes
some of these desensitized components, its threshold
contrast is raised. '

Given these appealing formal conclusions, one needs to
ask how frequency-specific, spatially periodic reactions to
an aperiodic input pattern are physically generated. One
approach is to look for neurons whose receptive fields
have many periodic sidebands that are sensitive to at least
5° of visual space. Where such cells are synthesized
entirely by bottom-up or top-down influences (Weisstein
1980), I find it hard to reconcile their broad spatial scale
with the existence of sharp perceptual boundaries. In-
stead, I have suggested that matched informative visual
features can trigger multiple-scale filling-in reactions that
are spatially contained by filling-in barriers. This ap-
proach does not require that individual receptive fields
exist with 5° multiple periodic sidebands, and it shows
how a broad region can be filled-in that has sharp percep-
tual boundaries. Because the matching processes under-
lying filling-in include binocular edge matches among
multiple structural scales, relationships between per-
ceived depth and the existence of phantom contours
(Weisstein & Maguire 1978) and between the perception
of an illusory grating and its ability to mask a real grating
(Weisstein, Matthews & Berbaum, 1974) become
qualitatively more understandable.

Some commentators asked why my filling-in patterns
are not more easily visible (Arend, Foley, Savoy). One
answer is: For the same reason that you cannot easily see
the periodic components in the Fourier theory. In this
respect the two theories, as representations of perceptual
space, stand or fall together.

Other aspects of the two theories differ markedly.
Instead of sines and cosines in (2) and (3), the kernel that I
use derives from equation (23) in Part II. Equation (23)
correlates the (preprocessed) input pattern with a weight-
ed difference-of-Gaussian kernel. Changing the struc-
tural scales in (23) changes the amplitude of the resultant
“edge.” Such edge estimates generate a functional scale
via a FIRE based upon the same structural scales that
determine the edge amplitude. A relationship between
the spatial frequency and the amplitude of a functional
scale thus obtains because both are mediated by the same
structural scales. Analogously, the relationship between
the spatial frequency y in equation (1) and the amplitude
aly) in equation (2) is mediated by the same function
cos(y-). Spatial periodicity, however, is no longer a struc-
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tural property. It is a coherent dynamic property that is
initiated by edge-matches.

2. Evaluating a real-time perceptual theory. Several com-
mentators made remarks that raise questions concerning
the proper approach to evaluating any real-time percep-
tual processing theory, not only my own. Because such
theories are not common in psychology, I will summarize
the framework in which my theory has been growing
before turning to specific issues.

My theory was born in 1958 out of an effort to under-
stand data about human and animal learning. Every stage
of the theory has been derived from psychological postu-
lates concerning the adaptive self-organization of indi-
vidual behavior in response to environmental pressures
(Grossberg 1982e). The entire theory thus rests upon a
psychological foundation. The fact that its computational
structures always look like neural networks says some-
thing important about the relevance of adaptive con-
straints on individual behavior to the evolutionary design
of neural mechanisms.

By analyzing general environmental pressures to which
a_behaving organism needs to adapt, the theory has
identified a small number of general psychological princi-
ples that have been used to derive its formal dynamical
laws. The generality of these environmental pressures
helps to explain why the same dynamical laws have been
helpful in explaining data about many different types of
behavior. A parsimonious synthesis of a huge data base is
already published in the literature. This synthesis has not
been readily assimilated by most investigators because of
its interdisciplinary use of psychological, physiological,
and mathematical tools.

Through the analysis of adaptive interactions between a
behaving organism and specialized properties of its en-
vironment, special-purpose processors capable of sup-
porting these interactions have been derived. The mini-
mal network is sought, both to express an atrophy-due-to-
disuse hypothesis and to justify every computational
detail of the processor. Using this “method of minimal
anatomies,” a network is expanded only when it becomes
clear how and why it fails to computationally support an
important environmental constraint. Then the minimal
network is embedded into a new network that is minimal
with respect to a richer environment. This procedure
suggested the name embedding field theory for this ap-
proach in 1959-60. I still like the name.

From a neural viewpoint, the existence of a small
number of dynamical laws corresponds to electrical and
chemical properties shared across neural subsystems.
The existence of special-purpose networks corresponds to
the functional heterogeneity of neural subsystems, in-
cluding the proper juxtaposition of anatomical connec-
tions, electrical signaling rules, chemical transmitters,
and the like. Obviously it is far more difficult to synthe-
size an explicit minimal network for a complex body of
psychological data than it is to identify the qualitative
processes that must enter such a network. Thus in testing
a processing theory, it is crucial to distinguish whether
data support or contradict aspects of a particular minimal
network — notably a qualitative property computed by
the network — or the dynamical laws themselves.

From this perspective, Part I of the target article
summarizes some of my reasons for believing that a new
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qualitative property was needed to deal with certain
perceptual data. Part IT describes a new minimal network
wherein this property is computed using known dynam-
ical laws that have elsewhere been derived behaviorally.
Part II also indicates by its remarks about hypercolumns
and dipole fields (Section 43) that this minimal network is
known to be too minimal to compute all the perceptual
phenomena related to depth, lightness, and form that one
might desire. The minimal network is necessary, I claim,
but not sufficient to achieve this goal. Nonetheless, the
explicit meaning and design of the network and the
restricted manner in which it can be embedded in known
dipole field structure creates a strong teleological pres-
sure for expanding the network when it is confronted by
more perceptual data. Because of this fact, the filling-in
notion that has emerged within my framework has al-
ready opened new paths to rapid progress, as the next
section of this response will illustrate.

3. Brightness perception, filling-in barriers, and stabilized
images.Issues about brightness perception are raised by
Arend, Coren, and Laming. I will suggest an explanation
of their data that illustrates how a properly designed
minimal network exerts constraints on its own embed-
ding into a richer computational structure.

Figure 18 of Part II of the target article says little about
how the input pattern is preprocessed. The same argu-
ments that suggest frequency-specific edges as a basis for
binocular matching also suggest that the edges corre-
sponding to each structural scale parse the monocular
input patterns into frequency-specific monocular bright-
ness domains. Figure 1 of the Response depicts such a
network. In Figure la, each monocular input pattern
bifurcates into a specific branch (edge processor) and a
nonspecific branch (brightness processor). Such a bifurca-
tion is a general design feature of my theory (Grossberg
1970a, 1971a, 19723, 1972b, 1975, 1978e, 1980b). The off-
edges send topographically organized inhibitory signals
from the edge processor to the brightness processor.
These signals generate monocular barriers to the lateral
diffusion of input activity that occurs in the brightness
processor. The inhibitory signals accomplish this by act-
ing as inhibitory shunts of the boundaries that exist
between adjacent cellular compartments (Figure 1b).
Both the input pattern and the edges send inputs to the
compartments. Michael Cohen and I (Cohen & Gross-
berg 1983b) are now using these ideas, notably the con-
cept that off-edges are inhibitory inputs as well as bound-
ary signals, to explain brightness data of such workers as
Bergstrom (1966, 1967a, 1967b, 1973), Hamada (1980),
Levelt (1965), Sakata (1981), and Von Békésy (1968). The
brightness processor in Response Figure 1a interacts with
the binocular filling-in mechanism just as in Part II of the
target article.

Gerrits and his colleagues have summarized clinical
and experimental evidence that support this expanded
interpretation of the interaction between edges, bright-
ness, and filling-in. Gerrits and Timmerman (1969) found
that when a visual stimulus entirely surrounds a retinal
scotoma, patients report that filling-in occurs very
rapidly, and that offset of the stimulus rapidly elicits a
perception of darkness. By contrast, Gerrits et al. (1966)
found that when a black disk (or an artificial scotoma) was
fixed on the eyeball, it took several seconds for a sur-
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Figure 1. Modulation of perceived brightness by edges and
resonant matching. (a) A monocular input pattern sends signals
both to a brightness processor and to an edge processor. Fre-
quency-specific off-edges define the boundaries of brightness
domains which laterally average the input pattern and the edge
input within each domain. On-edges that match in the binocular
matching field can lift these brightness estimates into the per-
ceptual domain via a FIRE. (b) A blow-up of the compartments
comprising a brightness processor. Off-edge inputs determine
whether activity can flow across the boundaries of a cellular
compartment to form a single brightness domain from a series of
such compartments.

rounding stimulus to fill-in the disk. When the light was
switched off, the field outside the patch immediately
looked dark but it took several seconds for the filled-in
percept to vanish. Gerrits and Vendrick (1970b) analyzed
the difference between the filling-in times of real and
artificial scotomas in terms of the nonexistence of edge
barriers to filling-in around a real scotoma. The long time
needed for the filled-in percept to vanish when it is
protected from stimulus reset by bounding edges sug-
gests that a feedback process maintains the filling-in
percept. If a feedforward process with a slow decay rate
maintained the filled-in percept, then the percept should
also decay slowly when the stimulus is shut off around a
real scotoma. Instead the percept rapidly vanishes. [See
also Campion et al: “Is Blindsight an Effect of Scattered
Light, Spared Cortex and Near-Threshold Vision” BBS
6(3) 1983.]

Gerrits and Vendrick (1970b) also point out that in a
stabilized image experiment contours disappear before
brightness fades, and that spreading of brightness or
darkness takes place as soon as the contours disappear. In
the light of this familiar result, I am not sure how to
interpret Foster’s claim that he knows no evidence indi-



cating that “the level of activity generated for a spatially
uniform and therefore edgeless field should be much less
than that for a large but bounded field.”

The rules depicted by Figure 1 (Response) embody a
“domain-of-integration” effect such that “the integral
must not extend over the edges,” and there are “limits to
the domain of interactions even within the same depth
plane,” to use Arend’s expressions. The perceived bright-
nesses of the luminance profiles in Arend’s figure have a
simple qualitative explanation in this framework. For
example, in the multiple scallop of his figure (f), the off-
edges create boundaries to filling-in and lower the aver-
age activation level within their brightness domain.
Hence aseries of increasing steps is generated with rather
sharp boundaries. Coren’s interesting figure involves
both changes of spatial scale and number of peaks be-
tween his luminance profiles (a) and (c). I am not sure
from his description of the patterns whetheér or not the
fact that the five-peaked pattern is averaged by a different

set of brightness domains than the two-peaked pattern is °

sufficient to explain his data. In our brightness theory, a
change of scale accompanied by an increase in the num-
ber of peaks does flatten the percept. Laming desires that
“the increment be first stripped from the background.”
This demand is met in (Response) Figure 1. Despite
Laming’s remark that “this, I insist, is a sufficient expla-
nation of the phenomenon,” his model does not meet any
of the data of Gerrits and his colleagues, nor, it would
seem, does it fit most of the data of Arend and Coren.

The reader who values parsimony might now ask: Why
do you need edge-driven resonant filling-in if you already
have edge-bounded brightness domains? One answer is
the following. A binocular mismatch of edges may sup-
press an edge and thereby prevent it from bounding a
monocular brightness domain, but it does not suppress
the activity of the brightness domain that is initiated by
the input pattern. To achieve binocular selection of spa-
tial scales and its stepchild, binocular rivalry, one still
needs to prevent the perception of activities that repre-
sent mismatched data.

4. Dipole fields: Adaptation level, habituation, normaliza-
tion, adaptive filtering, and the McCullough effect. The
issue that Weber's law can be explained by an intracellu-
lar chemical process whereby light-energy is transformed
into electrical activity is raised by Buffart. Wagner claims
that I derived a Weber law under the wrong physical
hypotheses. Freeman discusses a “surge of activity that
long outlasts the transient [input] and attenuates the
transmission of receptor input to the bulb. The agent of
attenuation . . . probably involves the release, ac-
cumulation, and slow clearance of a substance such as
potassium . . . the degree of attenuation depends on the
induced transneuronal activity.” Freeman also makes
other interesting remarks about his measurements of
normalization properties, shunting interactions, supra-
quenching-threshold switching, and standing wave
FIREs. Dalenoort mentions the relevance of synaptic
modification to learned changes in interaction strengths.
Levine and Savoy remark about the reality of feature
detectors. Julesz discusses cooperative and hysteretic
effects of spring-coupled-magnetic-dipoles. Indow men-
tions the Hurvich and Jameson (1955) opponent process
model for color vision. Bridgman discusses how difficult
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it is to explain the McCullough effect because of its
persistence and feature specificity.

Dipole fields have all of these properties. None of the
other approaches listed by these commentators, except
possibly Freeman’s, can make the same claim. Dipole
fields thus constitute a processing design wherein pro-
cessing insights of many other theories can be ra-
tionalized and generalized. This conclusion does not deny
the utility of other approaches. Rather it suggests how
dipole field properties can unify specialized models and
can clarify processes that are lumped together or not
present in these models. Figure 2 (Response) depicts a
dipole field that was used to help explain data about
reinforcement and motivation (Grossberg, 1982¢, Figure
12). I include this figure to emphasize that the processing
principles embodied in the dipole field design extend
beyond visual phenomena. These principles are con-
cerned with the stable self-organization of developing
codes (Grossberg 1980b). Since the dipole field concept
has been in the literature for a decade (Grossberg 1972b),
my remarks about Figure 2 that are aimed at clarifying
commentators’ assertions will be brief.

The chemical gates in pathways 4 — 6 and 5— 7 have
the type of Weber law properties that Buffart desires.
These properties led Gail Carpenter and myself to use a
gated dipole model to fit parametric data quantitatively
about the transduction of light into electrical signals
within vertebrate cones (Carpenter & Grossberg 1981,
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Figure 2. A motivational dipole field, This figure ilustrates
that the same types of concepts and mechanisms that arise in a
mutivational dipole field are also implicated by the perceptual
data and properties mentioned by several commentators, {From
Grossherz 1952¢)
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1983). In Figure 2, the gates are part of positive feedback
loops 4— 6 — 8 > 4 and 5— 7—> 9— 5 that can maintain
an STM (short-term memory) response after a brief input
terminates. This response habituates due to an imbalance
between gate accumulation and depletion that arises due
to the activity of the loops, as Freeman would desire. The
intracellular gating actions and the intercellular inhibito-
ry interactions 13 both contribute to the adaptational and
switching properties of the system.

The pathways 11 and 12 contain LTM (long-term mem-
ory) traces. The LTM trace in 11 is conditioned when
sampling signals in 11 are temporally contiguous with an
active STM reverberation at 8. The LTM trace computes
a time average of presynaptic signal and postsynaptic
STM activity (Grossberg 1968). Since persistent pairing
of 11 and 8 can cause conditioned decreases as well as
increases in synaptic strength (Grossberg 1969a, 1971b,
1972¢), the LTM trace is not Hebbian, contrary to
Dalenoort’s claim. When several conditionable pathways
(such as 11) converge upon individual nodes (such as 8),
they form an adaptive filter. When such an adaptive filter
is modulated by a postsynaptic competitive process, fea-
ture detector tuning curves emerge (Grossberg 1976a,
1976b). Essentially all feature development models in the
literature use a combination of adaptive filtering, com-
petition, and normalization. Cooperativity and hysteresis
in a dipole field are due to the manner in which positive
feedback (as in 8 & 4 — 6 — 8) generates inertia against
lateral inhibition (as in 10 — 8).

Each gated dipole (e.g., nodes 4, 5, 6, 7, 8, 9 and
connections) realizes an opponent process. In the case ofa
red-green dipole, pattern-contingent long-term after-
effects can occur. In Grossberg (1980b), I suggested that
persistence of the McCullough effect can be partly at-
tributed to an interaction between gate habituation and
contrast enhancement in STM. The imbalance due to
asymmetric habituation can also be encoded in the LTM
traces due to the property that a decrease in postsynaptic
STM activity can cause a decrease in LTM strength. Such
an LTM change is not a case of associative learning due to
CS-UCS (conditioned stimulus, unconditioned stimulus)
contiguity. Rather it is a case of retuning feature detectors |
to their trigger input patterns. Thus habituation within a
nonclassical opponent process interacting with a non-
Hebbian adaptive filter can explain McCullough effect
properties as manifestations of a basic processing design.

Wagner’s claim that a Weber law was incorrectly
derived in Section 23, Part II, seems to be based on an
insufficient understanding of the mathematical formal-
ism. My derivation is carried out for the standard case of
an increment threshold on a background (Barlow 1972, p.
136; Boynton 1968, p. 22; LeGrand 1957, p. 255).

Because of the broad scope of my target article, the °

commentaries have also touched upon many topics. Each
commentary has its own conceptual center of mass. I will
therefore discuss individual commentaries in the remain-

ing pages.

5. Bridgman: Multistability, subtractive inhibition, short-
term memoty, and Uttalism. Many of Bridgman'’s general
remarks are explicitly or implicitly discussed in the first
four sections of my Response. Herein I will discuss some
of his specific remarks to clarify distinctions that are
important for a full understanding of my theory.

B8O THE BEHAVIORAL AND BRAIN-SGIENCES (1983) 4

“Quantum” does not equal “multistability.” Multista-
ble spatial patterns can be stored in STM (Grossberg
1973) even if they are not quantized standing waves.
Automatic tuning of sensitivity does not occur in a sub-
tractive feedback model of lateral inhibition, if by auto-
matic tuning one means automatic gain control. Automat-
ic gain control requires multiplication, as between z, and
flxi) in equation (27) of Part II (target article). Short
persistence of activity is not the rule in my competitive
feedback networks, unless they are actively reset by gate
habituation, antagonistic rebound, or an inhibitory input

burst. The positive feedback terms, such as D, fix,)D,,in
k=1

equation (27) of Part II can maintain the STM reverbera-
tion. Bridgman seems to have in mind networks in which
all the interactions are inhibitory. My use of the term
STM fits in well with a variety of data about sensory,
cognitive, and motivational information processing
(Grossberg 1978e, 1980b, 1982b, 19824, 1983a).
Bridgman suggests that subtractive inhibition “is more
common in the cortex.” Results of workers like Freeman
(1979b) and Rall (1977) suggest the importance of shunt-
ing dynamics, as does the ubiquity of membrane pro-
cesses in nerve cells. This observation does not deny that
cellular tissues may maintain themselves within a sensi-
tive operating range. However, invoking additivity from
the start may prevent one from understanding the de-
signs by which this crucial property is achieved. All the
circuitry, both intracellular and intercellular, that goes
into these designs would seem inexplicable if additive
dynamics were erroneously invoked. This observation is a
simple version of the general fact that different assump-
tions about local processing can generate qualitatively

different global theories about the same class of behav-

ioral phenomena.

Bridgman criticizes my approach for its “Uttalism.”
Ironically, my approach is one that is unusually undeserv-
ing of such a criticism. All of my theorems characterize
the dynamics of arbitrary numbers of cells starting out in
arbitrary initial states and responding to wide classes of
inputs. Such global theorems about nonlinear n-dimen-
sional systems are rare not only in psychological and
neural modelling, but also in the mathematical literature
about dynamical systems. The struggle to prove global
theorems of this type has always forced design insights
that went beyond the lessons of available computer simu-
lations, and I have repeatedly used these design insights
to propel my physical theory forward. For example,
instabilities during the development of cognitive codes
that were not reported in other authors’ computer simula-
tions using small numbers of units were clearly visible to
my mathematical analysis. These insights led to my adap-
tive resonance theory (Grossberg 1976a, 1976b, 1980b).

My general mathematical results are usually comple-
mented by working out important examples mathe-
matically or numerically. I believe that one should try to
keep both the forest and its trees simultaneously in view.
This is true in my filling-in theory as well as in past
theoretical work. For example, I demonstrated how to
design associative networks in which arbitrary spatial
patterns could be learned without bias by arbitrarily
many, simultaneously active sampling populations that
may be activated by arbitrary data preprocessing and may
possess arbitrary LTM decay and associative sampling




rules (Grossberg 1969a, 1972c, 1982a). This general the-
orem is balanced by the study of such special topics as:
self-organizing temporal processors, whose simplest in-
stantiations look like vertebrate command anatomies and
whose more complex versions help to explain aspects of
continuous speech processing (Grossberg 1970b, 1978e,
1983a); and the parametric analysis of serial learning to
provide new explanations and predictions about bowing,
skewing, serial generalization gradients, inverted U
properties, and the self-organization of planned behavior
(Grossberg 1969b, 1974, 1978e, 1983a; Grossberg &
Pepe 1970, 1971). Analogously, I proved a general result
about how to design competitive networks so that their
decision schemes would always lead to stable storage in
STM even if these schemes are so complex that one
cannot explicitly compute them (Grossberg 1978c,
1980a). This theorem is balanced by parametric studies of
how changing each parameter of a competitive network
alters its transformation from input pattern to stored
pattern (Grossberg 1973, 1981; Ellias & Grossberg 1975;
Grossberg & Levine 1975; Levine & Grossberg 1976). In
the present instance, Michael Cohen and I proved a
general stability result about STM in networks with
arbitrary structural scales, decay rates, saturation levels,
and input patterns (Cohen & Grossberg 1983c) before
using this theorem to guide our simulations of filling-in
(Cohen & Grossberg 1983a).

6. Buffart: Functional theory, brightness averaging, and
permanent rivalry.I have offered a computational theory
but not a functional theory, Buffart suggests. I do not
agree. If one insists upon a real-time dynamical descrip-
tion of a perceptual process, then a functional theory of
perception is one that describes the dynamical processes
underlying perception, including how and why they
respond to the input patterns that they receive. Other-
wise expressed, knowing the deep structure of a func-
tional theory is tantamount to knowing its dynamical
process. This knowledge implies nothing about the hard-
ware implementation of the process. The fact that a good
real-time theory sometimes suggests a possible imple-
mentation is not a disadvantage of such a theory. Rather it
is a mark of its physical correctness. More is more, not
less.

The dynamical laws of the present theory simul-
taneously express both functional and computational in-
formation. The interactions of the minimal network with
prescribed input environments also express both func-
tional and computational information. The existence of a
FIRE in response to certain environments but not others is
a global property of the minimal network’s abstract infor-
mation processing. Any attempt to separate the func-
tional and computational aspects of the FIRE would trivial-
ize both its meaning and its properties. To understand a
concept such as FIRE, one must enter into the internal
logic of its process, just as one must do to fully understand
quantum mechanics or relativity theory.

I consider functional theories that have not reached an
understanding of process to be less mature as physical
theories than theories which have achieved such an
understanding. Such a remark would be considered too
obvious to make in a discussion of theories in physics or
chemistry. Some people, perhaps due to the sheer diffi-
culty of characterizing perceptual processes, seem to feel
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that it is necessary to justify lesser, but nonetheless
useful, efforts. If a theory does not penetrate to the
processing level, such individuals give the theory a nice
new name — functional or computational theory — and say
that it is good to have distinct functional and computa-
tional theories. To me this just turns desperation into a
virtue, and gives metaphorical theories too much cred-
ibility. In a balder example of the same social phe-
nomenon, the early Skinnerians made the semireligious
commandment: “Thou shalt not theorize, especially
about intervening variables,” because it was so hard to
explain their data at that time. This attitude may have
simplified the goals of committed Skinnerians, but it did
not enhance the acceptance or vitality of Skinnerian
psychology within the greater scientific community. [See
forthcoming BBS special issue on the work of B. F.
Skinner and special issue on Foundations of Cognitive
Science, BBS 3(1) 1980.]

I agree with many of Buffart’s descriptions of data and
assume that he has offered them as interesting results that
are dealt with by his important theory, rather than as
challenges to my theory, since my theory also helps to
explain them. I do not, however, agree with his assertion
that brightness summation does not occur. Brightness
averaging, brightness summation and rivalry can all oc-
cur, and for good reasons, in a binocular dipole field. In
such a field, the critical insights about brightness averag-
ing versus summation are: uninhibited monocular edges
only fill-in their own monocular lightness domain; inhib-
ited or nonexistent monocular edges cannot lift their
monocular lightness domain into resonant perception;
and matched monocular edges can fill-in using both of
their monocular lightness domains. The gating process
underlying rivalry is active even in fusion. This gating
process prepares the percept to be rapidly reset by
stimulus offset leading to antagonistic rebound.

7. Dalenoort: Activity control center, arousal, categoriza-
tion.It is noted by Dalenoort correctly that long-range
shunting inhibition is not the only intercellular normal-
ization mechanism. An “activity control center” can also
normalize total activity. He does not, however, point out
that the two approaches join different dynamical rules to
their different global anatomies. I will illustrate the con-
nection between these mechanisms with a historical
example.

In Grossberg (1970a), I classified minimal networks
capable of extracting the reflectances in an input pattern.
Although this problem was imposed upon me by com-
putational issues in learning theory, not surprisingly, the
resultant networks look strikingly like retinas, since they
contain analogs of receptors, horizontal cells, bipolar
cells, amacrine cells, and ganglion cells. During this
classification, it became clear that these minimal net-
works need to normalize their total activity as a pre-
processing stage in the reflectance computation. In order
to instantiate this functional property computationally, 1
observed that in an additive theory, a nonspecific inhibi-
tory interneuron does the job, whereas in a shunting
theory, an on-center off-surround anatomy is suggested.
Such a nonspecific inhibitory interneuron is the “activity
control center” of Dalenoort and of Amari (1982).

I do not agree with Dalenoort that it is harder to realize
an on-center off-surround anatomy than a nonspecific
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inhibitory interneuron when the nodes v, represent non-
localized cell populations. Long-range shunting inhibi-
tion from every cell to all others can do the job. The
choice, I believe, is constrained by deeper properties. In
a retinal model of a reflectance processor, for example,
shunting interactions at the bipolar cell level support
sustained responses that obey the shift property (Section
23, Part II). Subtractive inhibitory interneurons can,
by contrast, generate transient on- and off-reactions
(Grossberg 1970a, 1976a).

Unlike Dalenoort, I do not equate the normalized total
activity of a network with arqusal. Instead, my theory
distinguishes several types of arousal. One type is acti-
vated by unexpected events and thereupon resets STM
via selective antagonistic rebounds. I locate this arousal
source in the reticular formation or hippocampus and
relate it to the N200 evoked potential. [See forthcoming
BBS special issue on Event-Related Potentials and Cog-
nition. ] Another type of arousal acts like incentive moti-
vation and biases the attentional focus toward moti-
vationally compatible cues. I localize this arousal in the
hippocampus and relate it to the CNV evoked potential.
Other arousal sources modulate the quenching thresh-
olds of sensory, cognitive, or motor representations,
thereby transforming subliminal patterns into supralimi-
nal percepts, concepts, or actions. The PGO (pon-
togeniculo-occipital) wave illustrates such an arousal
source (Grossberg 1978e, 1980b, 1982d, 1983b).

Dalenoort doubts that filling-in on a single network
level can explain categorization. So do 1. In my theory,
categorical and hysteretic properties of stable adaptive
resonances are supported by coordinated bottom-up (fil-
tering) and top-down (expectancy) processes in response
to prescribed input environments (Grossberg 1978e,
1980b, 1983b).

8. Foley: Hypercolumns, fusion, and size. I agree with
Foley that aspects of my theory need further develop-
ment. I have preferred being explicit about where and
why I feel that uncertainties exist, rather than overstating
my case. Some of the uncertainties illustrate incomplete
aspects of perceptual theory per se. Other uncertainties
are due to limitations in our knowledge about how per-
ceptual and motor processes interact. On the sensory-
motor side, we are working out a detailed model of
adaptive visuomotor interactions for a relatively simple,
but still very demanding sensory-motor system (Gross-
berg & Kuperstein 1983) and are generalizing these
results to more complex sensory-motor interactions. On
the perceptual side, we are moving in several directions
at once: toward a better theory of brightness processing;
toward more realistic preprocessing of monocular pat-
terns through retinal models; toward a generalization of
our one-dimensional binocular theory into a two-dimen-
sional theory (cortical hypercolumns); toward the special-
ization of general results on cognitive feedback to the
binocular case. Despite these incomplete aspects of the
theory, I do not agree that the theory “cannot be tested
by perceptual experiments.” As a simple example, equa-
tion (23) in Part II can be used in just the same way that
difference-of-Gaussian models are now used (Wilson &
Bergen 1979), and may explain data that go beyond these
models, as in experiments wherein perceived su-
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prathreshold contrast changes as a function of image
luminance.

Foley writes that “induced gratings are generated in a
direction parallel to the inducing grating, whereas in
Grossberg’s network . . . propagation . . . is at right an-
gles to the inducing edge.” This confusion is due to the
one-dimensional nature of the simulations. In a two-
dimensional dipole field, horizontal and vertical orienta-
tion detectors are mutually inhibitory (Grossberg 1980b).
Filling-in will therefore tend to occur among like orienta-
tions, as in the data. This qualitative property does not,
however, solve the difficult problem of designing a hyper-
column organization that computes these coherent prop-
erties in a physically meaningful way.

Foley also writes that my use of matches in multiple
structural scales as a basis for depth perception “is contra-
dicted by the finding that the maximum disparity that will
produce fusion or depth is independent of the luminance
spatial frequency of the pattern (Pulliam 1981).” Pulliam’s
data are more complex than this remark suggests. Pulliam
constructed pairs of vertical sine wave gratings each of
whose vertical bands is horizontally displaced by an
amount that varies sinusoidally from top to bottom. Thus
two spatial frequencies are used to define each image.
The images are grouped into pairs in which the sine wave
displacements of the vertical bands are 180° out of phase
in each image. Thus stereoscopic fusion of such an image
pair produces a sinusoidal variation in disparity from top
to bottom. A horizontal sinusoidal depth modulation is
thus seen superimposed on a vertical luminance grating.

Pulliam (1981) found that “the channels which detect
displacement modulation seem to be differentially tuned
to luminance spatial frequency [the spacing of vertical
sinusoids] as well as to displacement spatial frequency
[the spacing of the wiggles within each vertical band].
Channels tuned to high displacement spatial frequencies
tend to be tuned to high luminance frequencies, and
channels tuned to low spatial frequencies tend to be
tuned to low luminance spatial frequencies” (p. 73). The
data summarized by Foley just indicate that given a fixed
displacement spatial frequency, the maximum disparity
that produces fusion is independent of luminance spatial
frequency. Foley did not mention that “these functions
decrease with increasing disparity frequency” (Pulliam
1981, p. 76). In other words, the maximum disparity that
will produce fusion or depth decreases as the disparity
frequency increases. This is what one expects from my
theory. :

The subtlety of the Pulliam experiments is due to their
simultaneous manipulation of two spatial frequencies in
orthogonal directions. If the maximum disparity that
produces fusion at a fixed disparity frequency does not
depend upon the orthogonal luminance spatial frequen-
cy, then why does the maximum displacement frequency
at which depth can be seen increase with the maximum
luminance spatial frequency? Pulliam (1981, p. 76) sug-
gests an answer that is also compatible with my theory
(Section 41, Part II) when he reviews results obtained
with square wave luminance gratings with sine wave
disparity modulations: “Evidently, the higher frequency
components of the square wave can ‘carry’ the high
frequency depth information, even though the [low fre-
quency] fundamental component by itself would not.




This suggests that the depth that would be seen with each
of the individual components of the complex luminance
pattern is added together in some way to produce the
perceived depth of the whole pattern.”

As Foley notes, I have suggested several processes that
may contribute to the determination of perceived size.
Size may be influenced by the number of functional
wavelengths in each of the active structural scales, or by
the spatial extent of coherently active network regions, or
by interactions of these properties with motor feedback
mechanisms. None of these options implies “that the
size-distance invariance principle . . . holds only rough-
ly at best.” A functional wavelength can be commensu-
rate with the receptive field size of its network, and the
activity spectrum across several structural scales is an
even more sensitive representation than one across a
single structural scale. Tests of length uncertainty due to
the quantization of functional scales must be prepared to
detect very small differences, notably hysteretic dif-
ferences that may arise when a monocularly viewed
object’s length is slowly increased and then decreased.

9. Foster: Percepts, metrics, and tests. That a Cornsweet
profile and a rectangle (target article, Figure 7, Part I,)
become Cornsweet profiles after Fourier processing
rather than the rectangles that are perceived is a fact
defended by Foster. He suggests that only the identity of
the outcomes, not their shapes, is important. This posi-
tion is incompatible with other uses of the Fourier theory
in which the outcome of a Fourier analysis does look
correct and is therefore used to support the theory.
Foster’s position dissociates perception from any possible
measurement of the collective activities of cellular feature
detectors. Given the growing neural evidence for spatial
frequency detectors in visual cortex (Pollen & Ronner
1981, 1982), I prefer to salvage the truth in Fourier theory
by seeking a modified formalism, rather than internally
weaken its intuitive foundation. The data reported by
contributors like Arend also seem to require a more
powerful theory. ’

Foster points out that “metrics may be used implicitly
by the nervous system” to compute pattern matches at
successive stages. I do not doubt this in the least. Rather,
I am suggesting how and why matching operations are
explicitly computed from the perspective of a deeper
computational viewpoint.

I very much appreciate Foster’s effort to test the
theory. One problem with his test is that the displays are
square. The best paradigms for seeing a low-spatial fre-
quency functional scale are probably those that imitate
the circumstances where phantom contours are seen.
Phantoms are seen if a rectangular uniform region is
placed perpendicular to, but not parallel to, a moving
grating (Weisstein, Maguire & Berbaum 1977). A square
figure has both parallel and perpendicular elements, and
therefore does not satisfy the constraint on one-dimen-
sionality that I stated in Section 35, Part II. Weisstein and
Maguire (1978) have shown that phantoms are seen if the
occluding figure appears to have a perceived depth that
places the figure in or behind the plane of the moving
stripes, but not in front of them. This property is compati-
ble with my theory’s description of filling-in as being
restricted to binocularly consistent structural scales. A
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stationary display would also have to satisfy this con-
straint.

It may be that a stationary display can only activate a
functional scale commensurate with a single receptive
field, rather than the “wave packet” of functional scales
that a moving grating can induce. If such a functional scale
is too small to perceive, then the adaptation paradigm
that I suggested will fail. However, if the experiment can
be made to work, then its impact will be profound.

10. Grimson and Stevens: Modules, models, and meta-
phors. A theoretical movement is espoused by Grimson
and by Stevens that has made some interesting contribu-
tions to machine vision using biological insights as an
intuitive guide. Some adherents of this movement advo-
cate their philosophical beliefs with an enthusiasm that
borders on religious intolerance. It is therefore difficult to
discuss the often elementary concepts in their models
without first stripping them of their scientifically irrele-
vant hyperbole.

For example, Stevens begins his commentary by saying
that I have posed false dilemmas, and then goes on to
build his case on false issues. He accuses my theory of not
being “modular,” whereas anyone who has read my
articles with any care - including the present target
article — realizes that I work in a hierarchical framework
in which many subsystems coexist. Worse than that, I
cannot think of any theorist who does not believe that
subsystems exist. The modularity issue is a false one.
Stevens also incorrectly accuses my theory of having “no
notion . . . of symbolic information processing,” of not
discussing “what is the goal of the computation . . . what
is the algorithm for the transformation?” In reality, 1
began making such theoretical contributions more than a
decade before the present philosophical juggernaut
coined its jargon. Stevens cannot understand that I have
always done what he says I should be doing because he
recognizes only one form of “information processing.”
Ironically, key aspects of this type of information process-
ing are special cases of my own concepts, but Stevens
seems unwilling or unable to understand this.

The unsettling confusion between means and ends,
between wanting to understand human vision but hating
to study human processes, is evident throughout Ste-
vens's commentary. How should one interpret state-
ments like “different information processing prob-
lems . . . have essentially independent solutions . . .
the principle of modularity is rather subtle . . . it means
that independent visual information, such as color and
motion, are treated as independent by the visual sys-
tem . . .”? If color and motion are independent, then
why do color-contingent motion aftereffects occur
(Hepler 1968; Sekuler 1975; Stromeyer & Mansfield
1970)? If not even color and motion are independent,
then is the independence-of-modules hypothesis incor-
rect? Or is it just a philosophical slogan to be used as a
weapon at scientifically inconvenient moments?

Grimson goes beyond Stevens’s exhortations by re-
viewing some results of the Marr school. I say “Marr
school” because specific scientific results, philosophical
dogma, routine mathematical methods, and incantations
of magical phrases like Primal Sketch are always packaged
together by its adherents in a way that sometimes tends to
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obscure what is new in the scientific contributions them-
selves. I believe that the contributions of this vigorous
approach deserve and require an analytic assessment of
how each contribution dovetails with the rest of percep-
tual theory and data.

. To start, I must note that Grimson does not reply to my
criticisms about zero-crossings. As I stated in Section 16,
Part I, the issue is not whether “the location of the
change, and an amplitude associated with that change”
are computed. The issue is how they are computed and
represented in memory. Similarly, we all know that an
“algorithm for interpolating visual surfaces from depth
information . . . and how the shape of the surface can be
inferred” has been suggested. The issue is how this
algorithm works and what it implies about human vision.
In Grimson’s commentary, a number of strong claims
about this algorithm and related results of the Marr school
are made. Unfortunately, these claims do not stand up to
scrutiny. I will first review Grimson’s surface interpola-
tion algorithm to suggest why this algorithm begs the
perceptual issues about filling-in that my target article has
raised. I will then review problems of the Horn-Marr
(Horn 1974; Marr 1974) lightness algorithm and their
relationship to the Richter and Ullman (1982) retinal
model. A similar analysis can be given of the other claims,
and in much the same way.

Grimson’s goal is to reconstruct, or fill-in, a smooth
surface that interpolates a given set of Zero-crossing
points. He wants the surface to be as flat as possible
between these zero-crossings. He calls this property the
surface consistency constraint. As any student of calculus
knows, such a surface should have the smallest possible -
second derivatives to keep it as linear as possible while
also going through the prescribed points. In order even to
define these derivatives, Grimson decides for conve-
nience to interpolate the zero-crossings with a smooth
surface, despite the fact that perceptual boundaries are
not smooth. Denoting a smooth surface by z = flx,y), its
second derivatives are f,_, fxy, and fw. To avoid worrying
about whether these derivatives are small but negative or
small but positive, it is routine to consider their squares
f®s £ and f, 2. To measure whether the derivatives
are small all over the surface, one routinely considers
sums of the squared derivatives integrated across (x,y)
space. A good surface f will have a small integral.

Two elementary measures of the flatness of flx,y) are

0.(f) = [ (% + f2,)dxdy )

6f) = If (% + 2, + & )dxdy )

A measure such as 8,(f) omits the mixed partial deriva-
tives f,,. Hence a curved surface like f;(x,y) = xy can
minimize 8,(f), since 6,(f;) = 0. Consequently Grimson
decides to minimize 0,(f).

In‘Grimson (1981, 1982a, 1982b), many pages are spent
trying to justify the choice of 8,(f). None of these argu-
ments says anything about vision. They all review routine
mathematical results on whether 8,(f) has a unique mini-
mizing solution. To anyone who has taken an undergradu-
ate course in calculus of variations, it is obvious that
Grimson has chosen the functional 8,(f) by fiat based
upon elementary ideas about linear interpolation. Grim-
son’s claim that “the theory has also been given a solid
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physical motivation by relating the model . . . to the
physics of thin plates” just means that a thin plate also
tried to stay smooth yet bend as little as possible subject
to constraints upon it. By contrast with Grimson’s func-
tional, the potential energy

050 = I [(fu + £, 22 - 20 —w)f,.f,, — £, 2ldzdy (6)

of a thin plate is derived from a physical model of the plate
— just the type of model that the Marr advocates criticize
me for developing. Hamilton’s Principle in classical me-
chanics then physically justifies the claim that the plate f
will minimize the potential energy 05(f). No such physical
model is offered by Grimson. Instead, Grimson’s formal
theory boils down to finding approximately linear inter-
polations between sets of points using standard methods.

When one studies how Grimson’s algorithm actually
finds this linear interpolation, it becomes apparent that
the algorithm begs the filling-in question in a most serious
fashion. His “random dot wedding cake” is illustrative
(Response Figure 3). How does Grimson’s algorithm
decide not to interpolate points of similar disparity that
are spatially separated in (x,y) space by points of different
disparity? How does the algorithm decide instead to join
different layers of the wedding cake? First, the zero-
crossing points are represented as points in the three-
dimensional (x,y,d) space, where the height d; = d(x,y,)
above the ith zero-crossing location (x,,y,) denotes the
disparity at this location. This construction assumes a
homunculus within the Marr-Poggio theory because the
computation of disparity within that theory does not take
place in (x,y,d) space. A computer program constructs
(x,y,d) space from the outcomes of binocular matches.
This is, however, a minor difficulty compared with the
ones raised by the next steps of the algorithm.

To get his algorithm started, Grimson has to interpo-
late the zero-crossings with a smooth surface. As Grimson
(1981, p. 186) writes, “Determine a feasible initial surface
approximation (any surface approximation which contains
the known stereo depth values . . .).” In other words,
Grimson assumes that global filling-in has already oc-
curred and then tries to make it more linear. I contrast
this fact with Grimson’s assertion that “the perceptions of
the 5% random dot pattern . . . follow straightforwardly
from the theory. . . .” Of course no problem arises in
interpolating even a 5% density of random dots if one
assumes that an interpolation has already been given by
an undisclosed mechanism.

How does the algorithm progress from the hypoth-
esized filling-in to a flatter filling-in? Here Grimson uses
routine methods of steepest descent as implemented by
Lagrange multipliers (Grimson 1981, Chapter 7). These
methods are mathematically routine, but as visual pro-
cesses they are highly improbable. Given a trial surface
fo» the algorithm computes a new surface fi such that
0,(fo) decreases most rapidly in the direction from fotofy
without leaving the zero-crossing points. To perform this
computation, the algorithm uses a finite mesh of n (x,y)
points over which a discrete approximation to the surface
will be found. The algorithm also has to satisfy m addi-
tional constraints if there are m zero-crossing points. Thus
every step of the algorithm takes place in an n + m
dimensional space (Grimson 1981, p. 175), not the three-
dimensional (x,y,d) space. Grimson notes that, from a
mathematical viewpoint, this search is local in the sense



that each surface is a point in the space of all surfaces. He
does not mention, however, that this search is global as a
visual process. The search procedure implies that the
visual process has the following properties. It can simul-
taneously sense all its estimated values across a surface f;,,
can compute the second derivatives of all surfaces f close
to f, at all n mesh points, can figure out the rates with
which all these surfaces would change 0,(f), and can then
pick out among all these surfaces the new surface f, that
will most quickly decrease 8,(f) without disrupting the m
zero-crossing estimates. Then this process repeats itself
iteratively. Although no visual process is ever defined,
one can safely remark that its action cannot possibly be
isomorphic with the rules of this algorithm.

Given that the algorithm converges, what does the
wedding cake teach us? In Figure 3, every (x,y) point is
associated with a single disparity value, and only with this
disparity value. Thus the wedding cake is subject to all of
my criticisms of Sperling-Dev models (Section 14, Part I)
despite Grimson’s claim that “most of the criticisms
leveled by Grossberg at what he calls Sperling-Dev
models do not apply to the MPG model. One already
discussed is the interpolation of disparity data to obtain

M

Figure 3. A random dot wedding cake. This figure shows how
the Grimson surface reconstruction algorithm computes a Sper-
ling-Dev surface that interpolates given (x;, y,, d,) points as
linearly as possible, where (x;, y,) designates the 2-dimensional
position of the ith zero-crossing and d, measures its disparity.
This algorithm works by assuming that a filling-in surface has
already been provided and then uses a standard steepest de-
scent procedure to flatten out the initial surface. (From W. E. L.
Grimson, From Images to Surface, M.1.T. Press, 1981, p. 192.
Reprinted with permission.)
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figure-ground effects and to compute complete surface
representations.”

The individual models of the Marr school also deserve
detailed analysis as contributions to the neural modeling
literature, where they are so intended. For example,
Grimson writes, “Horn’s algorithm (Horn 1974) . . .
clearly illustrates one method for computing light-
nesses . . . which clearly explains effects like the Corn-
sweet and Craik-O'Brien effects. . . .” Marr (1974) in-
terprets the Horn algorithm as a model of the retina by
assigning each algorithmic stage an anatomical in-
terpretation. I will indicate below how the Marr (1974)
retinal model and the later Richter and Ullman (1982)
retinal model, which Grimson also mentions, are related
to my own efforts to model retinal dynamics.

- In Grossberg (1970a, Sections 7-14), I classify minimal
networks capable of computing the reflectances in an
input pattern, and in Grossberg (1972d) I interpret these
results retinally and relate them to Land’s retinex theory.
My networks are defined in terms of three successive
computational stages. The first two stages normalize and
partially filter the input pattern. I show how these stages
can be accomplished by a subtractive competition in
which signal thresholds are already embedded, or by a
logarithmic transduction feeding into a subtractive stage
followed by signal thresholds, or by a shunting competi-
tion followed by a signal threshold stage. This classifica-
tion of possible instantiations illustrates the clear demar-
cation between abstract computation and physical
realization that I was already actively pursuing in the
1960s.

The Horn (1974) and Marr (1974) articles also invoke
three stages to compute lightness. Marr’s first two stages
are my logarithmic transduction feeding into a subtrac-
tive stage followed by signal thresholds. Thus these two
stages do not represent a new model at all. In particular,
the bipolar cell response to inputs I, is defined by

J; = log(I) — kE wylog(I;) (7)
eK
which implies
B
] i 103 W,
ITr
keK

(Marr 1974, equation 3, p. 1379). This form factor does
not meet intracellular data about bipolar cells, notably
the S-shaped form of the shift property (Werblin 1971). In
Grossberg (1972d, equation (7), p. 52, and equations
9-10, p. 54), I realized that retinal data suggested the
choice of a shunting competitive model for bipolar cell
responses. I have summarized some of the reasons for my
choice in the target article, Section 23, Part I, including
the S-shaped shift property. ‘
The third stage of my model differs in a fundamental
way from the work of Horn and Marr. I realized in the
1960s that one does not have to construct an output
pattern that is a faithful reproduction of an input pattern
whose background illuminations have been discounted.
In fact, the existence of opponent-process ganglion cells
at the output end of the retina strongly argues against
such a reconstruction process. The output pattern can be
an abstract representation of the input pattern. All one
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needs at the output end are tuning curves that are
sensitive to pattern reflectances. In Grossberg (1970a),
formal considerations led me to suggest a third stage that
is built up from subtractive opponent processes. In
Grossberg (1972d, Section 3), I pointed out how this
procedure could be realized by bipolar cell and amacrine
cell interactions with opponent-process ganglion cells.
By contrast, Marr (1974) accepts Horn’s requirement
that the third stage invert the first stage of the process.
Horn’s third stage, however, is an excitatory feedback
interaction among the thresholded output signals from
the second stage. Marr (1974) realizes that this property
creates difficulties because “retinal ganglion cells are not
pre-synaptic to any other retinal cells” (p. 1382) and
because “it is taken as a basic constraint on the . . . re-
construction algorithm that the whole computation
should be carried out using variables whose signs do not
change” (p. 1381). Because it was already well known
that amacrine cells can inhibit ganglion cells, Marr (1974)
does not take into account the fact that the output cells of
the retina are ganglion cells; he seeks his interpretation of
the algorithm’s third stage among the many types of
amacrine cells. Unfortunately, no matter what in-
terpretation is used, an opponent-process ganglion cell
cannot be synthesized from sums of excitatory activities.
Grimson’s commentary mentions the retinal ganglion
cell model of Uliman and Richter (1982) as an example of
how “computational theories and algorithms [are used] to
predict and understand mechanisms in the visual sys-
tem.” Grimson notes that this model is based on a “V2G
convolution” and a “time derivative of a V2G convolu-
tion” to further argue for the importance of zero-crossing
computations. I believe that it is essential to distinguish
the V2G convolution from the more impoverished zero-
crossing computation. Even a V2@ operation just approx-
imates a difference-of-Gaussians, and a convolution of a
difference-of-Gaussians is just 2.;(Dy; — E,,) in the
notation of Section 24, Part II. This form factor has been a
component of retinal ganglion cell models, including my
own, for more than a decade. A time derivative of this
form factor crudely approximates motion-sensitive in-
teractions that are built up from excitatory and inhibitory
interactions (Barlow & Levick 1965; Grossberg 1970a;
Miller 1979; Wyatt & Daw 1975). Foym factors that
include the major Richter and Ullman (1982) computa-
tions have also been previously studied. These form
factors include the Richter and Ullman expression

C(l — e-ott = B) — S(1 — -7 ~ ®) ®)

for asynchronous center (C) and surround (S) interactions
(Grossberg 1970a, Sections 9—11); and their expression

x,() = S(t) - f ;I(t ~ o)ay(v)dv ®

x,(t) = f;E(t - v)x,(v)do {10)

for a dyadic negative feedback loop (Grossberg 1970a,
Section 3). I used such form factors in Grossberg (1970a)
to study the dynamics of sustained and transient re-
sponses before most of the data simulated by Richter and
Ullman (1982) were published. These historical facts do
not deny the usefulness of the Richter and Ullman (1982)
study. They do, however, illustrate the inappropriate-
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ness of the proprietary tone with which the V2G convolu-
tion and its time derivative are discussed by Grimson.

Such is also the tone of Marr and Poggio’s (1976, p. 287)
incorrect statement that “There has hitherto been no
careful study of a cooperative algorithm in the context ofa
carefully defined computational problem. . . .” This in-
accurate observation was directed at the algorithm of Dev
(1975) that Marr and Poggio (1976) used, as well as at the
entire field of neural modeling. There is this proprietary
tone in the judgment: “Much has been published re-
cently on possible cooperative processes in nervous sys-
tems, ranging from the ‘catastrophe’ literature . . . to vari-
ous attempts of more doubtful credibility” (Marr &
Poggio 1976, p. 287). This tone is also involved in ex-
pressions of the belief that the phrase Primal Sketch
somehow turns some familiar elementary notions into
something more than that, indeed for Grimson into a
“rich symbolic representation.” In a similar tone, priority
is being claimed for a theoretical method that others were
effectively using long before the Marr school. Such a
proprietary attitude is not appropriate for reasoned scien-
tific discussion. I hope that it changes soon.

Grimson says that I do not precisely define a matching
process and that “reversing the contrast of one monocular
pattern would result in similar representations.” Both
assertions are contradicted by the equations in Appendix
A.

11. Julesz and Rosen: Springs, magnets, and networks. I
am glad that the commentary of Julesz reviewed some of
his seminal contributions to visual perception. Such re-
sults cannot be contemplated and admired often enough.
The reminiscence that his original cooperative model of
stereopsis “was not comprehensible either to the physi-
cists or the psychologists™ illustrates an unfortunate fact of
life about the communication difficulties that await new
visual theories. Even Julesz needed to use eighteenth-
and nineteenth-century concepts to effectively communi-
cate his twentieth-century ideas. That these concepts
were already realized in hardware certainly expedited the
communication process.

Processes underlying perception will also find their
way into hardware, and may even one day help to model
the dynamics of nonperceptual phenomena. Such pro-
gress will be expedited if, to use Resen’s phrase, a frontal
attack on the “radical epistemological implications” of
perceptual data is supported along with approaches based
on traditional concepts. :

12. Laming: The unstable world of linear positive feed-
back. Many of the general concerns expressed by Laming
have already received a reply in the foregoing sections of
this Response. One of his assertions does require a
separate reply, however: “for the most part visual percep-
tion is veridical, suggesting a basically linear process.”

Obviously many visual processes involve internal posi-
tive feedback. Helmholtz himself acknowledged this with
his doctrine of “unconscious inference,” a doctrine,
moreover, that challenges the statement that “visual
perception is veridical.” When positive feedback is made
linear in a visual context, an unstable model is the result
(Section 28, Part IT). My “parsimonious set of theoretical
constructs” thus mathematically contradicts Laming’s be-
lief in a linear visual process.



Laming does not seem to consistently hold this beliefin
veridicality, however, since he also says that “a sigmoid
signal function . . . might . . . simply be a physiological
device for suppressing the contribution of certain units,
allowing the perceptual process to be carried out by other
units still operating within their linear dynamic range.”
This statement is compatible with my results about sig-
moids, although it is far from a working understanding
because a sigmoid signal function in an improperly de-
signed network can just as easily saturate units as enable
them to operate linearly. How such saturation can be
prevented is now well understood. The answer to Lam-
ing’s question “why explore these particular ideas” can
only be found by taking the time to explore them.

13. Poltrock and Shaw: Zulus, scale selection, and dipole
fields.A number of interesting questions about the theory
are raised by Poltrock & Shaw, but then these commenta-
tors go on to draw strong conclusions that do not follow
from them. I will illustrate this assertion with two
examples.

Poltrock & Shaw note that “Zulu tribesmen, who
lacked experience with linear architecture, failed to per-
ceive” the Ponzo illusion. They claim that this result
poses a serious problem for my theory because “the
activation pattern arises naturally from the computational
processes required for binocular vision.” The Zulu results
must be discussed in terms of feature development mech-
anisms, namely, bottom-up adaptive filtering of input
patterns during a period of developmental plasticity
(Grossberg 1976a, 1976b), not in terms of the lateral
interactions that react to the filtered patterns at the next
network level of an adult network.

Poltrock & Shaw correctly note that monocular stimuli
may self-match and may also contain scaling information
that differentially activates some scales more than others.
These commentators call this an “apparent contradic-
tion.” I do not see why. Self-matches are not subject to
disparity restrictions; so they can, other things being
equal, activate more scales than binocular matches.
Hence the perceived depth of a monocularly viewed
pattern may be more ambiguous than its perceived depth
due to binocular viewing. This fact does not prevent the
size scales within a monocular scene from also modulating
network activity in the manner indicated by Figure 12 of
Part II (target article). A quantitative understanding of
such interactions will only come from massive numerical
simulations of multiple scale reactions to numerous mon-
ocular and binocular stimuli. Such simulations are now
being undertaken. The other issues raised by these com-
mentators are also worthy of serious quantitative assess-
ment but do not, to my mind, qualitatively contradict the
theory.

Because of the many difficulties that are inevitably
faced when building any new dynamical theory, my
colleagues and I are carrying out our simulations in a
conservative fashion, since we want to develop network
designs that deal with a wide range of phenomena. While
these simulations are going on, we do not “avoid settling
on a specific, testable form of the network.” Formulas like
equation (23), Part II, and those in Appendix A are
already as testable as other models in the literature.
Parametric analyses and predictions are regularly con-
tributed (e.g., Carpenter & Grossberg 1981, 1983; Cohen
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& Grossberg 1983b; and Grossberg 1983b.) Paradigms are
suggested that may yield counterintuitive results. None-
theless, the synthesis of a dynamical theory for explaining
global visual phenomena necessarily proceeds on a slower
time scale. To appreciate how rapidly progress is being
made, one needs only recall the years of brilliant contri-
butions that were needed for Bohr’s model of the hydro-
gen atom to generate Schrodinger’s model of the hydro-
gen atom (Hermann 1971; Rozental 1967).

Poltrock & Shaw question “whether any perceptual
experiences are excluded” by my theory. Let me remind
them that my major conclusions have been derived using
networks constructed from a single physical process — the
gated dipole field and its adaptively modifiable input
filters. If this process is capable of even raising such a
question, then it is worthy of serious investigation by a
large number of gifted people. My colleagues and I at the
Center for Adaptive Systems will heartily encourage such
;nvelstigations on both the experimental and theoretical
evels.
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688 THE BEHAVIORAL AND BRAIN SCIENCES (1983) 4

Dev, P. (1975) Perception of depth surfaces in random-dot stereograms: A
neural model. International Journal of Man-Machine Studies
T511-28. [tarSG)

de Weert, Ch. M. M. & Levelt, W. J. M. (1974) Binocular brightness
combinations: Additive and nonadditive aspects. Perception and
Psychophysics 15:551-62. [HB)

Diner, D. (1978) Hysteresis in human binocular fusion: A second look. Ph.D.
thesis California Institute of Technology, Pasadena. [B]]

Dodwell, P. C. (1973) Pattern and object perception. In: Handbook of
Perception, Vol. 5: Secing, eds. E. C. Carterette & M. P. Friedman,
New York: Academic Press.  [taSG) }

Eijkman, E. G. J., Jongsma, H. J. & Vincent, J. (1981) Two-dimensional
filtering, oriented line detectors, and figural aspects as determinants of
visual illusions. Perception and Psychophysics 29:352-38. [taSG}

Ellias, S. A. & Grossberg, S. (1975) Pattern formation, contrast control, and
oscillations in the short term memory of shunting on-center off-surround
networks. Biological Cybernetics 20:69-98. [tarSG, DSL]

Emmert. E. (1881) Grossenverhaltnisse der Nachbilder. Klinische Monatsblatt
der Augenheilk unde 19:443-50. [taSG]

Engel. G. R. (1967) The visual processes underlying binocular brightness
summation. Vision Research 7:753-67. [HB)

(1969) The autocorrelation function and binocular brightness mixing. Vision
Research 9:1111-30. [HB]

Enroth-Cugell, C. & Robson, J. G. (1966) The contrast sensitivity of retinal
ganglion cells of the cat. Journal of Physiology 187:517-52. [taSG)

Fender, D. & Julesz, B. (1967) Extension of Panum’s fusional area in
binocularly stabilized vision. Journal of the Optical Society of America
57:819-30. [HB, taSG, BJ]

Festinger, L., Coren, S. & Rivers, G. (1970) The effect of attention on
brightness contrast and assimilation. American Journal of Psychology
83:189-207. [SC]

Foley, J. M. (1968) Depth, size and distance in stereoscopic vision. Perception
and Psychophysics 3:265-74. [JMF)

(1976) Binocular depth mixture. Vision Research 16:1263-67.

(1980) Binocular distance perception. Psychological Review

7:411-34. [JMF, taSG]

Foster, D. H. (1978) Visual apparent motion and the calculus of variations. In:
Formal Theories of Visual Perception, eds. E. L. J. Leeuwenberg & H.
F. J. M. Buffart, pp. 67-82. New York: Wiley. [DHF)

(1980) A spatial perturbation technique for the investigation of discrete
internal representations of visual patterns. Biological Cyberbetics
38:159-69. [DHF]

Fox, R. & Mclntyre, C. (1967) Suppression during binocular fusion of
complex targets. Psychonomic Science 8:143-44. [HB]

Freeman, W. J. (1973) Cinematic display of spatial structure of EEG and
averaged evoked potentials (AEPs) of olfactory bulb and cortex.
Electroencephal. Clin. Neurophysiol. 37:199. [W]F]

(1975) Mass action in the nercous system. New York: Academic
Press. [W]F]

(1979a) EEG analysis gives model of neuronal template-matching
mechanism for sensory search with olfactory bulb. Biological Cybernetics
35:221-34. [WJF]

(1979b) Nonlinear dynarnics of paleocortex manifested in the olfactory EEG.
Biological Cybernetics 35:21-37. [W]F, rSG]

(1978¢) Nonlinear gain mediating cortical stimulus response relations.
Biological Cybernetics 33:237-47. [WJF)

(1981) A physiological hypothesis of perception. Perspectives in Biology and
Medicine 24:561-92. [WIF]

Freeman, W. J. & Schneider, W. (1952) Changes in spatial patterns of rabbit
olfactory EEG with conditioning to odors. Psychophysiology
19:41-36. [W]F]

Frisby, J. P. (1979) Seeing. Oxford: Oxford University Press. [WELG]

Frisby, J. P. & Julesz, B. (1975) Depth reduction effects in random line
stereograms. Perception 4:151-58. [BJ]

Gerrits, H. J. M., de Huan, B. & Vendrick, A. ]. H. (1966) Experiments with
retinal stabilized images: Relations between the observations and neural
data. Vision Research 6:427-40. [rSG]

Gerrits, H. J. M. & Timmerman, J. G. M. E. N. (1969) The filling-in process
in patients with retinal scotomata. Vision Research 9:439—42. [rSG]

Gerrits, H. J. M. & Vendrik, A. J. H. (1970a) Artificial movements of a
stabilized image. Vision Research 10:1443-56. [HB]

(1870b) Simultaneous contrast, filling-in process and information processing
in man’s visual system. Experimental Brain Research 11:411-30. [HB,
rSG)

(1972) Eye movements necessary for continuous perception during
stabilization of retinal images. Bibliotheca Ophthalmologica
82:339-47. [HB]

MF]



(1974) The influence of stimulus movements on perception in parafoveal
stabilized vision. Vision Research 14:175-80. [HB]

Gibson, J. J. (1950) Perception of the visual world. Boston: Houghton
Miflin. [taSG]

Gilchrist, A. L. (1977) Perceived lightness depends on perceived spatial
arrangement. Science 195:185-87. [SEP]
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Schrédinger, E. Miiller-Pouillets Lehrbuch der Physik 11. Auflage, Zweiter
Band. Braunschweig. [HB]

Schwartz, E. L. (1980) Computational anatomy and functional architecture of
striate cortex: A spatial mapping approach to perceptual coding. Vision
Research 20:645-69. [taSG)]

Sekuler, R. {1975) Visual motion perception. In: Handbook of perception, Vol.
5, eds. E. C. Carterette & M. P. Friedman. New York: Academic
Press. [rSG)

Shepard, R. N. (1980) Multidimensional scaling, tree-fitting, and clustering.
Science 210:390-98. [taSG]

Shepard, R. N. & Chipman, S. (1970) Second-order isomorphism of internal
representations: Shapes of states. Cognitive Psychology 1:1~17. [BB]

References/Grossberg: Quantized geometry of visual space

Shepard, R. N. & Metzler, J. (1971) Mental rotation of three-dimensional
objects. Science 171:701-03. [DHF]

Shepherd, G. M. (1972) Synaptic organization of the mammaliag olfactory
bulb. Physiological Review 52:864-917. [WJIF]

Shipley, T. (1965) Visual contours in homogeneous space. Science
150:348-50. [taSG]

Singer, W. (1982) The role of attention in developmental plasticity. Human
Neurobiology 1:41-43. [taSG]

Smith, A. T. & Over, R. (1979) Motion aftereffect with subjective contours.
Perception and Psychophysics 25:95-98. [taSG]

Sperling, G. (1970) Binocular vision: A physical and a neural theory. American
Journal of Psychology 83:461~-534. [G]D, taSG, BJ1

(1981) Mathematical models of binocular vision. In: Mathematical
psychology and psychophysiology, ed. S. Grossberg. Providence, R.L:
American Mathematical Society. [taSG]

Sperling, G. & Sondhi, M. M. (1968) Model for visual luminance
discrimination and flicker detection. Journal of the Optical Society of
America 58:1133-45. [taSG, DSL]

Stevens, S. S. (1959) The quantification of sensation. Daedalus
88:606-21. [taSG] .

Stromeyer, C. F. III & Mansfield, R. J. W. (1970) Colored after-effects
produced with moving edges. Perception and Psychophysics
7:108-14. [rSG]

Swets, J. A. (1961) Is there a sensory threshold? Science 134:168-77. [DL]

Tschermak-Seysenegg, A. von (1952) Introduction to physiological optics. P.
Boeder, trans. Springfield, Il.: C. C. Thomas. [taSG}]

Tynan, P. & Sekuler, R. (1975) Moving visual phantom: A new contour
completion effect. Science 188:951-52. [JMF, taSG]

Uttal, W. (1973) The psychobiology of sensory coding. New York: Harper and
Row. [BB]

van den Brink G. & Keemink, C. J. (1976) Luminance gradients and edge
effects. Vision Research 16:155-59. [HB)

van Nes, F. L. (1968) Experimental studies in spatio-temporal contrast
transfer by the human eye. Utrecht: University. [HB]

van Nes, F. L. & Bouman, M. A. (1965) The effects of wavelength and
luminance on visual modulation transfer. Excerpta Medica International
Congress Series 125:183-92. [HB]

van Tuijl, H. & Leeuwenberg, E. (1979) Neon color spreading and structural
information measures. Perception and Psychophysics 25:269-84. [HB]

Von Békésy, G. (1968) Mach- and Hering-type lateral inhibition in vision.
Vision Research 8:1483-99. [rSG]

Wallach, H. & Adams, P. A. (1954) Binocular rivalry of achromatic colors.
American Journal of Psychology 67:513-16. [taSG]

Watson, A. S. (1978) A Riemann geometric explanation of the visual illusions
and figural after-effects. In: Formal theories of visual perception, eds. E.
C. J. Leeuwenberg & H. F. T. M. Buffart. New York: Wiley. [taSG]

‘Weisstein, N. (1980) The joy of Fourier analysis. In: Visual coding and

adaptability, ed. C. S. Harris. Hillsdale, N.J.: Erlbaum. [rSG)

Weisstein, N. & Harris, C. §. (1980) Masking and the unmasking of
distributed representations in the visual system. In: Visual coding and
adaptability, ed. C. S. Harris. Hillsdale, N.J.: Erlbaum. [rSG]

Weisstein, N., Harris, C. S., Berbaum, K., Tangney, J. & Williams. A. (1877)
Contrast reduction by small localized stimuli: Extensive spatial spread of
above-threshold orientation-selective masking. Vision Research
17:341-50. [rSG]

Weisstein, N. & Maguire, W. (1978) Computing the next step: Psychophysical
measures of representation and interpretation. In:-Computer vision

, eds. E. Ri & A. Hanson. New York: Academic
Press. [rSG]

Weisstein, N., Maguire, W. & Berbaum, K. (1976) Visual phantoms produced
by moving subjective contours generate a motion aftereffect. Bulletin of
the Psychonomic Society 8:240 (abstract). [rSG]

(1977) A phantom-motion aftereffect. Science 198:955-98. [JMF, taSG]

Weisstein, N., Maguire, W. & Williams, M. C. (1978) Moving phantom
contours and the phantom-motion aftereffect vary with perceived depth.
Bulletin of the Psychonomic Society 12:248 (abstract). [rSG]

Weisstein, N., Matthews, M. & Berbaum, X. (1974) Illusory contours can
mask real contours. Bulletin of the Psych ic Society 4:266
(abstract). [rSG]

Werblin, F. S. (1971) Adaptation in a vertebrate retina: Intraceliular
recordings in Necturus. Journal of Neurophysiology 34:228-41. [tarSG]

Werner, H. (1937) Dynamics in binocular depth perception. Psychological
Monograph {(whole no. 218). [taSG]

Wilson, H. R. (1980) A transducer function for threshold and suprathreshold
human vision. Biological Cybernetics 38:171-78. [JMF]

Wilson, H. R. & Bergen, J. R. (1979) A four-mechanism model for spatial
vision. Vision Research 19:19~32. [tarSG]

Wilson, H. R. & Cowan, J. D. (1972) Excitatory and inhibitory interactions in

THE BEHAVIORAL AND BRAIN SCIENCES (1983) 4 691




luminance increments. Journal of the Optical Society of America
60:382-89. [DL}

Newell, A. (1980) Harpy, production systems, and human cognition. In:
Perception and production of fluent speech, ed. R, Cole. Hillsdale, N.J.:
Erlbaum. [taSG]

O’Brien, V. (1958) Contour perception, illusion and reality. Journal of the
Optical Society of America 48:112-19. [SC, taSG]

Osgood, C. E., Suci, G. J. & Tannenbaum, P. H. (1957) The measurement of
meaning. Urbana: University of Illinois. [taSG)

Poggio, T. (1980) Neurons sensitive to random-dot stereograms in areas 17
and 18 of rhesus monkey. Society for Neuroscience Abstracts (November)
6. [BJ]

Poggio, T. (1882) Trigger features or Fourier analysis in early vision: A new
point of view. In: The recognition of pattern and form, lecture notes in
biomathematics, ed. D. Albrecht. New York: Springer,

44:88-99. [WELG] '

Pollen, D. A. & Ronner, S. F. (1981) Phase relationships between adjacent
simple cells in the visual cortex. Science 212:1409-11. [rSG]

(1982) Spatial computation performed by simple and complex cells in the
visual cortex of the cat. Vision Research 92:101-18. [rSG]

Pulliam, K. (1981) Spatial frequency analysis of three-dlmenswnal vision.
Proceedmgs of the Society of Photo-Optical Instr Eng s
303:71-77. [JMF, rSGl

Raajjmakers, J. G. W. & Shiffrin, R. M. (1981) Search of associative memory.
Psychological Review 88:93-134. [taSG]

Rall, W. (1977) Core conductor theory and cable properties of neurons. In:
Handbook of physiology: The nervous system, vol. 1, Part I, ed. E. R.
Kandel, pp. 39-97. Bethesda, Md.: American Physiological
Society. [rSG]

Rashevsky, N. (1968) Mathematical biophysics. Chicago: University of Chicago
Press. [TT}

Ratliff, F. (1965) Mach bands: Quantitative studies on neural networks in the
retina. New York: Holden-Day. [BB, taSG]

Rauschecker, J. P. J., Campbell, F. W. & Atkinson, J. (1973) Colour
opponent neurones in the human visual system. Nature
245:42-45. [taSG]

Restle, F. (1971) Mathematical models in psychology. Baltimore: Penguin
Books. [taSG]

Richards, W.'(1975) Visual space perception. In: Handbook of perception,
Vol. 5: Seeing, eds. E. C. Carterette & M. P. Friedman. New York:
Academic Press. [taSG]

Richards, W. & Marr, D. (1981) Computational algorithms for visual
processing. M.L.T. Artificial Intelligence Lab. [taSG]

Richards, W. & Miller, J. F., Jr. (1971) The corridor illusion. Perception and
Psychophysics 9:421-23. [taSG]

Richter, J. & Ullman, S. (1982) A model for the temporal organization of X-
and Y-type receptive fields in the primate retina. Biological Cybernetics
43:127-45. [rSG, WELG)

Robson, J. G. (1975) Receptive fields: Neural representation of the spatial and
intensive attributes of the visual image. In: Handbook of perception (Vol.
5), eds. E. C. Carterette & M. P. Friedman. New York: Academic
Press. [taSG]

Robson, J. G. & Graham, N. (1981) Probability summation and regional
variation in contrast sensitivity across the visual field. Vision Research
21:409-18. [taSG]

Rock, L. (1977) In defense of unconscious inference. In: Stability and
constancy in visual perception, ed. W. Epstein. New York: Wiley. [HB]

Rodieck, R. W. & Stone, J. (1965) Analysis of receptive fields of cat retinal
ganglion cells. Journal of Neurophysiology 28:833-49. [taSG]

Rozental, S., ed. (1967) Niels Bohr. New York: Wiley. [rSG]

Rushton, W. A. (1965) Visual adaptation. The Ferrier Lecture, 1962.
Proceedings of the Royal Society of London (B) 162:20-46. [WJF]

Sakata, H. (1981) Mechanism of Craik-O’Brien effect. Vision Research
21:693-99. [rSG]

Schriever, W. (1925) Experimentelle studien iiber stereokopische sehen.
Zeitschrift fuer Psychologie 96:113-70. [SEP]
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